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REVIEW

Blood–brain barrier and foetal‑onset 
hydrocephalus, with a view on potential novel 
treatments beyond managing CSF flow
M. Guerra1*, J. L. Blázquez2 and E. M. Rodríguez1

Abstract 

Despite decades of research, no compelling non-surgical therapies have been developed for foetal hydrocephalus. So 
far, most efforts have pointed to repairing disturbances in the cerebrospinal fluid (CSF) flow and to avoid further brain 
damage. There are no reports trying to prevent or diminish abnormalities in brain development which are insepa-
rably associated with hydrocephalus. A key problem in the treatment of hydrocephalus is the blood–brain barrier 
that restricts the access to the brain for therapeutic compounds or systemically grafted cells. Recent investigations 
have started to open an avenue for the development of a cell therapy for foetal-onset hydrocephalus. Potential cells 
to be used for brain grafting include: (1) pluripotential neural stem cells; (2) mesenchymal stem cells; (3) genetically-
engineered stem cells; (4) choroid plexus cells and (5) subcommissural organ cells. Expected outcomes are a proper 
microenvironment for the embryonic neurogenic niche and, consequent normal brain development.
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Background
Foetal-onset hydrocephalus is a heterogeneous condition. 
Genetic [1] and environmental factors, such as vitamin B 
or folic acid deficiency [2], viral infection of ependyma 
[3], and prematurity-related germinal matrix and intra-
ventricular hemorrhage [4], contribute to its occur-
rence. Recent studies have begun to identify the cellular 
pathologies that accompany foetal-onset hydrocephalus. 
Studies on numerous mutant animal models indicate 
that a disruption of the ventricular zone (VZ) of the cer-
ebral aqueduct, starting early in development, triggers 
aqueduct stenosis and hydrocephalus [5–7]. A similar 
phenomenon seems to take place in cases of human foe-
tal-onset hydrocephalus [8, 9]. The process of VZ disrup-
tion, which first affects the cerebral aqueduct, but also 
reaches the telencephalon, results in two neuropathologi-
cal events: the formation of subependymal grey matter 
heterotopia (also known as ‘periventricular heterotopia’), 

resulting from a failure of neuroblast migration during 
development of the embryonic brain, and the translo-
cation of neural stem cells/neural progenitor cells into 
the foetal cerebrospinal fluid (CSF) [7, 10, 11]. Cerebral 
abnormalities are irreversible inborn defects and they 
could explain some of the neurologic impairments (e.g. 
epilepsy) of children born with hydrocephalus.

Foetal-onset hydrocephalus affects 1–3 of 1000 live 
births and is characterized by abnormal CSF flow 
accompanied by ventricular dilatation [12]. Although 
surgical diversion of CSF with shunts does prevent fur-
ther damage to the brain caused by hydrocephalus, it 
does not solve the essential brain maldevelopment and 
neurological outcome associated with hydrocephalus. 
Indeed, 80–90% of the neurologic impairment suffered 
by shunt-dependent neonates with foetal-onset hydro-
cephalus is not reversed by surgery [13, 14]. The treat-
ment of neurologic disorders is challenging because of 
the brain barriers that make it difficult to effectively and 
persistently deliver therapeutic compounds. The tight 
endothelial barrier can be bypassed using endogenous 
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blood–brain barrier (BBB) transporters allowing carrier-
mediated transport or receptor-mediated transport [15–
17] (Fig. 1).

Recent years have witnessed research progress in the 
development of cell therapies for brain diseases, includ-
ing neurological impairment associated with the onset 
of hydrocephalus. Expected applications for cell ther-
apy are the regeneration of the disrupted VZ and drug 
delivery to improve the brain microenvironment and 

neurological function. We discuss this evidence in the 
present review.

Ontogenetic development of the blood–brain 
barrier (BBB) in animals and humans
The idea of a blood–brain barrier (BBB) that segregates 
blood from brain was developed 100  years ago, follow-
ing the demonstration that vital dyes injected intrave-
nously stained most organs but not the brain and spinal 
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Fig. 1  Cellular constituents of the blood–brain barrier. The blood–brain barrier is formed by brain endothelial cells, which are connected by tight 
junctions. The endothelium, together with the basal lamina, pericytes, and astrocytic end-feet forms the neurovascular unit. Transport pathways 
across blood brain barrier. Endothelial cells of the BBB have a crucial role in the transport of ions and solutes into and out of the brain. Some sub-
stances diffuse freely into and out of the brain parenchyma (O2 and CO2), others such as nutrients need specific transporters, while molecules such 
as insulin, leptin and transferrin are transported by receptor-mediated transcytosis. P-gp P-glycoprotein, TJ tight junction
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cord [18, 19]. The spatial organization of the barrier is 
complex, and although at its various locations (brain 
parenchyma, meninges, choroid plexus) it is formed by 
different cell types (endothelium, mesenchymal cells of 
meninges, choroidal cells), it behaves as a single, tight 
and fully efficient barrier [20, 21]. Adding further levels 
of complexity, there are discrete brain areas, known as 
circumventricular organs, in which the BBB is displaced 
from the endothelial site to the ependymal side, allowing 
small regions of the CNS to be directly exposed to blood 
without making the BBB generally leaky [20, 21].

The different cell organization of the barrier at its 
various brain locations allows it to display distinct bar-
rier and permeability properties. Such innate barriers 
are dynamic and complex interfaces that strictly control 
the exchange between blood or CSF and brain compart-
ments. Major barrier functions include: (1) maintenance 
of CNS homeostasis; (2) protection of the private neural 
environment from that of the blood; (3) provision of a 
constant supply of nutrients to the brain; (4) To convey 
inflammatory cells to specific sites in response to changes 
in the local environment [22, 23]. Several cell types con-
tribute to the organization of the BBB, also known as the 
neurovascular unit, located at the capillaries in the brain 
parenchyma. Endothelial cells are at the heart of the 
BBB; pericytes control the expression of specific genes in 
endothelial cells; astrocytes convey molecules from and 
to the tight endothelium and contribute to the mainte-
nance of the barrier postnatally [24–26]. Further, recent 
evidence has highlighted the role of neural activity in 
promoting the maturation of cerebrovascular networks 
during postnatal development [27].

The polarized nature of CNS endothelial cells is 
reflected in their four fundamental barrier properties 
that contribute to BBB function and integrity. First, tight 
junction (TJ) complexes between endothelial cells estab-
lish a high-resistance paracellular barrier to small hydro-
philic molecules and ions. Second, in endothelial cells the 
transcellular vesicular trafficking of cargo molecules is 
limited to the receptor-mediated endocytosis/transcyto-
sis. Third, the establishment of the restrictive paracellular 
and transcellular barriers allows CNS endothelial cells to 
use polarized cellular transporters to dynamically regu-
late the influx of nutrients and efflux of metabolic waste 
and toxins between the blood and brain parenchyma. 
Fourth, CNS endothelial cells lack the expression of leu-
kocyte adhesion molecules (LAMs) such as E-selectin 
and Icam. The lack of these luminal surface molecules 
prevents the entry of immune cells from blood, result-
ing in a paucity of immune cells in the brain microenvi-
ronment [16]. BBB properties are not intrinsic to CNS 
endothelial cells but are induced and regulated by the 
neural environment [28].

The development of the BBB is a multistep process that 
begins with angiogenesis [29]. Barrier properties mature 
as nascent vessels come into close contact with peri-
cytes and astroglia. This process includes elaboration of 
TJ, decreased transcytosis, downregulation of leukocyte 
adhesion molecules and increased transporter expres-
sion [30–33]. Full tightness of TJ is completed during 
maturation and needs to be maintained throughout life. 
If the barrier breaks down, there can be dramatic conse-
quences, and neuroinflammation and neurodegeneration 
can occur [33–35]. Recently, neurovascular dysfunction, 
including BBB breakdown and cerebral blood flow dys-
regulation and reduction, has been recognized to con-
tribute to Alzheimer’s disease [35] and epilepsy [36].

The temporal profile of BBB development varies with 
species. In addition to tracer injections, the ultrastruc-
ture cellular properties of endothelial cells, the onset 
of specific BBB marker expression, and the presence of 
endogenous serum proteins in brain parenchyma have 
been used to study how barrier properties develop.

In humans, the vascularisation of the telencephalon 
begins at approximately the 8th week of gestation (GW). 
Post-mortem studies of preterm foetuses have shown 
that a barrier to trypan blue is present at the beginning 
of the second trimester of gestation [37]. By the 14th GW 
TJ proteins occludin and claudin-5 are expressed in the 
vessels of the germinal matrix, cortex and white matter 
[38]. The appearance of TJ proteins at this time appears 
sufficient to prevent endogenous albumin from entering 
the brain, providing evidence of early functionality of the 
barrier [38]. By the 18th week of gestation, TJ proteins 
demonstrate similar staining patterns to the TJ of the 
adult BBB [39]. Recruitment of pericytes to the develop-
ing capillary wall is critical for the formation and main-
tenance of the BBB. Astrocytes recruited at later stages 
further assist endothelium in acquiring BBB character-
istics, barrier properties and CNS immune quiescence 
[23–26].

Some pathways have been implicated in the pericyte-
mediated induction and regulation of the BBB. The best 
characterized genetic program is β-catenin signalling 
[40–42]. CNS-specific pathways (Wnt/β-catenin, Norrin/
Frizzled4 and sonic hedgehog) [43] and genes (GPR124, 
Mfsd2a, apoE3) are also crucial in BBB differentiation 
and maturation [44, 45]. Loss-of-function of these genes 
results in CNS vasculature dysfunction.

In brief, methodological and technical achievements 
have allowed to establish that humans, rodents, and 
other animals (i.e. sheep, rabbits, chicken) [46–51] have 
a number of functional barrier mechanisms in place early 
in development. These include TJ proteins and several 
transporters. BBB develops in a caudal-rostral wave with 
the hindbrain BBB becoming functional first followed 
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by the midbrain, and finally the forebrain [44]. Barrier 
transporting properties are induced very early. In con-
trast, barrier sealing properties are acquired gradually 
throughout development, first with the suppression of 
fenestrations, then the appearance of functional TJ and 
lastly with the suppression of transcytosis [30–33]. These 
findings are controversial because they support the view 
of a functional embryonic BBB protecting the develop-
ing brain and oppose the traditional perspective that “the 
vulnerable developing brain is only protected by the bar-
rier properties of the placenta” [52] [for more compre-
hensive reviews see 53, 54].

The progressive maturation of the BBB components 
(i.e., expression of TJ proteins) should not be interpreted 
as a fully functionally operative barrier. When in develop-
ment (pre- or postnatal) does the BBB starts to operate 
as a true, unique and fully tight barrier? This a key ques-
tion from the physiological, pathological and therapeutic 
points of view. A functional BBB during the embryonic 
life implies that the nervous system develops in a defined 
and restricted environment; is this really the case? Does 
a functional embryonic BBB protect the embryonic brain 
from compounds (toxins or drugs) that escape the pla-
cental barrier? How does BBB dysfunction during embry-
ogenesis impact brain development? Although BBB 
dysfunction has been associated with the initiation and 
persistence of various neurological disorders in the adult 
[33–36] and developing brain [55], it is unclear whether 
barrier dysfunction is a cause or a consequence of a par-
ticular neurological disorder. This is an area in which fur-
ther research with modern technology is required [56]. 
On the other hand, a truly and fully functional BBB rep-
resents a challenge when targeting treatments towards 
the mother or foetus, or in the treatment of premature 
newborns.

Abnormalities of BBB in foetal‑onset 
hydrocephalus: trigger or outcome?
All cells of the mammalian central nervous system are 
produced in two germinal zones associated with the ven-
tricular walls, the ventricular zone (VZ) and the subven-
tricular zone (SVZ) [57]. In the human, the SVZ has a 
massively expanded outer region that contributes to the 
large size and complexity of the brain cortex [58–61]. 
Although the bulk of neural proliferation and neuroblast 
migration occurs between 12 and 18 GW, it continues at 
a decreasing rate until about the 34th GW. As neurogen-
esis declines, ependymogenesis takes over (20–40  GW) 
by the progressive differentiation of neural stem cells 
(NSC) into multiciliated ependyma [57].

Over the years, based on our own and other investiga-
tors’ evidence, we have progressively come to the view 
that a disruption of the VZ and SVZ, affecting equally 

NSC and ependymal cells, triggers the onset of foetal 
hydrocephalus and abnormal neurogenesis [7, 10, 11; 
Fig. 3a]. Disruption follows a program that has a tempo-
ral and spatial pattern, progressing as a “tsunami” wave 
running from the caudal to rostral regions of the develop-
ing ventricular system, leaving behind severe damage. In 
the hyh mice and HTx rat, animal models of foetal-onset 
hydrocephalus, the onset of VZ disruption is associated 
with the arrival of macrophages and lymphocytes to the 
zone that has just started to denude [6, 62], suggesting 
that an inflammatory/immune response could be asso-
ciated with the progression and severity of hydrocepha-
lus. Supporting this view, in the hyh mouse, the tumour 
necrosis factor alpha (TNFα) and its receptor TNFαR1 
appear to be associated with the severity of the disease 
[63]. In human neonatal high pressure hydrocephalus, 
pro-inflammatory cytokines (IL-18 and IFNgamma) have 
been detected in the CSF [64].

At present, there is little information whether or not 
the BBB is affected in hydrocephalus. Recent studies 
have shown that at the neurovascular unit, endothelial 
cells, astrocytes, and pericytes synthesise and deposit dif-
ferent laminin isoforms into the basal lamina. Laminin 
α4 (endothelial laminin) regulates vascular integrity at 
embryonic/neonatal stage, while astrocyte laminin main-
tains vascular integrity in adulthood [65, 66]. The loss of 
pericyte laminin leads to hydrocephalus and BBB break-
down [67]. At variance, in the capillaries of the hydroce-
phalic HTx rat laminin immunoreactivity at the BBB is 
not different from that of control rats [68]. In HTx rats, 
tight junctions between endothelial cells of capillaries are 
apparently well formed and capillaries with partial defect 
of the basal membrane are occasionally found. However, 
the swelling of astrocytic end-feet around microvessels 
located in areas of injured white matter was interpreted 
as impairment of the BBB [68].

Other studies have focused on the role of aquaporins 
in the pathophysiology of hydrocephalus. Aquaporin-1 is 
highly expressed at the choroid plexus and is related to 
CSF production; aquaporin-4 is expressed at the epend-
yma, glia limitans, and at the perivascular end feet of 
astrocyte processes, facilitating the water movement 
across these tissue interfaces [69–71]. So far, the observa-
tions obtained from animal studies [72–75] and few cases 
in humans [74, 76] support an adaptive and protective 
role of aquaporins in hydrocephalus by decreasing CSF 
production and increasing edema clearance [77].

Although the evidence is poor, the possibility that an 
inflammatory process is somehow associated with the 
early stages of VZ disruption deserves to be explored. 
Pro-inflammatory interleukins have been detected 
in the CSF of hydrocephalic mutant rodents [63, 78], 
hydrocephalic patients [64, 76, 79]. It is well known 
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that neuroinflammation is generally accompanied by 
impaired BBB function, which includes alterations in 
the junctional complexes [80–83]. Vascular endothe-
lial growth factor (VEGF), which expression is signifi-
cantly up-regulated during neuroinflammation, induces 
disruption of BBB, likely by down-regulating claudin-5 
and occludin [84, 85]. Interestingly, VEGF is elevated in 
the CSF of patients with hydrocephalus and, when it is 
administered into the CSF of normal rats, it causes alter-
ations of adherens junctions (AJ), ependyma disruption, 
and hydrocephalus [86]. Stable AJ are now considered 
to be required for the formation of TJ [87]. Surprisingly, 
the continuous crosstalk between components of AJ and 
TJ has been underestimated by researchers studying the 
BBB and hydrocephalus. The possibility that signals from 
the hydrocephalic CSF (cytokines, VEGF, others) may 
contribute to, or even trigger, the BBB disruption should 
be kept in mind.

Germinal matrix hemorrhage and the BBB
Germinal matrix (GM) haemorrhage and intraventricu-
lar haemorrhage (IVH) are the most common and most 
important events that cause neurological impairment in 
neonates born before 37  GW [88]. IVH occurs when a 
hemorrhage in the germinal matrix ruptures through the 
ependyma into the lateral ventricles, leading to hydro-
cephalus and other long-term sequelae. Prematurity 
associated with posthaemorrhagic hydrocephalus (PHH) 
results in high morbidity and mortality. Infants with a 
history of IVH/PHH have a higher incidence of seizures, 
neurodevelopmental delay, cerebral palsy, and death 
[88–90]. The pathogenesis of IVH is multifactorial and it 
has been primarily ascribed to a combination of intravas-
cular, vascular, and extravascular factors, including: (1) 
disturbance in the cerebral blood flow; (2) inherent fra-
gility of the GM-vasculature; (3) platelet and coagulation 
disorders [for comprehensive reviews see 91, 92]. It has 
been suggested that all or some of these conditions could 
lead to significant fluctuation in the cerebral blood flow 
or blood pressure inside the blood vessels, and may par-
ticipate in the rupture of the microvasculature [93].

The morphology and functional properties of the 
GM-gliovascular interface have been studied in human 
embryos. The perivascular coverage by the end-feet of 
GFAP-reactive astrocytes increases consistently from 19 
to 40  GW [94]. In a similar way, tight junction length, 
basal lamina area in the GM-vasculature and aquaporin-4 
expression in astrocyte end-feet increase as a function 
of gestational age [94–97] (Fig.  2). It is worth ning that 
a lower degree of GFAP expression in astrocyte end-feet 
of the GM vasculature, as compared to that of the devel-
oping cortex and white matter, has been reported. It has 
been suggested that it may reflect cytoskeletal structural 

differences that would contribute to the fragility of the 
GM-vasculature and susceptibility to hemorrhage [94]. In 
addition, poorly developed TJs between endothelial cells, 
or immaturity of the basal lamina and/or pericytes have 
been also suggested as a risk factor for IVH [37, 94, 97].

Difficulties in the non‑surgical treatment 
of hydrocephalus
Del Bigio and Di Curzio have recently written a critical 
review to summarize and evaluate research concern-
ing pharmacological therapies for hydrocephalus [98]. 
Some approaches currently used to deliver therapeutic 
compounds to the brain include transcranial drug deliv-
ery, transnasal drug delivery, transient BBB opening, and 
small molecule lipidization [99–101]. Delivery of thera-
peutic compounds into the CSF is also emerging as an 
alternative. What has been the aim, so far, of all surgi-
cal and pharmacological attempts to treat hydrocepha-
lus? (1) To repair disturbances in CSF flow/balance and 
(2) to prevent brain damage caused by hydrocephalus. 
Despite over five decades of research, no compelling 
non-derivative therapies have been developed for hydro-
cephalus. An alternative and promising task has recently 
been proposed: to prevent or diminish abnormalities in 
brain development which are inseparably associated with 
hydrocephalus.

Is there a real possibility to prevent/diminish 
brain abnormalities linked to foetal‑onset 
hydrocephalus?
We believe that there is a hope. New medical technology 
could change the way to treat hydrocephalus and its out-
comes, as a complement to CSF diversion by shunt sur-
gery. Cell grafting therapy for brain diseases has been the 
subject of numerous publications. A few recent investiga-
tions have started to set the basis for a cell therapy for 
foetal-onset hydrocephalus. Potential cells to be used 
for brain grafting include: (1) pluripotential neural stem 
cells; (2) mesenchymal stem cells; (3) genetically engi-
neered stem cells; (4) choroid plexus cells and (5) sub-
commissural organ cells. Expected outcomes are a proper 
microenvironment of the embryonic neurogenic niche 
and, consequently, normal brain development.

Neural stem cells
Based on the evidence that the common history of foetal-
onset hydrocephalus and abnormal neurogenesis starts 
with the disruption of the VZ, neurospheres formed by 
normal neural stem cells/neural progenitor cells (NSC/
NPC) have been grafted into the lateral ventricle of hydro-
cephalic HTx rats for regenerative purposes (for compre-
hensive reviews see 11, 102). After 48 h of transplantation, 
the grafted cells become selectively integrated into the 
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areas of VZ disruption [11]; Fig. 3b, c. Although the fur-
ther fate of these cells is under investigation in our labora-
tory, the possibility to repopulate the disrupted VZ with 
neural stem cells (radial glia) and ependymal cells, avoid-
ing the outcomes of VZ disruption (hydrocephalus and 
abnormal neurogenesis), may be in sight. Recently, the 
combination of endogenous NSC mobilization and lith-
ium chloride treatment resulted in highly reduced inci-
dence of hydrocephalus by inhibiting neuronal apoptosis 
in a rodent model of intraventricular haemorrhage [103].

The isolation and expansion of NSC of human origin 
are crucial for the successful development of cell ther-
apy approaches in human brain diseases. A relevant step 
forward has been recently achieved in that an immortal 
foetal neural stem cell line [104] and a foetal striatum-
derived neural stem cell line [105] has been obtained.

Mesenchymal stem cells
Mesenchymal stem cells (MSC) are versatile and multipo-
tent adult stem cells. MSC are capable of differentiating 

into osteoblasts, chondroblasts, myocytes, and adipo-
cytes [106, 107]. Furthermore, neuronal progenitor cells, 
as well as lung epithelial and renal tubular cells, can be 
derived from MSC [108]. MSC represent an alternative 
source of stem cells that can be harvested at low cost and 
isolated with minimal invasiveness. There are large MSC 
populations in umbilical cord blood, placental mem-
branes and amniotic fluid [109, 110]. MSC are emerg-
ing as a replacement for NSC for therapeutic purposes, 
specifically for their plasticity, their reduced immuno-
genicity, and high anti-inflammatory potential [111]. It 
is now becoming clearer that they might be able to pro-
tect the nervous system through mechanisms other than 
cell replacement, such as the modulation of the immune 
system [111] and the release of neurotrophic factors [112, 
113].

Mesenchymal stem cells have been used for the 
treatment of posthemorrhagic hydrocephalus. The 
intraventricular transplantation of MSC in an intraven-
tricular haemorrhage model of newborn rats significantly 
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attenuated inflammatory cytokines of the cerebrospinal 
fluid and brain tissue, and prevented the development of 
posthemorrhagic hydrocephalus [114]. The mechanism 
of protection seems to be related to the anti-inflamma-
tory effects of these cells and the capacity of MSC to 
release the brain-derived neurotrophic factor [112, 113]. 
Substantial evidence has been obtained for the success-
ful treatment of brain diseases, such as Parkinson’s, using 
brain grafting of stem cells of various sources [115–117].

In brief, all these findings support that stem cells are 
promising therapeutic agents for brain regeneration and 
neuroprotection. A key point to consider is the time 
and opportunity when NSC should be transplanted. 
In normal human foetuses, neuronal proliferation and 
migration occur from the 12th to 30th GW, while in 
hydrocephalic foetuses VZ disruption starts at about the 
16th GW and continues throughout the 2nd and 3rd tri-
mester of pregnancy [118]. It seems reasonable to suggest 
that NSC grafting should be performed shortly after the 
disruption process of the VZ had been turned on. Foe-
tal surgery to repair neural tube defects, such as spina 
bifida, is performed within a well-defined gestational 
period (19th–25th  GW) according to the MOMS study 
[119]. This operation, that is becoming progressively 
standardized and safe, appears to be a good opportunity 
for NSC grafting into the brain ventricles of spina bifida 
foetuses. Worth mentioning is the fact that foetuses with 
spina bifida carry a VZ disruption [9, 10] and most chil-
dren born with spina bifida have hydrocephalus. It may 
be hoped that grafting of stem cells into brain of hydro-
cephalic foetuses would result in the repopulation of 
the disrupted areas of the VZ and/or the generation of 
a protective microenvironment to diminish/prevent the 
outcomes of VZ disruption, namely, hydrocephalus and 
abnormal neurogenesis.

Warnings about unwanted outcomes of stem cell trans-
plantation should be kept in mind permanently. The 
existing evidence supports that the short term applica-
tion of stem cells is safe and feasible; however, concerns 
remain over the possibility of unwanted long-term effects 
[120–122]. In addition to unwelcome interactions of stem 
cells with the host immune system, there is evidence 
that they may promote tumorogenesis [123]. As animal 
models and first-in-man clinical studies have provided 
conflicting results, it is challenging to estimate the long-
term risk for individual patients [124, 125]. Previous evi-
dence has shown that the safety of stem cell therapies will 
depend on various factors including the differentiation 
status and proliferative capacity of the grafted cells, the 
timing and route of administration, and the long-term 
survival of the graft [126–130].

Human MSC have been also genetically engineered 
to release neuropeptides with neuroprotective potential 

such as brain-derived neurotrophic factor (BDNF), glial 
cell line-derived neurotrophic factor (GDNF) or insu-
lin-like growth factor 1 (IGF-1) [131]. Glage et  al. [132] 
grafted human MSC transfected to produce glucagon-
like peptide-1 in the CSF of cats. This study showed that 
ventricular cell-based delivery of soluble factors has the 
capability to achieve concentrations in the CSF which 
may become pharmacologically active. Thus, geneti-
cally engineered stem cells should be also considered to 
deliver specific neuroprotective compounds to the cen-
tral nervous system [131]. Despite the controversy about 
the pharmacokinetic limitations and the technical dif-
ficulties of ventricular drug delivery, the CSF pathway is 
a promising route of administration for soluble, highly 
biologically-effective neuropeptides [133, 134].

There are two brain glands, the choroid plexus (CP) and 
the subcommissural organ (SCO), that secrete proteins 
and peptides into the CSF, some of them with neurogenic 
and neuroprotective properties. These two glands play a 
key role in the secretion and flow of CSF, and participate 
in the physiopathology of hydrocephalus [135–138].

Choroid plexus
The choroid plexus (CP) cells are the main source of 
CSF, providing a full complement of proteins, peptides, 
nucleosides and growth factors such as the basic fibro-
blast growth factor (bFGF), insulin growth factor (IGF-
II), nerve growth factor (NGF), and transforming growth 
factor (TGF), which influence a multitude of brain func-
tions, including neurogenesis, neuroprotection, neurite 
extension as well as neuronal survival in vitro and in vivo 
[135, 139]. The marker secretory protein of the CP is 
transthyretin (Fig.  3h), a carrier of thyroxin throughout 
the CSF [140]. The transthyretin/thyroxin complex has 
a relevant role in neuronal differentiation and synap-
togenesis in particular [140–142]. Thus, choroid plexus 
through its secretion into the CSF regulates nervous sys-
tem structure and function [136, 142].

Grafting of CP has been explored for therapeutic pur-
pose in some neurodegenerative disorders [for compre-
hensive reviews see 143, 144]. Surprisingly, CP grafting 
has not yet been considered in the treatment of hydro-
cephalus. The long-term survival of organ cultured CP 
(at least 2  months; ongoing experiments in our labora-
tory) and transplanted CP cells in vivo [145–147] provide 
a sound base to explore such a strategy. Worth noticing 
is that organ-cultured CP do not secrete CSF but they do 
secrete neurotrophic factors, such as transthyretin (ongo-
ing experiments in our laboratory) (Fig. 3i, j).

Subcommissural organ
The subcommissural organ (SCO) is a distinctive epend-
ymal secretory gland located at the entrance of the 
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cerebral aqueduct. The SCO differentiates very early in 
ontogeny and remains fully active during the entire life 
span, secreting SCO-spondin to the CSF where it either 
assembles to form Reissner’s fiber (RF) or remains solu-
ble and circulates throughout the CSF compartments 
[148, 149]. The RF, extending through the Sylvius aque-
duct (SA), fourth ventricle and central canal of the spi-
nal cord, is indispensable for maintaining the patency of 
the SA and the normal flow of CSF [150–152]. An inborn 
defect of the SCO results in hydrocephalus [137, 138, 
152].

In addition to SCO-spondin, the SCO secretes tran-
sthyretin, FGF, and the S100β protein, which support 
embryonic brain development [153, 154]. We have 
recently provided evidence to propose that these factors 
have similar roles in adult neurogenesis, regulating pro-
liferation, migration and differentiation of neural stem 
cells and neural precursors in adult neurogenic niches 
[149].

The long-term survival of CP (Fig.  3h–j) and SCO 
explants (Fig.  3d–g) when they are cultured or trans-
planted into the ventricular CSF [146, 155, 156] provide a 
sound base to explore a CP/SCO cell-based therapy. When 
transplanted in the CSF, CP and SCO explants would allow 
a constant source and a homogenous distribution of neu-
rotrophic and neuroprotective proteins, facilitating a uni-
form exposure of these compounds to the brain cells.

In order to translate cell therapies to humans, two 
strategies are envisaged. (1) To graft cells of human ori-
gin, mainly of human foetuses and (2) to graft cells of 
non-human origin. In such a case, a key question has to 
be solved: how to avoid the host versus graft immune 
reaction when the source of transplanted tissue is a non-
human species.

Microencapsulation permits use of allo‑ 
and xeno‑grafting without immunosuppression
Cell encapsulation technology represents an alternative 
approach to the delivery of biologically active compounds 
to the brain by overcoming the problem of graft rejec-
tion [157]. This strategy involves the use of untreated or 
genetically engineered cells that secrete proteins with 
therapeutic potential. Cells are immobilized within a 
polymeric semi-permeable membrane that permits the 
bidirectional diffusion of molecules such as the influx 
of oxygen, nutrients, growth factors, essentials for cell 
metabolism and the outward diffusion of waste products 
and therapeutic proteins. At the same time, the semi-
permeable nature of the membrane prevents the grafted 
cells being exposed to host immune cells and antibodies, 

avoiding their destruction (Fig. 4) [158, 159]. Through the 
release of therapeutic proteins, the grafted encapsulated 
cells can modify a circumscribed brain microenviron-
ment or the whole brain milieu when transplanted into 
the CSF, and provide clinical benefits [132, 160, 161].

The use of an appropriate material with the property 
of biocompatibility is a crucial factor that governs the 
long term efficiency of this technology. The ideal cap-
sule should need to be implanted only once in a patient’s 
lifetime; provide stable, predictable and reproducible 
function for a given period of time, and not burden the 
patient with immune suppressive regimens, discom-
fort, or other adverse effects. At present, alginates are 
regarded as the most suitable biomaterials for cell encap-
sulation due to their abundance and excellent biocom-
patibility properties [162, 163]. New polymers are being 
tested to be used as carriers and scaffolds for biomole-
cules and cell delivery in tissue engineering applications 
[159]. Encapsulation devices range from ‘microscale’ 
devices (100 nm–1 mm) to ‘macroscale’ (3–8 cm). Micro-
capsules, by virtue of their size, have a shorter diffusion 
distance for oxygen and other nutrients. However, they 
are mechanically and chemically fragile and cannot be 
retrieved once implanted within the brain parenchyma. 
Macrocapsules provide good cell viability and neuro-
chemical diffusion, have good mechanical stability, and 
can be retrieved if needed or desired [159, 161].

Recent advances have increased the list of encapsulated 
cells that survive for a long-term in the brain and release 
therapeutic molecules ([161], Table 1); such neurotrophic 
factors do not cross the BBB.

Conclusions
Although many agents have therapeutic potential for 
hydrocephalus, few of these agents have been clinically 
used because of the brain barriers. Virtually there are 
no reports trying to prevent or diminish abnormalities 
in brain development which are inseparably associated 
with hydrocephalus. Cell therapies for brain diseases, 
by grating cells with regenerative properties (stem cells) 
or able to secrete therapeutic compounds for an effi-
cient period of time when they are transplanted into 
the CSF (MSC, CP, SCO), should be strongly considered 
for developing new treatments for hydrocephalus. The 
development in new technologies, such as cell encapsu-
lation, will allow the use of foreign cells for transplanta-
tion, overcoming the existing problem of xenografts. A 
carefully considered decision process is indispensable 
before cell grafting in order to avoid unwanted results. 
Detailed observation and follow-up of the graft hosts 
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should be a key compromise. To achieve the stem cells 
transplantation goal for hydrocephalus/spina bifida 
patients will require a balanced and complementary 
basic-clinical working team.
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