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ON CONDITIONAL PROBABILITY AND BAYESIAN
INFERENCE

JOSÉ MANUEL GUTIÉRREZ

Faculty of Economics and Business, University of Salamanca

Abstract. Measurement theory has dealt with the applicability of the con-
ditional probability formula to the updating of probability assignments when
new information is incorporated. In this paper the original probability measure
is taken as given, and an assumption on the relation between this probability
and a possible conditional probability is imposed. Provided that the original
probability is non-atomic, it is proved that there is one and only one trans-
formed probability measure satisfying the assumption. Building on this result,
we discuss the hypotheses underlying Bayesian inference. In the Bayesian
parametric model, a joint probability distribution on the product of the sam-
ple space and the parameter space is assigned. As this probability distribution
is shown to be non-atomic, we conclude that, apart from measure-theoretic
representability hypotheses, the existence of this joint probability is the only
nontechnical hypothesis underlying Bayesian parametric statistical inference.

1. Introduction

Conditional probability is, on the one hand, an intuitive concept, which captures
the change in the original probability assignment when new information is known.
On the other hand, the axiomatic de…nition of conditional probability is given by a
formula that determines it from the original probability. Often both concepts are
identi…ed, and it is postulated that the incorporation of new information alters the
original probability assignment according to this formula.

As always when an axiomatic de…nition is applied, it is worth discussing that
applicability in each case. Indeed, when considering the frequentist interpretation
of probability, there are plausible reasons for such applicability. In the case of the
subjective interpretation of probability, as a degree of belief, typical of Bayesian
statistical inference, arguments have been constructed to justify that the change in
the assignment of probabilities when new information is incorporated must follow
the conditional probability formula. These arguments start from a qualitative re-
lation of the form A j B % C j D, meaning ”A given B is qualitatively at least as
probable as C given D”, satisfying certain elaborated assumptions (see [7]). Then
it is proved that there is one and only one probability P such that

A j B % C j D i¤
P (A \ B)

P (B)
¸ P (C \ D)

P (D)

This result is to be understood within measurement theory, where the represen-
tation by probabilities of qualitative probability orderings of events is discussed;
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2 JOSÉ MANUEL GUTIÉRREZ

usually …nitely additive probabilities have been considered, although completely
additive probabilities have also been studied (see [10]).

We consider in this paper a di¤erent starting point to justify the applicability of
the axiomatic de…nition of conditional probability (i.e. the conditional probability
formula). The original probability measure is taken as given, and an assumption on
the relation between this original probability and a possible conditional probability
is imposed (Aristotelian Assumption, (A.A) for short). Provided that the original
probability is non-atomic, it is proved that there is one and only one transformed
probability measure satisfying the assumption (Theorem 2.3).

We claim that the approach just mentioned is adequate to discuss the hypotheses
underlying Bayesian statistics. For simplicity, we take momentarily all probability
distributions to be representable in terms of densities. Suppose that Y = (Y1; :::; Yn)
is a random vector of n observations taking values on a sample space S. The
parameter µ = (µ1; :::; µk) with values in a parameter space £ µ Rk indexes the
various possible density functions p(y j µ) for Y ; so p(y j µ) denotes the distribution
of Y when µ is known. Bayesian statistics postulates that p(y j µ) represents a
conditional distribution following the conditional probability formula. Thus (Y; µ)
has a probability distribution (say with joint density p(y; µ); p(y) and p(µ) stand
for the density marginals) and

p(y j µ)p(µ) = p(y; µ)(1)

On the other hand, given the observed data y = (y1; :::; yn), let p(µ j y) denote the
distribution of the parameter µ when y is known. Bayesian statistics now postu-
lates that p(y j µ) represents a conditional distribution following the conditional
probability formula. Thus

p(µ j y)p(y) = p(y; µ)(2)

Equating (1) and (2), Bayes’ formula for the posterior distribution follows:

p(µ j y) =
p(y j µ)p(µ)

p(y)
(3)

Bayes’ formula for the posterior distribution is certainly the basis of Bayesian
statistics. In general, two hypotheses are underlying this formula:

(H1) There is a joint probability measure P on S £ £1.
(H2) If P (A j C) is given the interpretation ”probability of event A when event

C is known”, then the conditional probability formula applies:

P (A j C) =
P (A \ C)

P (C)

In the Bayesian parametric model, the joint probability P is shown to be non-
atomic (Proposition 3.2). Taking (A.A) for granted, it follows from Theorem 2.3
that, at least in the parametric case, condition (H2) is redundant, and only (H1)
is necessary for the Bayes’ formula for the posterior distribution. We conclude
that, apart from measure-theoretic representability hypotheses, the existence of
that joint probability on S £ £ is the only nontechnical hypothesis underlying
Bayesian parametric statistical inference.

1The existence of a suitable joint probability is far from being a foregone conclusion from that
of the marginals. The case of quantum mechanics is to the point. In that theory both P (A) and
P (B) may exist and yet P (A\B) need not (think of A referring to the position of a particle and
B to its momentum).
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2. The formula of conditional probability

In this section (­;A; P ) is a probability space, where ­ is a set, A is a ¾-algebra
in ­ and P is a (¾-additive) probability measure. Let C 2 A, with P (C) > 0.

De…nition 2.1. Let (­;A; P ) be a probability space and let C 2 A with P (C) > 0.
The probability space (­; A; P 0) is called a pre-conditional probability given C i¤
P 0(C) = 1 and the following assumption hold:

(A.A) If A;B 2 A and A;B µ C, then

P (A) = P (B) implies P 0(A) = P 0(B)

This de…nition arguably captures obvious requirements for any re-assignement
of probabilities when we have the added information that the outcome is one of
the elements of the event C. The requirement P 0(C) = 1 says simply that ”the
outcome is one of the elements of the event C”. Besides, the original assignment
of probabilities has to have an in‡uence on the new assignment, and not merely
be thrown away. It has to be re-worked in an even-handed way, and (A.A) is in
this sense a minimum requirement, expressing some sort of Aristotelian ”treat like
cases alike” principle.

Assumption (A.A) is rather mild, and it may be even unconstraining.

Example 2.1. Consider that ­ := f1; 2; 3; 4g, A is the set of all subsets of ­,
P (1) := 1

10
, P (2) := 3

10
, P (3) := 5

10
, P (4) := 1

10
, and C := f1; 2; 3g. Then any

probability space (­;A; P 0) is a pre-conditional probability given C, provided that C
is a support of P 0 (i.e. P 0(C) = 1).

The set function P (¢ j C) on A de…ned by

P (A j C) :=
P (A \ C)

P (C)
(4)

makes (­;A; P (¢ j C)) into a pre-conditional probability given C. We are interested
in the question of its uniqueness as a pre-conditional probability.

It is immediate that, if a probability space (­;A; P 0) satis…es P 0(C) = 1, then
the following three conditions are equivalent:

(i) P 0 = P (¢ j C), as de…ned in (4)
(ii) If A 2 A such that A µ C, then

P 0(A) =
P (A)

P (C)
(5)

(iii) If A;B 2 A such that A; B µ C and P (B) > 0, then P 0(B) > 0 and

P 0(A)

P 0(B)
=

P (A)

P (B)

Recall that A 2 A is an atom for P i¤: (a) P (A) > 0 and (b) for every B 2 F
with B µ A, either P (B) = 0 or P (B) = P (A). A probability measure P which
has no atoms is called non-atomic, and it is called atomic i¤ every E 2 A such that
P (E) > 0 contains an atom. If P is a probability measure, then there exist unique
probability measures P1 and P2 and ® 2 [0; 1] such that P = ®P1 + (1 ¡ ®)P2 and
such that P1 is atomic and P2 is non-atomic (see [6] for further discussion in the
general context of measures).

The following result is a particular case of a theorem of Sierpinski [9].
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Theorem 2.1. Let (­; A; P ) be a probability space with P non-atomic. If E 2 A
and P (E) > 0, then for every ® 2 [0; P (E)] there is an element F 2 A with F µ E
and P (F ) = ®.

Induction on k gives directly the next corollary of Theorem 2.1 (see [8]).

Corollary 2.2. Let P be non-atomic, and suppose E 2 A such that P (E) > 0.

Let ®i for i = 1; :::; k be real numbers with ®i > 0 and
kP

i=1

®i = P (E). Then E can

be decomposed as a union of disjoint sets Ei 2 A with P (Ei) = ®i for i = 1; :::; k.

Provided that a probability measure is non-atomic, we are going to see that any
pre-conditional probability is determined by the conditional probability formula.

Theorem 2.3. Let (­; A; P ) be a probability space and let C 2 A with P (C) > 0.
Suppose that (­;A; P 0) is a pre-conditional probability given C. If P is non-atomic,
then P 0 = P (¢ j C) as de…ned in (4).

Proof. Let A 2 A such that A µ C. In order to prove (5), it can be assumed,
without loss of generality, that P (A) > 0. The proof will be divided into three
steps.

(a) Consider the case P (A)
P (C) = 1

q , where q 2 N, q > 0.
Applying Corollary 2.2 to C, with ®i = 1

q
P (C) for i = 1; :::; q, there exist disjoint

sets C1; :::; Cq 2 A such that
qS

i=1
Ci = C and P (Ci) = 1

q P (C) = P (A) for i = 1; :::; q.

By (A.A), P 0(Ci) = P 0(A) for i = 1; :::; q, and thus P 0(A) = 1
q
P 0(

qS
i=1

Ci) = 1
q
.

Therefore P 0(A) = P (A)
P (C) , which is our claim.

(b) Consider the case P (A)
P (C) = p

q 2 Q, where p; q 2 N, p; q > 0, p · q.

Applying Corollary 2.2 to A, with ®i = 1
pP (A) for i = 1; :::; p, there exist

disjoint sets A1; :::; Ap 2 A such that
pS

i=1
Ai = A and P (Ai) = 1

p P (A) = 1
q P (C)

for i = 1; :::; p. Since P (Ai)
P (C) = 1

q for i = 1; :::; p, it follows from case (a) that

P 0(Ai) = P (Ai)
P (C)

for i = 1; :::; p. Therefore P 0(A) = P 0(
pS

i=1

Ai) = p
q

= P (A)
P (C)

.

(c) Consider the general case P (A)
P (C) = ¯ 2 ]0; 1].

There is a strictly increasing sequence (¯n) in ]0; ¯[ \ Q such that lim
n!1

¯n = ¯.

Write °n := P (C)
P (A)¯n for n = 1; 2; ::: ; obviously °n 2 ]0; 1[. We proceed to de…ne

inductively an expansive sequence (An) in A, with An µ A and P (An) = ¯nP (C).
For n = 1, by Theorem 2.1, there is A1 2 A, A1 µ A, such that P (A1) = °1P (A) =

¯1P (C). For n = 2, by Theorem 2.1, there is eA2 2 A, eA2 µ (A n A1), such that
P ( eA2) = °2¡°1

1¡°1
P (A n A1); let A2 := A1 [ eA2. We have

P (A2) = °1P (A) +
°2 ¡ °1

1 ¡ °1

(P (A) ¡ °1P (A)) = °2P (A) = ¯2P (C)

Suppose now that A1; :::;An 2 A are de…ned, such that Ai¡1 µ Ai µ A for i =

2; :::; n and P (An) = ¯nP (C). By Theorem 2.1, there is eAn+1 2 A, eAn+1 µ
(A n An), such that P ( eAn+1) =

°n+1¡°n

1¡°n
P (A n An); let An+1 := An [ eAn+1. We
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have

P (An+1) = °nP (A) +
°n+1 ¡ °n

1 ¡ °n

(P (A) ¡ °nP (A)) = °n+1P (A) = ¯n+1P (C)

which shows that the expansive sequence (An) is de…ned as intended. Since P (An)
P (C) =

¯n 2 Q, it follows from case (b) that P 0(An) = ¯n for n = 1; 2; ::: Therefore

P 0(
1S

n=1
An) = lim

n!1
¯n = ¯. On the other hand,

P (
1[

n=1

An) = ( lim
n!1

¯n)P (C) = ¯P (C) = P (A)

Hence, from (A.A), we have P 0(A) = P 0(
1S

n=1
An), and so P 0(A) = ¯ = P (A)

P (C)
.

Obviously (Example 2.1) the condition of P being non-atomic cannot be dropped
in Theorem 2.3.

3. Bayesian parametric inference

In standard Bayesian parametric inference we consider a probability space (S £
£; Bn+k; P ), where S is a Borel set in Rn, £ is a (generalized) interval in Rk, Bn+k is
the Borel ¾-algebra on S££ and P is a (¾-additive) probability measure. Here S is
interpreted as the sample space where the response vector Y takes values and £ as
the parameter space, each parameter µ determining a probability distribution for Y .
Recall that the marginal distributions PY and Pµ are de…ned by PY (A) := P (A££),
Pµ(B) := P (S £ B) for the corresponding Borelian sets A in S and B in £. In
accordance to practice (see [3] and [2]; note that improper prior distributions are
not being considered) we assume that in the parametric case Pµ is non-atomic. We
shall refer to (S £ £;Bn+k; P ) as the Bayesian parametric model.

For proofs of the following proposition see [1] or [4].

Proposition 3.1. Any atom of a Borel measure on a second countable Hausdor¤
space includes a singleton of positive measure.

Our last result is now immediate.

Proposition 3.2. Let (S £ £;Bn+k; P ) be the Bayesian parametric model. Then
P is non-atomic.

Proof. By Proposition 3.1, if P had an atom, then it would include a singleton of
positive measure, which contradicts that Pµ is non-atomic.

If the Bayesian parametric model is considered as a valid formulation of a sta-
tistical problem (essentially, if S £ £ can be given a joint probability distribution),
we conclude (taking (A.A) for granted) from Theorem 2.3 and Proposition 3.2 that
(H.2) follows, and thus Bayes’ formula for the posterior distribution can be applied
(provided that the measure-theoretic hypotheses for the suitable representation of
the probability distributions hold; see for instance [5]). Loosely speaking, the exis-
tence of a joint probability on S ££ is the only nontechnical hypothesis underlying
Bayesian parametric statistical inference.
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