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Disorder-induced domain wall velocity shift at high fields in perpendicularly magnetized thin films
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Domain wall dynamics in a perpendicularly magnetized system is studied by means of micromagnetic
simulations in which disorder is introduced as a dispersion of both the easy-axis orientation and the anisotropy
constant over regions reproducing a granular structure of the material. High field dynamics show a linear
velocity-field relationship and an additional grain size dependent velocity shift, weakly dependent on both applied
field and intrinsic Gilbert’s damping parameter. We find the origin of this velocity shift in the nonhomogeneous
in-plane effective field generated by the tilting of anisotropy easy axis introduced by disorder. We show that a
one-dimensional analytical approach cannot predict the observed velocities and we augment it with the additional
dissipation of energy arising from internal domain wall dynamics triggered by disorder. This way we prove that
the main cause of higher velocity is the ability of the domain wall to irradiate energy into the domains, acquired
with a precise feature of disorder.
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I. INTRODUCTION

Domain wall (DW) dynamics in ultrathin films with
high perpendicular magnetocrystalline anisotropy (PMA) has
received a lot of attention over the last years [1–3] since these
structures present several advantages over in-plane magnetized
materials towards their potential use in spintronic devices, such
as narrower domain walls and better scalability. The success of
domain wall based devices [3–5] relies entirely on the ability
to control their position and their motion reliably. The main
features of field-driven domain wall dynamics in ferromag-
netic strips are well captured by the one-dimensional model of
Walker and Slonczewski [6,7]. This model predicts a velocity
field dependence characterized by two main regimes: the linear
steady regime below the Walker field Ha < HW , where the DW
moves rigidly and its velocity dependence on driving field Ha ,
the mobility, is inversely proportional to Gilbert’s damping
parameter α, and the linear precessional regime [8,9], where
the mobility is proportional to (α + α−1)−1. These two linear
regimes are separated by an intermediate regime after Walker
field, where velocity shows a nonlinear dependence on the
driving field [7].

On the other hand, it has recently been shown that features
like dynamic DW deformations and variations in its internal
structure, which are beyond the one-dimensional model,
significantly affect its velocity [10–13]. In particular, recent
works have focused their attention on the role played by
motion and annihilation of vertical Bloch lines (VBL) inside
the DW and how these processes have a strong impact on the
DW velocity [11]. Such features cannot be taken care of in
the one-dimensional model and, consequently, micromagnetic
simulations have become an essential tool for an interpretation
of these complexities, allowing for a better understanding of
experimental data.

Moreover, it is well known that material inhomogeneities
and disorder also affect DW dynamics because they act as
pinning centers. In particular, a finite minimum field, called
depinning field (Hdep), is required to propagate the DW in every
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sample. For fields smaller than Hdep the so-called creep regime
is observed [8,14], where DW motion takes place via thermally
activated localized depinning events. For fields higher than
Hdep the wall accelerates up to a viscous flow regime [15].
Due to disorder, then, the transition between the steady and
precessional regimes predicted by the one-dimensional model
is hardly observed experimentally. This is particularly the case
in PMA films, where the Walker breakdown field is typically
much smaller than the depinning field. In any case, it is
clear that micromagnetic simulations are needed to properly
investigate the effect of disorder in DW motion. They were
used in [16,17] to study the motion of vortex domain walls
in soft in-plane magnetized nanostrips and it was shown [16]
that disorder introduces a new means of dissipating the energy
in the system via spin wave emission during DW propagation,
which was characterized by an extrinsic contribution to the
Gilbert damping parameter. Extrinsic contributions to damping
during DW propagation are also emphasized in [18], where it
is shown that the experimental value of damping extracted
from FMR measurements is considerably smaller than the one
extracted from DW mobility in permalloy strips. On the other
hand, in a recent work [19], we used a micromagnetic model
with an irregular grain structure to show that a certain degree
of inhomogeneity is required to account for the DW velocities
measured experimentally in thin films with PMA in the typical
plateau region obtained in the viscous regime at intermediate
fields [20,21].

At very high fields, however, when the force exerted by the
field on the wall is much larger than the pinning force due to
disorder (Ha � Hdep), the effect of nonuniformities becomes
negligible and, therefore, DW deformations should be minimal
and good agreement with the linear precessional regime
predicted by the one-dimensional model is expected [7,8].
In the present work we focus our attention on this high-field
regime. Using the micromagnetic model presented in [19],
which has been proven to adequately describe experimental
data, we observe that the introduction of material disorder
preserves a linear field-velocity dependence at high fields,
but a fixed contribution to DW velocity appears, yielding
a velocity shift that depends on the chosen grain size. We
verify that this contribution to DW velocity is solely due to
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FIG. 1. (a) Schematic of the system under study: Bloch domain wall separating up and down domains. The external field is applied
out-of-plane, favoring the expansion of the red domain. A typical Voronoi tessellation for a grain distribution is shown on the x-y plane together
with the polar (η) and azimuthal (ζ , inset) angles of a tilted anisotropy easy-axis û. (b) Distribution of the in-plane components of û for a sample
with grain size d = 30 nm. A Gaussian distribution of standard deviation σ = 0.05 and mean 0 is used to perturb the x and y components at
each grain. (c) Corresponding distribution of the polar (η) and azimuthal (ζ ) angles of the easy axis for the same sample.

the dispersion in the anisotropy easy-axis û tilting, which
generates a local in-plane field that varies from grain to grain.
The effect of this local in-plane field is twofold: on one hand,
a local net contribution to the out-of-plane torque on the DW
spins arises from a tilted easy axis and can be accounted for in
the one-dimensional model analysis. On the other, the velocity
of the VBLs propagating along the DW is sensitive to in-plane
fields, which gives rise to annihilation events and complex
dynamics of the DW that translate into an augmented spin
wave radiation from the DW.

The manuscript is organized as follows. The simulated
system and the methods are described in Sec. II. In Sec. III
we present the results of simulations for different grain
parameters, and we identify the feature of the model that
causes the velocity shift. Section IV is dedicated to enhance
the analytical model considering the different DW energy
dissipation mechanisms in a homogeneous film and in presence
of disorder. We compare the mechanisms both qualitatively
and quantitatively giving a correction to the analytical model
prediction for DW velocity. In Sec. V we summarize the main
results of the paper.

II. METHODS

The system under study is represented schematically in
Fig. 1(a). The values of the material parameters have been
chosen to mimic those of annealed Ta/Co20Fe60B20/MgO
thin films studied and characterized in [20,22]: exchange
constant A = 23 × 10−12 J/m, uniaxial anisotropy constant
ku = 8.34 × 105 J/m3, easy-axis û = ẑ, and saturation mag-
netization Ms = 8.83 × 105 A/m.

The computational region is a rectangle L × W with L =
W = 2 μm and the film thickness is 1 nm. No relevant effect of
Dzyaloshinskii-Moriya interaction (DMI) is observed in this
system [23,24], hence we do not include it in our simulations.
The effect of disorder in the material is modeled via a
Voronoi tessellation of the film in polygonal regions of average
diameter d that reproduces the grain structure appearing upon
annealing in the material. A different value of anisotropy
constant ku,i and easy-axis orientation ûi is assigned to each
grain, following a Gaussian distribution around their nominal
value with standard deviation σ = 5%. To investigate DW
dynamics, we integrate the Landau-Lifshitz-Gilbert (LLG)

equation

dM

dt
= −γ M × Heff + α

Ms

M × dM

dt
, (1)

solved numerically via Runge-Kutta 4 (RK4) algorithm with
a time-step h = 400 fs, using a custom finite difference
micromagnetic solver tested against popular open source
solvers (Mumax3 [25], OOMMF [26]) and dividing the
computational region in 4 × 4 × 1 nm3 cells.

The initial magnetization for our simulations is a symmetric
up-down configuration with two domains separated by a Bloch
wall in the middle. After relaxing our system to equilibrium
obtaining a magnetic configuration M0, an external field is
applied along the positive ẑ direction inducing the motion of
the DW towards the right. The dynamics is simulated until
one of two stopping criteria is met: t � 50 ns or 〈mz〉 � 0.8.
DW velocity is computed as L

2 �〈mz〉/�t , where �〈mz〉 is
the variation in the average z component of the magnetization
during the time window �t . For each value of the applied
field the initial configuration is set to M0. We generate six
different samples for different grain sizes d = 5,10, . . . ,30 nm
and a sample with no disorder. For each of the samples we
measure DW velocity for 12 different applied fields between
20 and 360 mT and six different values of Gilbert’s damping
parameter α = 0.005,0.01,0.015,0.02,0.03,0.05, where α =
0.015 is the experimentally measured value [27].

In a subsequent part of our study we reduce the width of
our magnetic sample to W = 1 μm and the lateral size of the
cells to 3.90625 nm to have a power of two number of cells for
faster simulation. We replicate the DW velocity measurements
on these new samples, using a time-step h = 200 fs and we
save magnetization configuration every 20 ps together with the
distribution of dissipated energy density computed as

�E(r,Tk) = μ0Ms

100∑
i=1

�m(r,hi,k−1) · Heff(r,hi,k−1), (2)

where �m(r,hi,k) is the magnetization increment at time
hi,k = ih + Tk provided by the numeric solver and Heff(r,hi,k)
is the corresponding effective field. Dissipated energy distri-
bution allows us to observe the areas that are more affected by
energy dissipation and any relevant localized event of energy
dissipation that takes place during the dynamics.
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FIG. 2. (a) DW velocity as function of applied field from
micromagnetic simulations with Gilbert’s damping α = 0.015 and
various grain diameters, together with simulations with no disorder
and 1D model analytical calculations (green line). (b)–(d) DW
velocity at high field for various values of α and a fixed grain size,
showing the shift in the zero field intercept with introduction of
disorder. Dashed lines are linear fittings to the 1D linear precessional
regime.

III. RESULTS AND ANALYTICAL APPROACH

DW velocity measurements from micromagnetic simula-
tions are shown in Fig. 2(a) for samples of width W = 2 μm
with various grain sizes and α = 0.015, together with the
one-dimensional (1D) model calculations. As can be observed,
for applied fields greater than Walker field HW ∼ 1 mT,
1D model predicts a nonlinear precessional periodic regime
for which the following expression for the average velocity
〈v〉 = T −1

∫
T

v dt can be obtained [9]:

v(t) = γ0�

1 + α2

(
αHa + HK

sin 2φ

2

)
,

〈v〉 = αγ0�

1 + α2
Ha + γ0�

α(1 + α2)

[
Ha −

√
H 2

a − H 2
W

]
︸ ︷︷ ︸

→0 for Ha�HW

. (3)

Here HK = 2K/μ0Ms is the shape anisotropy field acting
on the DW, HW = αHK/2 is the Walker’s field, γ0 = 2.21 ×
105 (A/m)−1 s−1 is the (positive) gyromagnetic ratio, and φ

is the angle describing the in-plane orientation of the DW
spins. A full derivation of the equations can be found in the
Appendix. On the other hand, a plateau for the velocity is

found in simulations of wide wires [7,20]. As discussed in
our previous work [19], the existence of this velocity plateau
and deviation from the one-dimensional model has its origin
in the non-one-dimensional character of the system and the
consequent nonuniform magnetization along the DW length,
generated by nonuniformities in the stray field along the DW
that yields a saturation velocity [7]. At higher fields, this
stray field inhomogeneity becomes less and less important
and a good agreement with the 1D model is found for the
sample with no disorder (blue circles), where the spins inside
the DW precess coherently. This means that for Ha � HW ,
the DW in an ideally perfect sample behaves in a quasi-
1D fashion, precessing uniformly and showing the linear
dependence of velocity on field predicted by Eq. (3), 〈v〉 =
γ0�Ha(α + α−1)−1. The introduction of disorder, however,
causes a general shift in the velocity both in the plateau and
in the precessional linear regime. Velocity is increased by an
amount that is dependent on grain size and saturates at around
25–30 nm but it is weakly dependent on the applied field.

Variation of α parameter affects the dynamics of our system
changing the slope of the linear field-velocity relationship, as
prescribed by Eq. (3). Figures 2(b)–2(d) presents DW velocity
measurements for the sample without disorder (b) and samples
with grain size d = 10 nm (c) and 20 nm (d), where the velocity
values at lower fields have been omitted to make clearly visible
the zero field intercept of the linear fitting. It appears that the
introduction of disorder gives rise to an additional term of
the velocity in the precessional linear regime, changing the
velocity expression in this regime to

〈v〉 � αγ0�

1 + α2
Ha + v0(d).

It is clear that, in the high field linear regime investigated
here, a characterization of the effect of disorder as a variation in
the damping parameter as done in [16–18] does not apply, since
disorder does not affect the DW mobility, but it introduces a
shift in the velocity. Rather, one would tend to think, at least
phenomenologically, that the effect of disorder is decoupled
from the contribution due to damping.

To get further insight into the effect of disorder on DW
dynamics, we consider separately the two different ways
in which disorder is introduced in our model, namely the
dispersion in ku and û.

Figure 3(a) shows the simulations for a sample with
grains of 10 nm diameter together with the perfect film and
simulations of that very sample where the only parameter
varying in space is either ku (spades symbol ♠) or û (clubs
symbol ♣). As can be seen, the influence on DW velocity
of the tilting of û is striking, while ku distribution does not
seem to play a role. Although variation of both parameters is
relevant when studying DW depinning and low field dynamics
[17–19,28], at high fields the local variation of ku has negligible
effects. Our interpretation for this is the fact that the value of ku

influences the width and linear energy density of a DW, hence
playing a bigger role in the statics. A deviation of û from the
normal to plane, on the other hand, introduces directly an in-
plane transverse anisotropy. The effect of in-plane anisotropy
on the DW dynamics can be investigated by including it in the
1D model of Slonczewski [7].
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FIG. 3. (a) DW velocity versus field from micromagnetic simu-
lations with Gilbert’s damping α = 0.015 of a perfect sample (blue
circles) and a sample with disorder and grain size d = 10 nm;
continuous lines are 1D model velocity calculations with a specified
tilting η of easy axis; spades (♠) symbols show DW velocity for
simulations where easy axis has been kept uniform û = ẑ; clubs
(♣) symbols show DW velocity for simulations where anisotropy
constant ku has been kept uniform. (b) DW velocity versus field from
simulations with α = 0.05 and various grain size. Continuous lines
are 1D model velocity calculations for various η.

The equations of motion for an up-down domain
wall in case of a tilted anisotropy axis û = (ux,uy,uz) =
(sin η cos ζ, sin η sin ζ, cos η) become

v = q̇ = γ0�

1 + α2

(
αHa + HK

2
sin 2φ − H ′′

K cos 2φ

)

= γ0�HW

1 + α2

(
αh1 + 1

α
(sin 2φ − h2 cos 2φ)

)
, (4)

φ̇ = γ0

1 + α2

(
Ha − αHK

2
sin 2φ + αH ′′

K cos 2φ

)

= γ0HW

1 + α2
(h1 − sin 2φ + h2 cos 2φ), (5)

where q is the 1D model DW position along the strip and

K = 1

2
μ0M

2
s (Ny − Nx) − ku

(
u2

y − u2
x

)
,

H ′′
K = 2kuuxuy

μ0Ms
, h1 = Ha

HW

, h2 = 2H ′′
K

HK

,

Nx and Ny being the DW demagnetizing factors along x and
y. A complete discussion and derivation of the equations is
given in the Appendix.

For fields above Walker breakdown, h1 �
√

1 + h2
2, we find

again a periodic motion and an average DW velocity

〈v〉 = γ0�HW

1 + α2

[
αh1 + 1

α

(
h1 −

√
h2

1 − 1 − h2
2

)]
. (6)

Note that (6) is exactly equivalent to (3) in the case û = ẑ

and it describes DW velocity in the precessional regime for a
DW propagating in one-dimensional system with a uniformly
tilted anisotropy axis.

There are several differences between the 1D system
described by (6) and the system studied in micromagnetic
simulations: the easy axis does not have a uniform direction but
is randomly tilted from the out-of-plane direction following a
normal distribution of mean ẑ and standard deviation σ = 5%.
This gives a Rayleigh distribution for the polar angle η of û

and a uniform distribution in [0,2π ) for its azimuthal angle
ζ as shown in Fig. 1(c). A fixed polar and azimuthal angle
are required for the 1D model prediction. Since the choice
of azimuthal angle ζ highly affects the dynamics and all
orientations have the same probability [see inset of Fig. 1(c)],
we choose only the polar angle η and calculate the velocity as
a mean of the values obtained varying ζ over all the interval
[0,2π ). 1D model calculations compared to simulations are
shown in Figs. 3(a) and 3(b) for values of α = 0.015 and 0.05,
respectively. One readily checks that the tilted polar angle
value needs to be much bigger than the actual tilt of û in order
to reproduce the desired velocity. Moreover, a relationship
between grain size and tilt of the easy axis is lacking. In the
next section we focus on these two aspects, bringing into the
discussion two features not considered by standard 1D models:
internal DW dynamics and energy dissipation outside the wall.

IV. ENERGY DISSIPATION

In the analytical model that we are considering, the system
is allowed to dissipate energy only through the displacement
and coherent precession of the domain wall, described by
the two degrees of freedom q(t) and φ(t). An additional
degree of freedom can be introduced as variation of DW
width �(t), but the results do not change considerably because
the periodic widening and narrowing of the DW during the
dynamics, the so called breathing, affects the instantaneous
velocity q̇ and at high fields and very short periods of
precession this variation becomes negligible. On the other
hand, an important consequence of internal DW dynamics is
the emission of spin waves from the wall. This process transfers
energy from the DW to the domains where it is quickly
dissipated. Such mechanism, neglected by the 1D model of
Walker and Slonczewski, has been investigated numerically in
one-dimensional systems where it has been shown that spin
waves emission from the DW can take place and contribute to
DW motion when a strong hard-axis anisotropy is present in
the system [29–31] and also in in-plane magnetized permalloy
strips in presence of various forms of disorder [16,32]. In our
system, both disorder and the fact that the wall is extended
in length play a role, as discussed below. The extended DW
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FIG. 4. (a) Time evolution of absolute topological charge varia-
tion calculated using Eq. (7) for a sample with no disorder (blue line)
and another with grain size d = 15 nm (red line), extracted from
simulations with α = 0.015, μ0H = 140 mT and shown over a time
window of 20 ns. (b) Time evolution of the total dissipated power
calculated using Eq. (2) for the same simulations as in (a), displayed
over the same time window. It appears clear the correlation between
peaks in dissipated energy and change in topological charge in the
case with disorder. The dotted line marks the average dissipation
rate P̄d = 〈Pd − P0〉. (c) and (d) Snapshots of dissipated power and
magnetization around the DW of the perfect sample at the instant of
time indicated in (b) by the blue circle. (e) and (f) Snapshots showing
the same features for the disordered sample at the instant of time
indicated in (b) by the red circle. Hot-cold color gradient represents
the amount of local dissipated power in logarithmic scale, in-plane
magnetization angle is represented by a color as in the color wheel.

length allows for twisting of the magnetization along the
DW. At high fields, this is not the case in a sample without
disorder: as can be seen in the snapshot of magnetization
in Fig. 4(d) the DW is uniformly magnetized and all the
spins are precessing synchronously. This one-dimensional-like
behavior is the reason for the good agreement of the analytical
model with simulations without disorder. The introduction of
disorder, however, yields a much more complex dynamics for
the DW, as can be observed in the snapshot of Fig. 4(f), taken at
the same instant and under the same applied field as in Fig. 4(d).
Here the wall appears corrugated and the magnetization twists
along the DW length, generating several VBLs: regions of
the DW in which magnetization rotates in-plane, behaving as
an in-plane wall inside the domain wall [28]. VBLs have a
topological charge (or winding number) of ±1/2, depending
on their chirality.

A recent study [11] presented the effect of interfacial
Dzyaloshinsky-Moriya interaction (DMI) on DW dynamics
in wide strips. DMI introduces an in-plane field acting
on the wall, affecting the propagation of VBLs by giving
different velocities to VBLs of different magnetic charge and
causing them to annihilate in couples of same chirality and
opposite magnetic charge. This feature is observed also in our
simulations, where acceleration, deceleration, and annihilation

of VBLs are caused by the different energy that VBLs
have over grains with different in-plane anisotropy while
propagating along a DW that is also able to curve its profile
during dynamics [10,28]. In addition, the dynamics internal
to the DW yields a much higher energy dissipation compared
to that of a nondisordered sample: the in-plane anisotropy
field, inhomogeneous along the DW length, creates a rich
and varied landscape for the VBLs propagating inside the
DW and for the DW in general. This results in oscillations
and local breathing phenomena of the DW of complicated
nature that, overall, generate a constant irradiation of spin
waves from the DW. This constant additional dissipated power
is absent in films with easy axis uniformly perpendicular to
plane. Since VBLs have a topological charge, their complex
dynamics in DWs propagating in disordered samples can be
studied quantitatively by monitoring the time variation of the
total topological charge w of our sample, computed as [33]

w(t) = 1

4π

∫
L

∫
W

m(t) ·
(

∂m(t)

∂x
× ∂m(t)

∂y

)
dy dx. (7)

The absolute variation of topological charge is shown in
Fig. 4(a) as the thick blue curve for a perfect sample and
as the thin red curve for a disordered sample with grain
size 15 nm. As can be observed, the topological charge is
conserved for DW dynamics in a perfect sample, while for
samples with grains | dw

dt
| shows peaks corresponding to events

of annihilation of couples of VBLs of the same topological
charge. This is because VBLs are nucleated in couples of
opposite topological charge ±1/2 that move in opposite
direction, while annihilation takes place between VBLs of
the same topological charge, so that a net change in w of 1
unit is expected upon annihilation. Such particular dynamics
has its origin in the different energy state of a VBL depending
on its orientation and the in-plane orientation of the easy axis
of the grain over which it is laying. This grain dependent
in-plane anisotropy gives to VBLs grain dependent energy
states and velocities, causing acceleration, deceleration, and
even blocking of VBLs at grain boundaries where a sufficiently
high energy barrier is found, generating annihilation events.

The thick blue line in Fig. 4(b) shows the power dissipation
over time for the simulations on the perfect sample calculated
using (2). As can be seen, a constant and low rate of
energy dissipation is found, the reason being the 1D-like
behavior of the system. The snapshot of Fig. 4(c), showing
the spatial distribution of the dissipated energy, confirms that
energy is being dissipated exclusively inside the DW and
homogeneously distributed along its length, since the DW is
the only region in which spins are precessing. On the other
hand, in disordered samples more energy is dissipated during
DW motion: the thin red curve in Fig. 4(b) shows the dissipated
power in a disordered system with a DW propagating under
the same applied field. The red curve describes a nonconstant
dissipation of power, with peaks corresponding to VBL
annihilation events, as confirmed by the agreement with the
variation in the topological charge in Fig. 4(a). It is important
to note the offset of the red curve, at about 1.5 nW, making clear
the contribution that the complex dynamics internal to the DW,
triggered by local nonzero in-plane anisotropy, has on energy
dissipation. An additional check of this observation comes
from the comparison of the distribution of energy dissipation
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FIG. 5. (a) DW velocity versus applied field from simulations with α = 0.015 without disorder (blue circles) and with different grain sizes
(d = 5 nm red diamonds, d = 15 nm magenta hexagons, d = 30 nm gray down-triangles). Cyan dots show DW velocity computed from 1D
model (11) with a realistic η = 4.5◦ plus dissipation contribution extracted from simulations. Same results for α = 0.03 and α = 0.05 are
shown in (b) and (c), respectively, where the dissipation contribution is the one extracted from the simulations in (a) with α = 0.015.

between a perfect and a disordered sample. Figure 4(e) shows
that the dissipation of energy in disordered samples takes place
not only inside the DW but also in the nearby domains, where
spins are precessing due to spin wave emission even when no
annihilation event is observed.

The fact that irradiation of energy from the DW to the
domains and its subsequent faster dissipation is relevant in
DW dynamics, appears also by looking at the variation of
tilting angle η required by the 1D model to fit the data
when changing damping constant: α = 0.015 in Fig. 3(a)
requires larger η to fit simulations for d = 10 nm compared
to α = 0.05 in Fig. 3(b), although the samples are exactly
the same with identical distribution of û and ku. Increasing
Gilbert’s damping, we are increasing the contribution of the
applied field to DW velocity, reducing the effect of spin
waves and making the 1D approximation more accurate at
reproducing the micromagnetic simulation. In view of this,
what can be done is to try to include in the 1D model the
additional energy dissipated by the DW in those dynamics that
cannot be described by a 1D model. Starting with conservation
of energy from LLG equation (1):

dE

dt
= −αμ0Ms

γ0

∫
V

(
dm
dt

)2

dV, (8)

we can obtain its one-dimensional counterpart that takes into
account easy-axis tilting:

−2μ0MsHaq̇ + 2�(K sin 2φ − 2kuu1u2 cos 2φ)φ̇

= −2αμ0Ms

γ0

[
q̇2

�
+ �φ̇2

]
. (9)

Within the 1D model framework, we are assuming that the
only variation of internal energy comes from the displacement
and the rotation of the DW spins and this is balanced by the
work done by the viscous forces. Any dynamics taking place in
the two domains of our system is neglected. To account for the
energy dissipation that we observe in simulations with grains
and tilted easy axis, we consider an average constant rate of
energy dissipated into the domains rising from the complex
dynamics of the incoherently precessing DW. To quantify it,

we take the average dissipated power of our simulations with
disorder, 〈Pd〉, corresponding to the average of the red line
in Fig. 4(b), and we safely assume that in micromagnetic
simulations of the perfect sample energy is dissipated exactly
as prescribed by the 1D model. Then, the term that we need to
add to the 1D model equation of conservation of energy is

P̄d = 〈Pd〉 − 〈P0〉.
This value, marked as the dashed red line in Fig. 4(b),
represents the power dissipated by the system in other ways
than simple precession of the spins inside the DW. It is
dependent on Ha since it relies on the dynamics triggered
by the precession of the spins inside the DW and needs to be
extracted from micromagnetic simulations for every applied
field. Including this term in the energy conservation equation
as done elsewhere [34], we have

−2μ0MsHaq̇ + 2�[K sin(2φ) − 2kuu1u2 cos 2φ]φ̇

= −2αμ0Ms

γ0

[
q̇2

�
+ �φ̇2

]
+ P̄

tW
. (10)

Averaging this equation over a period of precession after using
the expressions (4) and (5) for q̇2 and φ̇2 we obtain

〈v〉 = γ0�HW

1 + α2

[
αh1 + 1

α

(
h1 −

√
h2

1 − 1 − h2
2

)]

+ P̄

2μ0MsHatW
. (11)

Extracting the value of P̄ from micromagnetic simulations
with a certain α, the augmented model reproduces extremely
well the DW velocity of the simulations also for other values
of α as can be observed in Fig. 5, proving that the contribution
to DW velocity introduced by disorder is the additional energy
dissipated in the domains in the form of spin waves.

It remains to be explained the grain size dependence of this
velocity shift. Since the distribution of û values is aleatory, the
intensity and orientation of the in-plane field in neighboring
grains is uncorrelated. DW motion takes place, as it has been
shown, in an incoherent fashion. The nonuniform precession
means precession via VBLs propagation, i.e., spins inside the
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DW precess by π sweeps when a VBL passes past them.
VBLs have a finite width � = √

A/K = 28.9 nm which varies
depending on the local orientation of û. This means that the
minimum size for coherent precession is ∼30 nm over which
the 1D precessional motion with a uniform and tilted easy axis
can be applied. When grain size is smaller than this value,
the effective tilting of û is an average over � of the different
values over grains. Being the disorder uncorrelated, the local
average results in a decrease of the in-plane component. This
explains the saturation for d close to 25–30 nm. This argument
also explains the lower dissipated energy at small d; VBLs
propagate through an effectively more homogeneous medium
and reduced effects of breathing and acceleration, deceleration
with subsequent annihilation are observed [19].

V. CONCLUSIONS

In conclusion, we have used micromagnetic simulations to
investigate domain wall motion in magnetic systems where a
granular structure and interfacial effects are expected to play
a role in introducing material inhomogeneities affecting DW
dynamics. We showed that introducing disorder in simulations
gives higher DW velocities in the high field regime while not
considerably changing the mobility, and we identified the fea-
ture responsible for this velocity increase in the local variation
of anisotropy easy-axis orientation. We addressed this problem
first introducing an in-plane deviation of the anisotropy easy
axis in the 1D model, proving that the feature was capable
of qualitatively reproducing the shift. Second, we compared
the dissipated power from micromagnetic simulations in a
system with disorder with that of of a perfectly homogeneous
system. We found that the local in-plane anisotropy field is the
responsible for oscillations, local breathing phenomena of the
DW and VBL annihilations that overall generate an irradiation
of power from the DW to the domains which is constant
over time and dependent on system characteristics such as
the typical grain size and independent on the intrinsic Gilbert
damping. This study evidences the fact that different models
of disorder might have different effects on magnetization
dynamics, stressing the importance of choosing the correct
disorder models to reproduce experimental results.
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APPENDIX: ONE-DIMENSIONAL MODEL

Here we present the 1D model and we derive all the
expressions that are presented in the main text. To obtain
Eq. (3), one has to proceed from LLG equations in polar
coordinates and use an ansatz for a one-dimensional magnetic
system with an up-down domain wall. Using the normalized
form of the magnetization:

M(r,t) = Msm(r,t).

LLG equation (1) can be expressed in polar coordinates
θ (r,t),ϕ(r,t) as

θ̇ + αϕ̇ sin θ = − γ0

μ0Ms sin θ

δE
δϕ

, (A1)

ϕ̇ sin θ − αθ̇ = γ0

μ0Ms

δE
δθ

, (A2)

where m = (mx,my,mz) = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) and
− 1

Ms sin θ
δE
δϕ

, − 1
Ms

δE
δθ

are the components of the effective field
in polar coordinates.

Energy densities in polar coordinates are

Eex = A[(∇θ )2 + (∇ϕ)2 sin2 θ ], (A3)

Ean = ku[1 − (m · û)2], (A4)

Edmg = μ0Ms
2

2
[Nz + sin2 θ (Nx − Nz)

+ sin2 θ sin2 ϕ(Ny − Nx)], (A5)

Ez = −μ0MsHa cos θ, (A6)

where we have assumed only a local contribution of the
dipolar field. To account for the tilt of the easy axis we
need to express the anisotropy energy term according to
û = (ux,uy,uz) = (sin η cos ζ, sin η sin ζ, cos η) so that

Ean = ku[1 − (m · û)2] = ku

(
1 − u2

z

) + ku sin2 θ
(
u2

z − u2
x

)
+ ku sin2 θ

[
sin2 ϕ

(
u2

x − u2
y

) − 2uxuy sin ϕ cos ϕ
]

− 2ku sin θ cos θ (cos ϕux + sin ϕuy)uz

and

Ean + Edmg = ku

(
1 − u2

z

) + μ0Ms
2

2
Nz︸ ︷︷ ︸

Cst

+ sin2 θ

[
ku

(
u2

z − u2
x

) − μ0Ms
2

2
(Nz − Nx)

]
︸ ︷︷ ︸

K0

+ sin2 θ

[
sin2 ϕ

(
ku

(
u2

x − u2
y

) − μ0Ms

2
(Nx − Ny)

)
︸ ︷︷ ︸

K

−2kuuxuy sin ϕ cos ϕ

]

− 2ku sin θ cos θ (cos ϕux + sin ϕuy)uz
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is the full expression for the energy density of the so-called
shape anisotropy.

We assume a magnetic sample of infinite length along
the x direction, with a rectangular cross section of finite
thickness t and width W . We assume our sample uniformly
magnetized along thickness and width, while along its length
magnetization varies following the conditions [see Fig. 1(a)]

θ (x,t) = 2 arctan

[
exp

(
x − q(t)

�

)]
, (A7)

ϕ(x,t) = φ(t), (A8)

describing an up-down domain wall configuration along the x

axis. In the above expressions q(t) is the DW position along
the x axis, � is the DW width parameter, and φ(t) describes
the in-plane orientation of the DW spins.

We obtain the relationships

∂θ

∂x
= sin θ

�
,

∂ϕ

∂x
= 0, (A9)

δθ = − sin θ

�
dq, δϕ = dφ, (A10)

θ̇ = −q̇
sin θ

�
, ϕ̇ = φ̇. (A11)

Assuming this rigid magnetic configuration, E reduces to

E = A
sin2 θ

�2
+ sin2 θ (K0 + K sin2 φ − kuuxuy sin 2ϕ)

− 2ku sin θ cos θ (cos ϕux + sin ϕuy)uz− μ0MsHa cos θ,

(A12)

where the constant energy term due to shape anisotropy, not
affecting the dynamics, has been neglected.

In general, from LLG equations (A1) and (A2) we obtain

δE = δE
δθ

δθ + δE
δϕ

δϕ (A13)

= −μ0Ms

γ0
[(αθ̇ − ϕ̇ sin θ )δθ + (θ̇ + αϕ̇ sin θ ) sin θδϕ]

(A14)

and we eliminate the dependence on θ upon integration over x:

dσ =
∫

x

δE dx = −μ0Ms

γ0

[∫ +∞

−∞
(αθ̇ − ϕ̇ sin θ )δθ dx

+
∫ +∞

−∞
(θ̇ + αϕ̇ sin θ ) sin θδϕ dx

]
.

(A15)

To do so, we make use of the expressions obtained with the
rigid model (A9)–(A11) to have

dσ = −μ0Ms

γ0

[(
α

q̇

�
+ φ̇

)
dq

∫ +∞

−∞

sin2 θ

�
dx

+
(

− q̇

�
+ αφ̇

)
dφ

∫ +∞

−∞
sin2 θ dx

]
, (A16)

dσ = −2μ0Ms

γ0

[(
α

q̇

�
+ φ̇

)
dq + (−q̇ + α�φ̇) dφ

]
.

(A17)

On the other hand, the linear wall energy σ, (J/m2) is
simply

σ =
∫ +∞

−∞
E dx = 2A

�
+ 2�(K0 + K sin2 φ

− kuuxuy sin 2φ) − 2qμ0MsHa, (A18)

so that

dσ = ∂σ

∂q
dq + ∂σ

∂φ
dφ = −2μ0MsHa dq

+ 2�(K sin 2φ − 2kuuxuy cos 2φ) dφ. (A19)

Equating the differentials in the two expressions of dσ

[(A17) and (A19)] we obtain the two one-dimensional model
equations:

α
q̇

�
+ φ̇ = γ0Ha, (A20)

q̇

�
− αφ̇ = γ0

μ0Ms

(K sin 2φ − 2kuuxuy cos 2φ). (A21)

It is useful to explicit the two expressions for q̇ and φ̇,

q̇ = γ0�

1 + α2

(
αHa + HK

2
sin 2φ − H ′′

K cos 2φ

)
, (A22)

φ̇ = γ0

1 + α2

(
Ha − αHK

2
sin 2φ + αH ′′

K cos 2φ

)
, (A23)

having introduced

HK = 2K

μ0Ms

, (A24)

H ′′
K = 2kuuxuy

μ0Ms
, (A25)

where

HW = αHK

2
, h1 = Ha

HW

, h2 = 2H ′′
K

HK

. (A26)

Equation (A23) admits constant solutions when h2
1 �1+h2

2
or equivalently for

Ha � α

√
HK

2

4
+ H ′′

K
2
.

We can proceed now to estimate the average velocity above
Walker breakdown in the general case of a tilted easy axis.
From

dφ

dt
= φ̇ = γ0HW

1 + α2
(h1 − sin 2φ + h2 cos 2φ)

we have
dφ

h1 − sin 2φ + h2 cos 2φ
= γ0HW

1 + α2
dt.

Integrating over a period T yields

γ0HW

1 + α2

∫ T

0
dT = γ0HW

1 + α2
T
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and

γ0HW

1 + α2
T =

∫ 2π

0

dφ

h1 − sin 2φ + h2 cos 2φ
= 2π√

h2
1 − 1 − h2

2

,

so that the precessing period of the DW above Walker breakdown is

T = 2π (1 + α2)

γ0HW

√
h2

1 − 1 − h2
2

. (A27)

The useful integrals for our calculations are

1

T

∫ T

0
sin 2φ dt =

h1 −
√

h2
1 − 1 − h2

2

1 + h2
2

, (A28)

1

T

∫ T

0
cos 2φ dt =

h2
(√

h2
1 − 1 − h2

2 − h1
)

1 + h2
2

. (A29)

Using Eqs. (A22), (A28), and (A29) the average velocity over a period is

〈v〉 = 〈q̇〉T = 1

T

∫ T

0
q̇ dt

= γ0�HW

1 + α2

[
αh1 + 1

α

(
h1 −

√
h2

1 − 1 − h2
2

)]
. (A30)
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