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We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to
scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark
matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective
scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of
phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution
of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced
at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global
conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular
and parallel directions to the magnetic field.
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I. INTRODUCTION

Dark matter constitutes the most abundant type of matter
in our Universe, and its density is now experimentally well
determined ΩCDMh2 ¼ 0.1199� 0.0027 [1]. Worldwide
efforts to constrain its nature and interactions have led the
community to a puzzling situation where null results coexist
with direct detection experiments that find high significance
excesses [2]. In particular, in the low mass region of dark
matter (DM) candidates, i.e., mχ < 1 GeV=c2, cosmologi-
cal, astrophysical and collider constraints seem to be themost
important; see, for example, a discussion in Ref. [3]. Direct
detection searches of thermalized galactic DM are mostly
based on nuclear recoils on selected targets. In this scenario,
light dark matter (LDM) particles with masses much smaller
than that of the nucleon, mχ ≪ mN , can only provide
energies ∼eV which are below the ∼keV threshold for
conventional terrestrial searches. If one, instead, considers
LDM scattering off bound electrons, energy transfer can
cause excitation or even ionization and thus seems promising
for exploring the phase space in a complementary way in the
near future [4]. DM hitting terrestrial targets is expected to
have low velocities vχ ∼ 10−3 (we use c ¼ ℏ ¼ 1 units) as
the gravitational boost is small for the Earth, i.e., its Lorentz

factor γ⊕ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2⊕

q
∼ 1 with β⊕ ¼

ffiffiffiffiffiffiffiffiffiffi
2GM⊕
R⊕

q
. However,

for compact objects, such as neutron stars (NSs) with typical

masses MNS ≃ 1.5 M⊙ and radius RNS ≃ 12 km, γNS ∼
1.26 providing vχ ∼ 0.7 as a result of the gravitational
velocity boost. Contrary to what happens around other less
compact celestial bodies this mechanism allows to boost
particles from tiny velocities to relativistic values or, accord-
ingly, test the same length scales as in direct detection
searches with smaller projectile masses. In particular, the
outer crusts inNSs are formed byperiodically arranged nuclei
with typical densities ranging from ρ≃ 2106–41011 g=cm3.
In the single-nucleus description [5], a series of nuclei with
increasing baryonic number, A, from Fe to Kr form a lattice
before neutrons start to leak out of nuclei. At these high
densities, electrons form a degenerate Fermi sea. At even
larger densities and up to nuclear saturation density, around
ρ0 ≃ n0mN ≃ 2.41014 g=cm3, a number of different nuclear
structures called pasta phases appear [6].
In this work, we study the effect of LDM scattering in

the production of quantized lattice vibrations (phonons) in
the outer NS crust. Later, we will discuss how this result
can impact subsequent quantities of interest, such as the ion
thermal conductivity, that are relevant for computing the
cooling behavior of NSs. Phonons are quantized vibrational
modes characterized by a momentum ~k and polarization
vector ~ϵλ appearing in a nuclear periodic system [7].
They can have a number of different sources. They can
be excited due to nonzero temperature T in the medium.
The Debye temperature allows us to evaluate the impor-
tance of the ion motion quantization. For a body-centered
cubic (bcc) lattice [8], for example, TD ≃ 0.45Tp, with

Tp ¼ ωp=kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnAZ2e2

k2BmA

q
geing the plasma temperature
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associated to a medium of ions with number density nA,
baryonic number A, electric charge Ze and mass mA. kB is
the Boltzmann constant. At low temperatures T < TD, the
quantization becomes increasingly important, and the
thermal phonons produced are typically acoustic modes,

following a linear dispersion relation ωk;λ ¼ cl;λj~kj, where
cl ¼ ωp=3

ð6π2nAÞ1=3 is the sound speed. In addition, phonon

production can be caused by an external scattering agent,
for example, standard model neutrinos. In this respect,
weak probes such as cosmological neutrinos with densities
nν ∼ 116 cm−3 per flavor have been shown to provide
small phonon production rates in a crystal target [9,10].
Due to the tiny mass of the neutrino, the experimental
signature of this effect seems, however, hard to confirm.
The main interest in the astrophysical context we discuss in
this contribution follows as phonon excitation in a periodic
system, such as the outer crust of a NS, can affect the
thermal transport coefficients in the star. The potential
modification of transport properties of heat/energy in the
external layers in NSs is crucial to possibly identifying
relevant distortions in the cooling behavior of these
astrophysical objects in rich LDM environments.
The structure of this contribution is as follows. In Sec. II,

we present the effective field theory Lagrangian model
using dark matter-nucleon contact interactions via scalar
and vector couplings in a relativistic framework and
compute the single phonon excitation rate, discussing
sources of uncertainty. Later, in Sec. III, we compute the
thermal conductivity in the outer crust with LDM contri-
butions comparing the results to the standard thermal value
and discussing possible astrophysical consequences.
Finally, in Sec. IV, we give our conclusions.

II. LIGHT DARK MATTER SCATTERING AND
PHONON EXCITATION RATE

In this work, we consider the interaction of an incoming
fermionic DM particle, χ, scattering quasielastically with a
nucleus in the outer NS crust lattice via scalar and vector
couplings [11,12] composed of Z protons (p) and A − Z
neutrons (n),

LI ¼
X
N¼n;p

gs;NχχNN þ gv;NχγμχNγμN; ð1Þ

where gs;N ðgv;NÞ are the effective scalar (vector) couplings
of the DM particle to the nucleon (N) field. We will focus
on a weakly interacting candidate (WIMP) with mass in the
sub-GeV range. This interaction is equivalent to consider-
ing a Fermi four-fermion interaction model, where the
effective couplings of mass dimension ð−2Þ for these
operators are obtained by integrating out the propagator
of a generic ϕmediator with massMϕ. Let us mention that,
indeed, more effective operators for Dirac LDM candidates
are possible; see, for example, Table I in Ref. [13] for
leading coupling contributions to Standard Model fer-
mions. However, in order to keep our description concise

for the sake of clarity, we will restrict here to the spin-
independent interaction model used in previous works [12].
Motivated by the need to compare bounds from colliders

to direct detection, we describe interactions of DM with
quarks q ¼ u, d, and averaging in terms of nucleon fields,
we can write for the vector case gv;N=M2

ϕ ∼ 1=Λv
2 and

gs;N=M2
ϕ ∼mq=Λs

3 where Λv (Λs) is the suppression mass
scale for the vector (scalar) case, assuming the effective
couplings are of order Oð1Þ and can be absorbed into Λs;v

[14]. Using bounds from CMS and ATLAS [15], we set
Λv ≳ 1 TeV and Λs ≳ 100 GeV.
We denote by p0μ

N ¼ ðE0
N;

~p0
NÞ and pμ

N ¼ ðEN; ~pNÞ the
four momentum for the outgoing and incoming nucleon

and p0μ
χ ¼ ðE0

χ ; ~p0
χÞ and pμ

χ ¼ ðEχ ; ~pχÞ as those analogous
for the LDM particle, respectively. Momentum transfer is
denoted by qμ ¼ p0μ

χ − pμ
χ.

Generically, given an interaction potential V felt by an
interacting DM particle when approaching a nucleus
in the periodic lattice, the single phonon excitation rate
per mode can be obtained using the Fermi golden rule,
R~k;λ ¼ 2πδðEf − EiÞjhfjVjiij2, where i and f are the initial
and final states considered and δðEf − EiÞ assures energy
conservation. Given the fact that incoming (outgoing)
LDM particles suffer a very moderate perturbation
from the plane wave state, we will describe its incoming
(outgoing) quantum state as Ψ ~pχ

ð~rÞ ¼ 1ffiffiffi
V

p ei ~pχ ~r with V the

volume of the system. The interaction potential felt by the
LDM particle is the sum [9] over lattice sites Vð~rÞ ¼P

jvð~r − ~rjÞ that we describe for the sake of simplicity as
impenetrable pointlike spheres vð~r − ~rjÞ ¼ δ3ð~r − ~rjÞv0.
We, nevertheless, comment on corrections to this picture
later in the manuscript.
Using the Born approximation, the scattering amplitude

for an incident χ particle can be written as

fð ~pχ ; ~p0
χÞ≃ −

mχ

2π

Z
eið ~pχ− ~p0

χÞ~r0vð~r0Þd3 ~r0; ð2Þ

and from its squared value, the differential cross section in

the center-of-mass frame, dσ
dΩ jCM ¼ jfð ~pχ ; ~p0

χÞj2. The val-
idity of the Born approximation is provided by the finite-

range potential Vð~rÞ so the condition jð ~pχ − ~p0
χÞ: ~r0j ≪ 1 is

fulfilled, with j~r0j being a typical target size. The effective
interaction potential can be obtained from the squared
interaction matrix element as calculated from the

Lagrangian in Eq. (1) as dσ
dΩ jCM ¼ jMχN j2

64π2s . First, we compute

the scattering amplitude jMχN j2 with s ¼ ðpN þ pχÞ2
being the Mandelstam variable. Adding the contribution
over proton and neutron amplitudes coherently, we can
obtain the LDM particle-nucleus differential cross section
and then integrate to find a relation between the total cross
section σχA ≃ 4πa2, or, equivalently, the effective potential
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from Eq. (2), and the scattering length, a, at low incident
energies. We obtain vð~rÞ ¼ 2πa

mχ
δð~rÞ. Besides, we have used

a normalization of the delta function as
R
VT δðxÞd4x ¼ 1.

From the Lagrangian in Eq. (1), the spin-averaged scatter-
ing amplitude [12] reads

jMχNj2 ¼ 4g2s;N½ðpNp0
N þm2

NÞðpχp0
χ þm2

χÞ�
þ 8g2v;N ½2m2

Nm
2
χ −m2

Np
0
χpχ −m2

χpNp0
χ

þ ðp0
χp0

NÞðpNpχÞ þ ðp0
NpχÞðpNp0

χÞ�
þ 8gs;Ngv;N½mNmχðpN þ p0

NÞðpχ þ p0
χÞ�: ð3Þ

Due to the mildly relativistic nature of nucleons inside the
nucleus, energy and momentum will lie close to the Fermi

surface values EFN; j~pFNj and j~pN j2 ∼ j ~p0
N j2 ∼ j~pFNj2 ≪

m2
N . We will approximate the product p0

NpN ¼ ENE0
N−

j ~pN jj ~pN
0j cos θ ~pN; ~pN

0 ≃ E2
FN. On the other hand, for the

more relativistic DM particle products, pχp0
χ¼EχE0

χ−
j ~pχ jj ~p0

χ jcosθ ~pχ ; ~p0
χ
¼E2

χ−j ~pχ j2cosθχ¼m2
χþjpχ j2ð1−cosθχÞ,

where we use θ ~pχ ; ~pχ
0 ≡ θχ . The density dependence will be

retained using a parametrization of the nuclear Fermi
momentum j~pFNj ∼ ð3π2n0YNÞ1=3 and the nuclear fractions
Yp ¼ Z=A, Yn ¼ ðA − ZÞ=A. If we now average over
angular variables,Z

1

−1
2πdðcos θχÞjMχNj2

¼ 16πg2s;N ½ð2m2
N þ j~pFNj2Þð2m2

χ þ j ~pχ j2Þ�
þ 32πg2v;N½2E2

χE2
FN −m2

N j ~pχ j2 −m2
χ j~pFNj2�

þ 128πgs;Ngv;N ½mNmχEFNEχ �: ð4Þ
In the nucleus, we can use the previous expression, Eq. (4),
to find the coherent contribution of the A nucleons in a way
similar to what is done in direct detection [16],Z

1

−1
2πdðcos θχÞjMχAj2

≃m2
A

�
Z
mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~Mpj2

q
þ ðA − ZÞ

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~Mnj2

q �
2

; ð5Þ

with
R
1
−1 2πdðcos θχÞjMχNj2 ≡ j ~MNj. The Mandelstam

variable s ¼ ðpA þ pχÞ2 ¼ m2
χ þm2

A þ 2EAEχ − 2 ~pA ~pχ

can be approximated as s≃ ðmχ þmAÞ2, neglecting the
mildly relativistic nuclei momenta. Thus, we can express
the cross section in the center-of-mass frame as

σA;χ ¼ 4πa2 ¼ m2
A

�
Z
mp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~Mpj2

q
þ ðA−ZÞ

mn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~Mnj2

q �2

16πðmχ þmAÞ2
: ð6Þ

From a zero-order momentum expansion, we recover
the usual expression for direct detection spin independent

cross section at low energies [17] for each coupling

σA;χ →
μ2χA
π ðZgs;p þ ðA − ZÞgs;nÞ2 where μχA ¼ mχmA

mχþmA
is

the reduced χ − A mass. Note at this point that the ∼A2

enhancement in the obtained cross section remains as the
coherence condition λ ≥ RA is fulfilled, with RA being the
nuclear radius and λ ¼ h=j ~pχ j being the De Broglie wave-
length. In addition, the contribution of the nuclear lattice
will be described by the summations extended over the
lattice sites, or, equivalently, by the inclusion of the
structure factor SðqÞ ∼ jPje

−i~q ~rj j2, in the full phonon
excitation rate expression as will be shown later in the
manuscript. Some studies have included form factors F2ðqÞ
to correct a pointlike nucleus nature approach [17]; how-
ever, since we will be focusing on q → 0 limit, we will
consider them as unity for the sake of simplicity. In what

follows, we will refer to ~p0 ≡ ~p0
χ and ~p≡ ~pχ . The single-

phonon excitation time rate from the ground state now
reads

Rð0Þ
k;λ ¼

4π2a2

V2m2
χ
δðE ~p0 þωk;λ−E~pÞ2πj

X
j

h1;~kλje−i~q ~rj j0ij2;

ð7Þ

where ~rj ¼ ~xð0Þj þ ~uj with ~xð0Þj the lattice point and ~uj the
displacement vector [18]. We must note at this point that
the previous expression includes the squared modulus of
the Fourier transform of the periodically arranged lattice
sites including thus the usual description in terms of the
structure factors SðqÞ. This function provides information
on the spatial distribution through a correlation function
and presents maxima at the crystal nuclear positions. The
contribution of this factor to the global cross section
describes coherent scattering from all of the different nuclei
as discussed in Ref. [19]. There, the effect of efficient low-
energy scattered WIMPS from the interior of the stelar DM
distribution was mentioned as an additional factor to
prevent DM escaping from the NS once inside. In this
way, it thus constitutes a mechanism for trapping DM,
besides the deep gravitational potential felt by these sub-
GeV mass particles.
Beyond this point, we will consider an isotropic medium,

and since the Born approximation j~q:~r0j ≪ 1 holds, it is
most likely that acoustic modes are excited. It follows that

−i~q
X
j

e−i~q~x
ð0Þ
j h1; ~kλj~ujj0i¼−inAδð3Þð~k− ~qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j~kj

2mAcl

s
; ð8Þ

where we have used the continuum limit
P

j → nA
R
d3x

and the fact that all ~k have a polarization vector that verifies

~ϵl==~k and the other two vectors are perpendicular to ~k.
Finally Eq. (7) can be written as
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Rð0Þ
k ¼ 4π2a2

m2
χV

δðE ~p0 þ ωk;λ − E~pÞ2πn2A
δð3Þð~k − ~qÞj~kj

2mAcl
: ð9Þ

At this point, we must consider the peculiarities of the
incoming LDM phase space distribution fχð~pÞ as it will
impact the averaged final phonon excitation rate. Typically,
for the Sun or the Earth, the uncertainties have different
sources including the orbital speed of the Sun, escape
velocity from the DM halo and the form of the phase space
distribution itself. About the latter and in local searches,
direct and indirect detection are affected in a different
manner. For example, direct detection is sensitive to DM
with high velocities [20], while for indirect detection, the
low-velocity part of the distribution is tested [21,22].
A popular choice is obtained using an approximation

based on an isotropic sphere with density profile ρDMðrÞ ∝
r−2 of collisionless particles, i.e., a Maxwell-Boltzmann
type with a local mass density ρLDM ¼ 0.3 GeV cm−3.
Uncertainties on the knowledge of the distribution function
must be carefully considered as this impacts accuracy when
translating event rates to constraints on particle physics
models of DM.
In the case we analyze here of a more compact object, it

is the high velocity part of the distribution that is tested, as
typical values for boosted root-mean-squared velocities are
hv2i∼2GMNS=RNS∼ ð0.6Þ2. For these relativistic regimes,
one must use the Maxwell-Jüttner distribution [23] function
and, more properly, take into account the space-time
curvature due to the gravitational field created by the
NS [24],

fχð~pÞ ¼
nχμ

4πm3
χK2ðμÞ

e
−μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þg1ðrÞj~pj

2

m2
χ

q
; ð10Þ

where μ ¼ mχ

kBT
and K2ðμÞ is the modified Bessel function

of the second kind defined as KnðμÞ ¼ ðμ
2
Þn Γð1=2Þ

Γðnþ1=2Þ×R∞
0 e−μyðy2 − 1Þn−1=2dy. The isotropic Schwarzschild met-
ric for the gravitational field created by the NS source is
[24] ds2 ¼ g0ðrÞðdx0Þ2 − g1ðrÞδijxixj, i, j ¼ 1, 2, 3.
Note that, in the close vicinity of the NS where wewill be

interested in assessing our quantities of interest, r ∼ RNS,
and it follows that g1ðRÞ ¼ ð1þ GMNS

2RNS
Þ4 ∼ 1.42, g0ðRÞ ¼

ð1 − GMNS
2RNS

Þ2=ð1þ GMNS
2RNS

Þ2 ∼ 0.69. The distortion from the
flat space with a Minkowski metric effectively sets g0ðrÞ,
g1ðrÞ ≠ 1 as expected. Furthermore, if we obtain from the
above the root-mean-squared

ffiffiffiffiffiffiffiffiffi
hv2i

p
∼ 0.6, this implies μ ≈

6.7 [25,26].
The normalization condition is such that the particle

4-flow Jα can be defined, and taking the α ¼ 0 component,
we obtain

R
d3 ~pfχð~pÞ ffiffiffiffiffiffi−gp

=g0¼J0¼nχ=
ffiffiffiffiffi
g0

p
with

ffiffiffiffiffiffi−gp ¼ffiffiffiffiffiffiffiffiffi
g0g31

p
. nχ is the DM number density near the NS. Note that

at nonrelativistic velocities and flat space we do recover the

Maxwell-Boltzmann distribution as expected. Further, we
consider all outgoing χ states are allowed as the net number
will be tiny as compared to ordinary matter. The phonon
excitation time rate must be weighted with the momenta of
the local χ phase space that, as mentioned, is shifted to the
relativistic values

Rð0Þ
k ¼ 4π3n2AV

m2
χmAcl

Z
d3 ~pfχð~pÞ
ð2πÞ3

Z
d3 ~p0

ð2πÞ3 δ
ð3Þð~k − ~qÞ

× δðE ~p0 þ ω~k;λ − E~pÞj~kja2: ð11Þ

Computing the zeros of the delta function and expressing
the incoming momentum as j~p0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
mχ , we obtain

an interval of kinematically allowed j~kj values

0 ≤ j~kj ≤ 2mχð clγ
ðc2l−1Þ

þ
ffiffiffiffiffiffiffi
γ2−1

p
jc2l−1j

Þ, and Eq. (11) takes the form

Rð0Þ
k ¼ 8π4n2AV

ð2πÞ6m2
χmAcl

Z
∞

0

j~pj2dj~pjfχð~pÞ
jγmχ − j~kjclj
mχ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p a2:

ð12Þ

In Fig. 1, we show the single phonon excitation rate (per
unit volume) from the ground state and averaged over χ
phase space as a function of density in the outer crust using
the single-nucleus table from Ref. [5]. Curves plotted with
solid, dashed and dash-dotted lines correspond to the

excitation of phonons with j~kj → 0 for mχ ¼ 500, 100
and 5 MeV and nχ=n0;χ ¼ 10. We also plot for the sake of

comparison the specific excitation rate at j~kj → 0, Rν0, for
neutrinos with masses mν ¼ 0.1, 1 eV with dotted and
double-dashed lines, respectively. Note, however, that
in this later case there is a strong momentum

-12
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-6

-4

-2

 0

 2

 4

 6

 7  7.5  8  8.5  9  9.5  10  10.5  11  11.5

lo
g 1

0 
R

(0
)  (

cm
-3

 s
-1

)

log10 ρ (g/cm3)

mχ=5 MeV
mχ=100 MeV
mχ=500 MeV
mν=0.1 MeV

mν=1 MeV

FIG. 1. Averaged single-phonon excitation rate per unit volume
as a function of density in the outer crust. DM particle masses
mχ ¼ 500, 100 and 5 MeV are used, and nχ=n0;χ ¼ 10. Neutrino

contribution at j~kj → 0, Rν0 is also shown formν ¼ 0.1, 1 eV. See
the text for details.
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dependence that declines rapidly. We can fit this behavior for

mν ¼ 0.1 eV as R0
νðj~kjÞ¼Rν0eð

−1754j~kj
1eV Þ and for mν¼1eV

as R0
νðj~kjÞ ¼ Rν0e−ð

2561.3j~kj
1eV Þ.

We have verified that, since, typically, the speed of the
thermalized LDM particles far from the star is essentially
vχ ∼ v∞ ∼ 10−3, when hitting the NS, it has already
acquired a boosted energy. Using an estimate based on a
monochromatic value Eχ ¼ γNSmχ , γNS ¼ 1.26, we can
straightforwardly integrate and obtain the analytical result

Rð0Þ
k ¼ nχn2AV

4ð2πÞ3m3
χmAcl

jγNSmχ − j~kjcljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2NS − 1

p a2 ð13Þ

that underpredicts the exact result by ∼20%. As deduced
from the previous expression, Eq. (13), the rate is indeed
constant as a function of momentum as the inequality

γNSmχ ≪ j~kjclj is fulfilled. It seems that the contribution of
the phase space distribution of LDMmay also have a strong
impact on the results, as it happens for the Sun or Earth.

III. ASTROPHYSICAL IMPACT ON
THERMAL CONDUCTIVITY

Phonon production can be crucial for determining further
transport properties, in particular, thermal conductivity in
an ion-electron system such as that in the outer NS crust. As
an important contribution to the total ion conductivity, κi,
partial ion conductivities due to ion-ion, κii ≡ κph, and ion-
electron collisions, κie, must be added [27] under the
prescription κ−1i ¼ κ−1ii þ κ−1ie . Standard mechanisms to
produce lattice vibrations include thermal excitations, as
analyzed in detail in previous works [28,29]. In a NS, the
outer crust can be modelled under the one-component-
plasma description. This low density solid phase can be
classified according to the Coulomb coupling parameter
Γ ¼ Z2e2=akBT where a ¼ ð4πnA=3Þ1=3 is the ion sphere
radius. It is already known that typically for Γ ≥ Γm ≃ 175,
or below melting temperature T < Tm, single-ion systems
crystallize [30].
There are a number of processes that can affect thermal

conductivity in the medium. The so-called U-processes [7]
are responsible for modifying the electron conductivity such
that for high temperatures, T > TU, electrons move almost
freely. Assuming a bcc lattice, TU ≃ 0.07TD. Thus, in the
scenario depicted here, the temperature range must be TU <
T < TD < Tm for each density considered. According to
kinetic theory, the thermal conductivity can be written in the
form [7]

κii ¼
1

3
kBCAnAclLph; ð14Þ

where CA ¼ 9ð T
TD
Þ3 R TD=T

0
x4exdx
ðex−1Þ2 is the phonon (dimension-

less) heat capacity per ion and Lph is an effective phonon

mean free path that includes all scattering processes consid-
ered: U-processes and impurity (I) scattering processes (both
dissipative) and the phonon normal (N) scattering, which are
nondissipative L−1

ph ¼ L−1
U þ L−1

I þ L−1
N . Typically, the ther-

mal conductivity is related to the thermal phonon number at
temperature T,Lph∼1=N0;kλ, whereN0;kλ¼ðeωkλ=kBT−1Þ−1.
The contribution fromDMcan be obtained by the net number
of phonons that results from the competition of thermal
and scattering excitation and stimulated emission [9] in
a 4-volume δVδt using the averaged rate per unit volume,
and weighting with the incoming distribution providing the
frequencies of different values of momenta, we obtain

Nkλ ≃ N0;kλ þ Rð0Þ
k δVδt

−
Z

d3~p
nχ

fχð~pÞ ~Rð0Þ
k N0;kλeðωk;λþ~k:~vÞ=Kχ δVδt; ð15Þ

whereKχ ¼ ðγ − 1Þmχ is the χ kinetic energy and ~Rð0Þ
k is the

single phonon excitation rate for each particular momentum
value (not averaged over incoming χ momenta). Since the
source (NS) is in relative motion to the LDM flux, there is a
Doppler shift characterized by the source velocity
v≡ vNS ∼ 10−2, i.e., galactic NS drift velocity. The distri-
bution of NSs in our Galaxy peaks at distances hrimax ≲
4 Kpc [31]. In this central region DM density is enhanced
with respect to the solar neighborhood value
n0;χ ≃ 0.3 GeV=cm3. Thus we will consider density values
nχ ≃ ð10; 100Þn0;χ as prescribed by popular galactic DM
distribution profiles. In Fig. 2, we show the phonon thermal
conductivity as a function of density (in units of 1010 g=cm3)
at T ¼ 5107 K, 5108 K typical for the base of the crust, for
mχ ¼ 100 MeV. Solid lines are the standard thermal result
with no DM. Dash-dotted and dashed lines correspond to
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FIG. 2. Phonon thermal conductivity as a function of density (in
units of 1010 g=cm3) for temperatures T ¼ 5107 K (blue),
5108 K (red) and mχ ¼ 100 MeV. Dash-dotted and dashed lines
depict the impact of a LDM density nχ=n0χ ¼ 10, 100. Solid lines
are the standard thermal result with no DM for each case. See the
text for details.
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nχ=n0;χ ¼ 10, 100, respectively. We see that at the largest
LDM local densities considered there is a clear enhancement
over the thermal result well inside the outer crust. This
corresponds to the site where the DM-induced effects have
the most influence [32] as this is the most massive part of
the outer crust. Below these densities, there is a negligible
change, though. At lower T, the effect of a perturbation
over the thermal phonon population is more important.
Enhanced (decreased) conductivities at moderate LDM
densities are due to a net reduction (increase) of the number
of phonons in the lattice as a result of cancellation of modes.

As a representative scenario, we have taken j~kj ¼ 0.01=a at
each density sincewehaveverified that this choiceverifies the

kinematical restrictions on j~kj when performing the averages
over phase space distribution as discussed in Sec. II. Besides,

rates are mostly constant at low j~kj. Note that in standard
calculations [27] there is no momentum dependence as
they replace the frequency modeωkλ by a constant threshold.
We must bear in mind that this result must be compiled with
a realistic impurity fraction so that conductivity remains
finite. We have considered LI ∼ 5a [27].
In order to understand the significance of our result in the

dense stellar context in Fig. 3, we show the phonon thermal
conductivity as a function of density (in units of
1010 g=cm3) at T ¼ 108 K and mχ ¼ 65 MeV for

j~kj ¼ 0.01=a. Solid, dot-dashed and dashed lines corre-
spond to cases with no DM, nχ=n0;χ ¼ 10, 100, respec-
tively. Electron thermal conductivity is also shown for
magnetized realistic scenarios in the direction
perpendicular to a magnetic field B of strength B ¼
1014 G (dotted) and B ¼ 1015 G (doble dotted). Ions are
mostly not affected by the presence of a magnetic field.
The parallel direction electronic contribution is not

depicted here since it is typically much larger
ke∥ ∼ 1017–1019 erg cm−1 s−1K−1. Since we perform aver-

ages over the χ phase space, we again use j~kj ¼ 0.01=a. On
the plot, we can see that the electronic contribution in the
perpendicular direction falls below the enhanced nχ=n0;χ ¼
100 DM value for densities ≳3.51011 g=cm3. Note that the

low value chosen for j~kj in this plot is to be understood

as a compromise value; larger j~kj values would imply the
impossibility of exciting phonons from low-momenta
incoming LDM. Since the global conductivity is
κ ¼ κe þ κph, the obtained result is expected to contribute
to the reduction of the difference in heat conduction in both
directions and thus to the isotropization of the NS surface
temperature pattern as seen in Ref. [32] for standard
physics. Temperatures would be smoothly driven toward
more isothermal profiles for latitudes among the pole and
equator. It is already known [33] that the outer crust plays
an important role in regulating the relation among the
temperature in the base of it and the surface. The detailed
calculation of this implication for surface temperatures
remains, however, for future work.

IV. CONCLUSIONS

In conclusion, we have derived for the first time the
single-phonon excitation rate in the outer NS crust for
relativistic LDM particles in the sub-GeV mass range. We
have found that this rate is constant with the phonon
momentum and much larger than for cosmological neu-
trinos at finite j~kj. A non-negligible correction to the local
phonon excitation rate of ∼20% is obtained when full
relativistic phase distribution functions are considered for
the incoming χ particles with respect to a monochromatic
approximation, that underpredicts the result.
As an astrophysical consequence of the previous, we

have calculated the ion thermal conductivity in the dense
and hot outer envelope, finding that it can be largely
enhanced at LDM densities in the maximum of the NS
galactic distribution nχ ∼ 100n0;χ due to a net modification
of the acoustic phonon population. This effect is non-
negligible at densities beyond ∼3.51011 g=cm3 in the base
of the outer crust at the level of standard ion-electron or
thermal effects [27,28]. We do not expect the degenerate
electron contribution to largely modify this result as this
would mildly screen nuclear charge in the lattice; however,
it remains to be further studied. Although a detailed study
of the quantitative effect in the surface temperature pattern
remains to be undertaken, it is expected that for magnetized
NSs the LDM-enhanced global enhancement of the
perpendicular thermal conductivity allows a reduction of
the difference of heat transport among parallel and
perpendicular directions to the magnetic field. Based on
previous works only including standard thermal contribu-
tions, we expect that, as a natural consequence, the surface
temperature profile would be more isotropic, yielding
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FIG. 3. Phonon thermal conductivity as a function of density (in
units of 1010 g=cm3) at T ¼ 108 K and mχ ¼ 65 MeV. Solid,
dot-dashed and dashed lines correspond to cases with no DM,
nχ=n0;χ ¼ 10, 100. Perpendicular electron thermal conductivity is
also shown for B ¼ 1014, 1015 G.
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flatter profiles for intermediate latitudes, and remains to be
calculated in a future contribution.
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