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Abstract

In this work we propose an approximate analytical method to obtain the liquid-

vapor saturation curve in a Tr − s∗ diagram, with Tr = T/Tc, s
∗ = (s− sc)/R, Tc the

critical temperature, s the molar entropy, sc the critical molar entropy and R the gas

constant, for a given fluid. The method uses a modified rectilinear diameter law for the

saturated liquid and vapor entropies and an extended corresponding states equation

for the entropy of vaporization. From this method two approximations are derived.

The first approximation requires the use of data obtained from RefProp or a similar

program. The second approximation only needs Tc, the critical molar volume, vc, and

the acentric factor, ω, of the fluid as input data. For most fluids both approximations

yield very good predictions.

1 Introduction

For about thirty years, organic Rankine cycles (ORC) have received increasing attention in

the renewable energy sources research. An ORC works like a conventional Rankine cycle but
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uses an organic working fluid instead of water and it has been designed for producing elec-

trical power from renewable energies (solar, geothermal, biomass) or from low-temperature

waste heat, helping to reduce the consumption of fossil fuels.

The shape of the saturation liquid-vapor curve in a temperature-molar entropy (T − s)

diagram of a given fluid plays a crucial role in order to evaluate the possibility of its selection

as the working fluid in an ORC. For all fluids, the saturation liquid-vapor curve in a T − s

diagram presents a more or less inclined forward bell or dome shape with two branches. The

saturated liquid branch always has a positive slope while there are two possibilities for the

slope of the saturated vapor branch: it is negative for any temperature between the triple

and the critical point (wet fluids), or it can present a zone with positive values (dry fluids).

Wet fluids always condense after the isentropic expansion in the turbine stage of a normal

Rankine cycle without superheating while dry fluids may or may not condense depending on

the condenser temperature. Usually, a third type of fluids is considered: isentropic fluids,

with a nearly vertical saturated vapor branch. In this context White and Velasco1 have shown

that the dry or wet character of ORC working fluids is well described by the maximum value

attained by the slope of the saturated vapor branch in reduced coordinates. They have also

shown that this maximum value is correlated with the critical molar volume, vc.

Bao and Zhao2 presented a review of the literature dealing with working fluid selections

in an ORC, while Haervig et al.3 reported general guidelines about the optimal selection

of working fluids for an ORC based on the temperature of the available heat source. Very

recently, a novel classification scheme for pure working fluids in ORC has been reported

by Györke et al.4 This classification scheme is based on the location of some characteristic

points of the saturation liquid-vapor curve in a T − s diagram.

The usual way of obtaining (screening) the saturation liquid-vapor curve in a T − s

diagram of a given fluid is the use of temperature and entropy data reported by a thermo-

physical property library. In this context, RefProp5 and CoolProp6 are two widely used

libraries. RefProp is a non-open program with thermodynamics data for 147 fluids (in its
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most recent version RefProp 10.0) based on experimentally obtained equations of state (EoS).

CoolProp is a recently available open-source program with similar capabilities. However,

there are many fluids for ORC applications that do not appear in these libraries so that

liquid-vapor coexistence data are not available from them.

An earlier attempt to describe the shape of the T − s saturation boundary was made by

Morrison in 19947 in order to analyze the role played by this boundary in operating cycles in

refrigerators and heat pumps. Morrison came to the conclusion that the important variation

of the shape of the boundary from a working fluid to another is a consequence of molecular

structure. Garrido et al.8 performed a description of the geometry of the T − s diagram of

pure fluids based on different EoS. This study was latter extended to working mixtures in

ORC.9 Very recently Groniewsky et al.10,11 have described the wet-to-dry transition in ORC

working fluids by means of different model EoS. Finally, Su and coworkers12,13 have studied

the slope of the vapor branch in a T − s saturation curve by resorting to molecular groups

techniques.

The aim of the present work is to provide approximate analytical equations for both

the saturated liquid and the saturated vapor curves in a Tr − s∗ diagram (where Tr is the

reduced temperature T/Tc and s∗ = (s − sc)/R, with sc the molar critical entropy and

R the gas constant) by using as input data only the critical temperature, Tc, the critical

molar volume, vc, and the acentric factor, ω, of the fluid. We note that the use of the

dimensionless molar entropy s∗ instead of s allows for obtaining dimensionless results in a

corresponding states principle (CSP) scheme without any loss of generality. The analysis is

made from temperature and entropy liquid-vapor saturation data of the 121 fluids available

by the National Institute of Standards and Technology (NIST) program RefProp 9.15 (the

most recent version RefProp 10.0 includes a larger number of pure fluids and new equations

of state for some fluids but this should not affect the main conclusions of the present work).
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2 Theory

The method proposed in this work is based on the analysis of: 1) the temperature dependence

of the lines of constant quality inside the liquid-vapor region of the Tr − s∗ diagram,

s∗x(Tr) = xs∗g(Tr) + (1− x)s∗l (Tr) , (1)

where s∗g(Tr) and s∗l (Tr) are the saturated vapor and the saturated liquid entropies, respec-

tively, and x the quality of the liquid-vapor mixture; and 2) the temperature dependence of

the entropy difference at saturation (the entropy of vaporization),

∆vs
∗(Tr) = s∗g(Tr)− s∗l (Tr) =

∆vhr
Tr

, (2)

where ∆vhr = ∆vh/RTc, with ∆vh the molar enthalpy of vaporization. From eqs 1 and 2

one has:

s∗g(Tr) = s∗x(Tr) + (1− x)
∆vhr
Tr

, (3)

s∗l (Tr) = s∗x(Tr)− x
∆vhr
Tr

. (4)

For most fluids, Bulavin et al.14 have shown that while the temperature dependence of

the density diameter, ρd = (ρl + ρg)/2− ρc, is close to linear in a wide temperature interval

except very near the critical point (according with the so-called rectilinear diameter law),

the behavior of s∗d(Tr) = s∗0.5(Tr) is non-monotonous and sensitive to the behavior of the

fluid. Therefore, using the entropy diameter s∗d(Tr), i.e., using x = 0.5 in eq 1, is not a

good choice for getting general expressions for s∗l (Tr) and s∗g(Tr). We have analyzed the

temperature dependence of s∗x(Tr) for different values of the quality x. Figure 1 shows the

liquid-vapor saturation curve in a Tr− s∗ diagram together with the behavior of s∗x = s∗x(Tr)

for x = 0.2, 0.4, 0.6 and 0.8 for the fluids R32, RE143a and pentane (C5H12) in the range

0.6 < Tr < 1. In the three cases, s∗x = s∗x(Tr) is practically linear for x = 0.4. We have
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Figure 1: The liquid-vapor saturation curve in a Tr − s∗ diagram for R32, RE143a and
pentane. The dashed blue lines correspond to the liquid saturated branch while the solid red
lines correspond to the vapor saturated branch. The dotted lines represent different values
of the quality x: from left to right x = 0.2, 0.4, 0.6 and 0.8 . All data have been obtained
from RefProp 9.1 results.5

checked this linear behavior for the fluids included in the RefProp 9.1 program. In particular,

searching for the value of x for which s∗x(Tr) reaches the best linear temperature dependence

for all considered fluids, one obtains a mean value of x = 0.385, so that

s∗0.385(Tr) = 0.385s∗g(Tr) + 0.615s∗l (Tr) ≈ a(1− Tr) (0.6 < Tr < 1) , (5)

where the coefficient a is fluid dependent and gives the slope of the straight line. Eq 5

is strictly phenomenological and acts as an effective approximation not valid in the close

neighborhood of the critical point (0.99 . Tr < 1). In relation with this fact, we note that

Imre et al.15 have recently observed the appearance of a small kink very close to the critical

point in the two-phase isentrope ending in the critical point in a T − x diagram. Equation
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5 plays the role of a modified rectilinear diameter law for the saturation entropies.

On the other hand, Velasco et al.16 have recently proposed the equation

∆vhr = B(ω)(1− Tr)0.38 . (6)

with

B(ω) = 7.2729 + 10.4962ω + 0.6061ω2 . (7)

for providing the enthalpy of vaporization, ∆vhr, in terms of the reduced temperature Tr

and the acentric factor ω. An analysis of the performance of eqs 6 and 7 is provided by ref

16. By substituting eqs 5 and 6 into eqs 3 and 4, one obtains,

s∗g(Tr) = a(1− Tr) + 0.615B(ω)
(1− Tr)0.38

Tr
, (8)

s∗l (Tr) = a(1− Tr)− 0.385B(ω)
(1− Tr)0.38

Tr
, (9)

with B(ω) given by eq 7.

At this point it is convenient to recall that the only unknown parameter for determining

s∗g(Tr) and s∗l (Tr) is the slope a. We have checked that using a from the fit of s∗0.385(Tr) data

for a given fluid yields very good results for s∗g(Tr) and s∗l (Tr) for Tr ≥ 0.6. However, our

goal is to obtain the temperature dependence of s∗g(Tr) and s∗l (Tr) in terms of well known

fluid parameters. To this end we take into account the fact that the derivatives w.r.t. Tr of

the saturation entropies are related to the reduced molar heat capacities along the saturation

curve via the well known relations
ds∗g
dTr

=
c∗gsat
Tr

, (10)

ds∗l
dTr

=
c∗lsat
Tr

, (11)

where c∗sat = csat/R, csat being the molar heat capacity along the saturation curve. Recently,1

we have shown that ξ∗(Tr) ≡ c∗gsat/Tr attains a maximum value ξ∗M at a point M with reduced
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temperature TMr ≈ 0.81. The physical meaning of the point M becomes clear by noticing that

those fluids with ξ∗M < 0 have a negative slope for any temperature of the vapor saturated

branch between the triple and the critical points and, consequently, they are ‘wet’ fluids.

On the contrary, those fluids with ξ∗M > 0 present a zone around the point M with positive

slope for the vapor saturated branch, behaving as ‘dry’ fluids. Fluids are either wet or dry

but those with |ξ∗M| close to zero can be termed as ‘isentropic’.

By considering only the saturated vapor branch, from eq 10 one has

ξ∗(Tr) ≡
c∗gsat
Tr

= −a− 0.615B(ω)
(1− 0.62Tr)

T 2
r (1− Tr)0.62

. (12)

Then, taking point M as reference, eq 12 yields

a = −ξ∗M − 0.615B(ω)
(1− 0.62TMr)

T 2
Mr(1− TMr)0.62

, (13)

which provides the parameter a in terms of ω, TMr and ξ∗M.

Equations 8 and 9, with the parameter a given by eq 13, are the basis of the present

work since they allow for obtaining extended corresponding states expressions for s∗g(Tr) and

s∗l (Tr). In what follows we shall refer to these results as approximation A1 and denote them

by s∗g,A1(Tr) and s∗l,A1(Tr), respectively. The values of TMr and ξ∗M required by approximation

A1 can be readily obtained from RefProp 9.1 (see ref 1) and are listed in Table S1 included

in the Supporting Information associated with this article.

But, what about fluids for which TMr and ξ∗M are not available? Recently,1 we have

shown that both TMr and ξ∗M present a fairly good correlation with the critical molar volume

vc. In particular, TMr lie into the reduced temperature range 0.79− 0.83 with a mean value

of TMr ≈ 0.81, while ξ∗M is correlated with the intermolecular separation at zero potential

energy, σc = (0.317vc/NA)1/3 (being NA the Avogadro number), via the cubic equation:

ξ∗M(σc) = 40.4747− 295.354(σc/nm) + 465.566(σc/nm)2 − 57.8077(σc/nm)3 . (14)
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Then, using TMr = 0.81 into eq 13, the slope a can be approximated by

a ≈ −ξ∗M(σc)− 1.3066B(ω) , (15)

with B(ω) and ξ∗M(σc) given by eqs 7 and 14, respectively. The values of σc for the 121 fluids

considered in the RefProp 9.1 program are listed in Table S1, these data have been obtained

from the corresponding molar critical volumes provided by RefProp 9.1.

The approximate results obtained from eqs 8, 9, and 5, with a given by eq 15 shall be

referred to as approximation A2 and denoted by s∗g,A2, s
∗
l,A2, and s∗0.385,A2, respectively.

3 Results and Discussion

Figure 2 shows the liquid-vapor saturation curve in a Tr − s∗ diagram for R32, RE143a

and pentane. The symbols correspond to results obtained from the RefProp 9.1 program5

for s∗g, s
∗
l , and s∗x (obtained from eq 1 with x = 0.385). In what follows, these RefProp

9.1 results shall be denoted as s∗g,RP(Tr), s
∗
l,RP(Tr), and s∗0.385,RP(Tr), respectively. The lines

correspond to the approximate results s∗g,A1 and s∗l,A1, and s∗0.385,A1 obtained from eqs 8, 9,

and 5, with a given by eq 13, using the following values: ω = 0.2769, TMr = 0.8198 and

ξ∗M = −7.7684 for R32, a wet fluid; ω = 0.289, TMr = 0.8180 and ξ∗M = −0.1089 for RE143a,

an isentropic fluid; and ω = 0.251, TMr = 0.8160 and ξ∗M = 8.4366 for pentane, a dry fluid.

The parameters ω, TMr and ξ∗M for the 121 fluids considered by the NIST program RefProp

9.1 are reported in ref 1, and have also been listed in Table S1. For the three considered

fluids we obtain an excellent agreement between RefProp 9.1 results and calculated data in

the range 0.6 < Tr < 1, but this agreement becomes slightly worse for R32 and pentane for

temperatures below Tr = 0.6. This fact can be attributed to the deviation of s∗0.385,RP(Tr)

from the linear behavior given by eq 5, for Tr < 0.6. In any case, the agreement obtained

for R32 and pentane for Tr < 0.6 is still rather good. This behavior is also obtained for

other fluids. Finally, we note that the reduced triple point temperature Ttp r = Ttp/Tc lies in
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Figure 2: The liquid-vapor saturation curve in a Tr − s∗ diagram for R32, RE143a and
pentane. The lines are the approximate results s∗l,A1 (dashed blue lines), s∗g,A1 (red lines),
and s∗0.385,A1 (dotted lines) obtained from eqs 9, 8, and 5, respectively, with the parameter a
given by eq 13 (see text). The symbols are the RefProp 9.15 results s∗l,RP (triangles), s∗g,RP

(circles), and s∗0.385,RP (squares). s∗0.385,RP has been obtained from eq 1

the range 0.3 < Ttp r < 0.5 for most pure fluids available in the RefProp 9.1 program. This

indicates that using reduced temperatures in the range 0.4 ∼ 0.6 < Tr < 1 covers the most

relevant fluid region in most applications involving phase coexistence.

In order to provide a quantitative measurement of the deviations of the approximate

results s∗g,A1 and s∗l,A1 it is advisable to introduce the following definition for the area of the

absolute deviation of the liquid-vapor curve in the s∗ − Tr diagram, for Tr > 0.6:

∆A1 =

∫ 1

0.6

|s∗g,RP(Tr)− s∗g,A1(Tr)|dTr +

∫ 1

0.6

|s∗l,RP(Tr)− s∗l,A1(Tr)|dTr (16)

where, as previously mentioned, the label RP indicates RefProp 9.1 results. The shaded

surface in Figure 3 shows the area measured by eq 16 for MM (Hexamethyldisiloxane).
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Figure 3: Absolute deviation of the liquid-vapor curve in a s∗ − Tr diagram for MM. The
dotted lines are the approximate results s∗l,A1 and s∗g,A1 obtained from eqs 9, 8, and 5, re-
spectively, with the parameter a given by eq 13. The solid lines are the RefProp 9.15 results
s∗l,RP and s∗g,RP. The area of the shaded surface is determined by eq 16

Dividing ∆A1 by the area of s∗RP(Tr) and multiplying by 100 we obtain the percent relative

deviation

∆r1 = 100
∆A1∫ 1

0.6
|s∗g,RP(Tr)− s∗l,RP(Tr)|dTr

. (17)

For the case of MM shown in Figure 3 we obtain ∆r1 = 13.84 %. Table S1 presents the percent

relative deviation ∆r1 for the 121 fluids considered in RefProp 9.1. For the fluids of Figure 2,

R32, RE143a and pentane, we obtain ∆r1 = 3.34 %, 1.71 %, and 1.33 %, respectively. These

results are typical for most fluids although larger deviations are obtained for some fluids

like R40 (∆r1 = 12.65 %), Helium (∆r1 = 13.86 %) and some fluids with large values of ξ∗M,

i.e., for very dry fluids (see Table S1). The average percent relative deviation for all fluids

is ∆r1 = 5.00 %. The maximum percent relative deviation is obtained for D6 with a value

∆r1,max = 34.10 %. 96 fluids out of 121 present a deviation ∆r1 less than 5 %

Table S2 included in the Supporting Information associated with this article is an exten-

sion of the results of Figure 2 to all RefProp 9.1 pure fluids. Note, however, that for the

sake of comparison we only include results in the range 0.6 < Tr < 1. Overall, the observed

behavior is similar to that of Figure 2. The important differences observed for Helium are
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Figure 4: Same caption as in Figure 2 but now the lines are the approximate results s∗l,A2

(dashed blue lines), s∗g,A2 (red lines), and s∗0.385,A2 (dotted lines) with the parameter a given
by eq 15 (see text).

mainly due to the large deviation of s∗0.385,A1(Tr) from the RefProp 9.1 result s∗0.385,RP(Tr).

The same behavior is observed for very dry fluids with large ∆r1. In all cases, the differences

between s∗0.385,A1(Tr) and s∗0.385,RP(Tr) are mainly related to a different inclination of the

liquid-vapor curve in the Tr − s∗ diagram. For some very dry fluids the (slightly) different

inclination leads to large deviations ∆r1 (see, e.g., the MM case of Figure 4). However we do

not expect that the approximate results s∗g,A1(Tr) and s∗l,A1(Tr) would lead to large deviations

when used, for instance, in calculating efficiencies of ORCs.

Like in the previous approximation A1 we define the percent relative deviation of ap-

proximation A2 as follows:

∆r2 = 100
∆A2∫ 1

0.6
|s∗g,RP(Tr)− s∗l,RP(Tr)|dTr

. (18)
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where now

∆A2 =

∫ 1

0.6

|s∗g,RP(Tr)− s∗g,A2(Tr)|dTr +

∫ 1

0.6

|s∗l,RP(Tr)− s∗l,A2(Tr)|dTr (19)

Figure 4 shows with lines the results for s∗g,A2, s
∗
l,A2, and s∗0.385,A2, in a Tr− s∗ diagram for

R32 (vc = 0.1227 m3/kmol, σc = 0.4012 nm), RE143a (vc = 0.2151 m3/kmol, σc = 0.4838

nm) and pentane (vc = 0.311 m3/kmol, σc = 0.5470 nm). Like in Figure 2 these approximate

results are compared with RefProp 9.15 results (symbols). The approximate results for

RE143a (∆r2 = 1.47 %) and pentane (∆r2 = 1.27 %) are rather good and show almost no

variation compared to those presented in Figure 2. However, the approximate liquid-vapor

saturation Tr − s∗ diagram for R32 shown in Figure 4 now present slightly larger deviations

from the RefProp 9.1 results than the approximate diagram plotted in Figure 2, with a

deviation ∆r2 = 5.01 %. This fact can be ascribed to the correlation eq 14 that yields

worse predictions for R32 than for RE143a and pentane. Furthermore, we have checked that

the proposed liquid-vapor saturation entropies curves change little for small changes of the

parameters x and TMr, but they are very sensitive to changes in the parameter ξ∗M. In any

case, we remark that these saturation entropy curves only need as input data the acentric

factor ω and the molar critical volume vc.

Table S3 included in the Supporting Information extends the results of Figure 4 to all

pure fluids considered by RefProp 9.1. The label for each plot in Table S3 includes the

parameters required by eqs 8, 9, and 15 that are also listed in Table S1. In many cases

(like RE143a and pentane), the predictions of eq 15 for the slope a are very good and the

approximate results plotted in Table S3 show excellent agreement with the RefProp 9.1 data

for the Tr − s∗ saturation boundary. There are other cases where relevant discrepancies are

observed. In these cases the approximation eq 15 with ξ∗M given by the correlation eq 14

fails to yield an accurate result for the slope a. This failure is due to the differences between

observed results for ξ∗M and the predictions of 14. The predictions for a are very poor for the
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so-called quantum fluids (hydrogen, orthohydrogen, parahydrogen, deuterium and helium),

and the siloxanes with large vc values (D4, D5, D6, MDM, MD2M, MD3M, and MD4M).

These fluids where identified as oddball fluids in the derivation of eq 14 in ref 1.

Table S1 lists the percent relative deviation ∆r2 for all fluids. In this case the average

percent relative deviation is ∆r2 = 14.54 %. The maximum percent relative deviation is

obtained for D5 with a value ∆r2,max = 111.07 %. 93 fluids out of 121 present a deviation

∆r2 less than 15 %, among them 46 fluids have ∆r2 < 5 %.

4 Summary

To conclude, in this work we have presented an approximate expression for the liquid-vapor

saturation curve in a Tr − s∗ diagram within an extended corresponding states scheme that

only requires the knowledge of two well known parameters of the fluid: The critical molar

volume vc and the acentric factor ω. The derivation of this expression is based on the

observation that for most fluids the line of constant quality x in the liquid-vapor coexistence

region in a Tr − s∗ diagram becomes very close to a straight line with slope −a in the range

0.6 < Tr < 1 for x ≈ 0.385. In addition to the approximate linear behavior for s∗0.385,

the present approach requires an approximate expression for the enthalpy of vaporization.

For simplicity we have chosen an extended corresponding states version16 of the Watson

equation for the enthalpy of vaporization.17 More accurate corresponding states expressions

for the enthalpy of vaporization in terms of the acentric factor ω 18 could be used at a cost

of increasing the complexity of the calculations without an improvement of the results of

significant relevance for the present work.

The parameter a has been shown to depend both on ω and the coordinates (TMr, ξ
∗
M) of the

point M where ξ∗(Tr) = c∗gsat/Tr attains its maximum value. At this point two approximations

have been explored: (i) the approximation A1 that considers the values of TMr and ξ∗M

reported in ref 1 for the 121 fluids of the RefProp 9.1 program,5 or (ii) the approximation
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A2 that takes TMr = 0.81 and considers eq 14 that correlates ξ∗M with the critical molar

volume vc. The approximation A1 yields better results as shown in Figure 2 and Tables S1

and S2 but requires the knowledge of the parameters TMr and ξ∗M. Perhaps more interesting

is the approximation A2 since it provides an extended corresponding states expression for

the shape of the T − s saturation boundary at the cost of yielding slightly worse results (see

Figure 4). The results of the approximation A2 have been shown to be very poor for the

so-called quantum fluids and some siloxanes due to the correlation eq 14 of ξ∗M with vc that

gives rise to important relative deviations in the prediction for the slope a (see Tables S1

and S3).

Finally we would like to comment on the utility of approximation A2 in the search of new

working fluids for ORCs where a good estimation of the liquid-vapor coexistence curve in a

T − s diagram is of major interest. Of course, as mentioned above, one should be cautious

with the results obtained for some families of fluids like the siloxanes and the quantum fluids.
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