Characterizing wet and dry fluids in temperature-entropy diagrams J. A. White^{a,b,*}, S. Velasco^{a,b} ^a Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain ^b IUFFyM, Universidad de Salamanca, 37008 Salamanca, Spain #### Abstract In this work we show that the shape of the liquid-vapor saturation curve in a $T_{\rm r}-s^*$ diagram ($T_{\rm r}=T/T_{\rm c}$ and $s^*=s/R$, with $T_{\rm c}$ the critical temperature, s the molar entropy and R the gas constant) for a given fluid is mainly governed by the acentric factor, ω , and the critical molar volume, $v_{\rm c}$, of the fluid. The study uses as reference the point M where the saturated vapor curve in the $T_{\rm r}-s^*$ diagram changes its concavity, i.e. $({\rm d}^2s^{*\rm g}/{\rm d}T_{\rm r}^2)_{\rm M}=0$. By analyzing the data provided by the National Standards and Technology (NIST) program RefProp 9.1 for 121 fluids, we find that, at this point, $T_{\rm Mr}\approx 0.81$ and the slope $\xi_{\rm M}^*=({\rm d}s^{*\rm g}/{\rm d}T_{\rm r})_{\rm M}$ is well correlated with $v_{\rm c}$, existing a threshold value $v_{\rm c,0}\approx 0.22~{\rm m}^3~{\rm kmol}^{-1}$ so that $\xi_{\rm M}^*<0$ (wet fluid) for $v_{\rm c}< v_{\rm c,0}$ and $\xi_{\rm M}^*>0$ (dry fluid) for $v_{\rm c}>v_{\rm c,0}$. This direct relation between $v_{\rm c}$ and the wet or dry character of a fluid is the main result of the present work. Furthermore, the dimensionless vaporization entropy at the reference point M, $\Delta_{\rm v}s_{\rm M}^*=s_{\rm M}^{*\rm rg}-s_{\rm M}^{*\rm rg}$, increases in a nearly linear way with ω . Keywords: Temperature-entropy saturation curve, Saturation properties, Wet and dry fluids, Saturation heat capacities, ORC working fluids Email address: whiteQusal.es (J. A. White) ^{*}Corresponding author. Address: Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain. Tel: +34 923294436; fax: +34 923294584. # Nomenclature - $\Delta_{\rm v}h$ Molar enthalpy of vaporization, J/mol - ν Molar volume, m³/kmol - $\sigma_{\rm c}$ Intermolecular separation at zero potential energy, nm - c_P Isobaric molar heat capacity, J/(mol K) - $c_{\rm sat}$ Molar heat capacity along the saturation line, J/(mol K) - N_A Intermolecular separation at zero potential energy, nm - p Pressure, MPa - R Gas constant, 8.314472 J/(mol·K) - s Molar entropy, $J/(\text{mol} \cdot K)$ - Temperature, K # **Greek letters** - ω acentric factor - Inverse of the slope of the saturated vapor curve, $J/(\text{mol}\cdot K^2)$ # Superscripts - * Dimensionless - g Saturated vapor - 1 Saturated liquid # **Subscripts** - 0 Reference value that separates wet fluids from dry fluids - 1,2 Points for which $\xi^* = 0$ - b Normal boiling - c Critical - M Point for which $\xi^*(T_r)$ presents a maximum - r Reduced - tp Triple point - v Vaporization #### Acronyms - CSP Corresponding states principle - NIST National Institute of Standards and Technology - ORC Organic Rankine cycle # 1. Introduction Thermodynamic liquid-vapor saturation properties of working fluids affect efficiency, utility costs, maintenance and environmental impact of engineering systems such as vapor-compression based refrigeration, heat pump devices and Rankine cycles. In particular, the choice of working fluids is very important in organic Rankine cycles (ORC) [1]. An ORC works like a conventional Rankine cycle but uses an organic working fluid instead of water and it has been designed for producing electrical power from renewable energies (wind, solar, geothermal, biomass) or from low-temperature waste heat. A crucial aspect for the selection of a working fluid in an ORC is its saturation liquid-vapor curve in a temperature-molar entropy (T-s) diagram. Depending on the slope, $\mathrm{d}T/\mathrm{d}s^{\mathrm{g}}$, of the saturated vapor branch, three types of fluids are considered: dry fluids with positive slopes, wet fluids with negative slopes, and isentropic fluids with nearly infinite slopes. Dry and isentropic organic fluids are usually used in ORC's because they do not present condensation after isentropic expansion in the turbine. In 2004, Liu *et al.* [2] proposed to consider the inverse of the slope of the saturated vapor curve, $\xi = ds^g/dT$, on the T-s diagram in order to classify the fluids. After some simplifications, these authors derived for ξ the following temperature dependent expression $$\xi = \frac{c_P^{\rm g}}{T} - \frac{1 - (1 - n)T_{\rm r}}{1 - T_{\rm r}} \frac{\Delta_{\rm v} h}{T^2},\tag{1}$$ where $c_P^{\rm g}$ is the isobaric molar heat capacity of the saturated vapor, $T_{\rm r} = T/T_{\rm c}$ the reduced temperature, being $T_{\rm c}$ the critical temperature, $\Delta_{\rm v}h$ is the molar enthalpy of vaporization, and $n \approx 0.38$ is the exponent appearing in the well-known Watson relation for the temperature dependence of $\Delta_{\rm v}h$ [3, 4]. Finally, Liu et al. [2] computed the value of ξ at the normal boiling temperature, $T_{\rm b}$, of the fluid in order to predict its behavior in the turbine expansion process: $\xi_{\rm b} \equiv \xi(T_{\rm b}) < 0$, wet fluid; $\xi_{\rm b} \sim 0$, isentropic fluid; and $\xi_{\rm b} > 0$, dry fluid. In 2007, Invernizzi et al. [5] introduced a parameter of molecular complexity which is equal to ξ expressed in reduced units and evaluated at a reduced temperature $T_{\rm r}=0.7$, and proposed an approximate expression, different from (1), to evaluate this parameter. Chen et al. [6] showed that large deviations can occur when using equation (1) to compute ξ at off-normal boiling temperatures. These authors recommended to use the temperature and entropy data, if they are available, to directly calculate ξ at the required temperature. Since 320 K is the approximate design temperature for condensation in an ORC, these authors calculated ξ at this temperature for fluids with $T_c > 320$ K, and at 290 K by assuming that for $T_c < 320$ K the condensation is designed to be at 290 K. Hærvig et al. [7] evaluated ξ at the temperature for which $d^2s^g/dT^2 = 0$ for dry fluids and at 293 K for wet fluids corresponding to approximately the condensing temperature. If the temperature at which $d^2s^g/dT^2 = 0$ does not occur between 293 K and T_c , then ξ was calculated at 293 K for dry fluids as well. This work presents a thermodynamic study of the liquid-vapor saturation curve in a $T_r - s^*$ diagram, where T_r is the reduced temperature and $s^* = s/R$, being R the gas constant. Our aim is to compare this saturation curve for different fluids in the scheme of the corresponding states principle (CSP) in order to analyze the possibility of characterizing the shape of the curve in terms of a reduced number of well-known parameters of the fluid. In this context, we note that the use of the dimensionless molar entropy s^* instead of s allows for obtaining dimensionless results in a CSP scheme without any loss of generality. The analysis is made from temperature and entropy liquid-vapor saturation data of the 121 fluids considered by the National Institute of Standards and Technology (NIST) program RefProp 9.1 [8]. The main objectives of this paper are: (i) Analyze the wet or dry character of working fluids in ORC cycles according to a CSP scheme. (ii) Identify the key parameters that determine the shape of the liquid-vapor saturation curve in a temperature-entropy representation. (iii) Analyze the different relations that arise between these parameters and other characteristic parameters of the fluids. This work is structured as follows. In Section 2 we analyze the main features of the liquid-vapor saturation curve in a $T_r - s^*$ diagram and introduce the relevant parameters in the problem like the reduced temperature $T_{\rm Mr}$ where the inverse of the slope of the vapor saturated branch of the $T_r - s^*$ diagram reaches a maximum value $\xi_{\rm M}^*$. In Section 3 we present and discuss the results for the fluids considered in our study. We conclude with a brief Summary. # 2. Theory The liquid-vapor saturation curve in a $T_r - s^*$ diagram presents a more or less inclined forward bell or dome shape with two branches, for all fluids considered in the RefProp 9.1 program [8]. The liquid saturated branch always presents a positive slope while there are two possibilities for the slope of the vapor saturated branch: either it is negative for any temperature between the triple and the critical point or it can present a zone with positive values. Furthermore, in all studied fluids, the inverse of the slope of the vapor saturated branch attains a maximum value $\xi_{\rm M}^* \equiv ({\rm d} s^{*\rm g}/{\rm d} T_{\rm r})_{T_{\rm Mr}}$ at a point M with reduced temperature $T_{\rm Mr} \approx 0.81$. The physical meaning of the maximum M becomes clear by noticing that those fluids with $\xi_{\rm M}^* < 0$ always have a negative slope for the vapor saturated branch and, consequently, they are wet fluids. Obviously, those fluids with $\xi_{\rm M}^* > 0$ present a zone around the maximum M with positive slope for the vapor saturated branch, behaving as dry fluids. The significance of the point M in a $T_r - s^*$ diagram is that at M this curve changes from concave to convex, i.e., $(d^2s^{*g}/dT_r^2)_{T_{Mr}} = 0$. This suggests to take this inflection point as a reference in order to characterize the shape of the liquid-vapor saturation curve in a $T_r - s^*$ diagram. In particular, one can take the dimensionless vaporization entropy $\Delta_v s_M^* = s_M^{*g} - s_M^{*l}$ as a measure of the 'width' of the curve, and the inverse of the slope $\xi_M^* = (ds^{*g}/dT_r)_{T_{Mr}}$ as a measure of the 'inclination' of the curve. As mentioned above, we call 'wet' fluids those for which $\xi_M^* < 0$ and 'dry' fluids those for which $\xi_M^* > 0$. Obviously, fluids are either wet or dry but those with $|\xi_M^*|$ close to zero can be termed as isentropic. In the case of dry fluids there are two points at reduced temperatures T_{1r} and T_{2r} , $(T_{1r} < T_{Mr} < T_{2r})$, at which $\xi_1^* = \xi_2^* = 0$, being $\xi^*(T_r)$ positive for any value of T_r in the range (T_{1r}, T_{2r}) , and negative out of this range. In the next Section we analyze T_{Mr} , T_{1r} , T_{2r} , ξ_M^* and $\Delta_v s_M^*$ in terms of the acentric factor, ω , and the critical parameters, (T_c, p_c, v_c) , being p_c the critical pressure and v_c the critical molar volume, of the considered fluids. Besides its intrinsic thermodynamic interest, this analysis provides a set of semi-empirical guidelines which can help in the election of the working fluid in an ORC for a given operation design. #### 3. Results and Discussion #### 3.1. Wet and dry fluids Figure 1: The liquid-vapor saturation curve in a $T_r - s^*$ diagram for xenon and pentane. The dashed blue lines correspond to the liquid saturated branch while the solid red lines correspond to the vapor saturated branch. The thin black lines correspond to different isobars, plotted here for illustrative reasons. All data have been obtained from RefProp 9.1 results [8]. Figure 1 shows the liquid-vapor saturation curve in a $T_{\rm r}-s^*$ diagram for xenon and pentane. These curves are plotted from temperature and entropy data provided by the NIST RefProp 9.1 program [8]. Any fluid of the NIST program has a liquid-vapor saturation curve similar to one of these. For all fluids the liquid saturated branch present a positive slope for any temperature from the reduced triple point temperature, $T_{\rm tp,r}$, to the critical one, $T_{\rm r}=1$. However, the vapor saturated branch presents two possibilities: either the slope remains negative along the curve from $T_{\rm tp,r}$ to $T_{\rm r}=1$ (xenon) or it can become positive in a given temperature range between $T_{\rm tp,r}$ and $T_{\rm r}=1$ (pentane). 'Wet' fluids are those of the first type and 'dry' fluids are those of the second type. We note that these names are here used only in order to classify the fluids. Wet fluids always present condensation after the isentropic expansion in the turbine stage of a normal Rankine cycle while dry fluids may or may not present condensation depending on the condenser temperature. In Figure 1, two isobars are plotted for each fluid, in order to show their behavior in a $T_{\rm r}-s^*$ diagram. The inverse of the slopes of the liquid and vapor saturated curves in a $T_r - s^*$ diagram are given by $$\frac{\mathrm{d}s^{*1}}{\mathrm{d}T_{\mathrm{r}}} = \frac{c_{\mathrm{sat}}^{*1}}{T_{\mathrm{r}}},\tag{2}$$ $$\frac{\mathrm{d}s^{*\mathrm{g}}}{\mathrm{d}T_{\mathrm{r}}} = \frac{c_{\mathrm{sat}}^{*\mathrm{g}}}{T_{\mathrm{r}}},\tag{3}$$ where $c_{\text{sat}}^* = c_{\text{sat}}/R$, c_{sat} being the molar heat capacity along the saturation line and, equations (2) and (3) are the dimensionless versions of the well known definitions of $c_{\text{sat}}^{\text{l}}$ and $c_{\text{sat}}^{\text{g}}$, respectively. Figure 2: The slopes of the liquid-vapor saturation curve in a $T_r - s^*$ diagram $c_{\rm sat}^*/T_r$ vs. T_r for xenon and pentane. The dashed blue lines correspond to the liquid saturated branch while the solid red lines correspond to the vapor saturated branch. All data have been obtained from RefProp 9.1 results [8]. Figure 2 shows the slopes of the liquid-vapor saturation curve in a $T_{\rm r}-s^*$ diagram for xenon and pentane. One can see that $c_{\rm sat}^{*l}/T_{\rm r}$ is always positive, but $c_{\rm sat}^{*g}/T_{\rm r}$ is negative for xenon while it presents positive values for pentane. An important remark is that, for all considered fluids, $c_{\text{sat}}^{\text{*g}}/T_{\text{r}}$ presents a maximum at a point M, i.e., $$\left[\frac{\mathrm{d}}{\mathrm{d}T_{\mathrm{r}}} \left(\frac{c_{\mathrm{sat}}^{*\mathrm{g}}}{T_{\mathrm{r}}}\right)\right]_{T_{\mathrm{Mr}}} = \left(\frac{\mathrm{d}^{2}s^{*\mathrm{g}}}{\mathrm{d}T_{\mathrm{r}}^{2}}\right)_{T_{\mathrm{Mr}}} = 0, \tag{4}$$ corresponding to an inflection point of the vapor saturated curve in the $T_{\rm r}-s^*$ diagram. By defining $$\xi_{\mathrm{M}}^{*} = \left(\frac{\mathrm{d}s^{*\mathrm{g}}}{\mathrm{d}T_{\mathrm{r}}}\right)_{T_{\mathrm{Mr}}} = \frac{c_{M,\mathrm{sat}}^{*\mathrm{g}}}{T_{\mathrm{Mr}}},\tag{5}$$ we find $(T_{\rm Mr}=0.8142,\xi_{\rm M}^*=-7.6918)$ for xenon and $(T_{\rm Mr}=0.8160,\xi_{\rm M}^*=8.4366)$ for pentane. Therefore the sign of $\xi_{\rm M}^*$ gives directly the possibility that ${\rm d}s^{*\rm g}/{\rm d}T_{\rm r}$ can change its sign between the triple and critical points. If $\xi_{\rm M}^*<0$ one has $\xi^*<0$ at any temperature, while one has that $\xi^*>0$ in a range of reduced temperatures around $T_{\rm Mr}$ if $\xi_{\rm M}^*>0$. In other words, $\xi_{\rm M}^*$ is a parameter characterizing the inclination forward of the liquid-vapor saturation curve in a $T_{\rm r}-s^*$ diagram. Hence 'wet' fluids are those for which $\xi_{\rm M}^*<0$, and 'dry' fluids are those for which $\xi_{\rm M}^*>0$. In the latter case, as it is shown in Figure 1 for pentane, there are two points 1 and 2, at temperatures $T_{\rm 1r}$ and $T_{\rm 2r}$ (with $T_{\rm 1r}< T_{\rm Mr}< T_{\rm 2r}$) for which $\xi_{\rm 1}^*=\xi_{\rm 2}^*=0$. Consequently, only for reduced temperatures in the range $(T_{\rm 1r},T_{\rm 2r})$ one has that $\xi^*>0$. Rayegan and Tao [9] pointed out the importance of point 2 to determine the higher limit for the temperature and pressure of the evaporator in organic Rankine cycles Table 1: Critical temperature T_c , acentric factor ω , critical molar volume v_c , slope of the liquid-vapor saturation curve at point M ξ_M^* , reduced temperature at point M T_{Mr} , reduced temperature at point 1 T_{1r} , reduced temperature at point 2 T_{2r} , and the entropy of vaporization at T_{Mr} , $\Delta_v s_M^*$. The data have been obtained from RefProp 9.1 [8]. The fluids are listed in increasing value of ξ_M^* . | Fluid | $T_{\rm c}[{ m K}]$ | ω | $v_{\rm c} [{\rm m}^3 {\rm kmol}^{-1}]$ | ξ_{M}^{*} | $T_{ m Mr}$ | T_{1r} | T_{2r} | $\Delta_{\rm v} s_{\rm M}^*$ | |------------------------|---------------------|--------|-----------------------------------------|------------------------|-------------|----------|----------|------------------------------| | methanol | 513.38 | 0.5625 | 0.1138 | -10.6364 | 0.7874 | - | - | 8.8708 | | heavy water | 643.85 | 0.364 | 0.0563 | -9.8770 | 0.8071 | - | - | 7.2551 | | water | 647.1 | 0.3443 | 0.0559 | -9.8460 | 0.8018 | - | - | 7.2546 | | ammonia | 405.4 | 0.256 | 0.0757 | -8.6109 | 0.8162 | - | - | 6.2501 | | hydrogen chloride | 324.55 | 0.1288 | 0.0887 | -8.3196 | 0.8228 | - | - | 5.2330 | | R41 | 317.28 | 0.2004 | 0.1075 | -7.9926 | 0.8146 | - | - | 5.8814 | | Continued on next page | | | | | | | | | Table 1 – continued from previous page | Table 1 – continued from previous page | | | | | | | | | |----------------------------------------|---------------------|------------------|---------------------------------------|------------------------|-------------|----------|----------|-----------------------------------------| | Fluid | $T_{\rm c}[{ m K}]$ | ω | $v_{\rm c}[{\rm m}^3{\rm kmol}^{-1}]$ | ξ_{M}^{*} | $T_{ m Mr}$ | T_{1r} | T_{2r} | $\Delta_{\mathrm{v}}s_{\mathrm{M}}^{*}$ | | carbon dioxide | 304.13 | 0.2239 | 0.0941 | -7.9381 | 0.8219 | - | - | 6.1289 | | R32 | 351.26 | 0.2769 | 0.1227 | -7.7684 | 0.8198 | - | - | 6.3119 | | xenon | 289.73 | 0.0036 | 0.119 | -7.6918 | 0.8142 | - | - | 4.8280 | | krypton | 209.48 | -0.0009 | 0.0922 | -7.6578 | 0.8124 | - | - | 4.8139 | | argon | 150.69 | -0.0022 | 0.0746 | -7.6561 | 0.8117 | - | - | 4.8393 | | neon | 44.49 | -0.0387 | 0.0419 | -7.3103 | 0.8012 | - | - | 4.7386 | | sulfur dioxide | 430.64 | 0.2557 | 0.122 | -7.2518 | 0.8202 | - | - | 6.2982 | | nitrous oxide | 309.52 | 0.162 | 0.0974 | -7.0185 | 0.8224 | - | - | 5.6947 | | R23 | 299.29 | 0.263 | 0.133 | -6.8638 | 0.8205 | - | - | 6.2961 | | carbon monoxide | 132.86 | 0.0497 | 0.0922 | -6.8622 | 0.8091 | - | - | 5.2496 | | fluorine | 144.41 | 0.0449 | 0.0641 | -6.8234 | 0.8118 | - | - | 5.1817 | | nitrogen | 126.19 | 0.0372 | 0.0894 | -6.8113 | 0.8060 | - | _ | 5.2014 | | hydrogen sulfide | 373.1 | 0.1005 | 0.0981 | -6.8028 | 0.8072 | - | _ | 5.5701 | | oxygen | 154.58 | 0.0222 | 0.0734 | -6.7200 | 0.8054 | _ | _ | 5.1029 | | ethylene | 282.35 | 0.0866 | 0.1309 | -6.1541 | | _ | _ | 5.3553 | | deuterium | 38.34 | -0.136 | 0.058 | -6.0597 | | _ | _ | 4.0694 | | R40 | 416.3 | 0.243 | 0.139 | -6.0057 | | _ | _ | 5.3535 | | methane | 190.56 | 0.0114 | 0.0986 | -5.9212 | | _ | _ | 5.1420 | | nitrogen trifluoride | 234 | 0.126 | 0.1263 | -5.8855 | | _ | _ | 5.4018 | | R14 | 227.51 | 0.1785 | 0.1407 | -5.7507 | | _ | _ | 6.0436 | | orthohydrogen | 33.22 | -0.218 | 0.0647 | -5.5374 | | _ | _ | 3.7043 | | carbonyl sulfide | 378.77 | 0.0978 | 0.135 | -5.4797 | | _ | _ | 5.4778 | | ethanol | 514.71 | 0.646 | 0.1686 | -5.4382 | | _ | _ | 8.4402 | | parahydrogen | 32.94 | -0.219 | 0.0644 | -5.4225 | | _ | _ | 3.6714 | | hydrogen | 33.15 | -0.219 | 0.0645 | -5.3996 | | _ | _ | 3.6534 | | ethane | 305.32 | 0.0995 | 0.1458 | -4.8380 | | _ | _ | 5.4624 | | R22 | 369.3 | 0.2208 | 0.1651 | -4.8229 | | _ | _ | 6.1328 | | R161 | 375.25 | 0.216 | 0.1592 | -4.4255 | | _ | _ | 6.0484 | | propyne | 402.38 | 0.204 | 0.1636 | -3.5995 | | _ | _ | 6.4700 | | helium | 5.2 | -0.385 | 0.0575 | -3.5483 | | _ | _ | 2.7423 | | R152a | 386.41 | 0.2752 | 0.1795 | -3.4813 | | _ | _ | 6.3362 | | R13 | 302 | 0.1723 | 0.1792 | -3.3923 | | _ | _ | 5.8009 | | cyclopropane | 398.3 | 0.1305 | 0.1628 | -2.9929 | | _ | _ | 5.0172 | | R21 | 451.48 | 0.2061 | 0.1957 | -2.9492 | | _ | _ | 6.0472 | | propylene | 364.21 | 0.146 | 0.1833 | -2.7352 | | _ | _ | 5.6326 | | R143a | 345.86 | 0.2615 | 0.195 | -2.4733 | | _ | _ | 6.3392 | | DME | 400.38 | 0.196 | 0.1684 | -2.4475 | | _ | _ | 5.9087 | | trifluoroiodomethane | 396.44 | 0.176 | 0.2257 | -2.4241 | | _ | _ | 6.2585 | | R134a | 374.21 | 0.3268 | 0.1993 | -1.5632 | | _ | _ | 6.8416 | | R12 | 385.12 | 0.1795 | 0.214 | -1.5082 | | _ | _ | 6.1977 | | propane | 369.89 | 0.1521 | 0.214 | -1.3906 | | _ | _ | 5.6803 | | R125 | 339.17 | 0.1321 0.3052 | 0.2092 | -0.5398 | 0.8089 | _ | _ | 6.9552 | | acetone | 508.1 | 0.3052 0.3071 | 0.2092 0.2128 | -0.3538 -0.3538 | | - | _ | 6.4984 | | RE143a | 377.92 | 0.3071 | 0.2151 | -0.3030 -0.1089 | | _ | - | 6.5302 | | | | | | | | - | - | | | sulfur hexafluoride
R142b | 318.72
410.26 | $0.21 \\ 0.2321$ | 0.1968 0.2253 | -0.0175 | | 0.7826 | 0.8462 | 6.1658 6.2871 | | | | | | | | | | | | R11 | 471.11 | 0.1888 | 0.248 | | 0.7864 | | 0.8319 | 6.6258 | | R116 | 293.03 | 0.2566 | 0.225 | | 0.8128 | | 0.8650 | 6.5768 | | cis-butene | 435.75 | 0.202 | 0.2356 | | 0.8248 | 0.7363 | | 5.8932 | | R1234ze | 382.51 | 0.313 | 0.2331 | | 0.8034 | | | 7.1286 | | 1-butene | 419.29 | 0.192 | 0.2358 | | 0.8230 | | | 5.8589 | | R1234yf | 367.85 | 0.276 | d on next page | 1.3815 | 0.0070 | 0.7062 | 0.0948 | 6.7509 | Continued on next page | Table 1 – continued from previous page | | | | | | | | | |--|---------------------|-----------------|---------------------------------------|------------------------|-----------------|-----------------|----------|---| | Fluid | $T_{\rm c}[{ m K}]$ | ω | $v_{\rm c}[{\rm m}^3{\rm kmol}^{-1}]$ | ξ_{M}^{*} | $T_{ m Mr}$ | T_{1r} | T_{2r} | $\Delta_{\mathrm{v}}s_{\mathrm{M}}^{*}$ | | R124 | 395.42 | 0.2881 | 0.2437 | 1.5614 | 0.8091 | 0.6960 | 0.9005 | 6.8123 | | trans-butene | 428.61 | 0.21 | 0.2374 | 1.6935 | 0.8185 | 0.6976 | 0.9095 | 6.0656 | | isobutene | 418.09 | 0.193 | 0.2398 | 1.8248 | 0.8193 | 0.6947 | 0.9131 | 5.9338 | | R141b | 477.5 | 0.2195 | 0.255 | 2.3839 | 0.8112 | 0.6679 | 0.9199 | 6.3514 | | R115 | 353.1 | 0.248 | 0.2513 | 2.9004 | 0.8079 | 0.6487 | 0.9236 | 6.6389 | | isobutane | 407.81 | 0.184 | 0.2577 | 3.0440 | 0.8223 | 0.6593 | 0.9341 | 5.8716 | | R1233zd | 438.75 | 0.305 | 0.2725 | 3.0552 | 0.7975 | 0.6428 | 0.9195 | 7.1933 | | R123 | 456.83 | 0.2819 | 0.2781 | 3.4213 | 0.7994 | 0.6351 | 0.9276 | 6.9908 | | butane | 425.12 | 0.201 | 0.2549 | 3.5432 | 0.8181 | 0.6409 | 0.9371 | 6.0497 | | R1216 | 358.9 | 0.333 | 0.2571 | 3.6838 | 0.8095 | 0.6459 | 0.9295 | 7.1882 | | R245fa | 427.16 | 0.3776 | 0.2597 | 4.1683 | | | 0.9368 | 7.1450 | | R236fa | 398.07 | 0.377 | 0.2758 | 4.6989 | | 0.6216 | 0.9347 | 7.6474 | | R114 | 418.83 | 0.2523 | 0.2947 | | 0.7781 | | 0.9414 | 7.3331 | | cyclopentane | 511.72 | 0.201 | 0.2618 | 5.5240 | | 0.6345 | 0.9441 | 5.8153 | | R236ea | 412.44 | 0.369 | 0.2691 | | 0.7922 | | 0.9439 | 7.7909 | | R245ca | 447.57 | 0.355 | 0.2551 | | 0.8074 | | 0.9415 | 7.3125 | | R227ea | 374.9 | 0.357 | 0.2861 | | 0.8071 | 0.6025 | 0.9488 | 7.3696 | | benzene | 562.02 | 0.211 | 0.2563 | 6.1558 | 0.8252 | 0.6178 | 0.9543 | 5.9632 | | RE245cb2 | 406.81 | 0.354 | 0.3004 | | 0.7960 | - | 0.9513 | 7.5684 | | DEE | 466.7 | 0.281 | 0.2808 | 7.0390 | 0.8045 | 0.5720 | 0.9547 | 6.8401 | | R218 | 345.02 | 0.3172 | 0.2994 | 7.2705 | | 0.5803 | 0.9526 | 7.1201 | | DMC | 557 | 0.346 | 0.25 | | 0.8129 | 0.5890 | 0.9525 | 7.2388 | | R113 | 487.21 | 0.340 0.2525 | 0.3346 | 7.4017 | 0.3123 0.7761 | 0.5499 | 0.9525 | 7.3494 | | RE245fa2 | 444.88 | 0.2323 | 0.2913 | 7.9754 | | 0.5433 0.5722 | 0.9508 | 7.7811 | | neopentane | 433.74 | 0.1961 | 0.3058 | | 0.8216 | - | 0.9661 | 5.9799 | | isopentane | 460.35 | 0.1301 0.2274 | 0.3057 | | 0.8179 | 0.5693 | 0.9650 | 6.2384 | | pentane | 469.7 | 0.2274 0.251 | 0.311 | 8.4366 | | 0.5641 | 0.9635 | 6.4324 | | RC318 | 388.38 | 0.251 0.3553 | 0.3226 | 9.8443 | | - | 0.9626 | 7.7095 | | R365mfc | 460 | 0.3333 0.377 | 0.3125 | 10.1649 | | 0.5425 | 0.9643 | 7.2573 | | toluene | 591.75 | 0.377 0.2657 | 0.3125 0.3156 | 10.1049 | 0.8131 | 0.5540 | 0.9681 | 6.5371 | | cyclohexane | 553.6 | 0.2096 | 0.3100 0.3102 | 12.5657 | | 0.5540 0.5530 | 0.9081 | 5.7219 | | hexane | 507.82 | 0.299 | 0.3696 | 13.6814 | | 0.5350 0.5152 | | 6.8090 | | isohexane | 497.7 | 0.299 0.2797 | 0.3683 | 13.7711 | 0.8127 0.8125 | 0.5152 0.5202 | | 6.6775 | | RE347mcc | 437.7 | 0.403 | | 14.2038 | 0.8123 | - | 0.9748 | 8.0751 | | perfluorobutane | 386.33 | 0.403 0.371 | 0.3817 0.3968 | 14.2036 | 0.7876 | 0.5095 | 0.9739 | 7.9636 | | - | | | | 16.0966 | | | 0.9747 | 7.9030 | | m-xylene | 616.89 | 0.326 | 0.3752 | | 0.8077 | 0.5123 | | | | p-xylene
ethylbenzene | 616.17 | 0.324 | 0.3712 | 16.0973 | | 0.5109 | 0.9753 | 6.9021 | | • | 617.12 | 0.305 | 0.3648 | 16.9260 | 0.8164 | 0.5066 | 0.9782 | 6.7379 | | o-xylene | 630.26 | 0.312 | 0.3725 | 17.4037 | | 0.4969 | 0.9775 | 6.8488 | | methylcyclohexane | 572.2 | 0.234 | 0.3676 | 18.5937 | | 0.4952 | 0.9823 | 6.1880 | | heptane | 540.13 | 0.349 | 0.4319 | 19.2387 | 0.8059 | 0.4831 | 0.9818 | 7.2950 | | perfluoropentane | 420.56 | 0.423 | 0.4726 | 22.8082 | | 0.4736 | 0.9852 | 8.8186 | | octane | 569.32 | 0.395 | 0.4863 | 25.1117 | | 0.4580 | 0.9840 | 7.7575 | | isooctane | 544 | 0.303 | 0.4717 | 25.2627 | | | | 6.7868 | | novec649 | 441.81 | 0.471 | 0.5208 | 28.6415 | | - | 0.9854 | 11.2642 | | MM | 518.7 | 0.418 | 0.5334 | 28.6999 | | - | 0.9972 | 8.8837 | | nonane | 594.55 | 0.4433 | 0.5525 | 31.1834 | | | 0.9865 | 8.2254 | | propylcyclohhexane | 630.8 | 0.326 | 0.4854 | 31.4514 | | | | 7.0561 | | decane | 617.7 | 0.4884 | 0.6098 | 37.1920 | | | 0.9880 | 8.7914 | | undecane | 638.8 | 0.539 | 0.6601 | 43.7309 | | | | 9.0895 | | MDM | 564.09 | 0.529 | 0.9213 | 48.9411 | | 0.3667 | | 10.2178 | | dodecane | 658.1 | 0.574 | 0.7519 | 50.0562 | 0.7743 | - | 0.9939 | 9.7719 | | Continued on next page | | | | | | | | | Table 1 – continued from previous page | | | | [31 1-11 | r* | <i>T</i> | 777 | 77 | Λ * | |-------------------|---------------------|----------|---------------------------------------|----------------|-------------|-------------------|-------------|----------------------------| | Fluid | $T_{\rm c}[{ m K}]$ | ω | $v_{\rm c}[{\rm m}^3{\rm kmol}^{-1}]$ | $\xi_{ m M}^*$ | $T_{ m Mr}$ | $T_{1\mathrm{r}}$ | $T_{ m 2r}$ | $\Delta_{ m v} s_{ m M}^*$ | | D4 | 586.49 | 0.592 | 0.9661 | 52.9243 | 0.7727 | - | 0.9936 | 10.1578 | | MD2M | 599.4 | 0.668 | 1.0933 | 66.2116 | 0.7353 | - | 0.9938 | 11.7829 | | D5 | 619.23 | 0.658 | 1.2673 | 73.8466 | 0.7473 | - | 0.9939 | 11.4233 | | methyl palmitate | 755 | 0.91 | 1.1148 | 86.6279 | 0.7388 | - | 0.9924 | 13.4264 | | methyl linolenate | 772 | 1.14 | 1.1802 | 87.0511 | 0.7625 | 0.3649 | 0.9918 | 14.3799 | | MD3M | 628.36 | 0.722 | 1.4582 | 92.3726 | 0.7165 | - | 0.9940 | 13.2612 | | methyl linoleate | 799 | 0.805 | 1.237 | 96.4907 | 0.7361 | 0.3468 | 0.9942 | 12.9567 | | methyl oleate | 782 | 0.906 | 1.2303 | 97.9157 | 0.7395 | 0.3480 | 0.9936 | 13.4667 | | methyl stearate | 775 | 1.02 | 1.259 | 100.2849 | 0.7366 | - | 0.9929 | 14.3641 | | D6 | 645.78 | 0.736 | 1.5941 | 104.5704 | 0.6897 | - | 0.9947 | 14.2989 | | MD4M | 653.2 | 0.825 | 1.6067 | 106.7797 | 0.7384 | - | 0.9967 | 13.1683 | Figure 3 shows plots of $\xi_{\rm M}^*$ vs. the acentric factor, ω ($\omega = -1.0 - \log_{10} p_{\rm r}$ at $T_{\rm r}=0.7$), and the critical parameters $T_{\rm c}$, $p_{\rm c}$, and $v_{\rm c}$ for the 121 fluids included in the RefProp 9.1 program [8] and listed in table 1. Figure 3(a) shows a plot of ξ_{M}^{*} vs. ω . Although there is no correlation between ξ_{M}^{*} and ω , one can observe that there are no dry fluids with a centric factor below $\omega \approx 0.180$ [isobutane is the dry fluid ($\xi_{\rm M}^* = 3.0440$) with the smallest acentric factor ($\omega = 0.184$)], while one can find wet fluids below and above this value. Figure 3(b) shows a plot of $\xi_{\rm M}^*$ vs. $T_{\rm c}$. One can see that there is no correlation between $\xi_{\rm M}^*$ and $T_{\rm c}$. However, there are practically no dry fluids with a critical temperature below $340 \,\mathrm{K} \,[\mathrm{R}116 \,\mathrm{is} \,\mathrm{the} \,\mathrm{only} \,\mathrm{dry} \,\mathrm{fluid} \,(\xi_\mathrm{M}^* = 0.4458) \,\mathrm{with} \,T_\mathrm{c} \,(293.03 \,\mathrm{K}) \,\mathrm{below} \,340 \,\mathrm{K}]$ while one can find wet fluids below and above this value. Figure 3(c) shows a plot of $\xi_{\rm M}^*$ vs. $p_{\rm c}$. One can observe that there is no correlation between $\xi_{\rm M}^*$ and $p_{\rm c}$. However, there are no dry fluids with a critical pressure above 4910 kPa [DMC is the dry fluid ($\xi_{\rm M}^* = 7.3867$) with the largest $p_{\rm c}$ value ($p_{\rm c} = 4908.8\,{\rm kPa}$)] while one can find wet fluids below and above this value. Although from Figures 3(a)-(c) no correlations can be identified neither for dry fluids nor for wet fluids, it becomes apparent that the behavior of $\xi_{\rm M}^*$ vs. ω , $T_{\rm c}$, and $p_{\rm c}$ for dry fluids is clearly different from the one for wet fluids. Finally, figure 3(d) shows a plot of $\xi_{\rm M}^*$ vs. $v_{\rm c}$. This figure shows that there is a threshold value of the critical molar volume, $v_{\rm c,0}\approx 0.22~{\rm m}^3~{\rm kmol}^{-1}$, separating wet and dry fluids: wet fluids for $v_{\rm c}< v_{\rm c,0}$ and dry fluids for $v_{\rm c}> v_{\rm c,0}$, with the only exception of CF₃I (trifluoroiodomethane), a wet fluid ($\xi_{\rm M}^*=-2.4241$) Figure 3: Plot of $\xi_{\rm M}^*$ vs. (a) the acentric factor ω , (b) the critical temperature $T_{\rm c}$, (c) the critical pressure $p_{\rm c}$, and (d) the critical molar volume $v_{\rm c}$. Black empty triangles correspond to wet fluids ($\xi_{\rm M}^* < 0$) while red empty circles correspond to dry fluids ($\xi_{\rm M}^* > 0$). The red filled circles in (d) correspond to the oddball dry fluids (see text). All data have been obtained from RefProp 9.1 results [8]. The dashed line in (d) is obtained from equation (6). The vertical dotted line in (d) indicates the critical molar volume $v_{\rm c,0} = 0.2164~{\rm m}^3~{\rm kmol}^{-1}$ that separates wet fluids from dry fluids. with $v_{\rm c}=0.2257~{\rm m}^3~{\rm kmol}^{-1}$. There is no clear correlation between $\xi_{\rm M}^*$ and $v_{\rm c}$ for wet fluids, while $\xi_{\rm M}^*$ seems to increase linearly with $v_{\rm c}$ for dry fluids. By excluding seven oddball dry fluids (all of them siloxanes with large $v_{\rm c}$ values: D4, D5, D6, MDM, MD2M, MD3M, and MD4M), the following linear fit can be obtained for dry fluids: $$\xi_{\rm M}^* = 20.57 \left(\frac{v_{\rm c}}{v_{\rm c,0}} - 1 \right) ,$$ (6) with $v_{\rm c,0}=0.2164~{\rm m}^3~{\rm kmol}^{-1}$ and a coefficient of determination R^2 of 0.995. Equation (6) is plotted in figure 3(d) with a dashed line. This equation suggests the introduction of the dimensionless parameter $$d = \frac{v_{\rm c}}{v_{\rm c,0}} - 1\,, (7)$$ in order to predict the wet or dry character of a fluid only through the knowledge of its critical molar volume: d < 0 for wet fluids and d > 0 for dry fluids. Figure 4: Plot of $\xi_{\rm M}^*$ vs. the intermolecular separation at zero potential energy $\sigma_{\rm c}$. The symbols are RefProp 9.1 results [8] and the dashed line represents equation (8). Black triangles correspond to wet fluids while red circles correspond to dry fluids. Filled symbols correspond to the oddball dry fluids (circles) and the quantum fluids (triangles) (see text). The vertical dotted line indicates the value $\sigma_{\rm c,0} = 0.484$ nm. Smit [10] has shown that the critical molar volume v_c of a Lennard-Jones fluid is related to the intermolecular separation at zero potential energy σ_c via $N_A \sigma_c^3 / v_c = 0.317$, where N_A is the Avogadro number. This fact suggests that ξ_M^* should be correlated with σ_c . Figure 4 represents ξ_M^* vs. σ_c . This figure shows that there is a fair nonlinear correlation between ξ_M^* and σ_c . In particular, by excluding the seven oddballs dry fluids of figure 3(d) (siloxanes with large v_c values: D4, D5, D6, MDM, MD2M, MD3M, and MD4M) and the five quantum fluids (hydrogen, orthohydrogen, parahydrogen, deuterium and helium), the following cubic fit can be obtained for the remaining 109 fluids (both dry and wet): $$\xi_{\rm M}^* = 40.4747 - 295.354(\sigma_{\rm c}/{\rm nm}) + 465.566(\sigma_{\rm c}/{\rm nm})^2 - 57.8077(\sigma_{\rm c}/{\rm nm})^3\,, \ \ (8)$$ with a coefficient of determination R^2 of 0.995. Equation (8) is plotted in figure 4 by a dashed line. From equation (8) one obtains that $\xi_{\rm M}^*=0$ for $\sigma_{\rm c,0}=0.484$ nm, which corresponds to a critical molar volume $v_{\rm c,0}=0.216~{\rm m}^3~{\rm kmol}^{-1}$, in agreement with the above reported value for $v_{\rm c,0}$. This analysis seems to indicate that the wet or dry character of a fluid is mainly correlated with its molecular size (measured by σ_c) instead of its molecular complexity (measured by ω). The 'five quantum fluids' excluded from the fit presented in equation (8) are wet fluids with very low molecular weight that, due to quantum effects, can show a behavior that may differ from that of the rest of the fluids. In figure 4 the differences between the quantum fluids and the remaining wet fluids are small although noticeable. Of course, the differences between the oddball dry fluids (siloxanes with large v_c) and the other dry fluids are much larger as one can observe in figure 4. From this figure one can infer that the ξ_M^* results for the siloxanes are also correlated with σ_c but with a different correlation, probably due to effects that are specific to the siloxanes family of fluids. The analysis of these effects lies out of the scope of the present work. Figure 5: Plot of the reduced temperatures $T_{\rm Mr}$ (squares), $T_{\rm 1r}$ (circles), and $T_{\rm 2r}$ (triangles) vs. the critical molar volume $v_{\rm c}$. Black squares correspond to wet fluids ($\xi_{\rm M}^* < 0$, $v_{\rm c} < v_{\rm c,0}$) and red symbols correspond to dry fluids ($\xi_{\rm M}^* > 0$, $v_{\rm c} > v_{\rm c,0}$). The horizontal dashed line indicates the reduced temperature $T_{\rm r} = 0.81$. The vertical dotted line indicates the critical molar volume $v_{\rm c,0} = 0.2164~{\rm m}^3~{\rm kmol}^{-1}$ that separates wet fluids from dry fluids. The thin solid lines correspond to the fits (9) and (10) (see text). All data have been obtained from RefProp 9.1 results [8]. Figure 5 shows a plot of $T_{1\rm r}$, $T_{2\rm r}$, and $T_{\rm Mr}$ vs. $v_{\rm c}$. As one can observe, there is a fair correlation between these reduced temperatures and the critical molar volume. In particular, one has that for most wet and dry fluids $T_{\rm Mr}$ lie into the reduced temperature range 0.79 – 0.83 with a mean value of $T_{\rm Mr} \approx 0.81$. As a general rule for dry fluids, T_{1r} decreases and T_{2r} increases as v_c increases, in accordance with the fact that ξ_M^* becomes more positive as v_c increases, i.e., the $\xi^* = c_{\text{sat}}^{*g}/T_r$ curve is shifted towards larger positive values. In order to better illustrate the behavior observed in Figure 5 for dry fluids, we have obtained the following linear fit for T_{Mr} : $$T_{\rm Mr} = 0.8288 - 0.01581 \frac{v_{\rm c}}{v_{\rm c,0}},$$ (9) with a coefficient of determination R^2 of 0.719. Furthermore, a fit of $v_c/v_{c,0}$ in terms of T_{2r} yields $$\frac{v_{\rm c}}{v_{\rm c,0}} = -0.1456 + 0.5122 f(T_{\rm 2r}), \qquad (10)$$ with a coefficient of determination R^2 of 0.732, and where we have chosen $$f(T_{\rm r}) = -\frac{\mathrm{d}}{\mathrm{d}T_{\rm r}} \left[\frac{(1 - T_{\rm r})^{0.38}}{T_{\rm r}} \right] = \frac{(1 - T_{\rm r})^{0.38}}{T_{\rm r}^2} + \frac{0.38}{T_{\rm r}(1 - T_{\rm r})^{0.62}}$$ (11) using an heuristic approach, motivated by equation (3) and the Watson relation [3, 4] applied to the temperature dependence of $\Delta_{\rm v} s^* = \Delta_{\rm v} h_{\rm r}/T_{\rm r}$ (see below). This choice of $f(T_{\rm r})$ as a fitting function in (10) yields fairly good results not only for $v_{\rm c}/v_{\rm c,0}$ in terms of $T_{\rm 2r}$ but also in terms of $T_{\rm 1r}$ as one can see in Figure 5. 3.2. The entropy of vaporization at the inflection point of the vapor saturated curve in a $T_r - s^*$ diagram The 'width' of the liquid-vapor saturation curve in a $T_r - s^*$ diagram at a reduced temperature T_r is given by the entropy of vaporization $\Delta_v s^*(T_r) = s^{*g}(T_r) - s^{*l}(T_r)$. Then, we propose the entropy of vaporization at the reduced temperature T_{Mr} , $$\Delta_{\mathbf{v}} s_{\mathbf{M}}^* \equiv \Delta_{\mathbf{v}} s^* (T_{\mathbf{Mr}}) \,, \tag{12}$$ as a parameter characterizing the 'mean width' of the liquid-vapor saturation curve in a $T_{\rm r}-s^*$ diagram. Figures 6(a) and 6(b) show plots of $\Delta_{\rm v}s_{\rm M}^*$ vs. the critical molar volume $v_{\rm c}$ and the acentric factor ω , respectively. In figure 6(a) one can observe that there is no correlation between $\Delta_{\rm v}s_{\rm M}^*$ and $v_{\rm c}$. However, figure 6(b) shows that there is a moderate correlation between $\Delta_{\rm v} s_{\rm M}^*$ and ω . In this context, Velasco *et al.* [11] have recently proposed the equation $$\Delta_{\rm v} h_{\rm r} = (7.2729 + 10.4962 \,\omega + 0.6061 \,\omega^2) \,(1 - T_{\rm r})^{0.38} \,. \tag{13}$$ for providing the reduced enthalpy of vaporization, $\Delta_{\rm v}h_{\rm r}=\Delta_{\rm v}h/RT_{\rm c}$, in terms of the reduced temperature and the acentric factor. Taking into account that $\Delta_{\rm v}s^*=\Delta_{\rm v}h_{\rm r}/T_{\rm r}$, by using equation (13) and assuming $T_{\rm Mr}\approx 0.81$, one obtains, $$\Delta_{\rm v} s_{\rm M}^* \approx \frac{\Delta_{\rm v} h_{\rm r}(0.81)}{0.81} = 4.77693 + 6.89403 \,\omega + 0.398094 \,\omega^2.$$ (14) Equation (14) is plotted in figure 6(b) with a dashed line, showing a fair agreement with the RefProp 9.1 results for $\Delta_{\rm v} s_{\rm M}^*(\omega)$. Clearly, the deviations between the $\Delta_{\rm v} s_{\rm M}^*$ data and the results of equation (14) represented in figure 6(b) are mainly due to deviations of $T_{\rm Mr}$ with respect to the value $T_{\rm Mr} \approx 0.81$ considered in equation (14). Figure 6: Plot of $\Delta_{\rm v} s_{\rm M}^*$ vs. (a) the critical molar volume $v_{\rm c}$ and (b) the acentric factor ω . Black triangles correspond to wet fluids while red circles correspond to dry fluids. The dashed line corresponds to equation (14) (see text). The symbols are RefProp 9.1 results [8]. The vertical dotted line in (a) indicates the critical molar volume $v_{\rm c,0} = 0.2164~{\rm m}^3~{\rm kmol}^{-1}$ that separates wet fluids from dry fluids. # 4. Summary To summarize, the occurrence of an inflection point M, at a reduced temperature $T_{\rm Mr}$, in the saturated vapor curve $s^{*g} = s^{*g}(T_{\rm r})$ allows one to characterize the shape of the liquid-vapor saturation curve in the $T_{\rm r}-s^*$ diagram. More concretely, the slope at this point, $\xi_{\rm M}^*=({\rm d} s^{*\rm g}/{\rm d} T_{\rm r})_{T_{\rm Mr}}$, provides information about the 'inclination forward' of the liquid-vapor saturation curve while the entropy of vaporization at this point, $\Delta_{\rm v} s_{\rm M}^*=s^{*\rm g}(T_{\rm Mr})-s^{*\rm l}(T_{\rm Mr})$, gives information about its 'width'. Furthermore, the fact that the parameter $\xi_{\rm M}^*$ becomes negative for some fluids and positive for others, allows one to classify the fluids like wet or dry, respectively. For those fluids for which $\xi_{\rm M}^*>0$ (dry fluids), there are two temperatures $T_{\rm 1r}$ and $T_{\rm 2r}$, with $T_{\rm 1r}< T_{\rm Mr}< T_{\rm 2r}$, at which $\xi^*=0$ and, therefore, $\xi^*>0$ at any reduced temperature in the range $(T_{\rm 1r},T_{\rm 2r})$. Using data for the 121 fluids considered in the RefProp 9.1 program we find that the sign of $\xi_{\rm M}^*$ is related to the molar critical volume, $v_{\rm c}$, of the fluid. In particular, there is a threshold value, $v_{\rm c,0} \approx 0.22~{\rm m}^3/{\rm kmol}$, below which the fluids are wet $(\xi_{\rm M}^* < 0)$ and above which the fluids are dry $(\xi_{\rm M}^* > 0)$. Furthermore, for dry fluids, $\xi_{\rm M}^*$ presents a linear correlation with $v_{\rm c}$. Since $v_{\rm c}$ is related to the molecular diameter, one relevant conclusion of this work is that the wet $(\xi_{\rm M}^* < 0)$ or dry $(\xi_{\rm M}^* > 0)$ behavior of a fluid is related to its molecular size. We also find that the reduced temperatures $T_{\rm Mr}$, $T_{\rm 1r}$ and $T_{\rm 2r}$ are correlated with $v_{\rm c}$. For wet fluids ($v_{\rm c} < v_{\rm c,0}$) the values of $T_{\rm Mr}$ are noisily distributed around $T_{\rm Mr} \approx 0.81$, while for dry fluids $(v_{\rm c} > v_{\rm c,0})$ the values of $T_{\rm Mr}$ are also noisily distributed around $T_{\rm Mr} \approx 0.81$ between $v_{\rm c,0}$ and $v_{\rm c} \approx 0.5~{\rm m}^3/{\rm kmol}$ while they decrease slightly for higher v_c values. In addition, we also find that, for dry fluids, T_{1r} decreases and T_{2r} increases as v_c increases, according with the fact that $\xi_{\rm M}^*$ becomes more positive as $v_{\rm c}$ increases. In other words, the difference $T_{2r} - T_{1r}$ increases as v_c increases. Finally, we have shown that the entropy of vaporization $\Delta_{\rm v} s_{\rm M}^*$ is correlated with the acentric factor ω . Thus, the shape of the liquid-vapor saturation curve in a temperature-entropy diagram of a given fluid is mainly governed by its molar critical volume and its acentric factor. # Acknowledgements We thank financial support by Junta de Castilla y León of Spain under Grant SA017P17. #### References - [1] J. Bao, L. Zhao, A review of working fluid and expander selections for organic rankine cycle, Renewable and Sustainable Energy Reviews 24 (Supplement C) (2013) 325 342. doi:https://doi.org/10.1016/j.rser.2013.03.040. URL http://www.sciencedirect.com/science/article/pii/S1364032113001998 - [2] B.-T. Liu, K.-H. Chien, C.-C. Wang, Effect of working fluids on organic rankine cycle for waste heat recovery, Energy 29 (8) (2004) 1207 - 1217. doi:http://dx.doi.org/10.1016/j.energy.2004.01.004. URL http://www.sciencedirect.com/science/article/pii/ S0360544204000179 - [3] K. Watson, Prediction of critical temperatures and heats of vaporization, Ind. Eng. Chem. 23 (4) (1931) 360–364. - [4] F. L. Román, J. A. White, S. Velasco, A. Mulero, On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve, J. Chem. Phys. 123 (12) (2005) 124512–1–6. doi: 10.1063/1.2035084. - [5] C. Invernizzi, P. Iora, P. Silva, Bottoming micro-rankine cycles for micro-gas turbines, Applied Thermal Engineering 27 (1) (2007) 100 - 110. doi:https://doi.org/10.1016/j.applthermaleng.2006.05.003. URL http://www.sciencedirect.com/science/article/pii/ S1359431106001724 - [6] H. Chen, D. Y. Goswami, E. K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renewable and Sustainable Energy Reviews 14 (9) (2010) 3059–3067. - [7] J. Hærvig, K. Sørensen, T. Condra, Guidelines for optimal selection of working fluid for an organic rankine cycle in relation to waste heat recovery, Energy 96 (2016) 592 602. doi:http://dx.doi.org/10.1016/j.energy.2015.12.098. URL http://www.sciencedirect.com/science/article/pii/S0360544215017430 - [8] E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference Database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2013). - [9] R. Rayegan, Y. Tao, A procedure to select working fluids for solar organic rankine cycles (orcs), Renewable Energy 36 (2) (2011) 659 670. doi:https://doi.org/10.1016/j.renene.2010.07.010. URL http://www.sciencedirect.com/science/article/pii/S0960148110003344 - [10] B. Smit, Phase diagrams of lennard-jones fluids, J. Chem. Phys. 96 (11) (1992) 8639–8640. - [11] S. Velasco, M. J. Santos, J. A. White, Extended corresponding states expressions for the changes in enthalpy, compressibility factor and constant-volume heat capacity at vaporization, The Journal of Chemical Thermodynamics 85 (0) (2015) 68 76. doi:http://dx.doi.org/10.1016/j.jct.2015.01.011. - URL http://www.sciencedirect.com/science/article/pii/S0021961415000208