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We confirmed the ability of the triterpenoid betulin to protect against neurotoxicity caused by Bothrops jararacussu snake venom
in vitro in mouse isolated phrenic nerve-diaphragm (PND) preparations and examined its capability of in vivo protection using
the rat external popliteal/sciatic nerve-tibialis anterior (EPSTA) preparation. Venom caused complete, irreversible blockade in
PND (40 𝜇g/mL), but only partial blockade (∼30%) in EPSTA (3.6mg/kg, i.m.) after 120min. In PND, preincubation of venom
with commercial bothropic antivenom (CBA) attenuated the venom-induced blockade, and, in EPSTA, CBA given i.v. 15min
after venom also attenuated the blockade (by ∼70% in both preparations). Preincubation of venom with betulin (200 𝜇g/mL)
markedly attenuated the venom-induced blockade in PND; similarly, a single dose of betulin (20mg, i.p., 15min after venom)
virtually abolished the venom-induced decrease in contractility. Plasma creatine kinase activity was significantly elevated 120min
after venom injection in the EPSTA but was attenuated by CBA and betulin. These results indicate that betulin given i.p. has a
similar efficacy as CBA given i.v. in attenuating the neuromuscular effects of B. jararacussu venom in vivo and could be a useful
complementary measure to antivenom therapy for treating snakebite.

1. Introduction

Snakebite is aworldwide health problem that results in at least
20,000 deaths each year [1]. Serum therapy is the primary
treatment for systemic envenoming but its efficacy against

local effects (pain, edema, hemorrhage, and necrosis) is lim-
ited [2]. Consequently, there has been increasing interest in
the rapidly expanding field of “green medicine” that includes
the study and use of plant products (extracts or isolated
components) as complementary or ancillary measures to
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treat the local effects of snake venoms [3]. Appropriate
exploitation of these plants can provide compounds for
pharmacological analysis, whilst minimizing the destruction
of natural resources, a critical aspect of sustainability [3].

Betulin is an important precursor biomolecule that can
be converted to betulinic acid, a C-28 carboxylic derivative
that is generally produced by plants in small amounts [4,
5]. However, numerous plants produce large amounts of
betulin (Table 1) [6–28].The clinical effects of betulin, mainly
as an anticancer drug, have been pharmacologically less
exploited than those of betulinic acid [29, 30]. However, a
preliminary pharmacokinetic analysis of betulin found good
bioavailability when administered intraperitoneally (i.p.) or
subcutaneously (s.c.); there was also no subchronic toxicity
in rats (injected i.p.) or dogs (injected s.c.) [9].

An ethnobotanical study previously identified Dipteryx
alata Vogel as a plant with anti-snake venom properties [31],
and Nazato et al. [32] subsequently confirmed this activity
for a hydroalcoholic extract of D. alata bark. Puebla et al.
[15] identified 18 compounds in D. alata, including betulin,
previously isolated by Coelho Kaplan et al. [14]. Subsequent
investigation showed that betulin attenuated the neurotox-
icity and myotoxicity of Crotalus durissus terrificus (South
American rattlesnake) and Bothrops jararacussu (jararacuçu)
snake venoms in vitro, as assessed by twitch-tension record-
ings (neurotoxicity) and light microscopy (myotoxicity) [33].

Bothrops jararacussu venom causes irreversible paralysis
in vitro [34] and myonecrosis at the bite site [35]. Based
on previous findings with D. alata and betulin in phrenic
nerve-diaphragm (PND) preparations in vitro [15, 32, 33],
we speculated whether betulin could also attenuate the
neuromuscular effects of snake venoms in a nerve-muscle
preparation, the rat external popliteal/sciatic nerve-tibialis
anterior muscle (EPSTA) preparation in situ, particularly
when compared to the efficacy of commercial bothropic
antivenom (CBA). Since the EPSTA is analyzed in situ
whilst the rat is kept anesthetized throughout the experiment
(120min), this preparation may provide additional insights
that are not immediately obtainable with PND preparations.
Previous investigations have shown that the nerves supplying
the EPSTA muscle are sensitive to a venom concentration of
40 𝜇g/mL [36, 37], which was also used here. In this study,
we therefore confirmed the effects of betulin in mouse PND
and examined the neuromuscular alterations (changes in
twitch-tension) and myotoxicity (assessed by creatine kinase
release) caused byB. jararacussu venom in rat EPSTA; we also
assessed the effect of betulin on the responses to venom in the
latter preparation.

2. Material and Methods

2.1. Betulin and Its Dispersion. The triterpenoid betulin
(Figure 1), found in plants such asD. alataVogel [15, 33], was
purchased from Sigma Chemical Co. (St. Louis, MO, USA)
and used throughout this study.

For in vitro experiments, betulin (200𝜇g/mL) was dis-
persed in a maximum of 15𝜇L of polyethylene glycol 400
(PEG 400) prior to addition to the organ bath. The final
concentration of PEG 400 (0.3%) in the organ bath did not

Table 1: Plants containing betulin.

Plant Reference
Allophylus longipes [6]
Betula species [7–9]
Caesalpinia decapetala [10]
Calluna vulgaris [11]
Desmodium caudatum [12]
Diospyros cuneata [13]
Dipteryx alata [14, 15]
Dolomiaea souliei [16]
Euphorbia lathyrus [17]
Euphorbia denticulata [18]
Euphorbia lunulata [19]
Ficus foveolata [20]
Garcinia livingstonei [21]
Holoptelea integrifolia [22]
Melodinus hemsleyanus [23]
Osmanthus fragrans [24]
Picriafel terrae [25]
Pseuderanthemum carruthersii var. atropurpureum [26]
Pyrus species [27]
Quercus variabilis [28]

H

HO

CH2OH

Figure 1: Chemical structure of betulin [15].

change the basal responses of the preparation [38, 39]. For
in vivo experiments, betulin (1–20mg) was added to PEG
400 (15–300 𝜇L). The dispersed betulin was placed in a glass
beaker and the final volume was adjusted to 1mL with sterile
saline followed by gentle stirring. The osmotic pressure of
each betulin solution was measured (in duplicate) using an
osmometer (Fiske Associates, Norwood, MA, USA) in order
to define the route of administration (intravenously (i.v.) or
i.p.) (Table 2). PEG is on the Food and Drug Administration’s
Generally-Recognized-As-Safe (GRAS) compound list for
internal consumption [38, 40–42].
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Table 2: Osmolality of injectable betulin solutions.

CBA Betulin
(mg)

PEG 400
(𝜇L)

Sterile saline
(final volume:

1mL)

Osmolality
(mOsmol/kg)

1mL — — — 421
— — 15 985 𝜇L 343
— — 45 955 𝜇L 421
— — 90 910 𝜇L 617
— — 135 865 𝜇L 802
— — 225 775 𝜇L 3148
— — 300 700 𝜇L 3143
— 1 15 ∼985 𝜇L 323
— 3 45 ∼955 𝜇L 524
— 6 90 ∼910𝜇L 547
— 9 135 ∼865 𝜇L 939
— 15 225 ∼775 𝜇L 3120
— 20 300 ∼700 𝜇L 3092
The osmolality values are the mean of duplicate determinations that varied
by ≤10%.

2.2. Venom and Antivenom. Bothrops jararacussu venomwas
collected manually from two adult specimens in the Serpen-
tarium of the Center for Nature Studies at UNIVAP. The
snakes were housed in open-air, concrete-walled pens and
maintained under Environmental license SMA 15.380/2012
(São Paulo state environmental agency); they were fed Swiss
white mice every two weeks. The venom was certified by Dr.
José Carlos Cogo (UNIVAP), lyophilized, and stored at−20∘C
until used. Commercial bothropic antivenom (lot 091259/C,
expiry date for human use: October 2011) produced by the
Instituto Butantan (São Paulo, SP, Brazil) against a pool of
Bothrops venoms (B. alternatus, B. jararaca, B. jararacussu,
B. moojeni, and B. neuwiedi) [43] was kindly donated by the
Escritório Regional de Saúde in Piracicaba, SP, Brazil.

2.3. Animals. Male Swiss whitemice (26–32 g) andmaleWis-
tar rats (300–400 g) were purchased fromAnilab (Animais de
Laboratório, Pauĺınia, SP, Brazil). The animals were housed
at 25 ± 3∘C on a 12 h light/dark cycle and had access to
food and water ad libitum. This project was approved by the
institutional Committee for Ethics in Animal Use of Vale
do Paraiba University (protocol number A013/CEUA/2011),
and the experiments were done within the ethical guidelines
established by the Brazilian Society for Laboratory Animal
Science (SBCAL).

2.4. Mouse PND Preparation. PND preparations [44] were
obtained from mice anesthetized with halothane (Cristália,
Itapira, SP, Brazil) and killed by exsanguination. The
diaphragm was removed and mounted under a tension of
5 g/cm in a 5mL organ bath containing aerated Tyrode
solution (control) of the following composition (mM): NaCl,
137; KCl, 2.7; CaCl

2
, 1.8; MgCl

2
, 0.49; NaH

2
PO
4
, 0.42;

NaHCO
3
, 11.9; and glucose, 11.1. After equilibration with

95% O
2
/5% CO

2
(v/v), the pH of this solution was 7.0.

The preparations were stimulated indirectly with supramax-
imal stimuli (4x threshold, 0.06Hz, 0.2ms) delivered from
a stimulator (model ESF-15D, Ribeirão Preto, SP, Brazil) to
the nerve by bipolar electrodes. Isometric twitch-tension was
recorded with a force-displacement transducer (cat. 7003,
Ugo Basile, Varese, Italy) coupled to a two-channel Gemini
flatbed physiograph device (cat. 7070, Ugo Basile) via a
basic preamplifier (cat. 7080, Ugo Basile). Changes in twitch-
tension were recorded as described by Farrapo et al. [45].
The preparations were allowed to stabilize for at least 20min
prior to application of the test agents (experiments described
below).

Control experiments were done in which PND prepara-
tions were incubated with Tyrode solution alone (𝑛 = 4)
while the treatment groups included incubation with Tyrode
solution containing betulin (200 𝜇g/mL; 𝑛 = 10), CBA
(8 𝜇L/mL; 𝑛 = 4), or B. jararacussu venom (40 𝜇g/mL; 𝑛 = 4).
The venom and betulin concentrations were chosen based on
previous work [33, 46], whereas the concentration of CBA
was calculated based on the manufacturer’s information that
1mL of antivenom neutralizes 5mg of reference Bothrops
jararaca venom. These same concentrations of betulin (𝑛 =
11) and CBA (𝑛 = 4) were used to test their neutralizing
capacity against venom (40𝜇g/mL). For this, venom and the
compound of interest were preincubated for 30min at room
temperature (∼25∘C) prior to screening for residual venom
activity (neuromuscular blockade and/or myotoxicity) in
PND preparations.

2.5. Rat EPSTA Preparation. This preparation was mounted
essentially as described elsewhere [36, 37, 47]. Briefly, male
Wistar rats were anesthetized with sodium pentobarbital
(40mg/kg, i.p.; Syntec do Brasil, Cotia, SP, Brazil) and addi-
tional doses were given as required during the experiment.
The trachea was cannulated with a plastic endotracheal tube
connected to a rodent ventilator (cat. 7025, Ugo Basile)
and artificial ventilation was initiated at a flow of 1.2mL/kg
and respiratory rate of 70 inflations per minute. The left
hind limb was immobilized and the popliteal/sciatic nerve
tendon for insertion of the tibialis anterior muscle was freed
and attached to a force-displacement transducer (cat. 7003,
Ugo Basile) coupled to the recording device used in the
PND experiments. The sciatic nerve in the popliteal space
was stimulated indirectly with supramaximal stimuli (4x
threshold, 0.5Hz, 0.2ms) delivered from a stimulator (model
ESF-15D) to producemaximal twitches of the tibialis anterior
muscle.The resting tension of themuscle was adjusted to 20 g
to give the greatest evoked twitch-tension. The preparation
was allowed to stabilize for at least 20min before initiating
the treatments. The experiments were run for 120min after
the addition of test agents.

Control experiments using this preparation included
the injection of saline (120 𝜇L, 𝑛 = 4) and PEG 400
intramuscularly (i.m.) in the left hind limb since saline
and PEG 400 were the vehicles for venom and betulin
administration, respectively. For experimental treatments,
rats were injected with (1) venom (3.6mg/kg, corresponding
to 1.08mg for a 300 g rat [36]) injected i.m. in 120 𝜇L of saline
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(𝑛 = 4), (2) CBA (1.8 𝜇L of CBA in 1mL; this volume of CBA
neutralized 9𝜇g of venom based on the neutralizing capacity
indicated in Section 2.4); the i.v. infusion of antivenom (via
a penile vein) was initiated 15min after venom injection and
was infused slowly over 30min (𝑛 = 4), and (3) betulin (1mL
of a 20mg/mL solution, referred to hereafter simply as 20mg)
administered i.p. 15min after venom injection (𝑛 = 4).

2.6. Myotoxicity Assessed by Creatine Kinase (CK) Release.
Since the EPSTA preparation did not lend itself to the simul-
taneous collection of blood samples for CK quantification, we
undertook another series of experiments to assess the ability
of CBA and betulin to attenuate venom-induced muscle
damage (CK release). For this, four additional groups of rats
(4 rats/group) were treated using protocols similar to those
of the EPSTA experiments, except that the route of CBA
administration was different (i.p. instead of i.v.), namely, (1)
saline (negative control), (2) venom alone (positive control),
(3) venom+betulin i.p. 15min later, and (4) venom+CBA i.p.
15min later. Since our aim in these experiments was to com-
pare the efficacies of CBA and betulin in reducing venom-
induced CK release and since betulin was already being given
i.p., we chose to also inject CBA i.p. rather than i.v. in order
to facilitate comparison with the protection by betulin, even
though in clinical practice CBA is not generally administered
i.p. After 2 h, blood samples (3–5mL) were collected from
anesthetized rats by cardiac puncture into heparinized tubes,
centrifuged to obtain plasma, and stored for a maximum of
2 h at 4∘C until CK quantification. CK activity (expressed
in units/L, U/L) was assayed spectrophotometrically using
a commercial kit (CK-NAC BIRG ref. 11.002.00, Biotécnica,
Varginha, MG, Brazil). The reactions were run at 37∘C and
changes in absorbance at 340 nm were monitored with a
Shimadzu multispec-1501 spectrophotometer. One unit of
activity corresponded to the amount of enzyme that catalyzed
1 𝜇mol of substrate at 25∘C.

2.7. Statistical Analysis. Each protocol of the pharmacological
assays was repeated at least four times and the results are
shown as the mean ± SEM. The number of experiments (𝑛)
is indicated in the figure legends. All statistical comparisons
(pharmacological assays and CK determinations) were done
using Student’s 𝑡-test with the confidence level set at 5% (𝛼 =
0.05).

3. Results

3.1. Betulin Solutions. Table 2 shows the osmolality of PEG
400, the vehicle for betulin dispersion, and betulin solutions.
For intravenous injection, 1–3mg of betulin dispersed in 15–
45 𝜇L of PEG 400 would appear to be good combinations
since CBA alone had an osmolality of 421mOsmol/kg.
However, since for intravenous injection via a penile vein
multiple administrations would be necessary to achieve a
total amount of 20mg of betulin, the intraperitoneal route of
administrationwas selected for use in the in situ experiments;
this route allowed a single injection of the total amount of
betulin required (20mg in 1mL).

3.2. Contractile Responses in PND Preparations. Figure 2
shows the contractile responses of mouse PND preparations
incubated with Tyrode solution (𝑛 = 4), CBA (8 𝜇L/mL,
𝑛 = 4), and betulin (200𝜇g/mL, 𝑛 = 10) (panel A). Betulin
alone caused marked facilitation (80% increase in twitch-
tension after 10min) compared to Tyrode solution and CBA,
followed by a progressive decline until 40min and subsequent
stabilization of the tension at a level slightly but significantly
above that of saline controls. Panel B shows the response
to venom in the absence and presence of CBA and betulin.
Venom alone (40𝜇g/mL) caused progressive, irreversible
neuromuscular blockade that was virtually abolished by
preincubating the venom with CBA. The preincubation of
venom with betulin also markedly attenuated the venom-
induced blockade, although it was difficult to compare the
responses between the two groups because of the strong
facilitation caused by betulin that may have masked the
responses to venom (the curves for blockade by venom and
venom + CBA were virtually parallel, with the latter simply
being displaced in relation to the former because of the
betulin-induced facilitation).

3.3. Contractile Responses in EPSTAPreparations. TheEPSTA
preparation has an advantage over the PND preparation in
that it is “mounted” in situ, with the anesthetized animal
being kept alive throughout the experiment. This allows
the administration of substances locally (i.m. injection),
parenterally (i.p. injection), systemically (i.v. injection), or via
a combination of these routes; these possibilities do not exist
for PND preparations. However, use of the EPSTA prepa-
ration requires rigorous control of all variables, including
the solutions to be injected, so as to avoid false positive or
negative results. Figure 3 shows the twitch-tension records
for indirectly stimulated EPSTA preparations treated with
saline, PEG 400, and CBA, as described in Section 2.5;
muscle contractility in the saline-, PEG400- andCBA-treated
preparations was unaltered at the end of the experiments,
with twitch-tensions corresponding to 102.7 ± 3.9% (𝑛 = 4),
98% (𝑛 = 1; only one experiment was done as screening), and
100 ± 1.6% (𝑛 = 4) of basal values (time zero), respectively.
Therewere no significant changes in the contractile responses
at the end of the incubations with each substance. Thus, any
changes seen in subsequent treatmentswith other agentswere
not attributable to the effects of saline, PEG 400, or CBA.

Figure 4 shows the contractile responses of EPSTA prepa-
rations to venom (3.6mg/kg, 𝑛 = 4) injected i.m. in
the left hind limb. There was progressive blockade from
10min to 60min after venom, when the contractile responses
stabilized, followed by slight reversal. The maximal blockade
at 60min was 29.5 ± 1.6%. At 120min, the contractile
responses were 73 ± 1.6% of the saline (control) values,
that is, significantly below the saline responses. In these
protocols, CBA was administered i.v. because this is the
route normally used for antivenom injection in the clinical
setting and we wished to assess whether CBA given by this
route could attenuate the venom-induced neuromuscular
blockade. As shown here, CBA administered i.v. 15min after
venom injection significantly attenuated the venom-induced
blockade from 50min onwards. After 120min, the contractile
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Figure 2: Contractile responses of mouse indirectly stimulated PND preparations incubated with Tyrode solution, CBA, and betulin (a) and
B. jararacussu venom alone, venom + betulin, and venom + CBA (b). Note the facilitatory effect of betulin (alone and in the presence of
venom). The points represent the mean ± SEM of the number of experiments (𝑛) indicated in each panel. Note that in several cases the error
bars are smaller than the symbol. ∗𝑝 < 0.05 compared to the Tyrode control (a) or venom alone (b). Note that, from 70min onwards, the
asterisks refer to the venom + betulin and venom + CBA curves.
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Figure 3: Contractile responses of rat indirectly stimulated EPSTA preparations after treatment with saline (a), CBA (b), and PEG 400 (c).
Saline andPEG400were injected i.m. in the left hind limb,whereasCBAwas injected i.v.The recordings are representative of four experiments
for the saline andCBA treatments; only one experiment was donewith PEG 400 since we have shown elsewhere that this reagent is compatible
with biological preparations [38]. Substances were injected at the arrow. Tension scale bar = 20 g/cm.

responses to venom + CBA were 92.2 ± 0.4% of the control
responses and significantly greater (𝑝 < 0.05) than the
responses to venom alone (Figure 4(a)). Betulin alone (20mg
in 1mL of sterile saline) administered i.p. caused progressive
muscle facilitation that reached 18.6 ± 8.9% (𝑛 = 4) at
120min but was not significantly greater than that seen with
saline alone. Betulin injected i.p. 15min after venom signifi-
cantly attenuated the venom-induced blockade from 40min
onwards so that, by 120min after venom, the contractile

responses were 98.4 ± 4.4% (𝑛 = 4) of control (saline)
preparations (there was no significant difference between the
two treatments at this point). Based on these findings alone,
it is unclear whether betulin interacted directly with the
venom to neutralize the venom-induced blockade or whether
the attenuation of blockade was simply a consequence of
the facilitatory effect of betulin on the muscle that masked
the venom-induced blockade. However, the finding that the
reversal of blockade seen with betulin was similar to that seen
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Figure 4: Contractile responses of indirectly stimulated EPSTApreparations treatedwith saline (i.m.), venom (3.6mg/kg, i.m., in 120 𝜇L), and
venom + CBA (1.8 𝜇L in 1mL, i.v.) (a) or betulin (20mg in 1mL, i.p.) and venom + betulin (b). Note the parallelism between the responses to
betulin alone and venom+ betulin.The points represent themean ± SEMof the number of experiments (𝑛) indicated in each panel. ∗𝑝 < 0.05
compared to saline and #𝑝 < 0.05 compared to venom alone. CBA and betulin were administered at the arrows 15min after the venom.

with CBA (no significant difference between them), which
did not cause facilitation, strengthens the hypothesis of a
direct interaction between betulin and venom components.

3.4. Myotoxicity Assessed by CK Release. The myotoxicity
of the venom was assessed by quantifying the release of
CK (Figure 5). Venom alone significantly increased CK
release compared to treatment with saline. This increase
was attenuated by CBA and, to a greater extent, by betulin
administered 15min after venom injection. There was no
significant difference between the responses to venom +
betulin and venom + CBA.

4. Discussion

Betulin, an ubiquitous triterpenoid that is found in numerous
bushes and trees and that is easily isolated from the bark
of birch trees, has more limited medicinal uses than its
derivative betulinic acid [29]. To date, betulin has been shown
to have anti-inflammatory [29], antiproliferative/antitumor
[29, 48], and anti-snake venom [33] activities, the latter
against the venoms of B. jararacussu and C. d. terrificus, two
of the medically most important snake species in Brazil.

A major difficulty with betulin and other triterpenes
is their poor solubility in polar and nonpolar solvents,
which makes the use of solubilizing agents mandatory. Such
solvents must be able to solubilize the drug at the desired
concentration [49]. For this study, PEG 400 was used to
disperse betulin for the experiments in vitro and in situ. We
have previously shown that PEG400 is compatible with use in
vitro since a volume of 15𝜇L in an organ bath volume of 5mL
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Figure 5: Plasma CK activity 120min after treatment with saline
(negative control, i.m.), venom (positive control, i.m.), venom (i.m.)
+ CBA (i.p.), and venom (i.m.) + betulin (i.p.). The columns
represent the mean ± SEM of the number of experiments (𝑛)
indicated in the figure. ∗𝑝 < 0.05 compared to saline and #𝑝 < 0.05

compared to venom alone.

had no effect on the basal responses of PND preparations
[38, 39].

The osmolality of normal serum ranges from 285 to
290mOsmol/kg (or mOsmol/L) and is maintained by reg-
ulating renal water excretion, which in turn is modulated
by the antidiuretic hormone vasopressin and development
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of the sensation of thirst to prevent excessive hypertonicity
[50]. The osmolality of peripherally infused solutions was
defined by the Infusion Nursing Society as 500mOsm/L,
the upper limit of peripheral vein tolerance, based on a
study by Gazitua et al. [51]. However, Payne-James and
Khawaja [52] suggested that osmolality should be kept below
1000mOsmol/kg, although values of up to 1700mOsmol/kg
may be used in parenteral nutrition in conjunction with fine-
bore polyurethane catheters [53]. Based on these data and
as explained in Section 2.5, a single dose of betulin (20mg)
was used for the experiments in situ; since this solution
had a higher osmotic pressure (Table 2) than blood, it was
administered i.p. rather than i.v.

Ferraz et al. [33] considered betulin to be the best phy-
tochemical among triterpenoids isolated from D. alata [15]
based on its activity against the neurotoxicity andmyotoxicity
of B. jararacussu and C. d. terrificus venoms. As shown
here, in preincubation protocols, betulin protected against
the neuromuscular blockade caused by B. jararacussu venom
to an extent similar to that seen with CBA after a 120min
incubation. The protective effect of betulin may be related to
its intense facilitatory action that could increase the safety
margin of the neuromuscular junction. Indeed, we have
generally observed that plant products with a facilitatory
action provide the best protection against neuromuscular
damage caused by aggressive agents such as snake venoms
[33, 54–56].

Antivenom therapy is the recognized standard treatment
for envenoming following snakebite but may result in side
effects such as anaphylactic shock, pyrogenic reaction, and
serum sickness. The inefficacy of antivenoms against the
local effects (severe pain, edema, hemorrhage, and necrosis)
of envenoming may result in permanent venom-induced
scarring and deformity as a consequence of extensive tissue
damage [57, 58]. In this context, the efficacy of betulin
observed in isolated nerve-muscle preparations [33] and
confirmed here (Figure 2(b)) was similar to that of CBA.
This finding suggested the need to assess this efficacy in a
preparation in situ.

The rat EPSTA preparation provides a useful means of
evaluating substances in real time since the anesthetized
animal is kept alive during the experiment. Interventions
in the popliteal nerve culminate in sciatic nerve responses.
The popliteal fossa is where the sciatic nerve splits into its
two major components, the tibial and common peroneal
nerves that travel together within the same nerve sheath [59].
The response of the EPSTA preparation to B. jararacussu
venom corroborated the paralysis first reported for this
venom by Rodrigues-Simioni et al. [34], but at a different
level. Inmouse PNDpreparations, the blockadewas complete
and irreversible whereas, in rat EPSTA preparations, the
blockadewas partial (∼30%) but sustained until the end of the
experiment.The results obtainedwith the EPSTApreparation
provide experimental evidence of neuromuscular blockade
by B. jararacussu venom in vivo after local i.m. injection (the
most common route of venom inoculation in Bothrops bites).
The discrepancy between the extent of blockade seen in PND
and that seen in EPSTA preparations could potentially reflect
differences between the test species (mouse versus rat) and

muscles used but is much more likely to be related to (1)
the mode of venom application; that is, PND preparations
were bathed in a solution of venom so that the whole tissue
was in contact with venom whereas in EPSTA the muscle
was injected locally with venom so that only part of the
preparation was in contact with venom, and (2) the amount
of venom used, which was much greater in EPSTA than in
PND, for example, 1,224𝜇g (1.224mg) injected in the EPSTA
muscle of a 340 g rat compared to a total of 200𝜇g per PND
preparation.The relative contribution of each of these factors
to the responses observed here remains to be determined.
In Bothrops snakebites, the local effects are progressive even
after venom absorption [60]. This observation suggests that
the neuromuscular blockade seen in EPSTA is not purely
a myonecrotic event. In agreement with this conclusion,
bothropstoxin-I, the main myotoxin from B. jararacussu
venom, is known to act presynaptically [61].

Comparison of the effects of CBA and betulin indicated
that the latter had a faster onset (10min earlier) against
venom-induced neuromuscular blockade than CBA, prob-
ably because of the large amount of betulin (20mg) that
was administered as a single injection i.p. compared to CBA
which was injected slowly i.v. Overall, however, there was no
significant difference between the recovery curves for the two
treatments; that is, either treatment was as good as the other.

Myonecrosis at the bite site is an important local effect
in Bothrops snakebites, primarily through the action of
phospholipases 𝐴

2
[62] and snake venom metalloproteases

(SVMPs) [63]. Histological analysis and CK determination
are complementary parameters for assessing venom-induced
tissue damage. Since Ferraz et al. [33] have already demon-
strated the high potency of betulin against B. jararacussu and
C. d. terrificus venomsusing lightmicroscopy, in this studywe
assessedmyotoxicity based only onCK release as an indicator
of cell damage [37]. The enzyme activity after 2 h (an interval
sufficient for maximal CK release by B. jararacussu venom
[64]) increased from 66.6 ± 5.0U/L (saline control, 𝑛 = 4)
to 1747 ± 159U/L (𝑛 = 4, 𝑝 < 0.05).

When rats were treated with CBA administered i.p.,
the venom myotoxicity was attenuated to 1116 ± 164U/L,
whereas betulin reduced this myotoxicity to 823 ± 136U/L,
significantly less than venom alone, but still greater than the
saline control. Statistical analysis showed the superiority of
betulin compared to CBA. An important factor in the lower
neutralization of CK release by CBA compared to betulin
in these experiments may have been the route (i.p.) of CBA
administration. In a comparative study on the influence of
the route of CBA administration (i.p. versus i.m.), Agostini
Utescher et al. [65] concluded that these two routes were
much less efficacious than i.v. injection, in agreementwith the
official recommendation for use of the latter route in clinical
envenomation [66]. Although not directly comparable, the
findingswith the two protocols tested here also point to better
neutralization with i.v. administration since the attenuation
of neuromuscular blockade by CBA given i.v. (Figure 4(a))
was better than that of myotoxicity (CK release) by CBA
given i.m. (Figure 5); this conclusion generally agrees with i.v.
administration being the clinically preferred route. Whereas
antivenomneutralizes venomvia antigen-antibody reactions,
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the mechanism by which betulin neutralizes B. jararacussu
venom is unknown. Of various mechanisms postulated for
plant-snake venom interactions, protein precipitation [67]
appears unlikely since betulin has no toxic effects [9].

5. Conclusion

Based on the results described above, two major conclusions
can be drawn. The first and more specific conclusion is that
betulin injected i.p. can attenuate the neuromuscular effects
of B. jararacussu venom by mechanisms that remain to be
determined; this neutralizing capacity could be potentially
useful for treating Bothrops bites in a veterinary setting and
possibly also in humans, as a complementary measure to
the use of antivenom. The second, more general conclusion
is that the EPSTA preparation can be useful for studying
the neuromuscular effects of Bothrops venoms and their
neutralization by plant products. The principal advantage of
this preparation over more commonly used nerve-muscle
preparations such as the mouse PND is the maintenance of
the normal physiological mechanisms of the muscle (because
the preparation is in situ) that may have a role in modulating
the responses to venom, thus providing a better simulation
of what occurs following envenomation. This more realistic
environment may allow better assessment of the efficacy of
potential candidate molecules in neutralizing venom activity.
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[60] L. S. Queiróz, M. J. Marques, and H. S. Neto, “Acute local nerve
lesions induced by Bothrops jararacussu snake venom,” Toxicon,
vol. 40, no. 10, pp. 1483–1486, 2002.

[61] Y. Oshima-Franco, G. B. Leite, C. A. Dal Belo et al., “The presy-
naptic activity of bothropstoxin-I, a myotoxin from Bothrops
jararacussu snake venom,” Basic & Clinical Pharmacology &
Toxicology, vol. 95, no. 4, pp. 175–182, 2004.

[62] J. M. Gutiérrez and C. L. Ownby, “Skeletal muscle degeneration
induced by venom phospholipases A

2
: insights into the mecha-

nisms of local and systemic myotoxicity,” Toxicon, vol. 42, no. 8,
pp. 915–931, 2003.

[63] T. Escalante, A. Rucavado, J. W. Fox, and J. M. Gutiérrez,
“Key events in microvascular damage induced by snake venom
hemorrhagic metalloproteinases,” Journal of Proteomics, vol. 74,
no. 9, pp. 1781–1794, 2011.

[64] P. A. Melo and G. Suarez-Kurtz, “Release of sarcoplasmic
enzymes from skeletal muscle by Bothrops jararacussu venom:
antagonism by heparin and by the serum of South American
marsupials,” Toxicon, vol. 26, no. 1, pp. 87–95, 1988.

[65] C. L. Agostini Utescher, S. L. P. Vieira, S. Fensterseifer, L. A.
Ribeiro, and M. T. Jorge, “Avaliação da eficácia do antiveneno
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