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Handwritten character recognition is a challenging problem which received attention 
because of its potential benefits in real-life applications. It automates manual paper 
work, thus saving both time and money, but due to low recognition accuracy it is not 
yet practically possible. This work achieves higher recognition rates for handwritten 
isolated characters using Deep learning based Convolutional neural network (CNN). 
The architecture of these networks is complex and plays important role in success 
of character recognizer, thus this work experiments on different CNN architectures, 
investigates different optimization algorithms and trainable parameters. The exper-
iments are conducted on two different types of grayscale datasets to make this work 
more generic and robust. One of the CNN architecture in combination with adadelta 
optimization achieved a recognition rate of 97.95%. The experimental results demon-
strate that CNN based end-to-end learning achieves recognition rates much better 
than the traditional techniques.

1. Introduction
Automatic character recognition is a process that converts scanned document images into computer understand-
able format. It can be highly beneficial for various private and public sectors due to its numerous applications 
such as mail sorting, address recognition, cheque recognition, scene text detection, video text detection, re-
storing historical documents and so on. Millions of handwritten documents can be processed in seconds using 
character recognizer. The combination of speech synthesis and character recognition aids visually challenged 
person to understand documents more easily and effectively. All these applications make handwritten character 
recognition a vital research area.

In last few years, most of the pattern recognition problems used traditional techniques for problem solving. 
These techniques follow a basic pipeline of data acquisition, preprocessing, feature extraction, classification 
and post-processing (optional). One of the most recent work (Madhuri Yadav, 2018), used Hu-geometric mo-
ments and histogram of oriented gradients for hindi handwritten characters. The authors exploit the geometric 
invariant property of moments and used image gradients for spatial correlation. The performance of these 
features was evaluated on SVM and MLP. In (Deepti Khanduja, 2015), authors exploit the structural properties
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Table 1: Summary of literature works of Hindi handwritten character recognition

Methods Features Classifiers Recognition 
rate (in %)

Madhuri et al. (Madhuri Yadav, 2018) HOG and Hu-moments SVM and MLP 96.8

Deepti et al. (Deepti Khanduja, 2015) Structural and Quadratic 
coefficients

MLP 93.4

Ritesh et al. (Sarkhel et al., 2017) CNN CNN 95.18

Hanmandlu et al. (Hanmandlu et al., 2007) Structural features Reinforcement learning 90.65

G.K. verma et al. (Gyanendra K.Verma, 2011) Curvelet k-NN 90

S. Behle et al. (Belhe et al., 2012) Symbol trees HMM 89

Madhuri et al. (Yadav and Purwar, 2017) Projection profiles Multiple classifiers 96.6

H.B. Kekre et al. (Kekre et al., 2013) Shape and tecture 
features

LBG Algorithm —-

Shitala Prassad et al. (Prasad et al., 2012) Multi-resolution and 
multi directional

k-NN and SVM 95.4

of a character and use end points, intersection points, branch points, and quadratic polynomial coefficients 
as features. Hanmandlu et al. (Hanmandlu et al., 2007)used reinforcement learning on fuzzy sets. The work 
in (Gyanendra K.Verma, 2011) explored the curvity of characters and used curvelet transform for feature ex-
traction and k-nearest neighbor (k-nn) as classifier. S.Behle (Belhe et al., 2012) proposed online hindi word 
recognition system by segmenting words into vowels, matras, syllables etc using Hmm models and giving 
recognized word probabilities by symbol trees. The work in (Yadav and Purwar, 2017) used projection profile 
histogram features and compared performance of different classifiers such as MLP, SVM, Bagged trees for Hin-
di isolated characters. In (Kekre et al., 2013), shape and texture features are extracted from isolated hindi char-
acters using gradient masks and LBG vector quantization, respectively. Shitala (Prasad et al., 2012) proposed 
multi-lingual character recognition using wavelet, curvelet and ridgelet multi-resolution transforms. SVM and 
k-nn classifiers were used for classification purposes. These traditional techniques have achieved remarkable 
accuracies and state of art results, but as of now, they have reached a stagnant point which requires new meth-
odologies to improve accuracy. This stagnancy in accuracy was observed in other pattern recognition problems 
as well, thus there was a shift from traditional learning to end-to-end learning. Table 1 tabulates the recognition 
accuracies reported by these works.

Deep learning techniques follow end-to-end learning. The basic workflow in character recognition is prepro-
cessing, automatic feature extraction and classification. The features are not explicitly specified in this kind of 
learning. Among various deep learning models, Convolutional Neural Networks (CNN) has provided solutions 
to almost all domains of pattern recognition such as bio-medical imaging, agriculture, speech recognition, ob-
ject detection, face recognition , scene classification and so on. Ritesh et al. (Sarkhel et al., 2017)proposed multi 
column multi scale deep convolutional network for isolated handwritten characters. Thus, the purpose of this 
work is to use convolutional neural network for hindi handwritten character recognition. To make CNN learn 
significant features they should be trained carefully. There are number of decisions that a CNN designer has to 
make prior to convolutional learning. Some of the decisions are as follows:

• Number of convolutional layer in a network,
• Number of filters and of what size,
• Number of pooling layers with different kernel and stride size,
• Number of hidden neurons in dense layers,
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• Which optimization algorithms to be used and with what parameter values, and
• Depth of convolutional network and so on.

This paper tries to answer these questions for Hindi handwritten character recognition. It also investigates 
the four optimization methods namely Stochastic Gradient Descent (SGD) (Bottou, 2012), Adadelta (Zeiler, 
2012), Rmsprop (Tieleman, 2012) and Adam (Kingma and Jimmy, 2014) along with different CNN architec-
tures and tries to identify the one which gives highest recognition accuracy. Section 2 discusses the basic ter-
minologies used in convolutional networks and also discusses the properties of CNN architectures proposed in 
this work. Section 3 details the databases used and experimental results of different architectures using different 
optimization methods. Finally, section 4 concludes this article.

2. CNN Architectures

2.1. Basic terminologies used in convolutional networks
The CNN is an ensemble of three basic layers which are: convolution layer, pooling layer or sub-sampling layer 
and classification layer or dense layer as shown in Figure 1.

The input of this architecture is the image which is to be classified. In traditional methods, the inputs to 
the network are the extracted features, whereas in CNN, the input is the raw image which may or may not be 
pre-processed. Thus, CNN are called automatic feature extractor. In mathematical terms, the input to the CNN 
is matrix Y of dimensions r * r * m where r is the height and width of the image and m is the number of channels 
present in the image i.e. RGB, grayscale or 0/1 image.

The main features which make CNN robust are shift, scale and distortion invariance for which it uses re-
ceptive fields, shared weights and sub-sampling. Each convolution layer has k kernels (or filters) of size n*n*q 
where n Æ m and q Æ r. Each kernel is convolved over the entire image to form k activation maps for next 
layers. Each filter has different set of weights and bias so that they can extract different local features. The over-
lapping portion of weighted kernel k with the input image is called the receptive field. The convolutional layer 
is actually responsible for feature extraction. With local receptive fields in this layer, the neurons can extract 
elementary information such as corners, edges, end points etc (Lecun et al., 1998).These features are then fed as 
input to subsequent layers so that high-level features can be extracted. A convolutional layer contains multiple 
filters so that multiple features are extracted from an input image at each level. The input image is sequentially 
scanned over the local receptive field and the convolved output of weights of filter and input image intensities 
are stored as input for the next layer. In this way the kernel is convolved over entire image and different activa-
tion maps are obtained as shown in Figure 2.

Figure 1: Architecture of basic convolutional neural network
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Figure 2: Intermediate activation maps obtained using 48 filters and Adam optimization

The size of the next layer activation maps depends upon two factors i.e. padding and stride. The height and 
width of the subsequent feature maps are given by Equation 1.
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The size of the next layer activation maps depends upon two factors i.e. padding and stride. The height and 
width of the subsequent feature maps are given by Equation 1. 

(W ≠ F + 2 ú P ) + 1 (1) S 

where W is the size of input image or previous layer activation maps, F is the size of filter, P means padding 
which is adding of extra zeros to protect the edges of image, S stands for stride, it decides the movement of 
kernel across the image. The sub-sampling or pooling layer performs local averaging or max pooling and make 
these networks shift invariance to some extent. This layer also reduces the size of the activation maps. It is based 
upon the concept of relative positioning; once the feature is detected its exact location becomes irrelevant only 
the approximate location with respect to other features is important. The features extracted according to exact 
location are easily vulnerable to slight shift changes in a character. Thus, this layer was introduced to handle shift 
distortions and reduce resolutions of input images. The fully connected layer or dense layer receives the input 
from the learned features and flattens them and fed input to classification layer. This layer assigns labels to each 
class and identifies input images as the corresponding characters. In addition to above discussed layers there 
are two more layers dropout layer and activation layer. Dropout layer is a regularization technique introduced 
by (Srivastava et al., 2014), it randomly selects neurons and disable them during training. The randomly selected 
nodes are dropped-out with a given probability (say 0.5) for each weight update cycle. The nodes are dropped off 
only at the time of training to avoid regularization and not at the time of evaluation of network. This layer forms 
an important part of the network as it helps in generalizing the convolutional network so that it can produce 
accurate results even in case of completely unknown image. 

 
2.2 Architectures Designed in the proposed work 
Three architectures have been proposed in this work. Every architecture exhibit different property and trainable 
parameters. All architectures are discussed in detail in further sections. 

 
2.2.1 Architecture 1 
The input to this architecture is 32x32 grayscale image as shown in Figure 3(a). The first convolutional layer C11 
( labeled as Cxy where x corresponds to architecture number and y represents layer number) with 64 filters of 
size 3x3 extracts basic features such as end points, corners, edges, intersection points etc. The initial value or 
weights of these filters can be randomly chosen or by using weight initialization techniques like Xavier filler, 
proposed by Glorot (Glorot and Bengio, 2010). The weight of each of these filters is different so that they can 
extract different types of elementary features. The kernel is applied on each 3x3 neighborhood of each activation 
map. This layer has 640 trainable parameters (3*3*1*64 +64 bias). The next layer is relu activation unit, it 
has no parameters. The next layer is max pooling layer with 64 filters. It reduces the size of activation maps 
by half, using equation (1): Size of activation maps= (32-3+2*1)/2 +1=16. Thus activation maps of 16x16 
are obtained in this sub sampling layer. The next convolutional layer C12 has 128 filters, thus 73856 trainable 
parameters (3*3*64*128+128). The input size of activation maps in this layer is 14x14 which is obtained as 

 
(1)

where W is the size of input image or previous layer activation maps, F is the size of filter, P means padding 
which is adding of extra zeros to protect the edges of image, S stands for stride, it decides the movement of 
kernel across the image. The sub-sampling or pooling layer performs local averaging or max pooling and make 
these networks shift invariance to some extent. This layer also reduces the size of the activation maps. It is based 
upon the concept of relative positioning; once the feature is detected its exact location becomes irrelevant only 
the approximate location with respect to other features is important. The features extracted according to exact 
location are easily vulnerable to slight shift changes in a character. Thus, this layer was introduced to handle 
shift distortions and reduce resolutions of input images. The fully connected layer or dense layer receives the 
input from the learned features and flattens them and fed input to classification layer. This layer assigns labels 
to each class and identifies input images as the corresponding characters. In addition to above discussed layers 
there are two more layers dropout layer and activation layer. Dropout layer is a regularization technique intro-
duced by (Srivastava et al., 2014), it randomly selects neurons and disable them during training. The randomly 
selected nodes are dropped-out with a given probability (say 0.5) for each weight update cycle. The nodes are 
dropped off only at the time of training to avoid regularization and not at the time of evaluation of network. This 
layer forms an important part of the network as it helps in generalizing the convolutional network so that it can 
produce accurate results even in case of completely unknown image.

2.2. Architectures Designed in the proposed work
Three architectures have been proposed in this work. Every architecture exhibit different property and trainable 
parameters. All architectures are discussed in detail in further sections.

2.2.1. Architecture 1
The input to this architecture is 32x32 grayscale image as shown in Figure 3(a). The first convolutional layer 
C11 ( labeled as Cxy where x corresponds to architecture number and y represents layer number) with 64 filters 
of size 3x3 extracts basic features such as end points, corners, edges, intersection points etc. The initial value or 
weights of these filters can be randomly chosen or by using weight initialization techniques like Xavier filler, 
proposed by Glorot (Glorot and Bengio, 2010). The weight of each of these filters is different so that they can 
extract different types of elementary features. The kernel is applied on each 3x3 neighborhood of each activa-
tion map. This layer has 640 trainable parameters (3*3*1*64 +64 bias). The next layer is relu activation unit, 
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it has no parameters. The next layer is max pooling layer with 64 filters. It reduces the size of activation maps 
by half, using equation (1): Size of activation maps= (32-3+2*1)/2 +1=16. Thus activation maps of 16x16 are 
obtained in this sub sampling layer. The next convolutional layer C12 has 128 filters, thus 73856 trainable 
parameters (3*3*64*128+128). The input size of activation maps in this layer is 14x14 which is obtained as

 (a) (b) (c)
Figure 3: Three CNN architectures proposed in this work: (a) Architecture I (b) Architecture II and  

(c) Architecture III

follows: (16-3+2*0)/1+1=14. The next layer is max pooling layer with input dimensions 7x7 (14-3+2*1)/1+1. 
It does not have any trainable parameters. The next layer is flatten layer which converts the previous activation 
map values into format suitable for dense layer. It has 6272 values (7*7*128).

The next layer is dense layer with 256 neurons. Since, it is a fully connected layer with no dropouts it has 
6272*256 values. The next dense layer has neurons equivalent to number of classes. This dataset has 41 classes, 
hence it has 10537 (41*256+41) values. The total trainable parameters in this architecture are1,690,921. The 
main property of this architecture is that it has lesser numbers of convolutional layers as compared to other 
architectures, but number of filters is high in each layer. Since, filters are actually responsible for feature ex-
traction, so instead of creating deeper networks the effect of increasing number of filters was exploited in this 
architecture. There are no dropout layers in this architecture.

2.2.2. Architecture II
This architecture has three convolutional layers, three max pooling layers, four activation layers, two dense and 
dropout layers as represented by Figure 3(b). The number of layers in this architecture is more, as compared 
to Architecture I, but less number of filters. This architecture was designed to demonstrate the effect of deeper 
layers with dropout layer. The first convolutional layer C21 has 32 filters of size 3x3 and 320 (3*3*32) train-
able parameters. Next layer is relu activation layer for normalizing the values of convolved maps. Neither it 
has trainable parameters nor dimensionality reduction. The pooling layer helps to achieve shift invariance by 
max pooling, it reduces the dimensions of activation map to half using (64-3+2*1)/2+1. The next convolutional 
layer C22 has 48 filters of size 3x3. The input to this layer is activation maps of dimension 30x30 i.e. (32-
3+2*0)/1+1. This layer has 13872 parameters (3*3*32*48+48). The next layers are activation and max pooling. 
Third convolutional layer C23 has 64 filters with 27712 (3*3*48*64+64) parameters. The dropout layer helps in 
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generalization of network. In this architecture the probability of dropout is set to 0.5 i.e. half of the neurons will 
be dropped off while training to avoid generalization. The dense layer is a fully connected layer responsible for 
classification in convolutional network. The first dense layer has 256 neurons with 2304(6*6*64) input values. 
It has 590080 (256*2304+256) parameters. The next dense layer has 36 neurons according to the character 
classes in database. The number of trainable parameters in this architecture are 256*36+36 i.e. 9252. The total 
trainable parameters in this architecture are 641236. It can be noticed that number of filters are increasing as the 
network is getting deeper; it is because the deeper filters find more advanced features.

2.2.3. Architecture III
The architecture represented in Figure 3(c) is architecture III and it is similar to LeCunn architecture (Le-

cun et al., 1998), except the number of classes in dense layer. This architecture is not much deep and even the 
number of filters are very less, resulting in less number of trainable parameters and thus low computational 
cost. The first convolutional layer has 6 filters of size 5x5 hence, the parameters are 156(5*5*6+6). The second 
convolutional layer has 16 filters with 2416(5*5*6*16+16) trainable parameters. In this architecture the size 
of the filters has been increased but the number of filters is decreased. The architecture has three dense layers 
which have 256, 120, and 36 neurons, respectively. The total number of trainable parameters in this architecture 
is 1,85,480.

2.3. Optimization Algorithms
In deep learning, training is done on large datasets, and hence it consumes lot of time. To reduce training time 
and to improve the process of learning in deep networks, optimization algorithms are used. The most popular 
algorithm of artificial neural network i.e. back-propagation with gradient descent is used for convolutional 
neural network. The focus of this sub section is to introduce its readers with optimization algorithms used in 
this paper. The details of back-propagation algorithm can be found in (Haykin, 1998). The training can be done 
using batch or mini-batch gradient descent algorithms. Let us consider a dataset of m samples with training 
samples as given by Equation 2 with their respective classes as represented by Equation 3.

X = [x[1], x[2], x[3], ·· ··· · x[m]] (2)

Y = [y[1], y[2], y[3], ·· ··· · y[m]] (3)

The batch gradient takes the entire set of training samples and tries to optimize the cost function or reach 
minima. On the other hand, the mini-batch gradient descent algorithms take the mini batches of training samples 
and try to reach minima. The mini-batches can be represented by Equation 4.

Xi = [x[1], x[2], x[3], ·· ··· · x[n]] (4)

where n < m. Let us consider a training set of 5 million samples, suppose each mini batch has 1000 samples 
then there can be 5000 mini batches to train. If mini_batchsize = m, it becomes batch gradient descent, if mini_
batchsize = 1, it is called stochastic gradient descent (SGD). Algorithm 1 describes the SGD algorithm where, 
represents the predicted output and actual outputs respectively.
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Algorithm 1: Stochastic Gradient Descent at training iteration i
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Algorithm 1: Stochastic Gradient Descent at training iteration i. 

Learning rate –=small constant value , initial parameters (w) and bias (b) are initialized to any random 
values.; 

While stopping criteria do not met; 
Each sample from the training set x[1] ··  · x[m] with corresponding targets y[i] forms the minibatch in 

SGD; 
Compute gradient descent for the cost function J : J Ω 1 q 

f (ŷ [i], y[i] ); 
m i 

Apply update: w[i] = w[i] ≠ –”w; b[i] = b[i] ≠ –”b; 
end   

 
The next algorithm is Rmsprop which stands for root mean square propagation and works as shown in 

Algorithm 2. 
Adam is combination of Rmsprop and momentum. It is given by Algorithm 3. 

 
3. Experimental Results 
3.1 Results on Database I 
This dataset consists of 4428 grayscale hindi characters with 108 characters per sample. It has total of 41 classes. 
The classes of this dataset are equally distributed and thus easy to use. The procedure of creation of this database 
is explained in (Madhuri Yadav, 2018) [1]. The database is tested on all three CNN architectures as discussed in 
Section 2. Figure 4(a), 4(b), 4(c) and 4(d) show the performance of this dataset for architecture I on four different 
optimization algorithms: Adam, SGD, Adadelta, and Rmsprop. 

The experiments of the proposed work are performed on Intel dual core i5 processors seventh gen, 8 GB 
RAM, and a NVIDIA GeForce 750 Ti graphics card with 1TB internal memory, having 640 CUDA cores. 

The next algorithm is Rmsprop which stands for root mean square propagation and works as shown in Al-
gorithm 2.

Adam is combination of Rmsprop and momentum. It is given by Algorithm 3.

3. Experimental Results

3.1. Results on Database I
This dataset consists of 4428 grayscale hindi characters with 108 characters per sample. It has total of 41 class-
es. The classes of this dataset are equally distributed and thus easy to use. The procedure of creation of this 
database is explained in (Madhuri Yadav, 2018) [1]. The database is tested on all three CNN architectures as 
discussed in Section 2. Figure 4(a), 4(b), 4(c) and 4(d) show the performance of this dataset for architecture I 
on four different optimization algorithms: Adam, SGD, Adadelta, and Rmsprop.

The experiments of the proposed work are performed on Intel dual core i5 processors seventh gen, 8 GB 
RAM, and a NVIDIA GeForce 750 Ti graphics card with 1TB internal memory, having 640 CUDA cores.

Algorithm 2: RMSProp algorithm
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Algorithm 2: RMSProp algorithm. 

Learning rate ⁄, initial parameter weights(w) and bias(b), small constant ”, gradient accumulation 
variable for weight S”w and bias S”b, a small constant ‘ initialized at 10≠8, constant — initialized at 0.9, 
Initially S”b , S”w are 0; 

While stopping criteria do not met Take a minibatch of m examples from the training set x[1] · · · x[m] 
with corresponding targets y[i] ; 

Compute gradient descent for the cost function J : J Ω 1 q 
f (ŷ [i], y[i] ); 

m i 
Accumulate squared gradient for weights:S”w = —S”w + (1 ≠ —)”w; 
Accumulate squared gradient for bias : S”b = —S”b + (1 ≠ —)”b; 
Compute update: w[i] = w[i] ≠ –Ô  ”w 

(S”w +‘) ; b
[i] = b[i] ≠ –Ô ”b ; (S”w +‘) 

end   
 
 
 
 
 
 

Algorithm 3: Adam algorithm. 

Learning rate ⁄ , initial parameter weights (w) and bias(b), small constant ”, gradient accumulation 
variable for weight S”w and bias S”b, a small constant ‘ initialized at 10≠8, constant —1 initialized at 
1.9 and—2 at 0.999, Initially velocity for bias and weights V”b and V”w Vdw are 0. S”b ,S”b are 0; 

While stopping criteria do not met; 
Take a minibatch of m examples from the training set x[1] · ·  · x[m] with corresponding targets y[i]. 
Compute gradient descent for the cost function J : J Ω 1 q 

f (ŷ [i], y[i] ); m i 
Accumulate squared gradient for weights: S”w = —2S”w + (1 ≠ —2)”w; 
Accumulate squared gradient for bias : S”b = —2S”b + (1 ≠ —2)”b; 
Compute momentum for weights: V”w = —1S”w + (1 ≠ —1)”w; 
Compute momentum for bias: V”b = —1S”b + (1 ≠ —1)”b; 
V”wcorrected = V”w ; V”bcorrected = V”b ; 

1≠—1 1≠—1 
S”wcorrected = S”w ; S”bcorrected =  S”b  ; 

1≠—2 1≠—2 
Compute update: w[i] = w[i] –Ô  V”wcorrected 

(S”wcorrected+‘) 
; b[i] = b[i] ≠ –Ô V”bcorrected ; (S”wcorrected+‘) 

end   
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Learning rate ⁄, initial parameter weights(w) and bias(b), small constant ”, gradient accumulation 
variable for weight S”w and bias S”b, a small constant ‘ initialized at 10≠8, constant — initialized at 0.9, 
Initially S”b , S”w are 0; 

While stopping criteria do not met Take a minibatch of m examples from the training set x[1] · · · x[m] 
with corresponding targets y[i] ; 

Compute gradient descent for the cost function J : J Ω 1 q 
f (ŷ [i], y[i] ); 

m i 
Accumulate squared gradient for weights:S”w = —S”w + (1 ≠ —)”w; 
Accumulate squared gradient for bias : S”b = —S”b + (1 ≠ —)”b; 
Compute update: w[i] = w[i] ≠ –Ô  ”w 

(S”w +‘) ; b
[i] = b[i] ≠ –Ô ”b ; (S”w +‘) 

end   
 
 
 
 
 
 

Algorithm 3: Adam algorithm. 

Learning rate ⁄ , initial parameter weights (w) and bias(b), small constant ”, gradient accumulation 
variable for weight S”w and bias S”b, a small constant ‘ initialized at 10≠8, constant —1 initialized at 
1.9 and—2 at 0.999, Initially velocity for bias and weights V”b and V”w Vdw are 0. S”b ,S”b are 0; 

While stopping criteria do not met; 
Take a minibatch of m examples from the training set x[1] · ·  · x[m] with corresponding targets y[i]. 
Compute gradient descent for the cost function J : J Ω 1 q 

f (ŷ [i], y[i] ); m i 
Accumulate squared gradient for weights: S”w = —2S”w + (1 ≠ —2)”w; 
Accumulate squared gradient for bias : S”b = —2S”b + (1 ≠ —2)”b; 
Compute momentum for weights: V”w = —1S”w + (1 ≠ —1)”w; 
Compute momentum for bias: V”b = —1S”b + (1 ≠ —1)”b; 
V”wcorrected = V”w ; V”bcorrected = V”b ; 

1≠—1 1≠—1 
S”wcorrected = S”w ; S”bcorrected =  S”b  ; 

1≠—2 1≠—2 
Compute update: w[i] = w[i] –Ô  V”wcorrected 

(S”wcorrected+‘) 
; b[i] = b[i] ≠ –Ô V”bcorrected ; (S”wcorrected+‘) 

end   
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Figure 4: Accuracy graphs for CNN architecture I on database I. 

Figure 4: Accuracy graphs for CNN architecture I on database I
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Table 2: Recognition accuracies (in %) for different optimization methods

Otimization 
Algorithms Architecture I

Dataset I
Architecture II Architecture III Architecture I

Dataset II
Architecture II Architecture III

SGD 89.72 92.88 89.95 91.34 97.07 96.21

Adadelta 94.24 95.93 93.11 97.89 97.95 96.71

Adam 92.88 95.59 84.65 97.28 97.66 95.73

Rmsprop 93.45 95.37 91.87 90.76 97.53 93.98

Architecture I was designed without dropout layer so it is clearly visible from Fig 4 that there is a need of 
regularization. The best accuracy is achieved by Adadelta giving an accuracy of 94.24 % with the loss of 0.420. 
Architecture II gives an accuracy of 95.93 % with Adadelta optimization at loss of 0.229. The accuracy graphs 
for this architecture are shown in Figure 5.

The architecture II is deeper network than architecture I and the former gives better results. The reason for 
increased accuracy is that the deeper filters extract more intrinsic features and dropout layer regularizes the 
network, thus producing better results on testing dataset. Architecture III gives least accuracy of 93.11% with

0.40 loss using Adadelta optimization. This architecture had least number of filters, thus the features extract-
ed were not enough to correctly classify the hindi handwritten characters. The accuracy graphs are represented 
by Figure 6.

3.2. Results on Database II
This database is large as compared to Database I. It has total of 6,12,00 images with 1700 images per charac-
ter and 36 classes. It is also a grayscale database. It was generated by (Acharya et al., 2015). Figures 7,8, and 
9 shows experimental accuracy obtained for three CNN architectures on different optimization algorithms. 
Architecture I was designed without dropout layer so it is clearly visible from Fig. 7 that there is a need of reg-
ularization. The best accuracy in this architecture is achieved by Adadelta giving an accuracy of 97.89 % with 
the loss of 0.420. Architecture II gives an accuracy of 97.95 % with Adadelta optimization at loss of 0.069. The 
accuracy graphs for this architecture are shown in Figure 8. Architecture III gives least accuracy of 96.71% with 
0.13 loss using Adadelta optimization. The accuracy graphs are represented by Figure 9. Table 2 compares the 
recognition rates of different architectures on different databases.

4. Conclusion
Hindi handwritten character recognition has achieved impressive results using CNN. This work proposed dif-
ferent architectures and experimented on many permutations and combinations of convolutional layers. Two 
databases have been used for experimental analysis which achieves the highest accuracy of 97.95 %. The exper-
iments prove the significant improvement in accuracy, however, CNN incur high computational cost and high 
storage space, so there is a need to devise an algorithm which optimize and achieves cost efficient character 
recognition system
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Figure 5: Accuracy graphs for CNN architecture II on database I. 
Figure 5: Accuracy graphs for CNN architecture II on database I
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Figure 6: Accuracy graphs for CNN architecture III on database I. 
Figure 6: Accuracy graphs for CNN architecture III on database I
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Figure 7: Accuracy graphs for CNN architecture I on database II. 

Figure 7: Accuracy graphs for CNN architecture I on database II
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Figure 8: Accuracy graphs for CNN architecture II on database II. 
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Figure 9: Accuracy graphs for CNN architecture III on database II. 
Figure 9: Accuracy graphs for CNN architecture III on database II

based on convolutional neural networks. The results can be further improved by adding linguistic information 
and generating larger databases.
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