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Veronica subsection Pentasepalae is a diploid–polyploid complex of c. 20 species distributed in Eurasia and North
Africa, in which species boundaries are difficult to determine. Here, we present the first comprehensive phyloge-
netic analysis of V. subsection Pentasepalae based on nucleotide sequences [internal transcribed spacer (ITS) and
the plastid trnH-psbA and ycf6-psbM spacers] combined with ploidy estimations. Our results support the
monophyly of the subsection. Five well-supported clades are recovered in the ITS sequence analyses, corresponding
to broad geographical areas. The causes of the extensive incongruence found between the ITS and plastid DNA
datasets, namely incomplete lineage sorting and/or hybridization and polyploidization, are discussed. Most of the
diploids traditionally recognized based on morphological characters and one tetraploid are each recovered as
monophyletic by the ITS sequence analyses. The Balkan species V. kindlii is resurrected. DNA ploidy level for
V. teucrioides is reported here for the first time (2x). Diploid populations have been found for V. orbiculata, which
was previously thought to be only tetraploid. Past contact in the amphi-Adriatic area between V. orsiniana and
V. orbiculata is suggested. Finally, molecular analyses show that diploid V. jacquinii and diploid V. orbiculata are
unrelated. This study contributes to our understanding of the evolutionary history of polyploid complexes,
especially those in southern Europe, and highlights the importance of using multiple lines of evidence to
investigate species boundaries in such actively diversifying groups. © 2015 The Linnean Society of London,
Botanical Journal of the Linnean Society, 2015, 179, 670–692.

ADDITIONAL KEYWORDS: hybridization – incomplete lineage sorting – ITS – phylogenetic analysis –
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INTRODUCTION

Veronica subgenus Pentasepalae (Benth.) M.M.Mart.
Ort., Albach & M.A.Fisch. is the second largest subge-
nus of Veronica L. (Plantaginaceae sensu APG III,
2009), comprising c. 70–75 species (Albach et al., 2008)
of perennial herbs distributed throughout Eurasia and
northern Africa. Based on the phylogenetic analysis of
internal transcribed spacer (ITS) and plastid DNA
sequence data this subgenus is monophyletic (Albach

et al., 2004a,b). In the most recent classification of
Veronica L. (Albach et al., 2008) four subsections were
recognized in this subgenus, in accordance with the
molecular, morphological and karyological data avail-
able at that time [V. subsections Armeno-Persicae
Stroh, Orientales (Wulff) Stroh, Petraea Benth. and
Pentasepalae Benth.], but in this treatment many
species (13%) were left unclassified. The first three
subsections mentioned are distributed in south-
western Asia, with some species reaching south-
eastern Europe (e.g. V. thymifolia Sibth. & Sm.
distributed in southern Greece). The last, V. subsection*Corresponding author. E-mail: rojasabm@usal.es
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Pentasepalae, is the main focus of this study. It
includes c. 20–25 taxa, depending on authors, that
grow in meadows and stony places from lowlands to
high alpine zones. Most of them are distributed in
Europe, with the Balkan Peninsula being home to the
highest number of species, although there are also
representatives in North Africa and Asia (Turkey,
Caucasus, and Siberia). The species included in V.
subsection Pentasepalae are characterized by a penta-
partite calyx (rarely tetrapartite) with the fifth sepal
significantly smaller. Plants are usually woody at the
base, with prostrate to erect stems, sometimes caespi-
tose and bearing a vegetative apical shoot. The leaves
are sessile, sometimes short-petiolate, entire to pinna-
tisect. The inflorescences are axillary and racemose.
The four-lobed corolla is slightly zygomorphic, violet,
pale violet or dark blue, rarely whitish or pink. The
capsules are laterally compressed, widely obovate to
widely ovate, suborbicular or elliptical in outline and
usually emarginate. The seeds are flattened with a
reticulate–verrucate coat (Muñoz-Centeno et al.,
2006). The base chromosome number is x = 8 (Albach
et al., 2008).

The selection of morphological characters support-
ing classifications has always been controversial in
the subgenus and therefore different subsections or
groups have been described within it (e.g. Riek, 1935;
Elenevsky, 1977). Additionally, species boundaries in
V. subsection Pentasepalae are difficult to establish in
some cases, due to overlapping character states and
the existence of intraspecific variation in ploidy. As a
result, several taxonomic treatments have been pro-
posed in partial monographs and floras (e.g. Watzl,
1910; Stroh, 1942; Borissova, 1955; Hartl, 1966;
Walters & Webb, 1972; Elenevsky, 1977; Fischer, 1982;
Martínez-Ortega, Sánchez-Agudo & Rico, 2009), which
differ substantially regarding taxonomic concepts.
Moreover, taxon sampling for previous molecular
phylogenetic studies has been limited (Albach,
Martínez-Ortega & Chase, 2004c; Albach et al., 2004b;
Martínez-Ortega et al., 2004) and the uncertainty
regarding the phylogenetic relationships among
species remains high.

According to previous authors (Lehmann, 1937;
Scheerer, 1949) hybridization is possible between
certain taxa of the group and there might be complex
relationships among polyploids and their diploid rela-
tives, but this has never been experimentally tested. In
contrast to the polyploids, which are often widespread
in Eurasia, the diploids belonging to V. subsection
Pentasepalae are mainly distributed in southern
Europe and North Africa, coinciding with areas that
represent putative glacial refugia in the Mediterra-
nean basin (Hewitt, 2000; Médail & Diadema, 2009):
Veronica rosea Desf. in North Africa, the ‘V. tenuifolia
complex’ (V. fontqueri Pau; V. javalambrensis Pau,

Fig. 1J; V. tenuifolia Asso) in the Iberian Peninsula,
V. orsiniana Ten. (Fig. 1E) in the Iberian Peninsula,
south-eastern France, Italy and the Balkans, and
V. crinita Kit. (Fig. 1A, B), V. rhodopea (Velen.) Degen.
ex Stoj. & Stef. (Fig. 1C), V. teucrioides Boiss & Heldr.
and V. turrilliana Stoj. & Stef. (Fig. 1D) in the Balkan
Peninsula. The exceptions are V. prostrata L. (Fig. 1F,
G) reaching northern Europe and Siberia (Borissova,
1955; Kosachev, 2003) and V. krylovii Schischk., a
Siberian endemic. Many of these species are endemic
to geographically restricted areas. Importantly, Medi-
terranean orophytes such as V. rhodopea or V. teucri-
oides (also the tetraploid V. aragonensis Stroh) are rare
with narrow distributions that face a high risk of
extinction with climate warming (Thuiller et al., 2005).
However, before these species can be protected effec-
tively, their species boundaries need to be clarified.

Among the polyploids, the tetraploid V. satureiifolia
Poit. & Turp. is widespread throughout north-western
Europe, from the Alps to the Pyrenees, whereas the
tetraploid V. aragonensis (Fig. 1K) is an orophyte
endemic to the Iberian Peninsula that grows on scree
slopes. It is well represented in the Pyrenees and there
is also a disjunct population in the southern Iberian
mountains (Sierra de la Sagra). The tetraploid
V. orbiculata A.Kern is endemic to the western part of
the Balkan Peninsula (southern Croatia and Bosnia
and Herzegovina). Individuals of V. jacquinii Baumg.
(Fig. 1H) are highly variable regarding morphology
and ploidy (2x, 4x, 6x, 8x, 10x; Albach et al., 2008).
They are widespread in eastern Europe, from the
Balkans to the Caucasus and from Slovakia to Greece.
Several infraspecific taxa have been described under
V. jacquinii based on morphological characters (Watzl,
1910; Ghisa, 1960; Peev, 1995) and on cytotypes (Peev,
1972). In spite of their variability, they are character-
ized by pinnatifid to pinnatisect leaves and they
are predominantly hexaploid (see supplementary
data associated with Albach et al., 2008; available
at http://www.researchgate.net/publication/258769259
_cariologia2013). Veronica dentata F.W.Schmidt and
V. austriaca L. s.s. are both hexaploid and are distrib-
uted in central and eastern Europe [some authors have
included V. dentata or V. jacquinii within the variation
of V. austriaca (e.g. Walters & Webb, 1972; Fischer,
2011)]. Morphologically intermediate populations
between V. dentata, V. jacquinii and V. orbiculata are
found in nature and botanists have interpreted them
either as the result of hybridization between species
(Lehmann, 1937; Scheerer, 1949) or as transitional
forms caused by phenotypic plasticity in one large,
variable species (Watzl, 1910). Veronica teucrium L.
(Fig. 1I) is octoploid and is widely distributed through-
out Europe and Asia, north of the Pyrenees to Siberia
(Borissova, 1955). In the Iberian Peninsula the
octoploid level is represented by V. sennenii (Pau)
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Figure 1. Morphological diversity in Veronica subsection Pentasepalae. Species are denoted by the names finally accepted
by us. Herbarium number or locality is indicated in parentheses. A, V. crinita (SALA 149289; detail of the inflorescence
in fruit); B, V. crinita (SALA 149290; detail of the leaf indument – abaxial face); C, V. rhodopea (SALA 149321); D,
V. turrilliana (SALA 149334); E, V. orsiniana (SALA 155872); F, V. prostrata (SALA 149311); G, V. prostrata (SALA
149319; detail of the leaf indument – adaxial face); H, V. austriaca subsp. jacquinii (SALA 149366); I, V. teucrium (SALA
149414); J, V. tenuifolia subsp. javalambrensis (Mt. Torozos, Valladolid, Spain); K, V. aragonensis (SALA 121540).
Photographs: A, F, G, H and I, B. M. Rojas-Andrés; B, C, D, E and K, M. M. Martínez-Ortega; J, S. Andrés-Sánchez.
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M.M.Mart.Ort. & E.Rico, which is endemic to a small
area in the northern Iberian Peninsula.

Despite molecular phylogenetic studies on Veronica
(e.g. Albach et al., 2004b, c; Meudt et al., 2015), a
comprehensive molecular phylogenetic study of V.
subsection Pentasepalae is still lacking. Two recent
studies of the subsection used amplified fragment
length polymorphism (AFLP) and morphometric data
to delimit species boundaries (Martínez-Ortega et al.,
2004; Andrés-Sánchez et al., 2009), but included only a
small percentage of the species from V. subsection
Pentasepalae and therefore have not fully tested its
monophyly.

Here, we have investigated the phylogenetic rela-
tionships among species of the diploid–polyploid
complex V. subsection Pentasepalae. We sequenced the
internal transcribed spacer (ITS) region of nuclear
ribosomal DNA (nrDNA) and the trnH-psbA and ycf6-
psbM spacers of maternally inherited plastid DNA. To
test the monophyly of the subsection and embed our
results in a wider phylogenetic framework, we comple-
mented the newly generated sequences with previ-
ously published ITS sequences of the species belonging
to the other three subsections of V. subgenus Pentase-
palae. The aims of this study are to: (1) investigate the
phylogenetic position of V. subsection Pentasepalae in
V. subgenus Pentasepalae and test the monophyly of
the subsection; and (2) reconstruct the evolutionary
patterns of V. subsection Pentasepalae and elucidate
the phylogenetic relationships among all species cur-
rently included in the subsection to provide a taxo-
nomic framework for further investigations.

MATERIAL AND METHODS
PLANT MATERIAL

Sampling was taxonomically comprehensive and
included all widely accepted species, subspecies, vari-
eties and forms, collected from the type localities
whenever possible. Sampling was also geographically
comprehensive, covering the whole geographical dis-
tribution of the subsection (Fig. 2) based on a revision
of specimen locality data from 63 European herbaria.
Among the morphologically intermediate populations,
two accessions identified as ‘V. jacquinii-orbiculata’
were included. For samples of V. subsection Pentase-
palae, leaf material was collected in the field and
immediately stored in silica gel for flow cytometric
analyses and DNA sequencing. DNA extractions for
V. krylovii were made from herbarium specimens
(Table A1). Plants were identified following the tax-
onomy of Borissova (1955), Walters & Webb (1972),
Fischer (1991, 2011), Peev (1995) and Martínez-
Ortega et al. (2009). As a unique taxonomic treatment
was not followed, basionyms were used to name the
taxa (Supporting Information Table S1). Exceptions

were V. rhodopea and V. sennenii because in those
cases the corresponding basionyms (V. surculosa var.
rhodopea Velen. and V. prostrata var. sennenii Pau)
might be misleading. The names finally accepted in the
nomenclatural revision by Rojas-Andrés, Rico &
Martínez-Ortega (in press) are indicated in parenthe-
ses (when they are different from the basionyms) in
Figure 3 and they are preferentially used along the
discussion section.

The ITS region (55 individuals) and two plastid
DNA regions (49 individuals) were analysed for 18
(100%) diploid and polyploid species and subspecies of
V. subsection Pentasepalae. To assess the monophyly
of the subsection and the placement of the members
in V. subgenus Pentasepalae, 19 species (c. 36%) (23
individuals) from the remaining three subsections
recognized by Albach et al. (2008) were included.

Species (one individual of each) belonging to V.
subgenus Pocilla (Dummort) M.M.Mart.Ort., Albach
& M.A.Fisch. (V. polita Fr.) and V. subgenus Chamae-
drys W.D.J.Koch (V. arvensis L. and V. chamaedrys L.)
were used as outgroups for the phylogenetic analysis
of dataset 1 (see below), based on previous analyses
(e.g. Albach et al., 2004b, c; Muñoz-Centeno et al.,
2006). One individual of V. armena Boiss. & A.Huet
from V. subsection Armeno-Persicae was additionally
used as an outgroup with V. polita and V. arvensis for
the analyses performed with dataset 2 (see below).

Eighty-one ITS sequences (of which 50 were newly
generated here), 52 trnH-psbA sequences and 52 ycf6-
psbM sequences (all newly generated here) were
included in the analyses. Voucher information, the
source of material and GenBank accession numbers
are given in Table A1.

FLOW CYTOMETRY

Ploidies were estimated by flow cytometry for 36 of the
sampled populations of V. subsection Pentasepalae
(Table A1). Three individuals from each sampled popu-
lation were measured separately, although only one of
them was used for the phylogenetic analyses (except
for the population of V. orbiculata var. hercegovinica K.
Malý, for which two individuals of different ploidies
were used for sequencing; Table A1). For nine popula-
tions (Table A1), ploidies based on direct chromosome
counts were available from previous studies
(Martínez-Ortega et al., 2004; Albach et al., 2008). In
these cases chromosome counts were made on indi-
viduals from the same populations used in the phylo-
genetic analyses and were therefore directly used here.

For the flow cytometry measurements, a nuclear
suspension was prepared following the protocol of
Galbraith et al. (1983). Given the difficulty of using
fresh material of individuals sampled in remote loca-
tions we used silica-gel-dried leaves for our flow cyto-
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metric measurements as has been done previously for
Veronica by Meudt et al. (2015). Woody plant buffer
(WPB; Loureiro et al., 2007) was used with slight
modifications. For propidium iodide (PI) staining,
1 mL of the nuclear suspension, prepared as above,
was filtered through a 48-μm nylon gauze, mixed with
RNase (Sigma) to a final concentration of 0.15 mg mL−1

and digested at 37 °C for 30 min. A total of 450 μL of
the nuclear suspension was then mixed with 2 mL of
the PI staining solution (60 μg mL−1 PI in doubled
distilled water) and measured after at least 10 min.
Solanum pseudocapsicum L. (2C = 2.589 pg; Temsch,
Greilhuber & Krisai, 2010), Zea mays L. ‘CE-777’
(2C = 5.43 pg; Lysak & Doležel, 1998), Pisum sativum
L. ‘Ctirad’ (2C = 9.09 pg; Doležel et al., 1998) and
Pisum sativum L. ‘Kleine Rheinländerin’ (2C =
8.84 pg; Greilhuber & Ebert, 1994) were used as
internal standards depending on the C-value and

standard availability. For each individual, one run of
5000 counts was made on a CyFlow SL system (Partec
GmbH) equipped with a solid state laser featuring blue
excitation at 488 nm. For four samples (Table A1),
however, it was impossible to obtain flow cytometry
measurements suitable for ploidy estimation
(CV ≤ 10%; Suda & Trávnícek, 2006). This was prob-
ably either because the material has been stored in
silica gel for a long time (more than 4 years) or because
the available material was from herbarium vouchers.
Thus, we assume the diploid level for the populations
of V. krylovii used here based on previous chromosome
counts (Rostovtseva, 1977) and on a flow cytometry
measurement obtained for a sample not included
in the phylogenetic analyses (Russia, Republic of
Altai, Chike-Taman-Pass, Albach 1275, OLD). The
ploidy of V. crinia forma bosniaca Fiala remains unde-
termined.

Figure 2. Map of the Veronica subsection Pentasepalae samples analysed in this study numbered according to Table A1.
Basionyms are used to name the species, subspecies and varieties (except for V. sennenii and V. rhodopea). No. 5 corresponds
to V. crinita forma bosniaca, No. 6 to V. thracica, No. 25 to V. austriaca var. emarginata, and No. 26 and 27 to V. orbiculata
var. hercegovinica. A, main study area; B, detail of the studied area corresponding to Bosnia and Herzegovina, Montenegro
and southern Croatia; C, overview of the study area showing the provenance of the samples of V. krylovii.
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Figure 3. See caption on next page.
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DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

Total genomic DNA was extracted from c. 20–30 mg
silica-gel-dried material following the CTAB protocol
(Doyle & Doyle, 1987) with slight modifications. The
quality of the extracted DNA was checked on 1%
TAE-agarose gels and the amount of DNA was esti-
mated using a spectrophotometer (T60 UV/VIS, PG
Instruments) at 260 nm. DNA extractions are depos-
ited at the Biobanco de ADN Vegetal (University of
Salamanca, Spain).

The ITS region was amplified using the LEU1
forward (Vargas, Baldwin & Constance, 1998) and
ITS4 reverse (White et al., 1990) primers and includes
ITS1, 5.8S rDNA and ITS2. For this study 12 plastid
regions were tested (matK, matK-psbA, ndhF-rpl32,
rpl16, rpoB-trnC, rps16, 3′rps16-5′trnKUUU, trnC-ycf6,
trnH-psbA, trnQ-rps16, trnT-trnL, ycf6-psbM) using
subsets of individuals of different species. Of these
regions, only trnH-psbA and ycf6-psbM showed appro-
priate levels of variability (4.89 and 2.32% variability,
respectively) and were used further. The ycf6-psbM
spacer was amplified using the ycf6F forward and
psbMR reverse primers (Shaw et al., 2005). The trnH-
psbA spacer was amplified with the forward primer
psbA (Sang, Crawford & Stuessy, 1997) and the reverse
primer trnH2 (Tate & Simpson, 2003). PCR conditions
for ITS amplification were 2 min 30 s at 94 °C followed
by 40 cycles of 30 s at 94 °C, 30 s at 53 °C and 1 min
15 s at 72 °C, followed by 10 min at 72 °C. PCR condi-
tions for ycf6-psbM were 2 min at 95 °C followed by 40
cycles of 30 s at 95 °C, 30 s at 55 °C and 2 min 30 s at
72 °C, followed by 10 min at 72 °C. PCR conditions for
trnH-psbA were 2 min at 95 °C followed by 40 cycles of
30 s at 95 °C, 30 s at 55 °C and 1 min 20 s at 72 °C,
followed by 5 min at 72 °C. Reaction volumes of 25 μL
included 36 ng genomic DNA, 5 μL 5× Green GoTaq
Reaction Buffer (Promega), 0.2 mM dNTPs, 0.3 μM

each primer and 0.85 units GoTaq DNA Polymerase
(Promega). PCRs for the ITS region included 1.25 μL
dimethylsulphoxide (DMSO) and 0.25 μL bovine
serum albumin (BSA; 1 mg mL−1). All amplified frag-
ments were visualized on 1% TBE-agarose gels and
purified with ExoSap-IT (USB Corporation) following
the manufacturer’s instructions. PCR products were
sequenced by Macrogen Inc. (Seoul, Korea) using
an ABI Prism 3730XL DNA analyser (Applied
Biosystems).

EDITING AND ALIGNMENT

Sequence identities were confirmed using the NCBI
public BLAST service as implemented in Geneious Pro
version 5.5.8 (Biomatters). Sequences were edited in
Geneious and aligned with SATé-II version 2.2.5 (Liu
et al., 2011). Nucleotide polymorphisms were coded
using the NC-IUPAC ambiguity codes. Mononucleotide
repeats and inversions were excluded from further
analyses, as they are prone to homoplasy (Kelchner,
2000). Indels were coded according to the ‘simple indel
coding’ method of Simmons & Ochoterena (2000) as
implemented in SeqState (Müller, 2005) and datasets
were analysed (using Bayesian inference) with the
indels either coded or not coded. Prior to the phyloge-
netic analysis of dataset 1 (see below) the ends of each
sequence were trimmed to match the shortest
sequence. Sequences from the plastid regions were
concatenated based on the assumption that the plastid
forms a single linkage group.

PHYLOGENETIC ANALYSES

The available and newly generated sequence data
were analysed at two different taxonomic levels. In
the first approach (dataset 1; Table 1) the ITS
sequences corresponding to 81 individuals (three of
which were outgroups, 55 from V. subsection Pentase-
palae, four from V. subsection Armeno-Persicae, 11
from V. subsection Orientales, six from V. subsection
Petraea and two species that still have not been
assigned to any subsection; see Table A1 for further
details) were included. Our aim was to test the mono-
phyly of V. subsection Pentasepalae and to investigate
its phylogenetic position within the subgenus.

In the second approach, our objective was to revise
the relationships among the species of V. subsection
Pentasepalae. In this case two subsets were consid-
ered. The first (dataset 2; Table 1) included sequences
of the nuclear ITS region from 58 individuals plus
plastid DNA sequences (corresponding to two plastid
regions) from 52 individuals from 20 species (diploids
and polyploids) of V. subsection Pentasepalae
and three outgroup species. The second (dataset
2-diploids; Table 1) is exactly the same as dataset 2,
but includes 33 ITS and 29 plastid DNA sequences
from diploid individuals only, plus three outgroup
sequences.

Figure 3. Majority rule consensus tree obtained from the Bayesian analyses of the ITS region for Veronica subgenus
Pentasepalae (dataset 1) and ploidies found for each sample. Numbers above the branches indicate Bayesian posterior
probability (PP) values. Bootstrap support values (BS) > 50% from the parsimony analyses are indicated below the
branches. Accessions are denoted by the basionym (except for V. sennenii and V. rhodopea) and a number (when there is
more than one accession per taxon) according to Table A1. The names finally accepted by us are indicated in parentheses
when they differ from the basionym. The scale refers to the expected substitutions per site.
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Test of recombination
Recombination is the genetic exchange that occurs
between nucleotide sequences (either homologous or
non-homologous) (Lemey & Posada, 2009). It is
thought to be common after hybridization, resulting
in chimaeric sequences (Álvarez & Wendel, 2003). In
addition, artificial recombination can occur during
PCR amplification. It is important to take recombi-
nation into account given the potential misleading
effect in evolutionary inferences (Lemey & Posada,
2009). Recombination in ITS has been observed in
other Veronica hybrids (D. Albach, unpubl. data). Evi-
dence for recombination for the ITS sequences
(dataset 1) was tested using the pairwise homoplasy
index (PHI) test (Bruen, Philippe & Bryant, 2006) as
implemented in SplitsTree4 (Huson & Bryant, 2006).
In addition, an exploratory analysis was performed in
RDP4 software (Martin et al., 2010) using P-value set
to 0.05 and the multiple comparison correction.

Analysis of secondary structure
Secondary structures for all ITS1 and ITS2 sequences
were generated using RNAstructure, version 5.7
(Reuter & Mathews, 2010), and examined to deter-
mine whether pseudogenes were present in the
dataset.

Test of incongruence
Congruence among nuclear and plastid matrices of
dataset 2 and 2-diploids was first evaluated observing
topological congruence (Figs 3, 4A, 5), and then per-
forming the incongruence length difference (ILD) test
(Farris et al., 1994). ILD significance values were
calculated on informative characters in TNT v.1.1
(Goloboff, Farris & Nixon, 2003) with the INCTST
script with 1000 replicates.

Parsimony and Bayesian analyses
All datasets were analysed using parsimony and
Bayesian inference. These analyses were always per-
formed for each marker independently (ITS, trnH-
psbA and ycf6-psbM) and for the combined plastid
DNA data sets. A combined analysis for the three
regions was not performed in any case (i.e. dataset 2
and 2-diploids), due to the extensive incongruence
found between ITS and plastid DNA phylogenetic
trees (see below). Concatenation of sequences from
multiple genes is highly inadvisable when gene trees
of different loci are discordant because it may lead to
highly supported misleading phylogenetic trees when
incongruence is due to incomplete lineage sorting
(ILS) (Kubatko & Degnan, 2007).

Parsimony analyses were conducted using TNT
v.1.1 (Goloboff et al., 2003) applying the traditional
search option with equal character weights. In a first
run, 10 000 replicates of random addition sequenceT
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and tree-bisection-reconnection (TBR) branch-
swapping, saving nine trees per replicate, were per-
formed. As some replicates reached the maximum
number of trees that can be saved, the trees from the
first run were used as starting trees in a second
heuristic search. Bootstrap support (BS) was calcu-
lated with 2000 replicates, each consisting of 1000
replicates of random addition sequence and TBR
branch-swapping (saving ten trees per replicate);
BS ≥ 70% was considered to be an indication of good
support for that node. Consistency index (CI), homo-
plasy index (HI), retention index (RI) and rescaled
consistency index (RC) were calculated using PAUP*
v.4.0b10 (Swofford, 2002).

Bayesian analyses were performed using MrBayes
v.3.2 (Ronquist et al., 2012). The best model of DNA
substitution for each marker was determined with
Jmodeltest v.2.1.2 (Darriba et al., 2012) under the
Bayesian information criterion (BIC), which was
shown to be the most accurate criterion of model
selection (Darriba et al., 2012). The best-fitting model
for each region was used in each case for all the
analyses, and partitions were defined when necessary
in combined analyses. Two simultaneous and inde-
pendent runs of 5000 000 generations were con-
ducted, each one with four chains using Markov chain
Monte Carlo searches. One out of every 500 genera-
tions was sampled, which resulted in a total of 10 000
sampled trees in each run. To check for convergence
the standard deviation of split frequencies (< 0.01),
the potential scales reduction factor (PSRF) and the
‘sump’-plot were examined. The first 10% of the trees
of each analysis were discarded as burn-in before
computing the majority rule consensus tree. Posterior
probability support (PP) was estimated to be signifi-
cant for nodes with PP ≥ 95%.

Additionally, for dataset 2-diploids (excluding out-
groups V. polita and V. arvensis), a supernetwork
analysis (Huson et al., 2004) was performed using
SplitsTree4 (Huson & Bryant, 2006) to investigate
competing topologies of the ITS and plastid DNA
trees obtained from the Bayesian analyses. Supernet-
works are useful tools for summarizing and visualiz-
ing complex information in cases of gene tree
incongruence (Huson & Bryant, 2006; McBreen &
Lockhart, 2006). The reliability of the individual
gene-trees used as input is crucial to reconstruct with
confidence the reticulate evolutionary history of a
particular group (McBreen & Lockhart, 2006). The
strategy of excluding polyploids at this step was
adopted because a highly supported polytomy was
displayed for most of the polyploids in the ITS phy-
logenetic tree, and it could represent a misleading
topology due to the limitation of tree-building
methods when reticulate evolution is involved (Linder
& Rieseberg, 2004; Hörandl, 2006).

RESULTS

Ploidies of 45 populations from V. subsection Pentase-
palae ranged from 2x to 8x (Table A1). For most of the
individuals sampled, ploidies estimated by flow cytom-
etry were in accord with previous chromosome counts
for each particular species. For V. teucrioides no direct
chromosome count exists and DNA ploidy level (termi-
nology following Suda et al., 2006) is given here for the
first time. The genome size obtained for V. teucrioides
was similar to that of other diploids from the subsec-
tion (which are uniformly so), which is why we infer the
diploid level for V. teucrioides here based on flow
cytometry. Veronica orbiculata was considered to be a
tetraploid species based on chromosome counts, but we
found DNA contents suggesting a diploid level. Indi-
viduals from three different populations of V. orbicu-
lata were included in this study. Two populations
contained only diploids (V. orbiculata and V. austriaca
var. emarginata K. Malý ex Watzl, Table A1, Fig. 3)
whereas the other was composed of diploid and tetra-
ploid individuals (V. orbiculata var. hercegovinica 2
and 1, respectively, Table A1, Fig. 3). The individuals
measured from the populations identified as ‘V. jacqui-
nii-orbiculata’ 1 and 2 were found to be tetraploid.

Sequence and data set statistics are given in Table 1.
All ITS sequences contained the three conserved 5.8S
motifs described for Viridiplantae (Harpke & Peterson,
2008). In addition, all sequences conserved the typical
secondary structure of ITS (results not shown). The
highly conserved motif of Liu & Schardl (1994),
GGCRY-(4- to 7n)-GYGYCAAGGAA, was present in
ITS1 forming a hairpin structure. The GC content
varied from 56.5 to 59%. Some degree of intraspecific
variation was detected in ITS sequences, which ranged
from one substitution in V. javalambrensis, V. rosea
and V. turrilliana to 14 substitutions in V. jacquinii, in
which variation was mainly found between diploid and
polyploid individuals. For the plastid regions, one to
six substitutions or indels were found in certain
species (data not shown). Of the three DNA regions in
dataset 2, the plastid trnH-psbA was the shortest (348
bp, aligned) but also the most variable (Table 1).

The PHI test did not reveal statistically significant
evidence for recombinant ITS copies (P = 0.265). Like-
wise, no potential recombinant sequences were
detected during the exploratory analysis performed in
RDP4. The results of the ILD test reported significant
incongruence between the nrDNA and the plastid
(trnH-psbA + ycf6-psbM) DNA regions (P = 0.001).
Bayesian analyses of datasets with coded indels pro-
vided similar topologies with higher PP values than
for those with uncoded gaps. Because gap characters
thus have the same phylogenetic signal as nucleotide
substitution data, only results from the datasets with
coded indels are shown, as they are more robust
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Figure 4. See caption on next page.
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taking into account both nucleotide substitutions and
indel information. As the topology of the parsimony
50% majority rule consensus trees was almost iden-
tical to that of the Bayesian trees, but less resolved
and less supported, only the Bayesian results are
displayed. Similarly, only the ITS trees of dataset 1
(Fig. 3) and 2-diploids (Fig. 5) are shown as the ITS
analyses of datasets 1 and 2 did not differ in topology
and had only slight differences in PP values.

The Bayesian analysis of dataset 1 supported the
monophyly of V. subgenus Pentasepalae (95% PP), V.
subsection Pentasepalae (99% PP excluding V. kry-
lovii) and V. subsection Petraea (73% PP excluding
V. umbrosa M.Bieb) (Fig. 3). Conversely, the species

ascribed to V. subsections Orientales and Armeno-
Persicae were scattered across early-branching nodes.

In V. subsection Pentasepalae, five main clades were
revealed (Fig. 3): a central Asian clade (V. krylovii,
100% PP), a North African clade (V. rosea, 94% PP),
two clades corresponding to species endemic to the
Iberian Peninsula (the ‘V. tenuifolia complex’ and
V. aragonensis, both 100% PP) and a core clade (99%
PP) which comprises the remaining species, mostly
from northern and central Europe, Italy and the
Balkans. Although the phylogenetic affinities among
the diploids and polyploids remain unresolved, most of
the diploid species traditionally recognized based on
morphological traits are recovered as monophyletic,

Figure 4. A, majority rule consensus tree obtained from the Bayesian analyses of the two plastid regions (trnH-
psbA + ycf6-psbM) for Veronica subsection Pentasepalae (dataset 2). Numbers above the branches indicate Bayesian
posterior probability (PP) values. Bootstrap support values (BS) > 50% from the parsimony analyses are indicated below
the branches. Ploidy of each sample is indicated. The scale refers to the expected substitutions per site. B, supernetwork
constructed with the ITS and plastid DNA majority rule consensus trees from the Bayesian analyses of dataset 2-diploids.
In both A and B, individuals are denoted by the basionym (except for V. sennenii and V. rhodopea) and a number (when
there is more than one individual per species) according to Table A1.

Figure 5. Majority rule consensus trees obtained from the Bayesian analyses of the ITS region (left) and the two plastid
regions (right) for Veronica subsection Pentasepalae (dataset 2-diploids). Numbers above the branches indicate Bayesian
posterior probability (PP) values. Bootstrap support values (BS) > 50% from the parsimony analyses are indicated below
the branches. Accessions are denoted by the basionym (except for V. rhodopea) and a number (when there is more than
one accession per taxon) according to Table A1. The scale refers to the expected substitutions per site.
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excluding V. orsiniana and V. crinita (Fig. 3). In the
polyploid representatives of the complex, ITS
sequences showed nearly no variation and most of
them were displayed in a polytomy, with the exception
of the putatively autotetraploid V. orbiculata var. her-
cegovinica 1 and V. aragonensis (Fig. 3).

The phylogenetic analysis of plastid DNA data cor-
responding to 52 individuals (Fig. 4A) additionally
supported the monophyly of V. subsection Pentase-
palae (100% PP; 86% PP including the individual
V. rosea 1). Whereas the ITS tree showed taxonomic
structuring (Fig. 3), the plastid DNA tree exhibited
geographical structure to a certain extent (Fig. 4A).
However, in some cases a taxonomic structure is
observed (i.e. V. prostrata and the Italian populations
of V. orsiniana).

The supernetwork obtained from the ITS and
plastid DNA trees of dataset 2-diploids (Figs 4B, 5)
revealed that reticulate evolution has played an
important role in the phylogenetic history of V. sub-
section Pentasepalae and especially among the
members of the core clade. The supernetwork
retained the taxonomic structure and the four main
geographical groups identified by the ITS sequences
(i.e. core clade, Iberian Peninsula, central Asian clade
and North African clade).

DISCUSSION

The present work is the first extensive molecular
phylogenetic analysis that covers the whole geo-
graphical range and the full spectrum of morphologi-
cal variation of the taxonomically complicated group
V. subsection Pentasepalae and is a test of monophyly
of the subsection as recognized by Albach et al. (2008).
To delimit species in the subsection, we use multiple
lines of evidence (i.e. integrative taxonomy; Dayrat,
2005). Specifically, we rely on our phylogenetic analy-
ses of ITS data coupled with evidence from morphol-
ogy (N. López-González, B. M. Rojas-Andrés & M. M.
Martínez-Ortega, unpubl. data), cytology (B. M.
Rojas-Andrés, N. López-González, M. de Pedro, D.
Albach & M. M. Martínez-Ortega, unpubl. data) and
geographical distribution. Plastid DNA regions evolve
at a slower mutation rate than nrDNA regions (Small,
Cronn & Wendel, 2004) and are usually more intro-
gressed in plants (Petit & Excoffier, 2009). Therefore,
they are not always the best markers to define
boundaries among closely related species, as seems to
be the case here. Even with these shortcomings, these
results represent a significant contribution toward
understanding the patterns of diversification and evo-
lutionary history of the group, allow circumscription
mainly of diploid taxa and provide a taxonomic frame-
work on which future studies will be based.

CIRCUMSCRIPTION, PHYLOGENETIC AFFINITIES AND

POSITION OF V. SUBSECTION PENTASEPALAE IN V.
SUBGENUS PENTASEPALAE

The results presented here confirm the general east-to-
west migration pattern of V. subgenus Pentasepalae
along the Mediterranean (Albach et al., 2004c;
Martínez-Ortega et al., 2004) and demonstrate that V.
subsection Pentasepalae constitutes a monophyletic
lineage that probably evolved from the Near Eastern
Asiatic species (or their ancestors). However, a west-to-
east migration route was followed by some representa-
tives of the subsection that reached Siberia (V. krylovii
and the Russian populations of V. prostrata and V. teu-
crium). Support for a monophyletic V. subsection
Pentasepalae is lower when V. krylovii is included (73
vs. 99% without it). Pending additional analyses, we
advocate maintaining this species in the subsection
based on morphological characters (e.g. Borissova,
1955) and plastid DNA analyses (Fig. 4A). Relation-
ships and classification of the other subsections in the
subgenus will need to be reconsidered with adequate
taxon sampling and other molecular markers.

EVOLUTIONARY HISTORY AND SOURCES OF

INCONGRUENCE IN V. SUBSECTION PENTASEPALAE

Trying to reconstruct the evolutionary history and
phylogenetic relationships in V. subsection Pentase-
palae is challenging due to extensive incongruence
found between the phylogenetic analyses obtained
from different data sets. Incongruence between gene
trees can be attributed to phylogenetic and sampling
error, recombination, sampling of pseudogenes, unrec-
ognized gene duplication and loss (paralogy), ILS
and/or hybridization (e.g. Wendel & Doyle, 1998). In
our case, phylogenetic error due to poor taxon sam-
pling can be excluded, because the sampling is thor-
ough with regard to number of individuals per species
and distribution range. Although some clades are well
supported in the nuclear and plastid DNA trees, reso-
lution is low regarding some relationships, especially
in the plastid DNA phylogenetic analysis (Fig. 4A).
Therefore, sampling error (i.e. few informative charac-
ters) may be causing part of the incongruence observed
between gene-trees. The possibility of recombinant ITS
sequences (artificial or from a recent event) confound-
ing phylogenetic analysis (Álvarez & Wendel, 2003)
was excluded according to the results from the recom-
bination analyses. Given the results obtained from the
analyses of secondary structure the presence of pseu-
dogenes in the ITS data set is also improbable. In
addition, none of the ITS sequences showed a lower GC
content than expected and no longer branches were
obtained in the ITS tree. Given that we are working at
low taxonomic levels (i.e. at the species level), unrec-
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ognized gene duplication and random loss are also
unlikely (Maddison, 1997). However, this possibility
cannot be completely ruled out.

Veronica subsection Pentasepalae is a diploid–
polyploid complex composed of closely related taxa, as
demonstrated by the low resolution and short branches
found in the ITS and especially the plastid DNA tree.
This low genetic variation and the fact that several
diploid representatives are still extant also suggests
that the species have recently diverged [mean crown
age of 2.87 Mya (1.37–4.53 Mya) for V. subsection
Pentasepalae; Meudt et al., 2015]. Recent divergences
usually correspond to high levels of ILS, especially if
effective population size (Ne) is large compared with
the time between divergences (Maddison & Knowles,
2006). Population sizes are usually quite small for
species of V. subsection Pentasepalae (often fewer than
10–20 individuals; M. M. Martínez-Ortega & B. M.
Rojas-Andrés, pers. observ.) and therefore retention of
ancestral polymorphism is not likely to occur. Addi-
tional analyses are required to elucidate the role that
ILS has played in the evolution of the group.

Hybridization and polyploidization are known to be
important speciation mechanisms in plants. Consid-
ering the incidence of polyploidy in V. subsection
Pentasepalae, the discovery of mixed-ploidy popula-
tions and the variability of monoploid genome size (B.
M. Rojas-Andrés et al., unpubl. data), the reticulate
patterns observed are best explained by hybridization
and introgression. The presence of some geographical
structure coupled with the lack of taxonomic struc-
ture shown in the plastid DNA tree (Fig. 4A) could
also reflect hybridization, introgression and low seed
dispersal capacity. Maternally inherited genomes are
less appropriate for species delimitation because of
their higher rates of introgression (Petit & Excoffier,
2009) and their generally lower mutation rates, which
are less likely to reflect speciation events. The lack of
resolution of the plastid DNA tree (Fig. 4A) may
reflect a scenario in which the present lineages are in
the initial stages of divergence. Thus, nuclear
markers will be the best option for this purpose in
future studies of V. subsection Pentasepalae and other
groups of closely related taxa in which hybridization
and introgression are thought to occur.

Coalescent-based approaches distinguishing
between hybridization and ILS require either several
independent DNA markers or reliable information on
mutation rates (Holland et al., 2008; Degnan &
Rosenberg, 2009; Joly, McLenachan & Lockhart, 2009),
but this kind of information is still lacking for V.
subsection Pentasepalae, and our data set consists only
of two independent DNA markers. Highly variable
molecular markers (e.g. AFLPs or simple sequence
repeats) or new approaches such as RAD-Sequencing
(Dufresne et al., 2014) may provide the variation

needed to resolve relationships among the polyploids of
V. subsection Pentasepalae.

An additional challenging question for the recon-
struction of the phylogenetic relationships in V. sub-
section Pentasepalae are the polyploids. Although the
ITS phylogenetic analyses allowed delimitation of
most of the traditionally recognized diploid taxa as
monophyletic, almost no variation was found for the
polyploids belonging to the core clade, which were
recovered in a highly supported clade, thus apparently
suggesting a common origin for all of them (clade C,
Fig. 3). A scenario in which the tetraploid V. satureii-
folia (or one of its ancestors) gave rise to the rest of the
polyploids cannot be rejected. However, the morpho-
logical variation shown by the polyploid individuals
included in this study, which almost equates to that of
the diploid individuals, does not seem to favour the
explanation of a common origin. In the particular case
of V. jacquinii, the polyploid specimens are morpho-
logically indistinguishable from the diploid specimens,
suggesting that the diploids may have been involved in
the origin of hexaploid V. jacquinii and in the forma-
tion of those polyploids that show an intermediate
morphology between V. jacquinii and V. orbiculata (see
below). The recurrent formation of polyploids has been
shown to be the rule rather than the exception in
angiosperms (Soltis & Soltis, 1999; Doyle et al., 2003),
with examples also in Veronica (V. cymbalaria Bodard,
Albach, 2007; V. chamaedrys group, Bardy et al.,
2010). A common origin of all these polyploids is
therefore improbable. One possible explanation for the
apparent monophyly of the polyploids would be that
concerted evolution acted in the same direction in all
polyploids (i.e. all ITS copies would have evolved
towards the same DNA sequence type), and few sub-
sequent mutational changes have occurred. Despite
the fact that we cannot reject such a scenario, it is also
improbable. The apparent monophyly shown by the
ITS data could alternatively be attributed to methodo-
logical artefacts (i.e. tree building methods that fail to
depict evolutionary relationships when reticulate or
anagenetic evolution is involved; Hörandl, 2006; Naciri
& Linder, 2015). In contrast to the assumptions of
cladistics, some speciation processes do not imply the
extinction of the parental species. In cases of speciation
such as budding of a part of a species (Mayr & Bock,
2002) and subsequent rapid divergence, the
progenitor-derivative relationship will be depicted in
the cladogram as a sister relationship. Interspecific
hybridization can produce misleading cladograms
whereby the hybrid appears either in a polytomy with
both parental taxa due to conflicting signals, as sister
to one of the parental taxa or as sister to both (Hörandl,
2006). Given the importance of polyploidy in V. sub-
section Pentasepalae, it is likely that the common
origin shown by the polyploids and their sister rela-
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tionship to the diploid taxa of the core clade
are incorrect, actually representing a progenitor-
derivative relationship, although perhaps not involv-
ing any extant diploid genotype. Likewise, the lack of
phylogenetic resolution encountered among the poly-
ploids may be attributed to conflicting signals in the
data set due to hybrid speciation and polyploidization
or to a lack of differentiation of the ITS copies because
of a recent origin of these polyploids.

In summary, reticulate evolutionary patterns in V.
subsection Pentasepalae are probably due to ILS,
polyploid hybridization or a combination of both. In
addition, the diploid–polyploid relationship is prob-
ably a progenitor-derivative one. Thus, the widely
distributed polyploid members of the core clade have
probably arisen from Balkan diploids (or their ances-
tors) through hybridization and polyploidization.
Recurrent polyploidization and interbreeding of indi-
viduals with different genotypes might be obscuring
phylogenetic relationships in the diploid–polyploid
complex of V. subsection Pentasepalae, as seen in
several other polyploid complexes (e.g. Brochmann
et al., 1998; Španiel et al., 2011; Himmelreich,
Breitwieser & Oberprieler, 2014). Moreover, retention
of ancestral polymorphisms may also contribute to
the intricate evolutionary history of this species
group. Future studies with other nuclear markers are
needed to address these issues.

ESTABLISHING TAXONOMIC CONCEPTS IN V.
SUBSECTION PENTASEPALAE

The phylogenetic tree based on ITS sequences pre-
sented here allows the recognition of ten monophyl-
etic diploid species in V. subsection Pentasepalae,
each discussed in turn below. However, the relation-
ships among them remain unresolved and low reso-
lution is found in the trees resulting from both plastid
(Fig. 4A) and nuclear DNA sequence data (Fig. 3). All
diploids have previously been identified based on mor-
phological characters, although they have not always
been accepted in traditional taxonomic treatments. In
contrast to other Mediterranean plant groups (e.g. the
“Cardamine maritima group” refers to several
species: C. maritima D.C and C. monteluccii Br.-Cat.
& Gubell., among others; please see Kucera, Marhold
& Lihova, 2010 for details), our study demonstrates
the feasibility of disentangling speciation at the
diploid level in polyploid complexes in which repro-
ductive barriers are permeable.

Individuals of V. krylovii and V. rosea occupy the
earliest branching clades in the ITS phylogenetic tree
(Fig. 3) and are rather separated from the other indi-
viduals in the supernetwork (Fig. 4B). Endemic to
Siberia (V. krylovii) or North Africa (V. rosea), both
occur at the margin of the distribution range of V.

subsection Pentasepalae. Veronica krylovii was ini-
tially described as a subspecies of V. teucrium (V. teu-
crium subsp. altaica Watzl) due to the strong
morphological similarity of both species, but its dis-
tinctiveness is clear according to genetic data. Veronica
rosea is retrieved as monophyletic (94% PP, Fig. 3), a
surprising result given its great morphological varia-
tion (Martínez-Ortega, 1999), but in agreement with
the results obtained using AFLP by Martínez-Ortega
et al. (2004).

The diploid Iberian endemic ‘V. tenuifolia complex’ is
monophyletic (100% PP, Fig. 3). The variability of the
ITS sequences is not sufficient to differentiate among
the three subspecies currently recognized (V. tenuifolia
subspp. tenuifolia, fontqueri and javalambrensis),
which can be distinguished otherwise based on mor-
phology and AFLP data (Martínez-Ortega et al., 2004,
2009; Andrés-Sánchez et al., 2009). In the plastid DNA
tree (Fig. 4A) the south-western and north-eastern
Iberian populations appear separated, the latter
together with individuals from the core clade. Indeed,
AFLP data showed that populations with maximum
genetic diversity are concentrated in the north-eastern
Iberian Peninsula (Martínez-Ortega et al., 2004). This
suggests that gene flow among the north-eastern popu-
lations of the ‘V. tenuifolia complex’ and those from the
core clade seems to have occurred at least historically.

Veronica rhodopea and V. turrilliana are narrow
endemic diploids from the Balkan Peninsula. They are
registered in the Red List of Bulgarian vascular plants
(Petrova & Vladimirov, 2009) as vulnerable and endan-
gered, respectively, and grow in Important Plant Areas
[IPAs; IPA online database (http://www.plantlifeipa
.org/reports.asp)] that display exceptionally rich floras
of biogeographical interest. The first, from the moun-
tains in southern Bulgaria, was described as V. surcu-
losa var. rhodopea Velen. Veronica surculosa Boiss. &
Balansa is a member of V. subsection Orientales
described from Anatolia and not sampled in our analy-
ses, but our ITS data support that V. rhodopea is a
monophyletic diploid (98% PP, Fig. 3) that should be
included in V. subsection Pentasepalae. Degen had
already proposed (Stojanov & Stefanoff, 1925) the
separation and recognition of V. rhodopea at the
species level based on morphological characters.
Veronica turrilliana (Stojanov & Stefanoff, 1923),
which occurs in south-eastern Bulgaria and European
Turkey (Strandzha Planina) and has always been
recognized at the species level, is monophyletic (100%
PP, Fig. 3). The long branch length (Figs 3, 4B) sug-
gests that the species is quite isolated in V. subsection
Pentasepalae. Nevertheless, according to our field
observations it is able to hybridize with sympatric
V. crinita in natural conditions (see specimens SALA
149335 and SALA 149283 lodged at the herbarium of
the University of Salamanca), providing additional
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evidence for the relative permeability of reproductive
barriers among species in this subsection.

Veronica teucrioides from north-western Greece and
Macedonia is monophyletic (97% PP, Fig. 3). It has
been treated as a subspecies or variety by some
authors [V. austriaca var. teucrioides (Boiss. & Heldr.)
Halácsy; V. orsiniana subsp. teucrioides (Boiss. &
Heldr.) M.A.Fischer], but neither a close relationship
with the representatives from the ‘V. austriaca
complex’ included in this study nor a close relationship
with V. orsiniana is supported by genetic data. Species
rank for V. teucrioides is warranted given the results
obtained here and that some morphological characters
can be found to identify it (mainly glabrous leaves,
calyx and capsules; N. López-Gónzalez, B. M. Rojas-
Andrés & M. M. Martínez-Ortega, unpubl. data).

The data presented here suggest that V. orsiniana as
circumscribed in relatively modern revisions (e.g.
Fischer, 1982, 1991; Martínez-Ortega et al., 2009) is
polyphyletic, as the Italian (V. orsiniana 1 and 2) and
Balkan (V. orsiniana 3) populations are neither mono-
phyletic nor closely related (Figs 3, 4A, B). Slight
morphological differences in capsule and calyx mor-
phology can be found between populations from the
Italian and Balkan peninsulas (B. M. Rojas-Andrés, E.
Rico & M. M. Martínez-Ortega, unpubl. data). In
addition, they have different and non-continuous dis-
tribution areas and the Italian V. orsiniana (type local-
ity in the Abruzzi Mountains) is recovered with
moderate support in clade D (93% PP, Fig. 3) as a sister
group of V. orbiculata, whereas the Balkan population
appears in clade E. For these reasons we propose to
recognize the Balkan populations as a separate species
and use the next available name V. kindlii Adamović
for them. Further examples of taxa with an amphi-
Adriatic distribution that are now considered different
species can be found in Campanula L. (Park et al.,
2006) and Androsace L. (Schönswetter & Schneeweiss,
2009). Veronica kindlii was published by Adamović
(1904) for plants from the present border between
Greece and Former Yugoslav Republic of Macedonia,
and was later included by Hayek (1929) in the Prodro-
mus Florae Peninsulae Balcanicae. It has been used in
identification labels and botanical works (e.g. Watzl,
1910; Dimopoulos & Georgiadis, 1995) for those plants
morphologically close to V. orsiniana from the Balkan
Peninsula. A lack of information on its phylogenetic
affinities (Walters & Webb, 1972) has hampered a
wider use of this name until now, but many recent
internet resources are using the name V. kindlii for
these plants [e.g. EUNIS (http://eunis.eea.europa.eu/
index.jsp); Euro + Med Plantbase (Marhold, 2011); The
Plant List (http://www.theplantlist.org/); Tropicos
(http://www.tropicos.org/); USDA-ARS (www.ars-grin
.gov/cgi-bin/npgs/html/taxon.pl?432713; PESI (www
.eu-nomen.eu/portal)]. We reserve the name V. orsini-

ana for the plants distributed across a continuous area
from north-eastern Spain and southern France to Italy,
whereas for the populations from the Balkans the
name V. kindlii would apply.

Veronica crinita is also recovered as non-
monophyletic (Figs 3, 4B). Whereas V. crinita forma
bosniaca appears in clade E in an unresolved position,
V. crinita and V. thracica appear together with high
support (100% PP; Fig. 3) also in clade E. However,
with the data available so far it is difficult to know
whether the non-monophyly is due to low levels of
sequence variation, ILS and/or hybridization. Alterna-
tively, these taxonomic entities might represent inde-
pendent evolutionary linages (i.e. cryptic speciation).
Cryptic taxa have been shown to occur in V. subsection
Pentasepalae in the Iberian Peninsula (Martínez-
Ortega et al., 2004). A more in-depth analysis using
highly variable molecular markers is currently under
development by our research group to answer these
questions regarding the evolution of V. crinita.
Pending further molecular, cytotypic and morphologi-
cal analyses, V. crinita forma bosniaca might be
elevated at the specific or subspecific rank. Given the
continuous distribution area of the V. crinita popula-
tions, the uncertainty concerning the ploidy of
V. crinita forma bosniaca and the few morphological
differences found between this form and typical
V. crinita (basically the smaller size of the former), we
include V. crinita forma bosniaca within the variation
of V. crinita as a synonym.

A perfect congruence between the ITS and plastid
DNA data sets is observed in showing V. prostrata as
monophyletic. This suggests strongly a lack of gene
flow with other species of the subsection and reinforces
the taxonomic recognition at the species level, thus
confirming the view of most previous taxonomic treat-
ments (e.g. Borissova, 1955; Fischer, 1982, 2011; Peev,
1995).

Among the diploid–polyploid species, V. jacquinii
(mostly 2x and 6x, according to the data obtained
here) and V. orbiculata (2x and 4x, according to data
obtained here) have been traditionally considered to
be phylogenetically related as members of the ‘V. aus-
triaca complex’ (Beck, 1887; Watzl, 1910; Walters &
Webb, 1972). Nevertheless, the diploid individuals
analysed here that correspond to V. jacquinii and
V. orbiculata are recovered as monophyletic unrelated
taxonomic entities (Figs 3, 4B). The sister-group rela-
tionship found between V. orbiculata and the Italian
V. orsiniana may suggest contacts in the amphi-
Adriatic area (probably occurring during the glacial
periods of the Pleistocene), as found in other species
(e.g. Cardamine maritima group; Kučera et al., 2010).
The tetraploid accession identified as V. orbiculata
var. hercegovinica 1 (Fig. 3; Table A1) groups together
with the conspecific diploids and was found in a
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mixed-ploidy population. This suggests an autopoly-
ploid origin of this tetraploid, which would need
further testing.

Veronica jacquinii is polyphyletic according to the
phylogenetic analysis of ITS sequence data and,
therefore, diploid and hexaploid populations should
be treated as different species under the criterion of
monophyly. However, there are several reasons
against splitting V. jacquinii into different species,
namely: (1) most polyploid species are polyphyletic
(Soltis & Soltis, 1999) and therefore most would have
to be split into several species; and (2) the lack of
morphological characters to identify individuals of
different ploidies (N. López-González, B. M. Rojas-
Andrés & M. M. Martínez-Ortega, unpubl. data)
might hamper their unequivocal determination. For
these reasons, we prefer to consider V. jacquinii as a
cytologically variable taxonomic entity, at least until
further detailed analyses are conducted.

Diploid populations of V. jacquinii (and of V. orbicu-
lata) are restricted to a narrow range along the Dal-
matian coast (only in southern Croatia and
Montenegro) and the southern part of the Dinaric
Alps (B. M. Rojas-Andrés et al., unpubl. data), coin-
ciding with two putative refugial areas (Médail &
Diadema, 2009). In contrast, polyploid populations of
V. jacquinii are more widespread extending towards
the eastern and northern parts of the Balkan Penin-
sula. Diploid populations of V. jacquinii and V. orbicu-
lata may have survived in those places during glacial
periods. After the retreat of the ice sheet they prob-
ably gave rise to polyploid populations, which in the
case of V. jacquinii would have extended along the
Balkan Peninsula, whereas tetraploid V. orbiculata
would have remained in the western part of the
peninsula.

The morphologically intermediate populations
‘V. jacquinii-orbiculata’ 1 and 2 grouped together in a
well-supported clade (100% PP, Fig. 3) with higher
levels of genetic differentiation (slightly longer branch
length) than the remaining polyploids from the core
clade. This suggests an older origin of these tetra-
ploids, which were sampled from populations in
which only tetraploid individuals have been detected.
These results, together with the fact that the geo-
graphically restricted diploid populations of V. jacqui-
nii and V. orbiculata are recovered as unrelated
taxonomic entities, suggest that the morphologically
intermediate populations (relatively frequent in the
field) of variable ploidy (B. M. Rojas-Andrés et al.,
unpubl. data) between V. jacquinii and V. orbiculata
are probably a result of interspecific hybridization
and introgression rather than transitional forms dis-
tributed along a gradient of ecological conditions.

Veronica aragonensis is the only polyploid species
that is recovered as monophyletic in the nuclear DNA

phylogenetic analysis. It appears in a strongly sup-
ported clade (100% PP, Fig. 3) distant from the
remaining polyploids outside the core clade, but
clearly as a part of the subsection. In addition, the
branch length defining V. aragonensis in the ITS tree
is relatively long compared with other branch lengths.
Martínez-Ortega et al. (2004) have suggested that
this species is a palaeopolyploid, which is supported
by the results obtained here. However, in contrast to
the lack of interspecific gene flow found by those
authors using AFLP (mostly nuclear markers), the
plastid DNA tree shows probable past interspecific
gene flow among populations of V. aragonensis, V. ten-
uifolia and V. rosea (i.e. the ‘Hispano-Africanae group’
sensu Riek, 1935) or their ancestors. Alternatively, the
pattern observed in the plastid DNA tree might
reflect ILS. Veronica aragonensis seems to be repro-
ductively isolated and interspecific gene flow between
this species and other taxa occurring in the Iberian
Peninsula probably does not occur at present. Mor-
phologically intermediate populations have never
been observed, even in those rare cases in which
V. aragonensis grows in close vicinity (< 1 km) to
V. orsiniana (M. M. Martínez-Ortega, pers. observ.).

With regard to the other polyploids from V. subsec-
tion Pentasepalae, the phylogenetic relationships
among them remain largely unresolved and taxo-
nomic conclusions are hampered by the lack of reso-
lution of the ITS and plastid DNA trees. In this
situation, we can only base further taxonomic deci-
sions on morphological (N. López-González, B. M.
Rojas-Andrés & M. M. Martínez-Ortega, unpubl.
data), cytological (B. M. Rojas-Andrés et al., unpubl.
data) and chorological considerations. Thus, we rec-
ognize the following polyploid species and subspecies:
V. austriaca subsp. austriaca, V. austriaca subsp.
dentata and V. austriaca subsp. jacquinii in a large
‘V. austriaca complex’ (mostly 6x), V. satureiifolia (4x),
V. sennenii (8x) and V. teucrium (8x).

This study reiterates (Suárez-Santiago et al., 2007;
Pessoa et al., 2012) the importance of using multiple
and complementary sources of evidence (i.e. integra-
tive taxonomy; Dayrat, 2005) for delimiting species in
polyploid complexes. Using information from DNA-
based phylogenetic analyses, morphological charac-
ters, ploidy and biogeography, we have been able to
establish a reliable taxonomic framework for the
diploid members of the group. On this basis, we will
be able to disentangle the patterns of reticulation
among the polyploids using more informative molecu-
lar markers.
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APPENDIX
Table A1. Details of specimens of Veronica included in this study, including locality, geographical coordinates, herbarium
information, collectors, ploidy and GenBank accession numbers. Sequences newly generated for this study are in bold.
Dashes indicate missing data

No. Taxon name

Collector and
individual
number Ploidy* Locality† Latitude Longitude

Herbarium
(voucher) Collectors‡

ITS
GenBank

trnH-psbA
GenBank

ycf6-psbM
GenBank

Subsection Pentasepalae
1 V. aragonensis

1
AA14-6 – E: Huesca, collado de

Ceresa, Peña
Montañesa

42.41182N 0.52454E SALA
121537

AA, ATR,
MMO, XG

KT361667 KT361717 KT361769

2 V. aragonensis
2

MO885-1 4x (C) E: Granada, Huéscar,
Sierra de la Sagra

37.94617N 2.56752W SALA 93528 JSA, MMO KT361668 KT361718 KT361770

3 V. aragonensis
3

MO1045 – E: Huesca, Turbón
massif, between the
Turbonet and Aligas
peak

– – SALA
121536

MMO AY741517

4 V. crinita MS1244-1 2x (FCM) BG: Varna, between
Vinitsa and Aldza
monastery

43.25097N 28.00242E SALA
149037

BR, MMO,
MS, XG

KJ630594 KT361719 KT361771

5 V. crinita
forma
bosniaca

s.n. § BiH:, Ravan Planina,
Mt. Tajan

44.28861N 18.19028E SALA
149244

BFR KT361669 KT361720 KT361772

6 V. thracica MS1227-4 2x (FCM) BG: Plodiv, near
Popovitsa

42.12294N 25.07567E SALA
149038

BR, MMO,
MS, XG

KT361670 KT361721 KT361773

7 V. dentata
1

BR178-2 6x (FCM) A: Krems, between
Weissenkirchen and
Dürnstein

48.40502N 15.51789E SALA
149043

BR, MMO,
XG

KJ630593 KT361722 KT361774

8 V. dentata
2

MO6041-7 6x (FCM) A: Wien, Kalksburg 48.14111N 16.24728E SALA
149383

BR, MMO,
XG

KT361671 KT361723 KT361775

9 V. fontqueri
1

MO858-2 2x (C) E: Málaga, Sierra de las
Nieves, Puerto de los
Pilones

– – MGC 46659 FJH, MMO,
JSA

KT361672 KT361724 KT361776

10 V. fontqueri
2

MO890-1 2x (C) E: Almería, Sierra de
Gádor, Llanos de
Boliches

36.91023N 2.79794W SALA 95041 FJH, MMO,
JSA

KT361673 KT361725 KT361777

11 V. jacquinii
1

BR112-1 2x (FCM) HR: Dubrovnik,
Gromača

42.72444N 18.01778E SALA
149039

BR, MMO,
SA, XG

KJ630595 KT361726 KT361778

12 V. jacquinii
2

SA392-2 2x (FCM) MNE: Žabljak 43.16378N 19.15008E SALA
149287

BR, MMO,
SA, XG

KT361674 KT361727 KT361779

13 V. jacquinii
3

Albach 70 – Botanischer Garten
Bonn, cultivated

– – BONN DA AF313000

14 V. jacquinii
4

BR121-1 6x (FCM) MNE: Treskavac Mts.
between Borkovici and
Boricje

43.10678N 18.90789E SALA
149369

BR, MMO,
SA, XG

KT361675 KT361728 KT361780

15 V. jacquinii
5

MO4595-9 6x (FCM) BG: Stara Zagora, Nova
Mahala, near Nikolaev

42.63394N 25.75508E SALA
149377

BR, MMO,
MS, XG

KT361676 KT361729 KT361781

16 V. jacquinii
6

MO5528-1 6x (FCM) HR: Josipdol, between
Oštarije and Ribarići

45.22533N 15.24603E SALA
149042

BR, MMO,
SA, XG

KJ630596 KT361730 KT361782

17 V. jacquinii
7

SA382-8 6x (FCM) BiH:, Travnik, Vlašić 44.27483N 17.59997E SALA
149389

BR, MMO,
SA, XG

KT361677 KT361731 KT361783

18 V. jacquinii-
orbiculata
1

BR102-2 4x (FCM) BiH:, Potoci, Porim
planina, Rujiste

43.46342N 17.95917E SALA
149041

BR, MMO,
SA, XG

KJ630600 KT361732 KT361784

19 V. jacquinii-
orbiculata
2

SA377-7 4x (FCM) BiH:, Sarajevo, Trebević 43.83508N 18.43531E SALA
149355

BR, MMO,
SA, XG

KT361678 KT361733 KT361785
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Appendix Continued

No. Taxon name

Collector and
individual
number Ploidy* Locality† Latitude Longitude

Herbarium
(voucher) Collectors‡

ITS
GenBank

trnH-psbA
GenBank

ycf6-psbM
GenBank

20 V. javalambrensis
1

BR222-3 2x (FCM) E: Salamanca, La Mata
de la Armuña

41.03783N 5.67681W SALA
149328

BR, NLG KT361679 KT361734 KT361786

21 V. javalambrensis
2

ER7085-1 2x (C) E: Valdelinares, El
Hornillo

40.39994N 0.59625W SALA
110650

ER, XG KT361680 KT361735 KT361787

22 V. krylovii
1

s.n. § RUS: Rep. Altai,
Ulaganskii distr.,
vicin. of lake
Choibekkel

50.43672N 87.59361E ALTB AIS & al. KT361681 KT361736 KT361788

23 V. krylovii
2

s.n. § KZ: Ridge Tarbagataj 47.15000N 82.10000E ALTB SS, DG, EA KT361682 KT361737 KT361789

24 V. orbiculata BR110-12 2x (FCM) HR: Peljesak peninsula,
between Trstenik and
Pijavičino

42.93728N 17.37764E SALA
149294

BR, MMO,
SA, XG

KT361683 KT361738 KT361790

25 V. austriaca
var.
emarginata

MO5537-12 2x (FCM) HR: between Omis and
Makarska, Brela

43.40383N 16.89364E SALA
149337

BR, MMO,
SA, XG

KT361684 KT361739 KT361791

26 V. orbiculata
var.
hercegovinica
1

BR100-12 4x (FCM) BiH:, Mostar, Mt. Hum 43.32728N 17.79939E SALA
149336

BR, MMO,
SA, XG

KT361685 KT361740 KT361792

27 V. orbiculata
var.
hercegovinica
2

BR100-2 2x (FCM) BiH:, Mostar, Mt. Hum 43.32728N 17.79939E SALA
149336

BR, MMO,
SA, XG

KT361686 KT361741 KT361793

28 V. orsiniana
1

A3248-3 2x (FCM) I: Abruzzo, La Majella – – SALA
149297

ER & al. KT361687 KT361742 KT361794

29 V. orsiniana
2

A3267-1 2x (FCM) I: Abruzzo, La Majella – – SALA
149298

ER & al. KT361688 KT361743 KT361795

30 V. orsiniana
3

MO5569-16 2x (FCM) MK: Gevgelija, Mt.
Kozuf

41.20006N 22.24369E SALA
149278

BR, MMO,
SA, XG

KT361689 KT361744 KT361796

31 V. prostrata
1

BR182-9 2x (FCM) A: Rohrendorf bei
Krems, Saubühel

48.42783N 15.65614E SALA
149040

BR, MMO,
XG

KJ630602 KT361745 KT361797

32 V. prostrata
2

BR215-1 2x (FCM) CH: Valais, Charrat 46.12739N 7.14564E SALA
149312

BR, MMO,
XG

KT361690 KT361746 KT361798

33 V. prostrata
3

MS1239-3 2x (FCM) BG: Shumen, Madara 43.27253N 27.10661E SALA
149317

BR, MMO,
MS, XG

KT361691 KT361747 KT361799

34 V. rhodopea
1

BR12-3 2x (FCM) BG: Pazardzhik,
Belmeken, near the
lake

42.17653N 23.80769E SALA
149321

BR, MMO,
MS, XG

KT361692 KT361748 KT361800

35 V. rhodopea
2

s.n. – BG: Mt. Rila – – SOM Bondev AF144459

36 V. rosea 1 DP783-2 2x (FCM) MA: Ifrane, Azrou,
Djebel Hebri

33.35294N 5.14817W SALA
149323

DP, ER, TR,
VL

KT361693 KT361749 KT361801

37 V. rosea 2 MO5502-5 2x (FCM) DZ: Tlemcen, Col de
Krorchef

34.57506N 1.76428W SALA
149324

AJ, JPG,
MMO, SB

KT361694 KT361750 KT361802

38 V. rosea 3 MO1501 2x (FCM) MA: Midelt, Great Atlas,
Cirque de Jaffar

32.61139N 4.80333W SALA
121638

LD, MMO,
XG

AY741519

39 V. satureiifolia
1

BR204-3 4x (FCM) F: Dep. Lozère, Aven
Armand

44.22481N 3.35617E SALA
149356

BR, MMO,
XG

KT361695 KT361751 KT361803

40 V. satureiifolia
2

MO768-1 4x (C) E: Huesca, Ansó, Linza,
Paso del’Onso

– – SALA
124593

LD, MMO KT361696 KT361752 KT361804

41 V. satureiifolia
3

MO1093 4x (C) D: Baden Württemberg,
Bopfingen,
Härtsfeldhausen,
Rohrbachmühle

48.83556N 10.37028E SALA
124594

MMO KT361697 KT361753 KT361805

42 V. sennenii
1

BR223-1 8x (FCM) E: Álava, Salinas de
Añana, way up to the
collado de la Rastrilla

42.77514N 3.10808W SALA
149394

BR, MMO,
NLG

KT361698 KT361754 KT361806

43 V. sennenii
2

BR224-1 8x (FCM) E: Cantabria, Sonabia 43.41250N 3.33350W SALA
149395

BR, MMO,
NLG

KT361699 KT361755 KT361807

44 V. tenuifolia
1

MO652-1 2x (C) E: Navarra, Cáseda, at
the intersection of
road NA534 and Canal
de Bárdenas

42.38666N 1.42078W SALA 95040 LD, MMO KT361700 KT361756 KT361808

45 V. tenuifolia
2

MO670-1 2x (C) E: Huesca, Arro, near
the road to Los
Molinos

42.40878N 0.21723E SALA 93496 LD, MMO KT361701 KT361757 KT361809

46 V. tenuifolia
3

MO1043 2x (C) E: Huesca, Arro. – – SALA 93496 MMO AY741516
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Appendix Continued

No. Taxon name

Collector and
individual
number Ploidy* Locality† Latitude Longitude

Herbarium
(voucher) Collectors‡

ITS
GenBank

trnH-psbA
GenBank

ycf6-psbM
GenBank

47 V. teucrioides
1

AH3633 § GR: Kozani, Mt.
Siniátsikon, over
Námata

40.40333N 21.53722E SALA
149270

AH & al. KT361702 KT361758 KT361810

48 V. teucrioides
2

BR48-1 2x (FCM) GR: Mt. Olympus 40.03872N 22.33369E SALA
149330

BR, MMO,
MS, XG

KT361703 KT361759 KT361811

49 V. teucrium
var.
teucrium
1

MO4574-2 8x (FCM) BG: 3 km E from Tran,
road to Pernik.

42.83794N 22.69272E SALA
149044

BR, MMO,
MS, XG

KJ630603 KT361760 KT361812

50 V. teucrium
var.
teucrium
2

MO6025-3 8x (FCM) D: Nordrhein-Westfalen,
Euskirchen, between
Iversheim and Arloff

50.59158N 6.77928E SALA
149414

AA, BR,
MMO,
NLG

KT361704 KT361761 KT361813

51 V. teucrium
var.
angustifolia
3

BR168-10 8x (FCM) F: Dep. Haute-Savoie,
Mt. Salève

46.13512N 6.18264E SALA
149399

BR, MMO,
XG

KT361705 KT361762 KT361814

52 V. teucrium
var.
angustifolia
4

MO6022-7 8x (FCM) F: Dep. Eure et Loir,
Châteaudun, Thiville

48.00259N 1.38930E SALA
149413

AA, BR,
MMO,
NLG

KT361706 KT361763 KT361815

53 V. turrilliana
1

BR45-3 2x (FCM) TR: Vize, towards
Kömürköy-Alkpinar

41.59472N 27.82417E SALA
149333

BR, MMO,
MS, XG

KT361707 KT361764 KT361816

54 V. turrilliana
2

MS1247-1 2x (FCM) BG: 15 km N of Malko
Turnovo, near the
bridge on the river
Veleka

42.08506N 27.42903E SALA
149334

BR, MMO,
MS, XG

KT361708 KT361765 KT361817

55 V. turrilliana
3

Albach 278 – TR: Istanbul WU DA AF486360

V. subsection Armeno-Persicae
V. armena AH1747-1 – TR: Erzurum, Mt.

Palandöken
39.51 N 41.17 E MA 687629 AH & al. KT361709 KT361766 KT361818

V. farinosa Alava 13656 – – – – TUR Alava AY741518
V. liwanensis Struwe 1411 – NYBG, cultivated – – WU Struwe AF312997
V. oltensis Sfruwe 1405 – NYBG, cultivated – – WU Struwe AF312995

V. subsection Orientalis
V. bombycina

subsp.
bolkardaghensis

Struwe 1406 – NYBG, cultivated – – WU Struwe AF486358

V. bombycina
subsp.
bombycina

Struwe 1403 – NYBG, cultivated – – WU Struwe AF486353

V. bomb
subsp.
froediniana

Albach 709 – TR: Pelli Dagi – – WU DA KT361710

V. cinerea Albach & Chase,
113

– RBG Kew, cultivated – – K DA & MC AY144458

V. cuneifolia
subsp.
isaurica

Struwe 1409 – NYBG, cultivated – – WU Struwe AF486354

V. dichrus Struwe 1407 – NYBG, cultivated – – WU Struwe AF312998
V. multifida Albach 1143 – TR: prov. Antalya,

Taurus
– – OLD DA KT361711

V. orientalis Albach 701 – TR: Van, Karabel pass – – WU DA AY741515
V. pectinata

1
CA6210-1 – TR: Bolu, S of Abant

Golu
40.35 N 31.17 E MA 688478 CA & al. KT361712

V. pectinata
2

Struwe 1410 – – – – WU Struwe AY144460

V. polium Albach 712 – TR: Pelli Dagi – – WU DA KT361713

V. subsection Petraea
V. bogosensis s.n. – – – – MO Prima AF486359
V. caucasica Albach 326 – GE: Kazbegi – – WU DA AF486357
V. peduncularis

1
MO1554-3 – GE: Mtskheta,

monastery Sedaseni
41.88028N 44.77778E SALA

110319
MMO, XG,

LMC
KT361714

V. peduncularis
2

Albach 325 – GE: Kazbegi – – WU DA AF486356

V. umbrosa s. n. – RBG Kew, cultivated – – K Lancaster AF486355
V. vendetta-deae Albach 327 – GE: Kazbegi – – WU DA AF486361
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Appendix Continued

No. Taxon name

Collector and
individual
number Ploidy* Locality† Latitude Longitude

Herbarium
(voucher) Collectors‡

ITS
GenBank

trnH-psbA
GenBank

ycf6-psbM
GenBank

Not assigned to any subsection
V. czerniakowskyanaTerme 39177E – IR: Khorassan: Kopet

Dagh
– – EVIN Terme AF486362

V. paederotae Klein 7901 – IR: Prov. Mazandaran – – WU Klein AF509783
Outgroup

V. arvensis BR229-1 – E: Salamanca 40.96561N 5.67911W SALA
149232

BR KT361715 KT361767 KT361819

V. polita s.n. – E: Salamanca, Ciudad
Rodrigo

40.59611N 6.55194W SALA
149255

JSA KT361716 KT361768 KT361820

V. chamaedrys 1970-1438 – RBG Kew – – K MC AF313003

*Ploidy determined by direct chromosome count (C) or flow cytometry (FCM) is indicated in parentheses.†A, Austria; BG, Bulgaria; BiH, Bosnia and Herzegovina; D,
Germany; DZ, Algeria; E, Spain; GE, Georgia; GR, Greece; HR, Croatia; I, Italy; IR, Iran; KZ, Kazakhstan; MA, Morocco; MK, FYR of Macedonia; MNE, Montenegro; NYBG:
New York Botanical Garden; RBG Kew, Royal Botanic Gardens, Kew; RUS, Russia; SRB, Serbia; TR, Turkey.‡AA, A. Abad de Blas; AH, A. Herrero; AIS, A. I. Schmakov;
AJ, A. Juan-Gallardo; AT, A. Tribsch; BFR, B. Frajman; BR, B. M. Rojas-Andrés; CA, C. Aedo; DA, D. Albach; DG, D. German; DP, D. Pinto-Carrasco; EA, E. Antoyuk; ER,
E. Rico; FJH, F. J. Hernández-García; JPG, J. Peñas-de Giles; JSA, J. A. Sánchez-Agudo; LD, L. Delgado-Sánchez; LMC, L. M. Muñoz-Centeno; MC, M. Chase; MMO, M.
M. Martínez-Ortega; MS, M. Santos-Vicente; NLG, N. López-González; SA, S. Andrés-Sánchez; SB, S. Barrios-de León; SS, S. Smirnov; TR, T. Romero; VL, V. Lucía-García;
XG, X. Giráldez.§Individuals for which flow cytometric measurements failed.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1. Final accepted names for the taxa included in this study and their corresponding basionyms. In the
cases indicated with an asterisk (*) the corresponding basionyms have not been used (see Materials and
methods).
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