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1. Gametogenesis 

The gametogenesis is among the most complex and highly regulated differentiation program that 

makes use of a unique reductional division or meiosis to give rise to highly specialized haploid cells: the 

gametes. The oocytes and spermatozoa thus generated are the most genetically (haploid recombinant 

products), epigenetically (histones replacement), and morphologically (oocytes and sperm) distinctive 

cells of an adult organism. Gametes are produced within the gonads, one of the most specialized organs 

as evidenced by their highest transcriptome complexity (Soumillon et al., 2013). 

The primordial germ cell (PGC) is the primary undifferentiated stem cell type progenitor of the 

germ line. PGCs have the potential to differentiate towards both spermatogonia or oogonia, the 

undifferentiated male and female germ cell respectively. Although some of the events taking place during 

gametogenesis are largely conserved, this differentiation process shows a high sexual dimorphism. The 

spermatogenic pathway during the embryogenesis involves the establishment of spermatogonial stem 

cells with a high proliferative potential that will proceed to meiosis in the puberty. The oogenic process is 

also dependent on PGCs that differentiate into oogonias in the embryo, that, by contrast, enter meiosis 

already in the fetal ovary.  

In mammals, a few pluripotent epiblast cells are specified during the early embryonic 

development acquiring a PGC fate. PGC specification is induced by extrinsic signals through the BMP and 

WNT signalling pathways (Kojima et al., 2017, Ohinata et al., 2009). This process differs between mouse 

and human (Tang et al., 2016). Mouse PGCs (mPGCs) induction takes place in the posterior epiblast before 

gastrulation (at day 6.5, E6.5). It is mediated by the combination of three key transcription factors: 

BLIMP1, PRDM14 and AP2γ  (Magnusdottir et al., 2013, Tang et al., 2016), and is dependent on the 

expression of pluripotency genes such as Sox2, Nanog and Oct4 (Hayashi et al., 2011). mPGCs appear as 

a cluster of about 40 cells at the base of the allantois at E7.5. However, humans PGCs (hPGCs) seem to 

arise at the time of gastrulation (at E18-19), from the mesodermal precursor cells. The specification of 

hPGCs is driven by TFAP2C, SOX17 and BLIMP1, without involvement of PRDM14 and SOX2, contrary to 

mice (Irie et al., 2015, Kojima et al., 2017, Pastor et al., 2018).  At week 4 (E24) hPGCs localize near the 

extra-embryonic yolk sac wall, close to the allantois.  

Both human and mouse PGCs migrate to the developing genital ridges (primitive gonads) 

between E28-36 or E10.5, respectively. The migratory PGCs undergo genome-wide epigenetic 

reprogramming to erase somatic memories, including global DNA demethylation, genomic imprinting 

erasure, X-chromosome inactivation and chromatin remodelling (histone modification patterns) (Hill et 

al., 2018, Seki et al., 2007, Surani, 2001). PGCs remain proliferative until around the tenth week aiming to 

increase their numbers. Around E44-49 (E13.5 in mice) PGCs begin sex-specific differentiation (sex 

determination) into spermatogonium or oogonium initiating a change in their gene expression profile 

(Ewen & Koopman, 2010, Tang et al., 2016). 
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1.1. Oogenesis   

 In mammalian females, PGCs enter the immature gonads where they differentiate into oogonias. 

In order to increase their number, these oogonias divide mitotically a limited number of divisions 

(approximately 20) with incomplete cytokinesis. This process results in the formation of synchronous and 

interconnected dividing oogonias (named germ cell cysts) surrounded by interacting somatic cells.  

Between the third and fifth month of embryonic development (E13.5 – 15.5 in mice) the entire pool of 

oogonias, within the cyst, initiates meiosis. The production of retinoic acid by the mesonephros induces 

the expression of Stra8 (stimulated by retinoic acid gene 8) as well as the upregulation of key meiotic 

genes (Rec8, Sycp3, Dmc1), leading to the entry into meiosis (Koubova et al., 2006, Menke et al., 2003, 

Nakatsuji & Chuma, 2001) . In this way, the oogonias differentiate into primary oocytes that arrest at the 

end of the meiotic prophase I before birth. This arrest occurs at the end of the diplotene, in a stage 

referred to as dictyate (Ewen & Koopman, 2010, Hilscher et al., 1974, McLaren, 1984). Concurrently, the 

germ cell cyst breakdown takes place leading to single oocytes surrounded by pre-granulosa cells also 

known as primordial follicles (Borum, 1961, Zhang et al., 2014). During this process, large numbers of 

oocytes are removed through programmed cell death (atresia) (Pepling & Spradling, 2001). Therefore, at 

the time of birth females already show a fully established ovarian endowment (ovarian reserve) 

(Zuckerman et al. 1951, (Monget et al., 2012).  

 In humans, the primary oocytes remain arrested in dictyate until puberty when they resume 

meiosis in small subsets of the oocyte population. The recruitment of the quiescent primordial follicles to 

mature into primary follicles starts during the fetal life. Since succesfull follicular growth depends on FSH, 

these follicles undergo cell death before puberty. Following puberty, monthly high levels of FSH induce 

the activation of a cohort of the arrested oocytes to complete meiosis. This activation triggers an increase 

in the size of the oocyte coupled to the proliferation of the granulosa cells surrounding the oocyte. Then, 

fluid-filled cavities between the granulosa layers of the preantral follicle give rise to the antrum of the so 

called antral follicles. Concomitantly with the antrum formation, the oocyte acquires meiotic competence, 

resuming meiosis. However, only one of the oocytes will complete meiosis I, generating a secondary 

oocyte with an extruded first polar body that will next initiate meiosis II up to metaphase II arrest. This 

arrested secondary oocyte surrounded by the zona pellucida and the corona radiata constitutes the De 

Graaf follicle. During the ovulation, this follicle breaks down releasing the oocyte. Only if it is fertilized, 

this secondary oocyte completes meiosis II, generating the mature egg and a second polar body. 

 Interestingly, the well-stablished concept that the entire pool of oocytes is set forth during 

embryogenesis has been questioned during the last years. Several studies support the existence of 

oogonial stem cells (OSCs) in the ovaries of adult mouse and women. These cells show stemness 

properties and are able to differentiate in vitro into oocytes (Johnson et al., 2004, White et al., 2012, Zou 

et al., 2009). In turns, those oocytes are even able to undergo meiosis and produce offspring after 

transplantation into recipient ovaries, showing the complete oocyte development. However, the 

existence of OSCs is controversial. These studies are based on the isolation of cells with germline and 

pluripotency markers, mainly DDX4 (Clarkson et al., 2018, White et al., 2012). However, several groups 

have been unable to detect the presence of these cells in adult ovaries (Hernandez et al., 2015, Zhang et 
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al., 2015) or to prove their ability to proliferate (Zhang et al., 2012). Moreover, although the process to 

generate a primary follicle from a stem cell is substantially long, there is no histological evidence of 

prefollicular germ cells in postnatal ovaries (Hernandez et al., 2015, Zhang et al., 2015).   

1.2. Spermatogenesis   

 In males, the PGCs migrate and enter the undifferentiated gonad, where the sexual 

differentiation to spermatogonial stem cells (SSCs) takes place. PGCs proliferate mitotically until E49 

(E12.5-14.5 in mice), when become arrested in a quiescent  G0/G1 phase called prospermatogonia stage. 

Shortly after birth, between 8 – 12 weeks (around 5 dpp (P5) in mice), many of the prospermatogonia 

resume active proliferation while some migrate to the basement membrane of the seminiferous tubules 

of the testis and differentiate into SSCs (Hilscher et al., 1974, Nikolic et al., 2016, Spradling et al., 2011, 

Western et al., 2008, Yoshida, 2010). The SSCs remain relatively quiescent until puberty. From this point, 

these SSCs self-renew to maintain stem cell population (spermatogonia AS) throughout the lifetime of the 

male, but at the same time, SSCs generate progenitor cells that proceed through spermatogenesis. To this 

end, SSCs can give rise to a pair of proliferating cells connected by an intercellular bridge (Apr) (de Rooij & 

Grootegoed, 1998, McLean et al., 2003). After subsequent mitotic divisions, Apr spermatogonia finally 

differentiate into B spermatogonia that are committed to entering meiosis. The incomplete cytoplasmatic 

divisions enable synchronous maturation of the germ cells which remain connected until individual 

spermatozoa are released into the lumen of the seminiferous tubules (de Rooij & Russell, 2000). Thus, the 

B spermatogonia undergoes meiosis giving rise to four haploid spermatids, that ultimately differentiate 

to mature sperm in the epididymides.  

The spermatogenesis in mammals occurs in a specialised microenvironment inside the 

seminiferous tubules. The Sertoli cells (sustentacular cells) act as the epithelial supporting cells of the 

seminiferous tubules. These somatic cells are located on the basis of the tubules, joined by tight junctions, 

generating the so-called blood testis barrier (BTB). The BTB isolates the inner region of the seminiferous 

tubules, where spermatogenesis takes place, from the immune system (Griswold, 1998, Smith & Braun, 

2012). Thus, the BTB creates two testicular compartments, the basal and the adluminal. The basal 

compartment contains the interstitial cell types (including Leydig, peritubular myoid, macrophage, 

dendritic cells) and the earlier germ cell types (spermatogonia and preleptotene spermatocytes) that are 

exposed to the extra-tubular environment. The adluminal compartment accommodates the meiotic 

(primary and secondary spermatocytes) and post-meiotic (round and elongating spermatids) germ cells. 

Thus, the BTB constitutes a transient compartment in which the cyst of germ cells push forward through 

the tight junctions to the lumen. Differentiation occurs through this barrier from the basal surface to the 

lumen of the tubule, once preleptotene cells cross the BTB entering the adluminal compartment (Smith 

& Braun, 2012).  

The spermatogenesis is a dynamic and uninterrupted process, in which successive rounds of 

spermatogenesis take place every 16 days in humans (8-9 days in mice), while the whole global process 

lasts approximately 72 days (34.5 days in mice). The beginning of each round of spermatogenesis occurs 

before the previous cycle has finished. Consequently, the seminiferous epithelium shows a mixture of 

germ cells in different stages. The most mature cells are displaced to the lumen as a consequence of the 
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push exerted by the cells that enter in a new cycle of spermatogenesis, which are located at the basis of 

the tubule. In the mouse, this process results in a coordinated spatial organization of cell types within the 

seminiferous tubule that allows distinguishing 12 stages (I-XII) of the epithelial cycle according to the 

group of germ cells that are located simultaneously in a section of it (Ahmed & de Rooij, 2009).  

 

2. Meiosis 

Meiosis is a specialized cell division acquired by eukaryotes with sexual reproduction whereby a 

diploid progenitor cell, after a unique round of DNA replication, performs two successive rounds of 

chromosome segregation generating haploid gametes. The first round of division or meiosis I is a 

reductional division in which the homologous chromosomes segregate to opposite poles. Then, during 

the second division or meiosis II (equational), it takes place the segregation of the sister chromatids 

(Handel & Schimenti, 2010, Page & Hawley, 2003). 

Meiosis comes from the Greek meioun, that means ‘to lessen’ (Farmer et al., 1905), fitting with 

the reduction of ploidy. Although meiosis most likely evolved from mitosis, there are some specific 

processes that allow the reductional division, such as pairing and synapsis between homologous 

chromosomes, recombination between non sister chromatids, crossover (CO) formation and the 

suppression of sister centromere separation during meiosis I (cohesion).  

Following the DNA replication during S-phase, germ cells initiate meiosis. The first phase of 

meiosis is prophase I and is the longest and most complex phase. The ultimate aim of this pathway is to 

physically connect homologues through the formation of crossovers by meiotic recombination. This 

physical linkage is essential for assuring that chromosome complement is precisely halved.  

2.1. The synaptonemal complex 

Prophase I is divided into five stages, leptonema, zygonema, pachynema, diplonema and 

diakinesis, attending to the behaviour of the chromosomes and the assembly/disassembly of the 

synaptonemal complex (SC). The SC is a proteinaceous structure that builds up between the homologous 

chromosomes, stabilizing the interactions between them. It is essential for the alignment and synapsis 

between the homologues, and acts as a platform for the meiotic recombination, thus allowing the 

accurate segregation of chromosomes (Handel & Schimenti, 2010, Hann et al., 2011). The SC was 

identified simultaneously in crayfish spermatocytes (Moses, 1956) and vertebrates (Fawcett, 1956) and is 

conserved among different species with sexual reproduction (von Wettstein, 1984, Zickler & Kleckner, 

1998).  

At the onset of prophase I, in leptonema, chromosomes begin to condense by organizing the 

chromatin into loops that tether at their bases into the chromosome axes were cohesins are located. At 

this point the chromosomes begin the search of the homologue in a process called pairing. Meanwhile, 

the backbone of the SC begins to assemble along the chromosomes as short stretches, giving rise to the 

axial elements (AEs). Throughout zygonema, homologous chromosomes begin to synapse thanks to the 

assembly of the transverse filaments (TFs) that join the two parallel AEs acting as the teeth of a zip. The 
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full synapsis is achieved in pachynema when the SC is completely assembled along the entire length of 

the homologues. At this point, AEs become to be called lateral elements (LEs). In the sex chromosomes X 

and Y synapsis is restricted to a short region of homology, referred to as pseudo-autosomic region (PAR) 

(Simmler et al., 1985). Afterwards, the TFs disassemble from diplonema to diakinesis, when the 

chromosomes reach the highest level of condensation prior to metaphase.    

Figure 1. Meiotic prophase I. The figure represents the process of synapsis and desynapsis between homologous 
chromosomes. Images below the diagram show spermatocytes in the different stages of prophase I labelling the SC 
proteins SYCP3 and SYCP1. 

 

Structurally, the SC displays a highly conserved organization from yeast to mammals. Electron 

microscopy has revealed that it is a tripartite structure of 200 nm wide. The two LEs appear as dark 

electron-dense structures, defining the limits of the SC. The LEs flank the poorly stained TFs that span the 

width of the central region (100 nm) perpendicular to an electron-dense central region of 20-40 nm, the 

central element (CE) (Hawley, 2011).  

 Despite the conserved ultrastructure across organisms, the different components of the SC do 

not show an apparent evolutionary relationship, with little if any sequence homology between them 

(Fraune et al., 2016, Grishaeva & Bogdanov, 2014). In the mammalian SC, to date, there have been 

identified seven different components: SYCP3 and SYCP2 in the LEs, the TF protein SYCP1 and the 

components of the CE SYCE1, SYCE2, SYCE3 and TEX12 (Costa et al., 2005, Hamer et al., 2006, Lammers et 

al., 1994, Meuwissen et al., 1992, Offenberg et al., 1998, Schramm et al., 2011). 

In mammals, synapsis initiation requires the previous formation of DSBs by SPO11 (Baudat et al., 

2013, Romanienko & Camerini-Otero, 2000). Although it is not still clearly understood, the initiation of 

the SC assembly could be regulated by SUMOylation similarly to how it occurs in yeast, as SYCP3 can be 

SUMOylated (Macqueen & Roeder, 2009). SYCP3 is the main structural component of the LEs and 

contributes to chromosome compaction stabilizing the chromatin loops (Syrjanen et al., 2017, Yuan et al., 

2002). SYCP3 and SYCP2 colocalize along the axes (Lammers et al., 1994, Offenberg et al., 1998) and are 

recruited to the chromosome axes in an interdependent manner that requires the previous assembly of 

the cohesins (Pelttari et al., 2001).  
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Figure 2. Tripartite structure of synaptonemal complex 

 

In zygotene, SYCP1 assembles as homodimers into the axes binding to the inner edge of the LEs 

through its C-terminal region. In the central region, SYCP1 establishes head-to-head interactions through 

the N-terminal region with SYCP1 dimers that emerge from the opposite LE, generating a zipper-like 

structure between the homologues (Liu et al., 1996). SYCP3 and SYCP1 are the bona-fide structural 

components of the SC, building the structural framework necessary for the assembly of the rest of the 

proteins of the complex. This is evident as SYCP3 and SYCP1 are able to self-assemble higher-order 

structures in the absence of other SC proteins (Fraune et al., 2012, Ollinger et al., 2005, Syrjanen et al., 

2014, Yuan et al., 1998). 

The nascent synapsis built up by SYCP1 is stabilized through the assembly of the CE proteins, that 

enable the elongation of synapsis generating the mature SC (Dunce et al., 2018). The study of the different 

mice mutants of the CE components together with interaction data have shown that the loading of the 

CE proteins takes place in sequential order. After the assembly of SYCP1, SYCE3 is hypothesized to be 

loaded into the axes which in turns recruits SYCE1. The assembled CE proteins act as synapsis initiation 

sites establishing specific interactions between SYCP1 and SYCE3, SYCE3 with SYCE1 (through the 

interaction of the C-term of SYCE1 with the N-term of SYCE3) (Hernandez-Hernandez et al., 2016, Lu et 

al., 2014) and also between SYCE1 and the N-term of SYCP1 (Costa et al., 2005), thus stabilising the initial 

tripartite structures (Bolcun-Filas et al., 2009, Costa et al., 2005, Schramm et al., 2011).  

Lastly, SYCE2 and TEX12 constitute the synapsis elongation complex which mediates the 

propagation of synapsis, stabilizing the long-range extension of the tripartite structure (Bolcun-Filas et al., 

2007, Davies et al., 2012, Hamer et al., 2008). They assemble discontinuously along the CE, arranged into 

a hetero-octamer formed by association of a tetramer of SYCE2 and two TEX12 dimers (Davies et al., 

2012). These complexes are recruited into a more inner domain of the CE (Costa & Cooke, 2007, Fraune 

et al., 2012), probably through the interaction of SYCE2 with SYCP1, SYCE3 and SYCE1 (Bolcun-Filas et al., 

2007, Costa et al., 2005, Hamer et al., 2006, Schramm et al., 2011).  
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The disassembly of the SC begins after the completion of the homologous recombination at the 

end of pachytene, when the crossovers have formed, and spans from diplotene to diakinesis. In mammals, 

SC disassembly is mediated by the kinases PLK1 and Aurora B, that are located in the central region of the 

SC from pachytene, and also CDK1/CyclinB1 (Jordan et al., 2012, Parra et al., 2003, Sun & Handel, 2008). 

PLK1 is thought to be responsible for the disassembly of the central region through phosphorylation of 

SYCP1 and TEX12 in diplotene (Jordan et al., 2012). Aurora B is involved in the disassembly of the LE. As a 

result of the desynapsis, Aurora B relocates to the centromere (Parra et al., 2003). This change might 

redistribute SYCP3 and SYCP2 from the LEs to the centromeres and the small interchromatid patches, as 

Aurora B inhibition compromises this process, but does not affect the CE disassembly (Sun & Handel, 

2008). In addition, at the end of prophase I, CDK1 is recruited to the SC by HSPA2 and thereupon interacts 

with CyclinB1, getting active (Zhu et al., 1997). Thus, CDK1 would participate in the disassembly of the SC 

through phosphorylation of components that are predicted to contain CDK1-phosphorylation sites, such 

as SYCP1 (Allen et al., 1996, Dix et al., 1997) or the centromeric SYCP3 in meiosis I (Sun & Handel, 2008). 

Nevertheless, the mechanism is not still clearly understood.  

Recently, the generation of partial loss-of-function CE mutants in Drosophila have allowed to 

determine the timely function of the CE not only in the pairing of homologues, but also in the regulation 

of the recombination rate and the placement of the COs in a different way in the X chromosome and the 

autosomes (Billmyre et al., 2019). 

Interestingly, the SC exhibits sexual dimorphism. The length of the axes of the SC are shorter in 

males than in females (Gruhn et al., 2013, Kleckner et al., 2003). Moreover, the structure of the SC is 

slightly different. The width of the structure in pachytene is smaller in oocytes. The female SC keeps the 

organization of the LEs, but show TFs of SYCP1 integrated deeper into the LE, together with a narrower 

structure of the CE (Agostinho et al., 2018). Despite there does not appear to be differences in the LEs 

structure, the depletion of SYCP3 and SYCP2 lead to different phenotypes between sexes (Yang et al., 

2006, Yuan et al., 2002, Yuan et al., 2000). The meiotic defects in these mice are more severe in 

spermatocytes, that fail to assemble the LEs, leading to infertility. Thus, these differences may be the 

result of a different composition of the SC or a poor checkpoint response in oocytes. The differences in 

the SC between sexes might have implications in the later process of meiotic recombination and the 

position of the COs.  

2.2. Meiotic recombination 

Concomitantly with synapsis, meiotic recombination takes place leading to COs at the end of 

prophase I. Crossing over is the process by which homologous chromosomes exchange non-sister 

chromatid segments leading to the formation of chiasmata. Due to the exchange of genetic material 

between chromosomes, the recombination is a non-mutagenic mechanism that generates genetic 

diversity within a population.  

Recombination starts with the formation of genetically programmed DSBs that are generated by 

the topoisomerase-like protein SPO11 at the early stage of prophase I (Baudat et al., 2000, Keeney et al., 

1997). DSBs are not generated randomly but preferentially in permissive regions of the genome known as 
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hotspots. At the onset of leptotene, the histone-lysine methyltransferase PRDM9 catalyses the 

trimethylation of H3K4 at recombination hotspots (Baudat et al., 2010, Parvanov et al., 2010). These 

epigenetic marks promote the recruitment of SPO11, that in association with other proteins (MEI4, 

REC114, IHO or MEI1 in mammals), catalyze the endonucleolytic cut of the DNA that ultimately generates 

the DSBs (Kumar et al., 2015, Kumar et al., 2018, Libby et al., 2002, Libby et al., 2003, Stanzione et al., 

2016). SPO11 is removed from the cleaved DNA by the MRN complex through endonucleolytic cleavage 

(Neale et al., 2005). In response to the presence of DSBs, ATM phosphorylates the histone variant H2AX 

in the sites of breakage (Bellani et al., 2005), triggering a network of DSB repair responses. 

Figure 3. Meiotic recombination. Representation of the pathways of meiotic DSBs repair and proteins 

involved in each step.   

 

Further processing of the DSBs involves the resection of 5’-overhanging ends by the exonuclease 

EXO1, generating 3’-overhanging ssDNA (single-stranded DNA) ends (Wei et al., 2003, Zakharyevich et al., 

2010).  After that, the ssDNA binding protein RPA is recruited to the 3’-ends, protecting them from the 

nucleases and acting as a primary effector of the homology search process (Moens et al., 2002). 

Thereupon, BRCA2 removes RPA by recruiting the recombinases RAD51 and DMC1, that are responsible 

for the strand invasion of the homologous chromosome that finally generates a typical displacement loop 

(D-loop) (Brown & Bishop, 2014, Jensen et al., 2010, Moens et al., 1997, Tarsounas et al., 1999, Zhao et 

al., 2015). RAD51 and DMC1 mark the DSBs and are detected as 200-300 discrete foci in the chromosome 

axes in leptotene named early recombination nodules (Baudat et al., 2013, Moens et al., 2007, Tarsounas 

et al., 1999). As prophase progresses, the early recombination nodules mature into intermediate nodules 

that are characterized by the presence of RPA (RPA-MEIOB-SPATA22 complex) (La Salle et al., 2012, Luo 

et al., 2013, Oliver-Bonet et al., 2007, Souquet et al., 2013) , and thereupon MSH4 and MSH5 (de Vries et 
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al., 1999, Moens et al., 2002, Neyton et al., 2004, Snowden et al., 2004). The recombination intermediates 

can be processed via different pathways to produce non-crossovers (NCO) or crossovers (Hunter, 2015). 

In mammals, the vast majority of the DSBs are processed as NCO and only between 10-25% of the DSBs 

produce COs (approximately 23 COs per cell in mice).  When the D-loop is not stabilised, the DSB is going 

to be repaired without reciprocal exchange of DNA between the homologues producing a NCO (Baudat & 

de Massy, 2007, McMahill et al., 2007, Paques & Haber, 1999, Youds & Boulton, 2011). On the contrary, 

when the second end of the DSB also engages the homologue, generates a double Holliday junction (dHJ) 

that will be resolved mainly as a CO in which flanking DNA sequences are reciprocally exchanged (Allers 

& Lichten, 2001, Hunter, 2015, Hunter & Kleckner, 2001). The resolution of the dHJ involves MLH1, MLH3, 

and EXO1 (Baker et al., 1996, Santucci-Darmanin et al., 2002). The final products of recombination are 

generated in pachytene, either COs or NCOs, ensuring that each bivalent has at least one CO.  

DSB distribution and recombination rate 

The spatial distribution of the DSBs along the genome is not random but is influenced by a 

combination of factors that make certain regions more prone to DSB formation (hotspots). The location 

of these DSBs and the subsequent COs is important for genome integrity and influences the frequency of 

DNA mutations and the presence of genome rearrangements  (Kim et al., 2016). In mice and humans, 

recombination hotspots are located in both genic and intergenic regions, although are less frequent in 

transcribed genes (Arnheim et al., 2007, Coop et al., 2008, International HapMap et al., 2007, Kong et al., 

2010, Lu et al., 2012, McVean et al., 2004, Myers et al., 2005, Smagulova et al., 2011). Most of the hotspots 

are H3K4me3-enriched sites determined by PRDM9 (Baudat et al., 2010, Brick et al., 2012, Grey et al., 

2011, Parvanov et al., 2010). However, Prdm9-/- spermatocytes show a different distribution of DSBs 

located in H3K4me3-sites, suggesting that additional requirements seem to be necessary for the hotspot 

designation (Brick et al., 2012). Moreover, PRDM9 genetic polymorphisms give rise to distinct DNA binding 

domains (zinc finger motifs) influencing its sequence preference (Pratto et al., 2014).  

Another factor influencing the distribution of the COs is the higher order chromosome structure. 

DSBs are generated in the context of the chromosome axis, with DNA organized in chromatin loops. 

Changes in the spacing of loops along the axes affect DSB generation (Kauppi et al., 2011, Kleckner et al., 

2003, Novak et al., 2008). Similarly to the yeast Hop1 and the cohesin REC8 (Carballo et al., 2008, Kugou 

et al., 2009), in mammals, HORMAD1 (ortholog of Hop1) or the different cohesins could be required for 

normal DSB levels (Daniel et al., 2011, Shin et al., 2010). Further investigations are needed to shed some 

light in this aspect. Moreover, the SC constitutes the framework for homologous recombination. In fact, 

some of the proteins of the recombination machinery associate physically to the SC. Among them, RAD51 

interacts with the SC proteins SYCP1 and SYCE2, and TEX11 interacts with SYCP2 (Bolcun-Filas et al., 2009, 

Tarsounas et al., 1999, Yang et al., 2008). Therefore, a molecular link between synapsis and recombination 

clearly exists, although the precise mechanism is far from being understood.  

The number of COs generated across the genome differs also between individuals of the same 

species. The recombination rate is affected by different variants in the genome sequence. In humans, it 

has been identified several genetic polymorphisms that affect genome-wide frequency of COs, some of 

them in known meiotic key genes, such as PRDM9  (Halldorsson et al., 2019, Kong et al., 2014). Other 
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identified genes encode proteins involved in recombination, such as RNF212, HEI10 or MSH4, and the 

meiosis-specific cohesins RAD21L and SMC1Β. In addition, it has been suggested that the SC could have a 

direct role in the regulation of both the recombination rate and the CO locations, as polymorphisms in 

the genes of the SC components SYCP3, SYCE1 and SYCE2 apparently affect the human recombination rate 

(Halldorsson et al., 2019). This might regulate the processing of the recombination intermediates into CO 

or NCOs. Furthermore, the recombination rate is also sexually dimorphic, with higher number of COs in 

females (Brick et al., 2018, de Boer et al., 2015). Moreover, the above-mentioned sequence variants result 

in different outcome between males and females (Halldorsson et al., 2019, Kong et al., 2014). These 

differences are due to a different usage of hotspots dependent on the sex (Brick et al., 2018).  

 

3. Cohesin complexes in meiosis 

Once the chromosomes are replicated in the S-phase, chromatids are held together by a 

mechanism called cohesion that ensures the subsequent accurate segregation of sister chromatids in both 

mitosis and meiosis. The molecular mechanism responsible for the maintenance of the association 

between sister chromatids is a multi-protein complex that entraps them until the onset of anaphase, the 

cohesin complex.  

Structurally, the cohesin complex is a ring-shaped structure that consists of four different core 

subunits. The somatic cohesin complex is constituted by a V-shaped heterodimer of two subunits of the 

structural maintenance of the chromosomes (SMC) protein family, SMC3 and SMC1α, which is bridged by 

the α-kleisin subunit RAD21 closing the ring. The fourth subunit is a stromal antigen protein, STAG1 or 

STAG2, that interacts with the α-kleisin (Losada & Hirano, 2005, Nasmyth & Haering, 2009). In addition, 

there are meiotic-specific paralogs of these proteins: SMC1β, the kleisins REC8 and RAD21L and the 

stromal antigen protein STAG3 (Gutierrez-Caballero et al., 2011, Parisi et al., 1999, Pezzi et al., 2000, Prieto 

et al., 2001, Revenkova et al., 2001). Hence, in meiosis at least six different cohesin complexes are 

generated in addition to the two somatic complexes (Biswas et al., 2016, Gutierrez-Caballero et al., 2011, 

Ishiguro et al., 2011, Lee & Hirano, 2011, Winters et al., 2014). Meiotic cohesin complexes not only 

mediate cohesion between sister chromatids, but are crucial for meiosis-specific chromosomal events, 

such as the assembly of the SC, the repair of DSBs and the meiotic recombination during prophase I  

(Bannister et al., 2004, Novak et al., 2008, Xu et al., 2005).  

Figure 4. Cohesin complex in mammals. The meiotic specific subunits are indicated in brackets. 
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Sister chromatid cohesion is presumably established after the premeiotic S phase by the α-kleisin 

RAD21 complexed with SMC3 and SMC1α or SMC1β subunits, while REC8 and RAD21L are responsible for 

homologues pairing (Herran et al., 2011, Ishiguro et al., 2011, Xu et al., 2005). By early leptotene, the 

RAD21L-containing cohesins mediate the clustering of the pericentromeric heterochromatin, necessary 

for the formation of the bouquet and the pairing of the homologues (Herran et al., 2011, Ward et al., 

2016). During this early stage of prophase, centromeric cohesion seems to be mostly provided by 

SMC1α/RAD21-containing cohesins (Biswas et al., 2016). This role is replaced in zygotene by SMC1β-

containing cohesins complexed mainly with REC8 (Biswas et al., 2016, Herran et al., 2011, Llano et al., 

2012, Ward et al., 2016).  

In mammals, the cohesin subunits decorate the AEs of the SC. The meiotic kleisins REC8 and 

RAD21L have non-overlapping patterns along the chromosome axes.  REC8 is located into the axes during 

all prophase I, being underrepresented into the XY chromosomes. Meanwhile, RAD21L vanishes in 

diplotene along the desynapsing lateral elements (LEs) and remains enriched at the sex chromosomes 

(Vara et al., 2019). Both REC8 and RAD21L-containing cohesins are essential for the association of the AE 

proteins to the axis, which is a prerequisite for SC formation, and determine the axis length (Biswas et al., 

2016). These kleisins appear to act synergistically, as evidenced by the abolishment of AEs formation in 

the Rec8-/- Rad21l-/- double mutants (Llano et al., 2012).  

A key feature of meiosis is the maintenance of the centromeric cohesion during the first meiotic 

division, that is mediated by REC8 (Bannister et al., 2004, Parisi et al., 1999, Tachibana-Konwalski et al., 

2010). In metaphase I, REC8 appears with increased levels into the inter-chromatid domain, and also in 

the centromeres, where remains  bound until metaphase II (Eijpe et al., 2003, Lee et al., 2003). RAD21L is 

also associated to the centromeres from metaphase I until anaphase II (Herran et al., 2011).  

STAG3 is the main STAG subunit in meiosis and is common to all meiosis-specific cohesin 

complexes. Regarding the somatic STAG1 and STAG2 cohesins, they have been reported to be present 

into the meiotic chromosomes and might be involved in sister chromatid cohesion during diplotene 

(Prieto et al., 2002). However, their role in meiosis is not still clearly understood. 

Cohesins are also involved in the repair of DSBs during the homologous meiotic recombination 

(Herran et al., 2011, Revenkova et al., 2004, Xu et al., 2005). In addition, there is evidence for cohesins 

acting in the formation of the DSBs, as most DSBs-promoting proteins are located in the chromosome axis 

(Biswas et al., 2016, Kumar et al., 2015, Llano et al., 2012, Parvanov et al., 2017). It has been proposed a 

model by which cohesins associated to the axes would coordinate events for hotspot activation of DSBs 

(acting as a molecular scaffold) to arrange DSB-initiating proteins at recombination sites (Bhattacharyya 

et al., 2019). 

Furthermore, cohesins participate in transcription regulation through the interaction with CTCF 

(CCCTC-binding factor) or Mediator, generating DNA loops that establish promoter-enhancer interactions 

(Kagey et al., 2010, Nitzsche et al., 2011, Phillips-Cremins et al., 2013, Wendt et al., 2008). This ability 

associated to CTCF enables the compartmentalization of the genome into topologically associating 

domains (TADs) (Merkenschlager & Nora, 2016, Zuin et al., 2014).  Recently, it has been described how 
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cohesins are involved in chromatin remodelling during spermatogenesis and its relation to transcriptional 

changes (Alavattam et al., 2019, Patel et al., 2019, Vara et al., 2019, Wang et al., 2019). Spermatogonia 

show well-defined TADs and compartments. Those TADs are rearranged through prophase, leading to a 

high decrease of inter and intra-chromosomal interactions and the subsequent loss of both compartments 

and TADs. These compartimentalization reemerge in postmeiotic cells. In addition to the CTCF and 

cohesins that establish TAD boundaries, cohesins are also associated with active promoters located out 

of the chromosome axes (Vara et al., 2019).   

3.1. Cohesin release and its role in chromosome dynamics 

In metaphase I the two homologous chromosomes of each bivalent are  tightly bound through 

the chiasmata, which are stabilized by cohesion distal to the CO. This allows the biorientation of the 

bivalents, opposing the force exerted by the spindle (Buonomo et al., 2000). Cohesins are removed from 

the chromosome arms and the centromeres in two steps because of the existence of two successive 

waves of activation of Separase, a cysteine protease that cleaves specifically the α-kleisin subunit in the 

onset of anaphase (Buonomo et al., 2000, Hauf et al., 2001, Uhlmann et al., 2000). At the onset of 

anaphase I, the first activation of the protease Separase releases cohesins from the arms, allowing the 

segregation of the homologues to opposite poles (Buonomo et al., 2000, Haering & Nasmyth, 2003, Kudo 

et al., 2009, Kudo et al., 2006). Cohesins remain associated at the centromeres of the chromosomes, 

maintaining the cohesion between sister chromatids until the second meiotic division when they are 

finally released by the second separase activation, leading to the segregation of sister chromatids to 

generate haploid gametes. Missegregation of chromosomes either in meiosis I/II results in the formation 

of aneuploid germ cells, leading to infertility, miscarriages or chromosomal abnormalities (Handel & 

Schimenti, 2010, Nagaoka et al., 2012).  

Given the relevance of the stepwise activation of Separase, its activity must be tightly regulated 

to avoid miss-segregation of chromosomes or sister chromatids. In vertebrates, the role of Separase is 

regulated by two different inhibitors, Securin and CDK1. Securin is a dual regulator that binds Separase 

avoiding the access of the substrates to its catalytic site. Besides, Securin also acts as a chaperone that 

prevents the conformational change of Separase necessary for the activation of its proteolytic active site 

that is required for the recognition of the substrate cleavage site (Hornig et al., 2002). In addition, 

Separase is also inhibited by CDK1/CyclinB1 through phosphorylation (Huang et al., 2008, Huang et al., 

2005, Stemmann et al., 2001). These inhibitory mechanisms are mutually exclusive, as Separase cannot 

fasten simultaneously both Securin and CDK1/CyclinB1. Although these regulators bind to different sites 

of Separase, the attachment of one of them stabilizes a conformation of Separase that is not recognized 

by the other one (Gorr et al., 2005).  

 Once the bivalents are correctly bioriented and aligned at the metaphase plate, and the spindle 

assembly checkpoint (SAC) requirements have been satisfied, the anaphase promoting complex (APC/C) 

is activated. APC/C through the interaction with its cofactor Cdc20 ubiquitylates both Securin and 

CyclinB1, targeting them for degradation by the proteasome (Cohen-Fix et al., 1996, Funabiki et al., 1996b, 

Hagting et al., 2002, Vorlaufer & Peters, 1998). In that way, Separase is activated and recognizes its 

cleavage site in the kleisin subunit (EXXR), leading to the cut and subsequent dissociation of the cohesin 
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complexes. The activation of Separase takes place through auto-proteolytic processing in several sites 

with the same consensus sequence than the one present in the kleisins (Chestukhin et al., 2003, Papi et 

al., 2005, Waizenegger et al., 2002). More recently, Separase has been reported to play a role in the 

release of cohesins during the DNA damage response (Hellmuth et al., 2018). This novel function of 

Separase remains still unexplored in meiosis. 

Figure 5. Cohesin release during meiosis I/II by Separase. 

Securin 

 Securin is a highly conserved protein across evolution. In mammals, Securin is encoded by the 

gene Pttg1 (Pituitary tumour transforming gene), firstly described in a rat pituitary tumour cell line (Pei & 

Melmed, 1997). It was not until later on that PTTG1 was identified as the vertebrate Securin counterpart 

(Zou et al., 1999). In addition to its role as a Separase regulator, PTTG1 also acts as a transcription factor, 

regulating the expression of genes such as p53, Sp1, c-Myc, cyclinD3 or p21 and the DNA damage response 

through the interaction with Ku dsDNA kinase (reviewed in (Tong & Eigler, 2009)). Human Securin is over-

expressed in a large variety of human tumours acting as an oncogene, but it has also been reported to act 

as tumour suppressor (Honda et al., 2003, Kakar & Jennes, 1999, Lee et al., 1999, Rehfeld et al., 2006). 

Securin is essential for the viability of fission yeast (Cut2) and Drosophila (Pimples) and its genetic 

depletion results in defective sister chromatid separation during mitosis (Alexandru et al., 1999, Funabiki 

et al., 1996a, Stratmann & Lehner, 1996). However, it is dispensable in S. cerevisiae (Pds1p), due to the 

existence of additional mechanisms of inhibition of Separase, although its deficiency causes genome 

instability (Yamamoto et al., 1996).  Likewise, Securin is also not essential in mammals. Previous studies 

in Securin-deficient human cell lines did not show large defects in the progression of the cell cycle nor in 

the cohesion between sister chromatids (Jallepalli et al., 2001, Pfleghaar et al., 2005). Accordingly, several 
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mouse models lacking Securin independently generated using different gene targeting strategies are 

viable and fertile, although they present some somatic defects such as thymic hyperplasia,  

thrombocytopenia, diabetes, and spleen and testis hypoplasia (Mei et al., 2001, Wang et al., 2001). In 

contrast to these observations, cultured oocytes expressing a non-degradable Securin isoform led to non-

disjunction of the sister chromatids, whereas its downregulation by an antisense morpholino caused 

premature loss of cohesion between sister chromatids in metaphase II (Madgwick et al., 2004, Nabti et 

al., 2008).  

Previous work in our group sought to study which is the role of Securin in spermatogenesis 

through the analysis of the reported Securin-/- mice (Wang et al., 2001). The lack of Securin caused an 

abnormal persistance of SYCP3 from prometaphase II onwards  connecting the sister kinetochores that 

led to segregation defects during meiosis II. As a result, the generated spermatids were aneuploid, which 

would explain the subfertility of the Securin-/- mice. Interestingly, the genetic depletion of the shugoshin 

Sgol2 in these mice, a model of loss of centromeric cohesion (Llano et al., 2008), rescued almost 

completely the aberrant presence of SYCP3 in the second meiotic division. Thus, these results were 

discussed in terms that the defects in spermatogenesis in the absence of Securin could be due to an 

aberrant remodelling of centromeres during interkinesis, and suggested that this role of Securin would be 

probably dependent on RAD21L and REC8 cohesin complexes (Herrán Y. PhD thesis 2012).    

Cohesin protection and its involvement in chromosome dynamics 

  The need of maintaining the centromeric cohesion until the onset of anaphase II make necessary 

the existence of a mechanism that protects cohesins from the two Separase waves of activation occurring 

at the anaphase I and II. The responsible molecules are a family of highly conserved proteins named 

shugoshins (‘guardian spirit’ in Japanese). The first member identified was the MEI-S332 protein from 

Drosophila (Kerrebrock et al., 1995). In vertebrates, as well as in S. pombe, two members of this family 

have been identified, SGOL1 and SGOL2 (Kitajima et al., 2006, Rivera et al., 2012, Salic et al., 2004).  

 In mammals, SGOL2 protects the centromeric REC8-based cohesins from Separase cleavage until 

the onset of anaphase II. Mice lacking SGOL2 are infertile due to precocious sister chromatid separation 

in anaphase I (Lee et al., 2008, Llano et al., 2008). As a result of this lack of cohesion, chromatids segregate 

randomly during meiosis II.  

SGOL2 is recruited to the inner centromere of the chromosomes from diplotene by several 

histone modifications at the centromeric chromatin. On the one hand, in vertebrates, the SGOL2 

localization is dependent on the phosphorylation of the histone H2AT120 by the SAC protein BUB1 

(Kawashima et al., 2010). The kinase Mps1 is, on the other hand, required for the recruitment of BUB1 to 

the pericentromere, where it recruits SGOL2 through phosphorylation of H2AT120. But also, both Mps1 

and BUB1 induce synergistically the loading of SGOL2 to the centromere, independently on their kinase 

activities (El Yakoubi et al., 2017). Furthermore, it has been postulated the existence of additional 

pathways involved in the SGOL2 recruitment such as the Haspin kinase-dependent Histone H3T3 

phosphorylation (Dai et al., 2005, El Yakoubi et al., 2017), which acts as a chromatin binding site for the 

CPC (Chromosomal Passenger Complex) (Kelly et al., 2010, Nguyen et al., 2014, Wang et al., 2011, 



Introduction 

 

17 
 

Yamagishi et al., 2010). Haspin is also activated by CDK1 and PLK1-dependent phosphorylation (Zhou et 

al., 2014). The CPC is constituted by four subunits, Survivin, Borealin, INCENP and the catalytic subunit 

Aurora B and is involved in the SAC and in the error correction in the attachment to the spindle (van der 

Horst & Lens, 2014). The CDK1-dependent phosphorylation of Borealin contributes to the recruitment of 

the CPC to the centromere through interaction with SGOL2 (Boyarchuk et al., 2007, Tsukahara et al., 2010, 

Yamagishi et al., 2010). Once active, Aurora B mediates the phosphorylation of H3S10, a docking site for 

SGOL2 in the centromere. Due to the existence of a positive feedback loop between Aurora B and Haspin, 

Aurora B enhances the kinase activity of Haspin on H3T3 (Wang et al., 2011, Zhou et al., 2014). 

SGOL2 mediates the protection of the centromeric cohesins in meiosis I through recruitment of 

the phosphatase PP2A-B56, that counteracts the phosphorylation of REC8, preventing it for being cleaved 

by Separase (Lee et al., 2008, Llano et al., 2008, Rattani et al., 2013). The localization of SGOL2 in the 

centromeres in MI is stabilized by MEIKIN, a protein involved in kinetochore mono-orientation, through 

interaction with PLK1. Spermatocytes lacking MEIKIN result in a decrease of SGOL2 levels, leading to 

similar but milder defects in cohesion than in the Sgol2-/- mice (Kim et al., 2015).  

During meiosis II, SGOL2 is redistributed from the inner centromere towards the kinetochores as 

a consequence of the tension across the centromeres. This redistribution of SGOL2 leaves cohesins 

unprotected to be released by Separase in anaphase II (Gomez et al., 2007, Lee et al., 2008). Together 

with that, PP2A is also involved in the deprotection of cohesins in meiosis II. PP2A colocalizes with REC8 

in the centromere in metaphase II in mice oocytes. The inhibition of PP2A by its inhibitor I2PP2A would 

allow the efficient phosphorylation of REC8 necessary for its cleavage at the onset of anaphase II 

(Chambon et al., 2013).  

 SGOL2 also participates in the silencing of the SAC through its interaction with MAD2 and PP2A 

(Orth et al., 2011, Rattani et al., 2013, Rivera et al., 2012), and in the correction of erroneous kinetochore-

microtubule attachment through the recruitment of MCAK to the centromeres (Huang et al., 2007, Rattani 

et al., 2013). The recruitment of both PP2A and MCAK to the centromeres is dependent on the 

phosphorylation of SGOL2 by Aurora B (Tanno et al., 2010). Together with the direct protection of the 

cohesins, SGOL2 also promotes meiotic centromere pairing by protecting the centromeric synaptonemal 

complex components from disassembly during the latter stages of prophase (Previato de Almeida et al., 

2019).   

 

4. The proteasome and its role in meiosis 

The homeostasis of intracellular proteins is controlled through the balance between the 

synthesis and degradation rates. The ubiquitin-proteasome system (UPS) catalyses the degradation of the 

bulk of cellular proteins. As the central constituent of the UPS, the proteasome degrades proteins typically 

labelled with ubiquitin through its ATP-driven proteolytic activity (Collins & Goldberg, 2017). Its main 

targets are misfolded and damaged proteins, in addition to regulatory proteins that require a fine-tuned 

kinetics of synthesis and degradation, such as cyclins (Belle et al., 2006, Goldberg, 2003). Recently it has 

been hypothesized a specific role of the proteasome in meiosis, so that a pathway mediated by SUMO-
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Ubiquitin-proteasome might be involved in the regulation of COs metabolism through its physical 

association to the AEs (Ahuja et al., 2017, Rao et al., 2017).  

4.1. Structure and function of the proteasome 

The constitutive 26S proteasome is a multi-subunit protease complex that is composed by a core 

particle (CP, 20S), that constitutes the base of the proteasome and retains the catalytic activity; and one 

or two regulatory particles (RPs, 19S) that cap either end of the CP regulating the access of the substrates 

(Groll et al., 1997, Schmidt et al., 2005). In turns, the CP is a cylindrical structure that consists of 4 stacked 

hetero-heptameric rings, arranged as two central rings of β-type subunits and two α-rings in the ends 

(α1–7, β1–7, β1–7, α1–7) (Collins & Goldberg, 2017, Murata et al., 2009). The catalytic activity resides in 

the β-rings, specifically in the β1, β2 and β5 subunits, that have Thr-protease activity (caspase-like, trypsin-

like and chymotrypsin-like activities respectively) (Arendt & Hochstrasser, 1997, Heinemeyer et al., 2004). 

The α-rings act as a gate for the entry of the substrates into the proteolytic chamber (Finley et al., 2016). 

 The 19S particle is the most common RP of the 26S proteasome. The 19S RP selects substrates 

through the recognition of poly-ubiquitin chains (Coux et al., 1996, Finley et al., 2016, Glickman & 

Ciechanover, 2002). There are additional proteasome activators that can bind the CP: the 11S regulator 

PA28α/β/γ and PA200 (Psme4) (Rock & Goldberg, 1999, Schmidt et al., 2005, Ustrell et al., 2005). The 20S 

proteasome associated with either of these regulators, PA200 or PA28, has been reported to target 

substrates for degradation independently of ubiquitin. The 20S-PA28 α/β is involved in the generation of 

MHC class I peptides for antigen presentation (Rock et al., 2002), while the 20S-PA200 proteasomes 

mediate the acetylation-dependent degradation of core histones during the DNA damage response in 

somatic cells and spermiogenesis (Khor et al., 2006, Qian et al., 2013). In addition, the CP can associate to 

different RPs simultaneously in each end, leading to hybrid proteasomes, although their frequency is 

lower (Cascio et al., 2002, Tanahashi et al., 2000).  

 

Figure X. Structure of the proteasome.  
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Even though the proteasome is highly conserved between organisms, in vertebrates there are 

additional subunits to the 20S constitutive ones. The diversity in the core subunits allows the existence of 

tissue-specific proteasomes: the immunoproteasome, the thymoproteasome and the 

spermatoproteasome. The immunoproteasome is characterized by the presence of β1i, β2i and β5i 

subunits (Griffin et al., 1998), while the thymoproteasome carries the specific subunit β5t that is 

expressed specifically in the thymus (Murata et al., 2007). Both of them are involved in the adaptive 

immune response (Heink et al., 2005, Murata et al., 2007). In addition, a testis-specific proteasome 

(spermatoproteasome) has been defined as the PA200-containing proteasomes (Qian et al., 2013), 

despite the fact that PA200 is expressed in most tissues.  

4.2. The Ub/SUMO system in meiosis 

 The UPS and SUMO (small ubiquitin-like modifier)-modification (SMS) systems are key regulators 

of cellular proteostasis. They can compete for the same substrate or act coordinately in different cellular 

processes such as DSB repair (Praefcke et al., 2012). Specifically, the proteasome would regulate essential 

events of the meiotic prophase, including homologous pairing and CO metabolism (Ahuja et al., 2017, Rao 

et al., 2017). According to this role, the proteasomes localized to the chromosome axis in prophase I, and 

its distribution is conserved between yeast, C.elegans and mammals. 

Analogously to the distribution of the proteasome in prophase I, Ubiquitin and SUMO are also 

localized in the SC during zygotene and pachytene (Rao et al., 2017). The enzymes responsible for these 

posttranslational modifications in meiosis are HEI10 (E3 Ubiquitin-ligase) and RNF212 (E3 SUMO-ligase) 

(Reynolds et al., 2013, Toby et al., 2003). In mammals, RNF212 and HEI10 establish a system of SUMO-

Ubiquitin-proteasome recruitment to the chromosome axis and it has been hypothesized to regulate the 

turnover of the ZMM proteins (MutS, MSH4 or TEX11) that are essential in meiotic recombination (Rao et 

al., 2017). In this way, it has been proposed that the balance between them would modulate the 

recombination rate, so that, RNF212 would stabilize the recombination nodules, promoting their 

processing into COs, but the subsequent action of HEI10-proteasome would destabilize them promoting 

NCOs (Qiao et al., 2014, Rao et al., 2017). Furthermore, in S.cereviasie the recruitment of the proteasome 

to the axes regulates synapsis between chromosomes, correcting non-homologous associations through 

the removal of SC proteins. In like manner, it would be involved in the desynapsis at the end of prophase 

(Ahuja et al., 2017).  

Likewise to mitosis where the proteasome system regulates the anaphase onset by the 

ubiquitination of Securin and cyclinB1 through the E3 Ub-ligase APC/C, the meiotic anaphase I and II onset 

would also be regulated in the same manner (Hagting et al., 2002, Vorlaufer & Peters, 1998). 

Histone replacement 

The UPS plays also specific functions during spermiogenesis by targeting histones for degradation 

during the replacement of histones by protamines, leading to a higher compaction of the chromatin in 

the sperm. Core histones are hyperacetylated prior to their replacement, creating an opened chromatin 

with unstable nucleosomes that facilitate their replacement and subsequent degradation (Braun, 2001). 
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PA200 is the most common activator in testis proteasomes (90% of testis proteasomes contains at least 

one PA200 activator). Proteasomes containing PA200 carry out the degradation of acetylated-histones 

during the histone exchange in spermiogenesis (Qian et al., 2013) so that the Pa200-/- mice show delayed 

replacement of these histones, leading to subfertility (Khor et al., 2006, Qian et al., 2013). It has been 

proposed that these PA200-containing proteasomes would constitute the testis specific 

spermatoproteasome. However, it has been identified a specific subunit expressed exclusively in male 

germ cells, the α4s, encoded by PSMA8 gene, a paralog of α4 (PSMA7) that is present in most of these 

PA200-containing proteasomes (Qian et al., 2013, Uechi et al., 2014). Notwithstanding, further 

investigations about the spermatoproteasome, and, more precisely, of the α4s subunit, should be carried 

out to clarify their specific roles in meiosis.  
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The gametogenesis involves numerous processes that take place in a highly coordinated and 

strictly regulated manner to finally generate the haploid gametes from diploid progenitors. In order to 

deepen in this specialized cell division process, we decided to analyze several aspects of the mammalian 

gametogenesis through the study of mice mutants models for different candidate genes. During the 

meiotic prophase, the cohesion between homologous chromosomes is established by the cohesin 

complex that provides essential roles in meiosis. Previously, in our laboratory it had been analysed the 

implication of the meiotic cohesin STAG3 in female fertility, but its involvement in males remained elusive. 

In addition, the need of a tight regulation of Separase activation to ensure the accurate release of 

cohesins, and consequently, the accurate segregation of chromosomes, leads to the existence of 

redundant mechanisms for the control of this protease, among them Securin. Previous data from our 

group indicate that the lack of Securin results in aneuploid spermatids due to missegregation defects in 

meiosis II, probably due to a defective release of cohesins. Further analysis of the Securin-/- 

spermatogenesis is necessary to understand the role this Separase inhibitor in meiosis.   In addition, a 

critical aspect of meiosis is the meiotic recombination, so we prompted to analyse the biological processes 

affecting the recombination rate genome-wide through the study of a previously identified anonymous 

ORF SIX6OS1/C14ORF39 carrying a polymorphism in its sequence. Finally, an aspect that is still poorly 

understood is the role of the proteasome in meiosis. The existence of a proteasome specific from testis 

highlights the importance of the UPS in gametogenesis.  

The specific objectives of this work were the following: 

1. Functional analysis of the meiotic cohesin STAG3 in mouse spermatogenesis and its role in male 

infertility. 

2. Deciphering the molecular basis of the aberrant in the Securin-deficient mouse model.  

3. Functional characterization of the anonymous C14ORF39/SIX6OS1: from gene variants that 

influence the recombination rate in humans to molecular pathways.  

4. Molecular role of the of the spermatoproteasome in meiosis through the study of a mouse model 

deficient for the subunit α4s (PSMA8).  
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1. Molecular Biology techniques 

1.1. Genomic DNA extraction 

1.1.1. Extraction by alkaline lysis:  

Pieces of mouse tails of 2 mm long were cut at 21 dpp (days postpartum) and incubated in 600 µl 50 mM 

NaOH for 30 minutes at 95ᵒC. After that, the tails were broken up through vortex and the NaOH was 

neutralized with 50 µl 1M Tris-HCl pH 8.8. This DNA was used as template for mice genotyping by PCRs.  

1.1.2. Extraction with phenol/chloroform 

The fragments of mice tails were incubated with 500 µl of lysis buffer (0.1 M Tris-HCl pH 7.4, 0.1 M EDTA, 

0.5% SDS) and 0.6 mg/ml proteinase K at 55ᵒC during 12-20 h. The solubilized DNA was extracted in 1 

volume of phenol/ chloroform:isoamyl alcohol (24:1) and separated by centrifugation for 5 min at 13000 

rpm. Next, the upper aqueous phase containing the DNA was carefully collected and precipitated by 

adding 200 µl 7.5 M ammonium acetate and 700 µl of isopropanol (0.4 volumes of ammonium acetate, 

1.4 volumes isopropanol). Then, the DNA was washed with 70% ethanol. Once the ethanol was 

evaporated, the DNA was resuspended in 1x TE. 

1.2. PCR for genotyping 

Mice genotyping was performed by PCR amplification (Polymerase Chain Reaction). Primers were 

designed flanking the edited region of the gene of interest. The optimization of the reaction conditions 

was performed according to the manufacturer protocol of the Taq DNA polymerase (NZYTech). 1.5 µl of 

DNA (< 0.1µg) isolated from tail biopsies was used as a template, in a mix containing 0.4 µM of each oligo, 

200 µM dNTPs, 1x polymerase buffer and 0.75 U of Taq polymerase (NZYTaq II DNA polymerase), in a total 

volume of 25 µl. The reaction was carried out in a thermocycler Veriti Thermal Cycler (Thermo Fisher). 

The PCR conditions vary depending on the size of the amplified DNA fragment and the primers used (see 

Table 1), being the standard PCR conditions: initial denaturation for 2 min at 94ᵒC, 35 cycles of i) 

denaturation for 20 sec at 94ᵒC, ii) annealing for 20 sec 55-68ᵒC according to the primers used, iii) 

elongation at 72ᵒC 1 min per kb, and a final elongation time of 5 min at 72ᵒC. The PCR product was 

analysed through gel electrophoresis.  

1.3. Radioactive labelling of DNA probes 

DNA probes for southern blot were labeled through random priming. 30 ng of probe was mixed with 2 µg 

of random primers (Takara) denatured at 100ᵒC during 5 min, and cooled on ice for 2 min to avoid the 

renaturation of DNA. Next, 11 µl of a mixture containing 0.5 mM 3 dNTPs (dATP + dTTP + dGTP), 3.5 U of 

Klenow polymerase (Takara), 1x Klenow buffer and 5 mCi [α-32P]-dCTP was added. After 90 min at 37ᵒC, 

the probe was purified through a column with sepharose beads by centrifugation 1 min at 4000 rpm in 

order to eliminate the unincorporated labelled nucleotides and check the correct labelling of the probe. 

Finally, the probe was denatured.  

1.4. Southern Blot  

10 µg of mouse DNA extracted with phenol/chloroform were digested overnight with the suitable 

digestion enzyme (Table 2). The DNA fragments were separated in 0.5% agarose gels in 1x TBE (0.1 M Tris 
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base, 0.1 M boric acid, 2 mM EDTA, pH 8.3) through electrophoresis at 30 V overnight. Then, the gel was 

treated with 0.25 M HCl to depurinate the DNA gently shaking for 30 min and rinsed 3 times with distilled 

water (ddH2O). Then, the gel was incubated with denaturing solution (0.4 M NaOH, 0.6 M NaCl) shacking 

for 30 min, and neutralized with 1.5 M NaCl, 0.5 M Tris-HCl pH 7.5, for 30 min. The DNA was transferred 

by capillarity to a nylon membrane (Genescreen PlusTM, PerkinElmer) through saline transference in 10x 

SSC (1.5M NaCl, 150 mM sodium citrate) for at least 15 h. Next, the membrane was incubated for 1 min 

with denaturing solution and neutralized for 1 min with 1x SSC, 200 mM Tris-HCl pH 7. The DNA was 

covalently fixed to the membrane crosslinking with ultraviolet light in a UV-Stratalinker 2400 

(Stratagene®, 1200 µjulios x 100) and rinsed with 2x SSC in order to eliminate residual NaOH. The 

membrane was prehybridized for 90 min at 65ᵒC in 10 ml of pre-heated Church & Gilberts hybridization 

solution (1% BSA fraction V, 1 mM EDTA, 0.5 M Na-phosphate buffer, 7% SDS) with 1.5 µg/ml of salmon 

sperm DNA (Sigma-Aldrich) previously denatured at 100ᵒC for 5 min. After that, the blot was hybridized 

with the DNA probe labelled with [α-32P]-dCTP through random priming in 10 ml of hybridization solution 

and 1.5 µg/ml of salmon sperm DNA at 65ᵒC for 12 h. The blot was rinsed 3 times with 0.2x SSC y 0.1% 

SDS at 65ᵒC for 20 min. After 3 days of exposure on a digital screen (FUJIFILM), it was scanned in a 

phosphorimager (BioRad PharosFX Molecular Imager).  

 

Mouse 

model 

Digestion  

enzyme 

Size of DNA 

fragments 
Primers for amplifying probes 

Securin-/- HindIII 
WT - 1.7 kb 

KO  - 4.9 kb 

352 S     5'-CCTTAATACTTTGGAGACAGAC-3' 

352 AS  5'-AAGTGGGGAGGGAAGAAGAAG-3' 

395 S     5'-AGCTTTCTTGATCTACCACTCA-3' 

395 AS  5'-GAACTTGTGGAAATTTGGCAGG-3' 

Sgol2-/- EcoRV 
WT – 13 kb ex2 S     5'-CTGTTACCTCTGGAATTCAGAG-3' 

KO  -  7 kb in2 AS   5'-CACTTGGCTCTCCTTGGCATACC-3' 

Separase+/- EcoRV 
WT -  16 kb S             5’- CTTAAGTGTATCTTTCTACAGC -3’ 

KO  -  19.5 kb AS          5’- ATCTAGTCATTCTTAAGGTTAAC -3’ 

Table 1. Digestion enzymes and probes for genotyping by Southern blot  

1.5. Gene expression analysis 

1.5.1. RNA extraction 

100 mg of tissue was placed in a 2 ml eppendorf tube containing 750 µl GIT (4 M guanidinium thiocyanate, 

25 mM sodium citrate, 0.5% (w/v) sodium lauryl sarcosiante and 0.1 M β-mercaptoethanol). The tissue 

was broken up with a polytron homogenizer (IKA T10 basic, UltraTurrax). Subsequently, 0.1 volumes of 2 

M sodium acetate pH 4.0, 1 volume of phenol-water, 0.4 volumes of chloroform:isoamyl alcohol (24:1) 

were added, mixed thoroughly with vortex and incubated for 15 min at room temperature. The samples 

were subsequently centrifuged at 13000 rpm for 15 min at 4ᵒC. The aqueous phase containing the RNA 

was transferred to a new tube and the RNA was precipitated by adding 1 volume of isopropanol, 

centrifuging it during 15 min at 13000 rpm and 4ᵒC. The RNA pellet was rinsed twice with 70% ethanol, 

resuspended with MQ-H2O and quantified measuring the absorbance at 260 nm.  
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1.5.2. Reverse transcription- PCR (RT-PCR):  

cDNA was synthesized through retrotranscription of 5 µg RNA using oligo(dT) and the commercial kit 

SuperScript® II Reverse Transcriptase (Invitrogen, Life Technologies). Subsequently, cDNA of interest was 

amplified by PCR using specific oligos and 2 µl of the cDNA amplified.  

1.5.3. Quantitative PCR (qPCR) 

To analyse the level of expression of a gene of interest in a certain tissue, the qPCR was performed using 

as a template 1 µl of a 1:20 dilution of total cDNA, specific primers and the commercial kit FastStart 

Universal SYBR Green Master Mix (ROX) (Roche). The qPCR reaction was carried out at 95ᵒC for 10 min, 

followed by 40 cycles of 15 sec at 95ᵒC and 1 min of elongation at a specific temperature for each pair of 

primers, in a thermocycler iQ5 Thermal Cycles (BioRad). β-actin was used as housekeeping gene. 

 

Gene Primer name Sequence  

Six6os1 
  

qSIX6OS1_F 5′- GCTGAATGTGGAGATAAAGAG-3′ 

qSIX6OS1_R  5′-AGGAGTTTCAGGAGTTTGAGG-3′ 

Rad21l 
qRAD21L_F 5′-TTGCAGCTCACTGGGAGAAGA-3′ 

qRAD21L_R 5′-AGTCCTGGGCGAAATGTCATC-3′ 

Psma8 
  

qPSMA8 _R 5'-AGTTGTGCTTGGGGTAGAAAAA-3' 

qPSMA8 _F 5'-TGCTGATCACCACTCTAGCATC-3' 

β-actin  
qβ-actin_F  5’-GGCACCACACCTTCTACAATG-3’ 

qβ-actin_R  5’-GTGGTGGTGAAGCTGTAGCC -3’ 

Table 2. Primers used for qPCR analysis.  

1.6. Generation of expression vectors 

The full-length cDNAs of the proteins of interest were RT-PCR amplified from murine testis cDNA as most 

of them are meiotic proteins (i.e. SIX6OS1, PSMA8, SYCE1, SYCE2, TEX12), using specific primers for each 

of them. The polymerase used for that purpose was Phusion High-Fidelity (ThermoFisher) or Expand Long 

polymerase (Roche) for long sized amplicons. To do that, 2 µl of total cDNA was added to a PCR mix 

containing 0.4 µM of each primer, 200 µM dNTPs, 1x polymerase buffer and the suitable polymerase (0.8 

U Phusion, 3.5 U Expand Long), in a total volume of 50 µl. The standard PCR conditions were the following: 

2 min at 94ᵒC, 35 cycles: i) 20 sec at 94ᵒC, ii) 20 sec at 55-68ᵒC, iii) 1 min per kb at 72ᵒC (Phusion 

polymerase) or 68ᵒC (Expand Long polymerase); and a final elongation cycle of 5 min at 72ᵒC/68ᵒC. The 

PCR product was purified through a column (NZYGelpure, Nzytech). The cDNAs could also be obtained by 

digestion of plasmids in which the cDNAs were previously cloned, purifying the DNA fragment from an 

agarose gel through a column (NZYGelpure, Nzytech). The amplified cDNA was phosphorylated by a T4 

polynucleotide kinase (Takara), repaired with a T4 DNA polymerase (Takara) when necessary. Finally, it 

was cloned into different mammalian expression vectors (pcDNA3, pcDNA3 2xFlag, pEGFP, pCEFL HA, 

pcDNA3.1 Myc-His (-)) through ligation with the T4 ligase enzyme (Takara) during 3 h at room 

temperature. The ligation reaction was transformed in E.coli competent cells. In frame cloning was 

verified by Sanger sequencing.  
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1.7. Protein analysis 

1.7.1. Protein extraction from mouse tissues 

Testis were detunicated, homogenized with RIPA lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% 

NP40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease inhibitors (Complete EDTA-

free, ROCHE) (1 ml per testis) with a polytron homogenizer and incubated for 15 min on ice to allow the 

protein extraction. After that, the sample was centrifuged at 13000 rpm for 30 min at 4ᵒC and the protein 

concentration of the supernatant was quantified through absorbance carrying out a Bradford assay with 

the DC Protein Assay kit (BioRad).  

1.7.2. Crosslinking antibodies to Sepharose beads 

100 µl of protein G Sepharose beads (GammaBindTM G SepharoseTM, GE Healthcare) were washed twice 

with 500 µl 1x PBS (Na+) and cleared with 1 volume of dilution buffer (1 mg/ml BSA, 1x PBS). The beads 

were incubated with 2 mg/ml of antibody in dilution buffer (1:1 ratio) for 4 h/overnight at 4ᵒC under 

rotation. Then the beads were collected through centrifugation at 10000 g 5 min, discarding the 

supernatant. The beads were rinsed with 10 volumes of dilution buffer for 5 min under rotation at 4ᵒC, 

centrifugated and washed with 1 ml 1x PBS. To crosslink the antibody, the beads were incubated twice 

with 20 mM DMP (dimethyl pimelimidate, Sigma-Aldrich) freshly diluted in 10 volumes of wash buffer/PBS 

1:1 (wash buffer: 0.2 M triethanolamine in PBS), for 30 min at room temperature under rotation, and 

washed with 500 µl of washing buffer. After that, the beads were incubated twice with 500 µl of quenching 

buffer (50 mM ethanolamine in PBS) for 5 min at room temperature under rotation and rinsed them with 

1x PBS. To remove the excess of unlinked antibody, the beads were washed twice with 1 M glycine pH 3, 

for 10 min at room temperature under rotation. Finally, the beads were rinsed in PBS for 3 times for 5 min 

under rotation and stored in 20 % ethanol in PBS to prevent bacterial growth. Once the beads have been 

used, they can be re-equilibrated to use them again washing twice with the washing buffer used in 

immunoprecipitations.   

1.7.3. Immunoprecipitation 

HEK 293T cells were transiently transfected with at least two expression plasmids encoding for the 

candidate proteins with JetPei (Polyplus). 48 h after the transfection, the whole cell protein extracts were 

prepared by lysing the cells with lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton 

X-100) supplemented with protease inhibitors (Complete EDTA-free, ROCHE). The protein concentration 

was determined through absorbance with the DC Protein Assay kit (Biorad). 1 mg of protein was cleared 

with protein G Sepharose beads (GammaBindTM G SepharoseTM, GE Healthcare) for 1 h at 4ᵒC under 

rotation. The blocked extract was incubated with the corresponding antibody for at least 2 h at 4ᵒC under 

rotation. As negative control, the protein extract was incubated with IgG (5 μg/1mg protein) from the 

same species as the antibody. The immunocomplexes were isolated by adsorption to protein G-Sepharose 

beads overnight at 4ᵒC. After 5 washing steps with lysis buffer, the proteins were eluted from the beads 

with 20 μl of 2x Laemmli buffer (100 mM Tris-HCl pH 7, 4% SDS, 0.2% bromophenol blue, 200 mM β-

mercaptoethanol and 20% glycerol) boiled at 100ᵒC for 5 min, and loaded onto reducing polyacrylamide 

SDS gels. The proteins were detected by western blotting with the indicated antibodies The antibodies 

used for immunoprecipitation and western blotting are described in Tables 4 and 6. The IgGs used were 
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ChromPure mouse IgG (5μg/1mg prot; 015-000-003), ChomPure rabbit IgG (5μg/1mg prot.; 011-000-003, 

Jackson ImmunoResearch), ChomPure goat IgG (5μg/1mg prot.; 005-000-003, Jackson ImmunoResearch). 

When working with proteins that interact weakly, 1 mg/ml of dithiobis was added to the cell culture 

(succininidyl propionate, Sigma-Aldrich) 10 min before the cell lysis to stabilize the labile junctions. The 

protein extraction was carried out with lysis buffer containing 20 mM Tris-HCl pH 7.5, 100 mM NaCl, 20 

mM β-glycerphosphate, 5 mM MgCl2, 1 mM NaF, 0.2% ND P-40, 0.5 mM DTT. 

1.7.4. Immunoprecipitation from endogenous testis proteins 

Testi was lysed in 1.5 ml of Co-IP lysis buffer (50 mM Tris-HCl pH 8, 500 mM NaCl, 1 mM EDTA, 1% Triton 

X-100, proteases inhibitors).  20 mg of protein extract was incubated with 100 µl of beads crosslinked to 

the antibody against the target protein, at 4ᵒC under rotation overnight.  The mix was transferred into a 

column, letting drop the supernatant by gravity. The column was rinsed 3 times with 1 ml of Co-IP buffer, 

and 3 additional times with MQ-H2O to eliminate salts and detergents. The proteins were eluted from the 

beads in 2 fractions with 100 µl of 0.1 M glycine pH 2.5-3 each one, incubated for 10 min at room 

temperature. Finally, the eluted fractions were neutralized with 5 µl of 1 M Tris-HCl pH 9.5. The antibody-

bound beads could be re-equilibrated for re-use (see above in the crosslinking protocol). 

1.7.5. Western Blot 

Protein extracts were resolved in denaturing SDS-polyacrylamide gels following the protocol described by 

Laemmli (Laemmli, 1970). The proteins were separated in 7 – 13% polyacrylamide gels, running on 1x SDS-

Page (250 mM Tris-HCl, 200 mM glycine, 0.05% SDS) at 200 V. Proteins were transferred to nitrocellulose 

membranes (GE Healthcare Amersham) in transfer buffer (25 mM Tris-HCl, 200 mM glycine, 20% 

methanol) at 65 V during 1 h. The blot was blocked for 1 h in 5% non fat milk in TBST (TBS-Tween 20: 50 

mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% Tween 20). After that, the blot was incubated with the primary 

antibody diluted in 2.5% milk-TBST for 1 h under rotation, rinsed three times with TBST shacking for 5 min 

and incubated for 1 h with the secondary antibody conjugated to peroxidase (Table 3). Finally, 

chemoluminiscent signal was obtained incubating for 5 min with Immobilon Western HRP (Millipore) and 

exposing the blot to an X-ray film for an appropriate duration.  

For reprobing the blots the primary and secondary antibodies were removed from the blot by stripping. 

To do that, the blot was incubated twice for 10 min in a mild stripping buffer (0.2M glycine, 1% SDS, 0.01% 

Tween 20, pH 2.2) shacking at room temperature. After that, the blot was rinsed twice in PBS for 10 min, 

and two more times in TBST for 5 min. Then, the blot was blocked and blotted as normal. The blot can be 

reprobed without stripping, by inactivating the peroxidase activity of the secondary antibody with an 

excess of hydrogen peroxide. To do that, the blot was incubated with 15% H2O2  in PBS for 15 min gently 

shacking and rinsed twice in TBST.  
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Target species Antibody Host Dilution Supplier 

α-mouse HRP 
NA931V Sheep 1:10000 GE Healthcare 

715-035-150 Donkey 1:5000 Jackson Immunoresearch 

α-rabbit HRP 
#7074 Goat 1:3000 Cell Signaling 

711-035-152 Donkey 1:5000 Jackson Immunoresearch 

α-goat HRP 
A27014 Rabbit 1:10000 Thermo Scientific 

705-035-147 Donkey 1:5000 Jackson Immunoresearch 

Table 3. Secondary antibodies for western blot. HRP: Horseradish Peroxidase.  

1.7.6. MS/MS data analysis 

The proteins purified as described above were resolved in polyacrylamide-SDS gels and stained with 

Coomassie. The resultant gel bands were cut and digested with trypsin. In some cases the samples were directly digested without 

resolving them in a gel. The peptides were analysed through a mass spectrometer LTQ-Orbitrap Velos. Raw MS data were 

analyzed using MaxQuant (v. 1.5.7.4) and Perseus (v. 1.5.6.0) programmes. Searches were generated 

versus the Mus musculus proteome (UP000000589, May 2017 release) and MaxQuant contaminants. All 

FDRs were of 1%. Variable modifications taken into account were oxidation of M, acetylation of the N-

term and ubiquitylation remnants di-Gly and LRGG, while fixed modifications included considered only 

carbamidomethylation of C. The maximum number of modifications allowed per peptide was of 5. It was 

calculated the ratio of the iBAQ intensity with the antibody versus the correspondent iBAQ intensity in 

the control sample (IgG). Proteins with a ratio higher or equal to 5 and two or more unique peptides were 

selected for ulterior analysis. The MS/MS analysis was carried out by the Proteomic facility of the Centro 

de Investigación del Cáncer.  

1.7.7. Functional and pathway analysis 

GO and KEGG over-representation tests were performed using the R package clusterProfiler (Yu et al., 

2012) using standard parameters except for an FDR cutoff of 0.01. KEGG pathways where some key genes 

operate and the role of the co-immunoprecipitated proteins were studied using the R package pathview 

(Brouwer et al., 2013). 

1.7.8. Proteasome activity assay 

Testis proteins were extracted with proteasome lysis/assay buffer (50 mM HEPES pH 7.8, 10 mM NaCl, 

1.5 mM MgCl2, 250 mM sucrose, 1 mM EDTA, 1 mM EGTA, 5 mM DTT) in the same way described above. 

The 26S proteasome assay was carried out in a total volume of 250 μl in 96 well plates with 100 μM of 

proteasome substrates and 2 mM ATP in assay buffer using 100 μg of whole testis extracts. Fluorescently 

labeled substrates employed were: succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin (Suc-LLVY-

AMC), Z-Ala-Arg-Arg-AMC (Z-ARR-AMC, Bachem), and Z-Leu-Leu-Glu-AMC (Z-LLE-AMC) for the detection 

of the chymotrypsin- (β5 catalytic subunit), trypsin- (β2 catalytic subunit) and caspase- (β1 catalytic) like 

activity measurements respectively. In order to activate the 20S protease activity, 0.025% SDS can be 

added to the assay buffer. The reaction was incubated 1h at 37ᵒC to allow the cleavage of the fluorophore 

from the substrates. Finally, the fluorescence was measured at λex = 360 nm / λem = 460 nm. 
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1.8. Yeast two hybrid (Y2H) assay and screening  

Y2H assay was performed using the Matchmaker Gold Yeast Two-Hybrid System (Clontech) according 

to the manufacturers’ instructions. Mouse Six6os1 cDNA encoding the N terminus (1-138) was 

subcloned into the vector pGBKT7 and was used as bait to screen a mouse testis Mate & Plate cDNA 

library (Clontech Laboratories Inc.). Positive clones were initially identified on double dropout SD 

(synthetic dropout)/–Leu/–Trp/X-α-Gal/Aureobasidin A plates before further selection on higher 

stringency quadruple dropout SD/–Ade/–His/–Leu/–Trp/X-α-Gal/Aureobasidin A plates. Pray plasmids 

were extracted from the candidate yeast clones and transformed into Escherichia coli. The plasmids 

from two independent bacteria colonies were independently grown, extracted and Sanger sequenced. 

Southern blotting was also used for plasmid screening. 

2. Mouse models 

2.1. Gene targeting 

The OVE2312C mouse line (Stag3-/-) was obtained from the Jackson Laboratory and was generated as 

described by (Caburet et al., 2014). Securin knock-out model was developed by Wang et al. (Wang et al., 

2001) . Sgol2-/- and Separase+/- mouse models were previously generated in our laboratory and described 

in (Llano et al., 2008) and (Hellmuth et al., 2018), respectively. Finally, the transgenic Rec8-Myc has been 

described in (Kudo et al., 2006).  

2.2. CRISPR/Cas9 genome editing. Six6os1 and Psma8 

Six6os1 and Psma8 knockout mouse models were generated by CRISPR/Cas9 genome editing. The Cas9 

endonuclease, guided by the sgRNAs, breaks the DNA at a target sequence, so the repair of the DSBs can 

result in insertion or deletions, while the use of repair pathways allow to generate insertions or specific 

point mutations. First, the sgRNAs directed to specific genes were designed crispr.mit.edu (Table 4). 

sgRNAs were produced by cloning annealed complementary oligos at the BbsI site of pX330 (#42230, 

Addgene), generating PCR products containing a T7 promoter sequence that were purified (NZYtech 

columns) and then in vitro transcribed using the MEGAshortscript T7 Transcription Kit (Life Technologies). 

The plasmid pST1374-NLS-flag-linker-Cas9 (#44758; Addgene) was used for generating Cas9 mRNA after 

linearization with AgeI. In vitro transcription and capping were performed using the mMESSAGE 

mMACHINE T7 Transcription Kit (AM1345; Life Technologies). Products were purified using the RNeasy 

Mini Kit (Qiagen). RNA (100 ng/μl Cas9 and 50 ng/μl each guide RNA) was microinjected into zygotes (F1 

hybrids between strains C57BL/6J and CBA/J) as described previously (Singh et al., 2015). 

Edited founders were identified by PCR amplification (Taq polymerase, NZYtech) with primers flanking the 

edited region, and subcloned into pBlueScript (Stratagene) followed by standard Sanger sequencing. The 

selected founder was crossed with wild-type C57BL/6J to eliminate possible unwanted off-targets and to 

generate pure heterozygous. Heterozygous mice were sequenced again by Sanger sequencing and 

crossed to give rise to mutant homozygous. Genotyping was performed by agarose gel electrophoresis 

analysis of PCR products from tail biopsy specimens. 
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Mouse model sgRNA name Sequence  Targeted 

region 

Six6os1-/- 

G68 
5′-CACCGATCTGTTTGTCAGTTTGGAC-3′ 

Exon 2 
5′-AAACGTCCAAACTGACAAACAGATC-3′ 

G75 
5′-CACCGTACTTATGTCTTGCTCATAC-3′ 

Exon 3 
5′-AAACGTATGACAAGACATAAGTAC-3′ 

Psma8-/-  
G71 5’- GGGCATACT CCACTTGGAAA -3’ Exon 1 

G84 5’-ACCGCGGTAAGCTGCTCCCC-3’ Intron 1 

Table 4. sgRNAs used for mouse genome editing through CRISPR/Cas9. 

 

Mouse 
model 

Primer name Sequence  Alelle Amplicon 
size 

Stag3-/- 

LF2 S 5′-TGAGGTTTTTCAGCAGTGGCATT-3′ 
WT 391 bp 

RF2 AS 5′-GCTGCTGGAAAGGGAAAGTCAG-3’ 

5'-flank S 5′-TTCAAACTCCTGCTTCAGGTT-3′  
KO 436 bp 

5' LTR AS 5’-CCTGGTGTGTAGCTTTGCCAATCA-3’ 

Securin-/- 

PTTG S1 5’-GTAGGCTGGAGACAGTTTTGATG-3’     

PTTG WT AS1 5’-CAGGAAATACTTACCACCAGTGC-3’ WT 344 bp 

PTTG KO AS1 5’-GAGACGTGCTACTTCCATTTGTC-3’ KO 412 bp 

Sgol2-/-  

SGOL2 WT2 S 5’-CCAACCATCTTCTCGGTCAT-3’ 
WT 423 bp 

SGOL2 WT2 AS 5’-ACCCTAACTGCCCTCCAACT-3’ 

SGOL2 UL 5’-CAGCTTTCCACATCTGCTCA-3’ 
KO 587 bp 

SGOL2 UR 5’-CCGCTTCTAGCAACGAAGTT-3’ 

Six6os1-/- 
SIX6OS1 S 5′-CACTTACATTTTCCTTTTAAGAATGC-3′ WT 413 bp 

SIX6OS1 AS 5′-CCCCTCTCAT ACATACAAGTTGC-3′ KO 289 bp 

Psma8-/- 
GTPying PSMA8 S 5’-CTTCTCGGTATGACAGGGCAATC-3’ WT 222 bp 

GTPying PSMA8 AS 5’- ACTCTACCTCCACTGCCAAC CTG-3’ KO 166 bp 

Rec8 Myc 
Rec8-Myc  2F  5’-TGTGGTGACCTGCCTTCTTTTC-3’ 

Transgene 470 bp 
Rec8-Myc  2R  5’-TCCAGTGAGGCAGGATATGGTT-3’ 

Table 5. Primers used for genotyping of genetically modified mice.  

 

2.3. Animal welfare 

Mice were housed in a temperature-controlled facility (specific pathogen free, spf) using individually 

ventilated cages, standard diet and a 12h light-dark cycle, according to European Union regulations at the 

‘Servicio de Experimentación Animal, SEA’. Mouse protocols were approved by the Ethics Committee for 

Animal Experimentation of the University of Salamanca (USAL). We made every effort to minimize 

suffering and to improve animal welfare. The minimum size used for each analysis was three 

animals/genotype.  
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3. Cytological techniques 

3.1. Histological analysis 

 To perform the histological analysis of the mouse tissues, after the necropsy the organs were 

removed and fixed in 10% formol during 24 h at room temperature, except for testes that were preserved 

in Bouin fixative. They were embedded in paraffin and were cut into serial sections of 5 μm. The sections 

were stained with hematoxylin-eosin or PAS (Periodic Acid-Schiff)-hematoxylin following standard 

protocols. These techniques were developed in collaboration with the service of Patología Molecular 

Comparada of the Centro de Investigación del Cáncer (Salamanca). The samples were analysed using a 

microscope OLYMPUS BX51 and images were taken with a digital camera OLYMPUS DP70. 

3.2. Dry down spreading of spermatocytes 

The study of the mouse spermatocytes was carried out by performing this fixation technique of the 

meiotic cells over slides, with some modifications of the protocol developed by Peters et al (Peters et al., 

1997). Testis were detunicated and placed in a Petri dish with a drop of 1x PBS. The seminiferous tubules 

were ground with the aid of 2 scalpels, and the extracted cells were collected with PBS into a tube to a 

total volume of 6 ml of PBS. The cells were spun down for 7 min at 1200 rpm and rinsed once with 6 ml of 

1x PBS. The pellet of cells was resuspended in 75 - 350 μl of 100 mM sucrose pH 8.4 for 5 min to bring the 

cells under a hypotonic shock. A clean glass slide was covered with 400 μl of the fixative solution (1% 

paraformaldehyde (PFA), 0.15% Triton X-100, 0.05% PBS, 2.5 mM sodium tetraborate, pH 9.2) and it was 

placed 20 μl of the cell suspension in the upper corner of the slide, slowly dispersing them. The slides were 

kept for 2 h in a closed box to allow the fixation of the cells, and then they were left to air dry almost 

completely. To remove the fixative, the slides were washed with 0.08% Photo-Flo (Kodak) and dried at 

room temperature. The quality of the spreads was checked in an inverted phase contrast microscope 

Nikon Eclipse TS100. The slides were stored in 0.05% azide in 1x PBS at 4ᵒC.  

3.3. Squash of seminiferous tubules 

The method developed by Parra et al (Parra et al., 2002) allows obtaining a monolayer of seminiferous 

tubule cells keeping their 3D conformation. Testis were detunicated and the seminiferous tubules were 

fixed for 10 min (2% formaldehyde, 0.1% Triton X-100 in 1x PBS). A small fraction of the tubules was placed 

in pre-treated poly-L-lysine (1 mg/ml, Sigma-Aldrich) slide with a drop of fixative and coated. Tubules were 

broken up with a pencil over the coverslip and squashed to get a monolayer of cells. After immersing the 

slides in liquid nitrogen for a few seconds, the coverslip was immediately removed with the help of a 

scalpel and put them into 1x PBS. The slides were stored in 0.05% azide in 1x PBS at 4ᵒC until needed.  

3.4. Cytospin 

The cytospin allows obtaining a preparation of the seminiferous tubule cells without the use of a fixative 

which avoids the extraction of cytoplasmic proteins. Testis were detunicated and the tubules were minced 

with two scalpels. The cells were recovered with 1x PBS and transferred to a tube in a volume of 6 ml, 

centrifuged for 7 min at 1200 rpm, and washed with 7ml of 1x PBS. The cells obtained from one testis 

were resuspended in 5 ml of PBS. Following, a double Cytofunnel chamber (Thermo Scientific) was 

assembled over a slide and applied 100 μl of cell suspension in each hole of the funnel. After centrifuging 
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in a Cytospin centrifuge at 1200 rpm for 2 min, the cells were spread over the slide. The slide was 

submerged in 1x PBS. Next, the cells can be fixed with 4% paraformaldehyde in 1x PBS for 7 min and rinsed 

in 1x PBS for 5 min. The slides were stored in 0.05% azide in 1x PBS at 4ᵒC until needed.  

3.5. Ovary drying-down chromosome spread 

Prophase oocytes were obtained from female embryos, from 14.5 dpc (days post-coitum, leptotene) to 

19.5 dpc, before the dictyate arrest takes place, depending on the stage of interest. Pregnant females 

were sacrificed and the embryos were extracted from the uterus and placed into PBS. The ovaries were 

taken out from the embryo and put into a well (24-wells plate) containing 200 μl of M2 medium (Sigma-

Aldrich). 10 μl of 50 mg/ml collagenase/M2 was added and incubated for 20 – 30 min at 37ᵒC to allow the 

break-up of the ovaries. Then, the ovaries were transferred to 200 μl of hypotonic buffer (30 mM Tris-HCl 

pH 8.2, 50mM sucrose, 17 mM sodium citrate, 5 mM EDTA, 0.5 mM DTT, 1 mM PMSF) and incubated for 

45 min at room temperature. In the meanwhile, the slides (6 slides per pair of ovaries) were labelled and 

it was drawn a circle in the middle of the slides with Rubbercement adhesive to delimit a small area. After 

hypotonic treatment, the ovaries were transferred into 60 μl of 100 mM sucrose pH 8.2 and the cells were 

dispersed pipetting up-down. It was checked if single cells were thoroughly suspended under a 

microscope (oocytes appeared bigger and round). Afterwards, 40 μl of fixative buffer (1% (w/v) PFA, 5 

mM sodium borate, 0.15% Triton X-100, 3 mM DTT, pH 9.2) were placed in the slide inside the circle, and 

it was added 10 μl of cell suspension to the centre of the fixative drop. The slide was tilted in a zig-zag 

movement to spread the cell suspension within the circle. It was incubated inside a closed chamber for 2 

h and then, the slides were air-dried almost completely. Finally, they were washed with 0.08% Photo-Flo 

(Kodak) to remove the fixative and dried at room temperature. The spreads preparations were stored in 

0.05% azide in 1x PBS at 4ᵒC. 

3.6. Immunofluorescence 

The slides were incubated with the primary antibody (Table 6) diluted in 1x PBS for 1 h/overnight at room 

temperature in a wet chamber and then they were rinsed three times in 1x PBS for 5 min. Thereupon, the 

slides were incubated during 1 h with the secondary antibody conjugated to a fluorochrome diluted in 1x 

PBS (Table 7) and rinsed three times in 1x PBS for 5 min. Finally, the slides were mounted with 

Vectashield® mounting media (Vector Laboratories) and DAPI (4',6-Diamidino-2-Phenylindole, 10 μg/ml) 

to counterstain the DNA. In order to reduce the background, the slides can be initially blocked for 15 min 

with 10% ADB buffer (10% serum, 3% BSA and 0.05% Triton X-100 in 1x PBS) and the antibodies diluted in 

10% ADB. In this case, the washing of the slides was done with PBST (0.05% Triton X-100 in 1x PBS).  

To carry out immunofluorescence of cultured cells, cells were seed in 3.5 cm dishes with a gelatin-coated 

coverslip inside (0.5% gelatin, Sigma-Aldrich)  to enhance cellular adhesion. The cells were fixed with 4% 

paraformaldehyde in PBS for 7 min at 4ᵒC and rinsed 3 times in PBS for 5 min. After that, the cells were 

permeabilized with 0.2% Triton X-100 in KB buffer (0.1 M NaCl, 20 mM Tris-HCl pH 7.5, 0.1% BSA) for 4 

min, and washed in 1x PBS. The blockage of the cells was carried out with 7% FBS in PBS for 30 min at 

room temperature. Next, the cells were incubated with the primary antibody diluted in 7% FBS in PBS for 

1 h in a wet chamber at room temperature. Following 3 washes in 1x PBS for 5 min, the slides were 
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incubated with the secondary antibody conjugated with a fluorochrome diluted 1:100 in 7% FBS in PBS 

for 45 min. They were rinsed 3 times in PBS, and finally they were mounted with Vectashield® and DAPI.  

 

Target Protein Antibody Host Type 
Dilution 

Supplier 
IF WB IP 

ACA 15-235 Human IgG 1:15   Antibodies Incorporated 

Aurora B 611082 Mouse IgG 1:20 1:1000  BD Biosciences 

Caspase 3 #9661 Rabbit IgG 1:30   Cell Signaling 

CDK1 sc-54 Mouse IgG 1:20 1:2000  Santa Cruz 

CDK1 Tyr15ph #4539  Rabbit IgG 1:10 1:1000  Cell Signaling 

CDK2 sc-6248 Rabbit IgG 1:20   Santa Cruz 

Cherry 632543 Mouse IgG 1:15   Clontech 

Cyclin B1 
ab72 Rabbit IgG 1:20 1:1500  Abcam 

MAB3684 Mouse IgG 1:20 1:2000  Millipore 

DMC1 

sc-22768 Rabbit IgG 1:20   Santa Cruz 

R1 Rabbit IgG 1:500   Proteogenix 

R2 Rabbit IgG 1:500   Proteogenix 

ab11054 Mouse IgG 1:50   Abcam 

GFP 

CSB-MA000051M0m Mouse IgG  1:3000 3 μl Cusabio 

A-11122 Rabbit IgG 1:50 1:3000 3 μl (6μg) Life Technologies 

sc-5385 Goat IgG 1:300* 1:3000  Santa Cruz 

H1t  Guinea pig IgG 1:100   MA Handel 

H2AK5ac ab45152 Rabbit IgG 1:20   Abcam 

H2AL2  Rabbit IgG 1:100   Dr. Saadi Khochbin 

H2AT120ph 
39391 Rabbit IgG 1:20   Active Motif 

 Rabbit IgG 1:20   Dr. Watanabe 

H3 Ser10ph 06-570 Rabbit IgG 1:100    Millipore 

H3ac (K9, K14) #06-599   Rabbit IgG 1:20   Millipore 

H3T3ph B8634 Rabbit IgG 1:20   Dr. J.M.G. Higgins 

H4ac (K5, K8, K12, 
K16) 

#06-598   Rabbit IgG 1:20   Millipore 

H4K16ac 
#07-329  Rabbit IgG 1:50   Millipore 

ab109463 Rabbit IgG 1:50   Abcam 

Haspin A302-241A Rabbit IgG 1:30   Bethyl 

HORMAD1  Rabbit IgG 1:50   Dr. Attila Toth 

HORMAD2  Rabbit IgG 1:50   Dr. Attila Toth 

MAD2  Rabbit IgG 1:30   Dr. Stemmann 

MCAK  Sheep IgG 1:70   Dr. Wordeman 

MLH1 51-1327GR  Mouse IgG 1:20   BD Biosciences 

PA200 A303-880A Rabbit IgG 1:20 1:1000  Bethyl 

PLK1 ab17056 Mouse IgG 1:50   Abcam 

PP2A #05-421 Mouse IgG 1:20   Millipore 

PSMA8 

R1 Rabbit IgG 1:200 1:2000  Proteogenix 

R2 Rabbit IgG 1:100 1:2000  Proteogenix 

α4s Rabbit IgG  1:2000  Dr. Murata  

RAD21 K854 Rabbit IgG 1:5   Dr. J.L. Barbero 

RAD21L 
 

R1 Rabbit IgG 1:20   Proteogenix 

R2 Rabbit IgG 1:20   Proteogenix 

RAD51 
 

sc-8349 Rabbit IgG 1:50   Santa-Cruz 

PC130 Rabbit IgG 1:50   Calbiochem 

RAP1  Rabbit IgG 1:400   Dr. Titia de Lange 
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REC8 
 

K1018 Rabbit Serum 1:50   Dr. J.L. Barbero 

K1019 Rabbit Serum 1:50   Dr. J.L. Barbero 

RPA Molly-RPA Rabbit IgG 1:30   Dr. E. Marcon 

Securin K783 Rabbit Serum 1:20 1:1000  Dr. J.L.Barbero 

SGO2 
K1059 Rabbit Serum 1:20   Dr. J.L. Barbero 

Sgol2-like C105/C104 Rabbit Serum 1:20   Dr. J.L. Barbero 

SIX6OS1 

R1 Rabbit IgG 1:20   Proteogenix 

R2 Rabbit IgG 1:20   Proteogenix 

sc-245304 Goat IgG 1:5 1:1000  Santa Cruz 

SMC1α K988 Rabbit Serum 1:20   Dr. J.L. Barbero 

SMC1β K974 Rabbit Serum 1:20   Dr. J.L. Barbero 

SMC3 K987 Rabbit Serum 1:20   Dr. J.L. Barbero 

SMC6 ab18039 Rabbit IgG 1:20   Abcam 

Sororin C106 Rabbit IgG 1:20   Dr. J.L. Barbero 

STAG1 K923 Rabbit IgG 1:20   Dr. J.L. Barbero 

STAG2 K422/K829 Rabbit IgG 1:20   Dr. J.L. Barbero 

STAG3 K403 Rabbit IgG 1:20   Dr. J.L. Barbero 

SYCE1 
17406-1-AP Rabbit IgG 1:50 1:1000  Proteintech 

 Guinea pig IgG 1:100   Dr. C. Höög 

SYCE2  Guinea pig IgG 1:100   Dr. C. Höög 

SYCE3  Guinea pig IgG 1:20   Dr. R. Benavente 

SYCP1 

Joe  Rabbit Serum 1:200    

K919 Rabbit Serum 1:60   Dr. J.L. Barbero 

VAL G14/ VAL G13 Chicken IgG 1:10   Inmunostep 

SYCP2 K1035 Rabbit Serum 1:20   Dr. J.L. Barbero 

SYCP3 
sc-74569  Mouse IgG 1:1000   Santa Cruz 

K921/K1037 Rabbit Serum 1:500   Dr. J.L. Barbero 

TEX12  Rabbit IgG 1:100   Dr. R. Benavente 

TRIP13 19602-1-AP Rabbit IgG 1:30 1:3000  Proteintech 

Ubiquitin 11023 Mouse IgG 1:50 1:1000  QED Bioscience 

VRK1 HPA000660 Rabbit IgG  1:1000  Sigma-Aldrich 

αTubulin T9026 Mouse IgG 1:100   Sigma 

β-Actin Clone AC-15; A5441 Mouse IgG  1:10000  Sigma-Aldrich 

γH2AX (Ser139) 
#05-636 Mouse IgG 1:200   Millipore 

#07-164 Rabbit IgG 1:400   Millipore 

53BP1 H-300; sc-22760 Rabbit IgG 1:10   Santa Cruz 

        

Flag 
F1804 Mouse IgG  1:3000 5 μg Sigma-Aldrich 

F7425 Rabbit IgG  1:2000  Sigma-Aldrich 

HA 
αHA.11 101R Mouse IgG  1:2000 

5 μl 
(10 μg) 

Covance 

H6908 Rabbit IgG  1:1000  Sigma-Aldrich 

Myc 
9E10.2 clone Mouse IgG  1:1000 4 μg ATCC 

#06-549 Rabbit IgG   4 μg Millipore 

Tabla 6. Primary antibodies. 

IF: Immunofluorescence; WB: Western Blot; IP: Immunoprecipitation (μg of antibody for 1 mg protein extract); *: 

Immunofluorescences in cultured cells (the rest are concentrations for IF in spreads or squash of meiocytes). 
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Target Fluorochrome Antibody Host Dilution Supplier 

α-chicken 
TRITC 703-025-155 Donkey 1:100 Jackson Immunoresearch 

FITC 703-095-155 Donkey 1:100 Jackson Immunoresearch 

α-goat 
Rhodamine Red 705-295-147 Donkey 1:100 Jackson Immunoresearch 

FITC 705-095-147 Donkey 1:100 Jackson Immunoresearch 

α-guinea pig 
TRITC 706-025-148 Donkey 1:100 Jackson Immunoresearch 

FITC 706-095-148 Donkey 1:100 Jackson Immunoresearch 

α-human Texas Red 709-075-149 Donkey 1:100 Jackson Immunoresearch 

α- mouse 

TRITC 115-095-146 Goat 1:100 Jackson Immunoresearch 

TRITC 715-025-150 Donkey 1:100 Jackson Immunoresearch 

Alexa 555 A-32727 Goat 1:200 ThermoFisher 

FITC 115-095-146 Goat 1:100 Jackson Immunoresearch 

Alexa 488 A-11001 Goat 1:200 ThermoFisher 

AMCA 115-155-146 Goat 1:100 Jackson Immunoresearch 

α-rabbit 

TRITC 711-025-152 Donkey 1:100 Jackson Immunoresearch 

Alexa 555 A-31572 Donkey 1:200 ThermoFisher 

FITC 711-095-152 Donkey 1:100 Jackson Immunoresearch 

Alexa 488 A-32731 Goat 1:200 ThermoFisher 

Alexa 488 - Fab 111-547-003 Goat 1:100 Jackson Immunoresearch 

AMCA 711-155-152 Donkey 1:100 Jackson Immunoresearch 

α-sheep Texas Red 713-075-147 Donkey 1:100 Jackson Immunoresearch 

Table 7. Secondary antibodies. FITC: Fluorescein, TRITC: Rhodamine, AMCA: Aminomethylcoumarin.  

 

3.7. Okadaic acid assay 

Detunicated testes were dissected in a Petri dish containing DMEM culture media (4 mM L-glutamine, 

10% FBS and 25 mM HEPES in Dulbecco’s Modified Eagle’s medium) on ice. The cell suspension (5·106 

cells/ml) was exposed to 5 μM okadaic acid (Sigma-Aldrich) for 5 h at 32ᵒC and 5% CO2. Afterwards, the 

cells were spread following the dry down procedure previously described.  

3.8. Fluorescence microscopy 

The spread preparations were visualized at room temperature using a microscope Leica DM6000 B with 

63x objectives. Images were taken with a digital camera Hamamatsu ORCA-ER C4742-80. Squashed 

immunofluorescences were visualized with a Delta Vision microscope station with 100x objectives. The 

images were processed with OPENLAB 4.0.3 and Adobe Photoshop CC 2018. Quantification of 

fluorescence signals, as well as the measurement of lengths and distribution profiles, were performed 

using Fiji (Image J) software.  

3.9. Super-resolution microscopy 

Stimulated emission depletion (STED) microscopy (SP8, Leica) was used to generate the super-resolution 

images. The immunofluorescences were performed in the same way as usual in spread or squash 

preparations, but secondary antibodies for STED imaging were conjugated to Alexa 555 and Alexa 488 

fluorochromes (Table 7). Slides were mounted in ProLong Gold Antifade without DAPI. The images were 

obtained and processed with LAS X software (Leica).  



Methods and Material

 

40 
 

3.10. Electron microscopy 

For immunoelectron microscopy, 10 μm cryosections of mouse testis were fixed with acetone for 

10 min at −20 °C and air dried. Incubation with primary antibodies was carried out in a humidified box 

for 4 h at room temperature. After rinsing twice in PBS, sections were fixed for 10 min in 2% 

formaldehyde and blocked with 50 mM NH4Cl. Secondary antibodies conjugated to 6 nm gold particles 

were incubated overnight at 4 °C, and samples were subsequently washed in PBS. Samples were fixed 

for 30 min in 2.5% glutaraldehyde and postfixed in 2% osmium tetroxide. After rinsing three times 

with H2O, samples were dehydrated in an ethanol series and embedded in Epon. Ultrathin sections 

were stained with uranyl acetate and lead citrate according to standard procedures.  

3.11. TUNEL assay 

The TUNEL assay for detecting apoptotic cells was carried out in spreading meiocytes with the In Situ Cell 

Death Detection Kit, POD (Sigma-Aldrich). To do that, the slides were rinsed three times in 0.5% Triton X-

100 in 1x PBS for 5 min, and three more times in PBS for 1 min. The slides were incubated with 50 μl 

TUNEL reaction mixture (5 μl of enzyme solution in 45 μl of label solution) for 1 h at 37ᵒC in a humid 

chamber and washed 3 times in 1x PBS for 5 min. The slides can be immunolabelled with an antibody after 

the TUNEL reaction as usual. Finally, the slides were counterstained with DAPI and mounted with 

Vectashield, and analysed by fluorescence microscopy. The TUNEL assay also can be done in testis 

sections, previously deparaffinised.   

3.12. Testis electroporation 

This technique developed by Dr. Muramatsu (Nagoya University) allows to transitorily express cDNAs 

cloned in expression vectors in testis cells after minor surgery. To get higher efficiency, the 

electroporation was carried out in 16 dpp ICR mice or 20-30 dpp B6 mice. After anaesthetise the mice 

with isoflurane by inhalation, the testes were pulled out from the abdominal cavity. 10 μl of DNA solution 

was injected to the rete testis (region surrounded by the white dotty line) using a glass capillary. The DNA 

solution contained 5 μg/ μl  of expression vector diluted in 1x HBS (HEPES buffered saline: 20 mM HEPES, 

140 mM NaCl, 5 mM KCl, 0.1% glucose, 0.7 mM Na2HPO4·12H2O) stained with 1l of 0.1% FastGreen 

(Sigma-Aldrich). After a period of 1 h to let the DNA to penetrate into the seminiferous tubules, the testis, 

wet with PBS, was held between a pair of electrodes, applying 4 electric pulses of 35 V for 50 ms in each 

direction using a CUY21 BEX electroporator (BEX Ltd). Finally, the testes were returned into the abdominal 

cavity and the incision was closed with sutures. The spermatocytes were squashed or spread after 24 – 

72 h and analysed by immunofluorescence.  

3.13. Fluorescence in situ hybridization (FISH) 

The FISH was performed in squash or spreads preparations of spermatocytes using probes against the 

sexual chromosomes X and Y. The probe against the murine Y chromosome was PCR amplified (Navin et 

al., 1996) with three sets of primers: 1S 5`-TAGGATGGTAAGCCCAATGC-3´, 1AS 5`-

TTGGTTGGTTAATTGTTTGGG-3´; 2S 5`-CATGCCCCTTGGACTGAC-3´, 2AS 5`-CTTTT TTTTTCCCCCTCTGG-3´; 

3S 5`-TCCTCTTGCAGAGAAGGGAC-3´, 3AS 5`-CCTCCGCTCCAATCCTATCA-3´. The X probe is a 

pericentromeric DNA fragment obtained from a plasmid through digestion (Disteche et al., 1985). These 

probes were labelled through Nick-translation in presence of Dig-11-dUTP or Bio-16-dUTP (2 μg DNA, 1x 
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Nick buffer, 0.8 U DNAsa, 5 U DNA pol I, 20 nM dATP / dGTP / dCTP, 13 nM dTTP and 7 nM Dig-11-dUTP 

or Bio-16-dUTP in total volume of 50 μl, for 75 min at 16ᵒC). 

The slides were pre-treated with 0.005% pepsin at 37ᵒC for 10 min, rinsed 5 min in 2x SSC and water, airy 

dried and dehydrated in a series of 70%, 80% and 100% ethanol for 1 min each one. Subsequently, the 

slides were incubated for 1 h at 80ᵒC, were dehydrated, treated for 1 h with 100 μl/ml RNAse (Roche) in 

PBS at 37ᵒC and airy dried. Next, they were denatured at 80ᵒC in 50% formamide, 2x SSC for 2.5 min, and 

were dehydrated in 70% ethanol at -20ᵒC for 1 min. The probes were denatured in hybridization solution 

at 80ᵒC for 5 min, and then the slides were hybridized with the labelled probes for 12h at 37ᵒC. After 

rinsing three times in 50% formamide, 2x SCC for 5 min at 42ᵒC, and in 0.2x SSC at 60ᵒC, the slides were 

blocked in 4x SSC, 0.1% Tween 20, 3% BSA and were incubated with Cy3-Streptavidin 1:200 and 

monoclonal FITC anti-digoxigenin 1:50 at 37ᵒC for 1 h. Subsequently, the slides were rinsed 3 times in 4x 

SSC, 0.1% Tween 20 at 42ᵒC and were incubated with biotinylated anti-Streptavidin 1:100 and polyclonal 

goat FITC anti-mouse 1:50 for 1 h at 37ᵒC. Afterwards, they were washed as the previous step and 

incubated with Cy3-Streptavidin 1:200 and FITC anti-goat 1:50. Finally, after washing the slides were 

mounted with Vectashield and DAPI.  

3.14. Co-localization profiles 

To determine the degree of co-localization of two proteins along the AEs, those were simultaneously 

stained on spreads of meiocytes. Images were captured with identical camera settings. Fluorescence 

signals of each of them were measured along the AEs in the desired stage of meiosis using the ‘Plot profile’ 

tool of ImageJ. Signal intensities were standardized, acquiring values between -1 and 1, allowing to plot 

the overlay profiles of both proteins. The script to scale de data in R is the following: 

> setwd("C:/data_folder/") 

> data<-read.table("data_file.txt", header=TRUE, sep="\t") 

> scaled_data<-scale(data) 

> write.table(scaled_data,file=paste("data_scaled.xlsx"),sep="\t") 

 

The correlation between the profiles was determined by linear regression analysis through the Pearson’s 

correlation coefficient (R). The R coefficient does not take into account the differences in mean signal 

intensities, showing the result as +1 for perfect correlation, 0 for no correlation and -1 for anti-correlation. 

The values of the coefficients of determination R2 were shown in the scatter plots.  

3.15. Proximity ligation assay (PLA) 

The Proximity Ligation Assay (PLA) was carried out with the Duolink In Situ – Fluoresce PLA Technology 

(Sigma-Aldrich). The PLA was performed in cells (HEK 293T or COS7 cells) previously cotransfected with 

expression vectors encoding two candidate proteins, and fixed with 4% paraformaldehyde. The cells were 

firstly permeabilized with 0.2% Triton X-100 in KB buffer for 4 min, blocked with 7% FBS in PBS for 30 min 

and incubated with the primary antibodies diluted in 7% FBS in PBS for 1 h in a humidity chamber. The 

two PLA probes were diluted 1:5 in 7% FBS in PBS (40 μl reaction) and let the mix sit for 20 min at room 

temperature. It should be used a PLA probe MINUS and a PLUS one. Then, the slides were rinsed twice in 
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1x Wash buffer A (10 mM Tris-HCl, 150 mM NaCl and 0.05% Tween 20) for 5 min in an orbital shaker. The 

cells were incubated with the PLA probe solution in a pre-heated humidity chamber for 1 h at 37ᵒC.  and 

washed twice in 1x Wash buffer A for 5 min under agitation. Then, the slides were incubated with the 

ligation solution (1x Ligation stock and 1μl of Ligase in 40 μl of reaction) in a pre-heated humidity chamber 

for 30 min at 37ᵒC and rinsed twice in 1x Wash buffer A for 2 min shaking. After that, the slides were 

incubated with the amplification mix (1x Amplification stock and 0.5 μl of Polymerase in 40 μl of reaction) 

in a pre-heated humidity chamber for 100 min at 37ᵒC,  washed twice in 1x Wash buffer B (0.2 M Tris-HCl, 

0.1 M NaCl) for 10 min and 1 min in 0.01x Wash buffer B, and mounted with Vectashield and DAPI. The 

interaction between the two proteins will be visualized as discrete fluorescent spots.  

3.16. Flow cytometry analysis of DNA ploidy of testis cells (FACs) 

To perform FACs analysis, the testes were detunicated and the seminiferous tubules were kept in 5 ml of 

ice-cold separation medium (DMEM supplemented with 10% FCS, 0.1 mM NEAA (non essential amino 

acids, Gibco), 1.5 mM sodium pyruvate, 4 mM L-glutamine (Gibco) and 75 μg/ml ampicillin (Sigma-

Aldrich)). Tubules were treated with 0.1 mg/ml collagenase at 37ᵒC for 10 min under mild shaking, allowed 

to sediment on ice, and washed twice with separation medium. Then, the tubules were resuspended in 5 

ml of separation medium containing 2.5 μg/ml trypsin (Gibco) and 1 U/ml DNAse I (Takara), and were 

incubated for 2 min at 37ᵒC, and transferred to ice. Afterwards, single cells were extracted from the 

seminiferous cords with a Pasteur pipette and filtered through a 40 μm nylon mesh and washed twice 

with separation medium by centrifugation at 1200 rpm for 5 min. The cell suspension (2·106 cells/ml) was 

diluted 1:1 with a solution containing 0.05 mg/ml propidium iodide and 0.1 mg/ml RNAse (Roche) for 15 

min protected from light. Finally, the cells were analysed through flow cytometry in the FACSCalibur 

cytometer with the BD Cell-Quest software, by measuring 3 parameters: the forward scatter (FSC, 

proportional to the cell size) and side scatter (SSC, complexity or granularity of the cell) to identify single 

cells; and PI (λ excitation/emission= 536 / 617 nm) to get the DNA content. The cell cycle distribution was 

analysed with the Kaluza Analysis software (Beckman Coulter). 

4. Cellular cultures 

4.1. Cell types and culture conditions 

In the development of this study in vitro experiments have been carried out with several cell lines and 

primary cultures of fibroblast from mouse. All of them were cultured in culture dishes (BD Falcon), in 

incubators with a wet atmosphere at 37ᵒC and 7% CO2. The cells used were the following: 

- MEF  Mouse Embrionary Fibroblast 

- HEK 293T  human embryonic kidney cell line 

- COS7  African green monkey kidney fibroblast-like cell line 

- TM3  mouse Leydig cell line 

- TM4  mouse Sertoli cell line 

- GC-1spg  mouse spermatogonia cell line 

- GC-2spd  mouse spermatocyte cell line 
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MEFs and HEK 293T, COS7, GC-1spg and GC-2spd cell lines were cultured in DMEM (Dulbecco’s Modified 

Eagle Medium, GIBCO) supplemented with 10% FBS (fetal bovine serum, Gibco) and 1% PSG (Penicillin-

Streptomycin-Glutamine; Gibco). The TM3 and TM4 cell lines were cultured in DMEM:Ham’S F12 medium 

(1:1, Gibco) with 1.2 g/l sodium bicarbonate, 15 mM HEPES, 5% horse serum and 2.5% FBS. 

When cells reached confluence or in order to plate them, the adherent cells were trypsinized with 0.25% 

Trypsin-EDTA (Gibco) for 5 min at 37ᵒC. Trypsin was neutralized by adding media with FBS. The cells were 

mechanically unicellularized by gently pipetting and seeded in the suitable confluence.  

For long term preservation, the cells were maintained in liquid nitrogen (-180ᵒC). The cells were frozen in 

culture medium supplemented with 20% FBS and 10% DMSO (dimethylsulfoxide, Sigma-Aldrich) and were 

slowly frozen at -70ᵒC in isopropanol containers and finally transferred to liquid nitrogen.  

4.2. Isolation of MEFs 

To obtain primary cultures of MEFs, embryos were extracted from pregnant females at 13.5 dpc. The 

uterus was placed in a Petri dish with PBS and the embryos were extracted by cutting the wall of the 

uterus. Then, the head and the viscera (red tissue: heart and liver) were tear out, and the rest of the 

embryo was transferred to a tube with 1 ml of 0.25% trypsin-EDTA. The embryos were chopped up with 

scissors and were incubated overnight at 4ᵒC. After 24 h, the cell suspension was pipetted up and down 

to mince the cells and was transferred to a 10 cm culture dish with DMEM incubating them at 37ᵒC. When 

the MEFs reached 100% confluence, proximately after 24 h, they were trypsinized and transferred to a 15 

cm dish. After reaching newly 100% confluence, the MEFs were frozen in DMEM supplemented with 20% 

FBS and 10% DMSO, in 5 cryovials per embryo, considered as passage 0.  

4.3. Cell cycle analysis by FACs 

1.5·105 MEFs were seeded in a 3.5 cm dish and harvested for 16 h. The MEFs were trypsinized, 

unicellularized with the pipette and centrifuged at 800 rpm for 5 min. The cells were rinsed twice with 1x 

PBS and resuspended in 330 μl PBS. MEFs were fixed with 660 μl ice-cold 100% ethanol by adding it 

dropwise over the cell suspension while gently vortexing the cells, and incubated for at least 30 min at 

4ᵒC. Afterwards, the cells were spun down at 800 rpm for 5 min and washed with 2 ml PBS. The pellet of 

cells was resuspended in 1 ml PBS with 0.1 mg/ml RNAse (Roche) and 15 µg/ml propidium iodide (PI) to 

label the DNA for 15 min at room temperature protected from light. The cells were analysed through flow 

cytometry, recording at least 5·104 events by measuring the FSC, SSC and PI (λ excitation/emission= 493 / 

636 nm) in a cytometer BD Accuri™ C6 (BD Biosciences). The distribution of the cell cycle was analysed 

with the software BD Accuri™ C6 Software. The profile obtained shows 2 peaks, corresponding to cells in 

G1 (2N) and G2/M (4N) respectively, and between them would be the cells in S phase.  

4.4. Transfection of cell lines 

For transfection of HEK 293T, 4·106 cells were plated in a 10 cm dish the day before the transfection. A 

mix containing 20 μl of jetPEI (Polyplus-Transfection) diluted in 250 μl 150 mM NaCl was added to the 

DNA solution (10 μg DNA in 250 μl 150 mM NaCl), gently vortexed and incubated for 15-30 min at room 

temperature. The culture media of the cells was replaced by fresh media. Next, the transfection mix was 
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added dropwise to the cells and homogenized by swirling the plate. The media was replaced after 24 h of 

culture.   

4.5. Retroviral/Lentiviral transduction 

MEFs were infected with viral particles previously produced by HEK 293T transfected with retroviral or 

lentiviral vectors. 4·106 HEK 293T cells were seeded in a 10 cm dish the day before the transfection. The 

HEK 293T were transfected as described above with the plasmid of interest, together with a packaging 

vector that encodes the capsid, the reverse transcriptase and the ecotropic envelope of the virus, in the 

following proportions (10 µg total DNA): 

- Retroviral plasmids: 40% pCL-ECO (packaging plasmid) + 60% expression vector 

- Lentiviral plasmids: 12.5% pMD2G (envelope) + 37.5% pSPAX2 / pCMV dR8.91 (packaging) + 50% 

expression vector. 

The day before the infection, 8·105 MEFs were plated in a 10 cm dish. The media of the HEK 293T 

cells containing the viral particles was collected at 48, 60 and 72 h after the transfection, and centrifuged 

at 4000 rpm for 8 min to pellet any remaining packaging cells. The MEFs were cultured with this media, 

containing 4 μg/ml polybrene. Finally, the transduced MEFs were selected with a suitable antibiotic, 

commonly 2 μg/ml puromycin (Sigma-Aldrich) for 2-3 days or 75 μg/ml hygromycin during 6 days. 

4.6. Karyotyping 

1.5·105 cells were plated in a 3.5 cm dish the day prior to the treatment. The cells were blocked in 

metaphase with 1 μg/ml colchicine/colcemid (Sigma-Aldrich) for 4 h at 37ᵒC. Afterwards, the MEFs were 

trypsinized and spun down for 5 min at 1200 rpm. The cells were exposed to a hypotonic shock in 6 ml 

0.56% KCl for 15 min. Next, the MEFs were fixed with ice-cold methanol:glacial acetic acid 3:1, by adding 

8 drops of fixative to the cells while flicking the tube by vortex, and centrifuged at 1200 rpm for 5 min. 

The pellet of cells was resuspended in 7 ml of fixative and spun down for 5 min at 1200 rpm, repeating 

this step twice. Finally, the cells were resuspended in 0.5 – 1 ml of fixative. The chromosome preparations 

were carried out over wet and clean slides, dropping two drops of the cell suspension to allow the 

metaphase cells to burst. After airy drying the slides, the chromosomes were stained with 5% Giemsa in 

10 mM phosphate buffer pH 6.8 for 15 min at room temperature or with DAPI. It was analysed at least 50 

metaphases.  

 

5. Statistical analysis 
The data presented along this work are indicated as mean ± standard deviation. In order to compare 

counts between several genotypes at different stages, we used the Welch’s t-test (unequal variances t-

test), which was appropriate as the count data were not highly skewed (that is, were reasonably 

approximated by a normal distribution) and in most cases showed unequal variance. We applied a two-

sided test in all the cases. Asterisks denote statistical significance: *P value <0.01, **P value <0.001, 

***P value<0.0001 and P value > 0.01 indicate non significant differences. The software employed to 

perform the analysis was GraphPad Prism 7.  
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Oligo- and azoospermia are severe forms of male infertility. However, known genetic factors account only for a
small fraction of the cases. Recently, whole-exome sequencing in a large consanguineous family with inherited
premature ovarian failure (POF) identified a homozygous frameshift mutation in the STAG3 gene leading to a pre-
maturestopcodon.STAG3encodesameiosis-specificsubunitof thecohesincomplex,a largeproteinaceousring
withDNA-entrappingability thatensuressisterchromatidcohesionandenablescorrectsynapsisandsegregation
of homologous chromosomes during meiosis. The pathogenicity of the STAG3 mutations was functionally vali-
datedwitha loss-of-functionmousemodel forSTAG3inoogenesis.However,andsincenoneof themalemembers
of this family was homozygous for the mutant allele, we only could hypothesized its putative involvement in male
infertility. In this report, weshowthat malemicedevoidofStag3displayaseveremeioticphenotype that includesa
meiotic arrest at zygonema-like shortening of their chromosome axial elements/lateral elements, partial loss of
centromeric cohesion at early prophase and maintenance of the ability to initiate but not complete RAD51- and
DMC1-mediated double-strand break repair, demonstrating thatSTAG3 isa crucial cohesin subunit in mammalian
gametogenesis and supporting our proposal that STAG3 is a strong candidate gene for human male infertility.

INTRODUCTION

Infertility refers to failure of a couple to conceive and affects
�10–15% of couples (1). Among infertile couples, �50%
are related to male infertility (2,3). Spermatogenic failure, clin-
ically characterized by a partial or complete absence of sperm
in the ejaculate, accounts for 10–15% of male infertility (4)
and is divided into obstructive and non-obstructive oligo-/
azoospermia. The former is characterized by a physical ob-
struction of the genital tract that impedes sperm from reaching
the ejaculate and can be treated by testicular sperm extraction
and intracytoplasmic sperm injection. In contrast, the latter is
characterized by the inability to produce mature sperm and
leads to severe forms of male infertility [accounting for 60%
of azoospermia cases (1)]. Because of the spermatogenic
failure in most non-obstructive azoospermia cases, patients
are more difficult to treat (5). The non-genetic etiology of

non-obstructive oligo-/azoospermia comprises heat exposure,
infections, chemotherapy and radiation. The most common
genetic alterations that cause non-obstructive oligo-/azoosper-
mia include Y chromosome microdeletions and chromosomal
abnormalities (6,7). However, these genetic factors only
account for a reduced fraction of the cases, while in most of
the patients the disease remains idiopathic (8). Determining
the genetic basis of non-obstructive oligo-/azoospermia by
linkage analysis is challenging because of the genetic hetero-
geneity and the reduced size of the families due to the intrinsic
infertility. Recently, genome-wide association studies have
identified several risk loci although further replication and
investigations are required to evaluate their relevance and
to determine the functional significance of the candidate varia-
tions, respectively (9–11). Thus, additional studies are needed
for the identification of genetic mutations causative of
idiopathic non-obstructive oligo-/azoospermia.
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We and others have postulated that meiotic genes affecting
crucial processes during the meiotic prophase such as double-
strand breaks (DSBs) generation and repair, chromosome synap-
sis and sister chromatid cohesion could account for a fraction of
the cases of human infertility with unknown genetic etiology
(12–14). Considering the phenotype of mutant mice for
several meiotic genes as a model of mammalian infertility, it
becomes obvious that human premature ovarian failure (POF)
(OMIM #311360), the end point of primary ovarian insuffi-
ciency, would be the ‘corresponding’ female phenotype of
oligo-/azoospermia (13,15,16).

Recently, by combining linkage data and exome sequencing in
a consanguineous POF family, we have identified a homozygous
1-base pair (bp) deletion in the STAG3 gene, leading to a truncated
coding sequence in four sisters affected with POF, whereas their
unaffected parents were heterozygous carriers (17,18). The
fertile siblings (both males and females) were either heterozygous
or homozygous for the wild-type allele. STAG3 is a meiosis-
specific component of the cohesin complex, a large ring-shaped
proteinaceous structure that tethers sister chromatids (i.e. cohe-
sion) (19). The somatic cohesin complex is composed of four
main subunits, Smc1a, Smc3, Rad21 and the stromal antigen pro-
teins STAG1 or STAG2. SMC1a and SMC3 belong to the struc-
tural maintenance of chromosome family. SMC proteins have one
adenosine triphosphate (ATP)-binding cassette-like domain
with ATPase activity formed by the interaction of the N- and
C-terminal domains. These domains are joined by the auto-
folding of the protein by the so-called hinge region forming
long antiparallel coiled coils. In addition, the hinge region is the
interacting domain that mediates dimerization of both SMCs. To-
gether, they form a V-shaped Smc1a/Smc3 heterodimer which is
closed by the tight interactionof RAD21 with the ATPase headsof
Smc1a and SMC3 via its N- and C-terminus, resulting in a closed
ring-shaped structure (20). Finally, the STAG subunit associates
to the complex by binding to the C-terminal region of the Rad21
a-kleisin subunit. In addition, there are meiotic-specific paralo-
gues of Rad21, STAG1/2 and SMC1a, respectively RAD21L
and REC8, STAG3 and SMC1b (21–23). By its ability to foster
DNA looping, the cohesin complex also participates in DSBs pro-
cessing and synapsisof homologouschromosomes during thepro-
phase I of meiosis (24). These functions rely on the essential role
that cohesins play in the assembly of the synaptonemal complex
(SC), a tripartite proteinaceous scaffold that forms between the
paired homologous chromosomes (25).

In relation to the mutation in the STAG3 gene affecting the
POF family, we validated its pathogenicity by describing a
loss-of-function mouse model for Stag3. Mutant mice lacking
STAG3 showed no overt somatic phenotype but deficient
female mice were sterile and displayed a premature meiotic
arrest with degenerating ovaries, which were devoid of follicles
by 1 week of age.

Despite the informativity of the aforementioned POF family,
none of the male individuals was homozygous for the mutant
allele. Here, we analyze the mutant phenotype of male mice de-
ficient for Stag3. We demonstrate that the STAG3-deficient
males display a severe defect in synapsis and premature loss of
centromeric cohesion at early stages of prophase I which pro-
vokes an arrest at zygotene-like stage and leads to infertility.
This model clearly shows that STAG3 is a very strong candidate
gene of non-obstructive oligo-/azoospermia in humans.

RESULTS AND DISCUSSION

We have previously shown that the female mouse line
OVE2312C, generated by a lentiposon insertional mutation in
the intron 8 of Stag3 harbours a null allele that leads to a depletion
of the Stag3 transcript and its corresponding encoded STAG3
protein (18). Stag3-deficient female mice showed no overt
somatic phenotype apart from the lack of oocytes and ovarian
follicles at 1 week of age and the presence in their ovaries of a
dense stroma, indicating a severe ovarian dysgenesis. Oocytes
from female null embryos (from 15.5 to 19.5 dpc) showed a
very early meiotic arrest (leptotene like) with complete
absence of synapsis (18).

Since the phenotype of meiotic mouse mutants commonly
show sexual dimorphism (13,26,27), we analyzed spermatogen-
esis to validate Stag3 as a non-obstructive oligo-/azoospermia
candidate gene. Heterozygous mice displayed no phenotype
and were fully fertile with normal testes and spermatogenesis
(data not shown). We analyzed testes from adult (2–8 months;
n ¼ 12) Stag32/2 mice and showed that they were on average
78% smaller than those from wild-type mice, and their epididy-
mides did not contain spermatozoa upon histological examin-
ation (Fig. 1A and B). Histological analysis revealed the
absence of post-meiotic cells although spermatogonia, Sertoli
and Leydig cells were apparently normal (Fig. 1B). The semin-
iferous epithelium from the mouse contains a mixture of germ
cells at various developmental stages. Staging of each section
of the tubule is defined (from I to XII) according to the set of asso-
ciated germ cell types that are present (28). Following these cri-
teria, the most advanced type of meiocytes were spermatocytes
with nuclear chromatin characteristic of zygotene/pachytene-
stage cells which were present in seminiferous tubules arrested
at Stage IV of the epithelial cycle (Fig. 1B). This is the develop-
mental stage at which most of the meiotic mutants are arrested
(29), leading to a massive degeneration (Fig. 1B). In addition,
we carried out a fluorescence-activated cell sorting (FACs) ana-
lysis of whole cells from seminiferous tubules and showed the
absence of the haploid compartment in Stag32/2 testes, which
supports the prophase I arrest (Fig. 1D). Given the lack of
spermatozoa and the reduced weight of the testis, we carried
out Terminal deoxynucleotidyl transferase dUTP nick end label-
ing (TUNEL) staining and showed that the number of apoptotic
cells in Stag32/2 tubules was higher than in wild-type (Fig. 1C),
which likely corresponds to the massive degeneration and
accounts for the reduced size of the testis.

SC assembly in Stag3-deficient spermatocytes

To functionally characterize more precisely the infertility and
the meiotic arrest in the Stag3 knockout (KO) mice, we also ana-
lyzed meiocytes from male seminiferous tubules by immuno-
fluorescent staining of the Synaptonemal Complex Protein 3
(SYCP3) component of the axial element (AE) of the SC and
the transverse filament protein SYCP1, a marker of synapsis,
on chromosome spreads. Wild-type meiocytes start to build
their AEs at leptotene (short threads) and start to synapse at zyg-
otene (large threads) until they are fully synapsed at the pachy-
tene stage which is characterized by 19 pairs of full-length
synapsed homologs (autosomes) and a partially synapsed sex bi-
valent at the pseudoautosomal region (Fig. 2). However, in the
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absence of STAG3, AE assembly and synapsis between homo-
logs were disrupted very early (Fig. 2). Stag32/2 spermatocytes
were apparently arrested at a zygotene-like stage and never
reached pachytene (100%) but with differentiated types of

arrest that were grossly classified for the analysis in two
extreme classes. The most frequent arrested meiocytes (65%
L-type spermatocytes; n ¼ 100) were characterized by the pres-
ence of thin and discontinuous SYCP3 threads corresponding to

Figure 1. Mice lacking STAG3 are azoospermic. (A) Genetic ablation of Stag3 leads to a reduction in testis size. (B) Stag32/2 seminiferous tubules arrested at Stage
IV of the epithelial cycle are characterized by intermediate spermatogonia (arrows) ready to divide into type B spermatogonia. Massive degeneration of spermatocytes
(asterisks) can be seen. The complete block of the spermatogenesis leads to empty epididymides and non-obstructive oligo-/azoospermia. (St) Seminiferous tubules.
(Ep) Epididymides. (C) Immunofluorescence detection apoptotic cells by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining show an
increase of apoptotic cells in Stag32/2 seminiferous tubules. (D) Abnormal ploidy of Stag32/2 spermatocytes. FACs analysis of cells from seminiferous tubules
showing the absence of the haploid compartment in Stag32/2 testes. Bar in panel A is 5 mm. Bar in upper panel B is 20 mm and 75 mm in lower panel B (Ep) and
C (TUNEL).

Human Molecular Genetics, 2014, Vol. 23, No. 13 3423

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article-abstract/23/13/3421/659338 by guest on 29 Septem
ber 2019



the AEs and some partially synapsed lateral elements (LEs; posi-
tive staining for SYCP1) that never progressed to the expected 19
fully synapsed autosomal bivalent chromosomes observed in
wild-type pachynema (Fig. 2). On the other hand, the less fre-
quent Stag32/2-arrested meiocytes (35% n ¼ 100; S-type sper-
matocytes) showed very short AEs that although apparently
desynapsed as independent very short AEs (�40), they
showed partial SYCP1 labeling (Fig. 2). These arrested meio-
cytes showed a very severe meiotic phenotype (although partial-
ly resembling previous single meiotic mutants). Thus far, only
Rec82/2;Rad21L2/2 double knockout spermatocytes show a
more severe phenotype in AE assembly and pairing (12) than
Stag32/2 spermatocytes. Rec8 and Rad21L have been shown
to interact exclusively with STAG3 cohesin complexes but not
with STAG1 or STAG2 (30). Therefore, the defect on AE assem-
bly in Stag32/2 and Rec82/2;Rad21L2/2 spermatocytes are
expected to be similar. The differences observed here suggest
that in the absence of STAG3, another molecule might form
functional complexes with Rec8 and Rad21L. STAG1 and/or
STAG2 might be candidates but they have not been functionally
implicated thus far in AE assembly. To further analyze this
possibility, we immunolabeled STAG1 and STAG2 in STAG3-
deficient spermatocytes and show no evidence of a compensatory
mechanisms involving these molecules (i.e. such us upregulation
of their expression, Supplementary Material, Fig. S1).

To further quantitatively analyze the synaptic defects, we
studied the centromere distribution by immunofluorescence
with a human anti-centromere antibody (ACA) (Fig. 3) in both

types of Stag32/2-arrested meiocytes. In wild-type spermato-
cytes at leptotene, the number of centromere foci never exceeded
40. As synapsis progressed, these centromeric foci merged into
21 signals (19 signals from synapsed autosomes + 2 signals
for the XY bivalent) at pachytene when homologous synapsis
is complete and their centromeres are closely juxtaposed. In
Stag32/2 zygotene-like L-type spermatocytes we scored on
average 42.47+ 1.28 foci (n ¼ 30 nuclei), whereas in zygotene-
like type S spermatocytes we scored on average 46.55+ 2.7
(n ¼ 30). This result suggests the existence of a virtual lack of
synapsis between homologs, at least at their centromeric regions
(Fig. 3) but, more interestingly, a partial lack of centromeric
cohesion. To evaluate this in more detail, we quantified the
number of chromosomes presenting two close ACA signals
per chromosome (2.35+ 1.25 for L-type and 6.18+ 2.69 for
S-type Stag32/2 spermatocytes; n ¼ 31) in comparison with
the wild-type in which all of the cells show a single signal per
chromosome (Fig. 3). This observation is congruent with the
fundamental role that the somatic cohesin complex plays in
sister chromatid cohesion. To evaluate whether this function is
also carried out by the Rec8-containing cohesin complex,
which is considered to be the canonical meiotic cohesin involved
in the cohesion of dyads and chromatids (31,32), we analyzed
arrested spermatocytes lacking REC8, which did not show
such a loss of sister chromatid cohesion at the centromeres (for
comparison, see Supplementary Material, Table SI) However,
as expected although not previously demonstrated, we observed
loss of sister chromatid cohesion at the centromeres of okadaic

Figure 2. Stag32/2 spermatocytes show defects in synapsis. Double labeling of Synaptonemal Complex Protein 3 (SYCP3) (red) and SYCP1 (green) showing frag-
mented (right; type-L-arrested spermatocytes) or shortened (left; type-S-arrested spermatocytes) AEs/LEs with partial synapsis and with patches of SYCP1 in mutant
spermatocytes compared with their wild-type control. Bar represents 2.5 mm.
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acid (OA)-induced Rec82/2 spermatocytes (Supplementary
Material, Fig. S2). As a control of spermatocytes with unjoined
chromosomes at metaphase I but without loss of centromeric co-
hesion, we used OA-induced spermatocytes from RAD21L-
deficient spermatocytes and showed the expected 40 univalents
with joined chromatids (13; Supplementary Material, Fig. S2).

This lack of cohesion was also observed in the chromosomes
from oocytes lacking STAG3 although with a higher penetrance
(18). Mutations in mice that affect other meiotic cohesin subunits
also result in abnormal spermatocyte development with meiotic
arrest at zygotene/pachytene-like stage because of abnormal AE
formation/synapsis. However, their meiocytes were not reported
to show any lack of centromeric cohesion at zygonema [REC8,
this work; SMC1b (15) and RAD21L this work and (13)]. Inres-
tingy, a very recent re-analysis of SMC1b-deficient spermato-
cytes in a null SPO11 background showed loss of centromeric
sister chromatid cohesion in the 35% of the AEs when
homolog association was disrupted (33). We can speculate that
the lower penetrance of the loss of centromeric cohesion in the
REC8-deficient mice, in comparison with the STAG3 mutants,
could be due to the existence of partial synapsis between homo-
logs which mask the doublets ACA foci as single ACA signals in
the absence of centromeric cohesion. Further, analysis of the
REC8 mutants in a null SPO11 background (no DSBs are gener-
ated) would partially unravel this point. Taken together, these
results suggest that the cohesion function at the centromeres is
carried out by a cohesin complex containing STAG3, SMC1b
and REC8.

In summary, these results indicate that STAG3 is an important
meiotic cohesin subunit, since STAG3-containing cohesin

complexes are essential for chromosome synapsis and mainten-
ance of centromeric sister chromatid cohesion in the early stages
of prophase I.

DSBs generation and defective repair occurs in
Stag32/2-arrested spermatocytes with shortened AEs

To elucidate the cause of the meiotic arrest, we analyzed meiotic
chromosomes with a variety of markers that are diagnostic of re-
combination. First, we analyzed the SPO11-promoted DSBs at
the leptotene stage by immunolabeling of phosphorylated
histone variant g-H2AX (34). This phosphorylation occurs
during early prophase I in response to SPO11-induced DSBs in
an ATM-dependent manner and disappears from the autosomes
towards pachytene as the DSBs get repaired (35). All the
Stag32/2 spermatocytes showed a positive g-H2AX staining
at leptotene (102.6+ 41.6 versus 94.8+ 27.9; n ¼ 35;
Fig. 4A) that was partially reduced at the zygotene-like arrest
in a similar fashion to the wild-type spermatocytes. This result
suggests that the generation of the DSBs is not affected by the
STAG3 deficiency and that the DSBs are not resolved in the
arrested spermatocytes.

We subsequently addressed why DSBs are not repaired in the
mutant spermatocytes. After DSBs are generated, the recombi-
nases RAD51 and DMC1 are recruited to promote homolog
searching by strand invasion (36). In wild-type leptotene sper-
matocytes, RAD51 and DMC1 assemble on the AEs/LEs of
chromosomes and gradually disappear towards pachynema
(37). As shown in Figure 4B, wild-type spermatocytes showed
both RAD51 and DMC1 foci, whereas Stag32/2-arrested

Figure 3. STAG3 deficiency leads to premature loss of cohesion. Double immunofluorescence of SYCP3 (red) and ACA (green). Wild-type zygotene spermatocytes
show 40 single signals of ACA at one end of the AE/LEs.However, the number of ACA signals exceeded 40 in Stag32/2 zygotene-like arrested spermatocytes because
of the presence of chromosomes with two close but not juxtaposed ACA signals (asterisks depicted in the left lower magnified panel). In the wild-type, the sperma-
tocytes displayed a single signal per chromosome (left upper magnified panel). Bar represents 2.5 mm.
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Figure 4. Programed DSBs are generated but defectively repair in STAG3-deficient spermatocytes. (A) Double immunolabeling of SYCP3 (red) withgH2AX (blue)
in Stag3+/+ and Stag32/2 spermatocytes. In wild-type spermatocytes at leptonema, gH2AX labels intensely the chromatin of the spermatocytes. At zygonema, the
labeling is partially reduced untilpachynemawhen the signaldisappears, remaining only at the chromatinof the unsynapsedsex bivalent (data not shown).Similarly, in
the STAG3 KO, gH2AX also labels the chromatin at leptotene stage and more faintly at zygonema, where it remains during the whole meiotic arrest, suggesting that
DSBs are partially but not completely repaired. (B) Double immunolabeling of SYCP3 (red) and RAD51 or DMC1 (green) in wild-type and Stag32/2 spermatocytes.
In both wild-type spermatocytes and Stag3 mutants, RAD51 and DMC1 localize to AE/LEs at zygonema; however, the number of foci is reduced 2-fold. Bar represents
2.5 mm.
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spermatocytes showed a reduction in the number of RAD51/
DMC1 foci (Fig. 4B and Table 1). Thus, the loading of the
RAD51/DMC1 is not impaired but significantly reduced in the
absence of STAG3, and this insufficient loading together with
the synapsis defects likely leads to the observed unrepaired
DSBs.

To determine whether the short AEs observed in the arrested
spermatocytes correspond to shortened AEs or to partial frag-
mented/discontinuous AEs, we immunolocalized the telomeric
protein RAP1 (13,38). The results showed that most of the
RAP1 foci were mapped at both ends (telomeres) of the short
AEs of the arrested Stag32/2 spermatocytes, suggesting that
they are indeed shortened AEs and not discontinuous or frag-
mented ones (Supplementary Material, Fig. S3). A similar
‘shortening’ phenotype has also been reported in Smc1B2/2

spermatocytes (15). However, because Smc1B2/2 spermato-
genic blockade occurs in a later stage of the meiotic prophase
(early/mid pachytene), the arrested spermatocytes showed a re-
duction in the length of their already partially synapsed AE/LEs
instead of in the asynapsed Stag32/2 AEs. Interestingly, since
Stag32/2 oocyte arrest is as early as leptotene and that AEs
are still not assembled in threads, similar to the double deficiency
for RAD21L and REC8 (12), the shortening of the asynapsed
AEs was not observed (18). The role of STAG3-containing
cohesin complexes in the length of the AEs and thus in DNA
looping (15,39) might rely only on the formation of a complex
with SMC1b. However, our cytological observations showing
only a partial reduction of the loading of SMC1b into the
Stag32/2 AEs do not fully support this hypothesis (see
below). Instead, we propose that this severe shortening occurs
also by additional STAG3-containing cohesin complexes
(i.e. those complexed with SMC1a), given that STAG3 can
complex with the two SMC1 subunits, SMC1a and SMC1b
(30) which are co-expressed in the testis.

OA-induced metaphase I chromosomes show absence
of chiasma and loss of centromeric cohesion

We next sought to analyze whether crossing over (CO) and
chiasmata could be formed in the absence of the meiotic arrest
that prevents mutant spermatocytes to enter into pachytene, as
well as in the absence of STAG3 function in centromeric cohe-
sion at metaphase I. To do this, we cultured wild-type and KO
spermatocytes in the presence of OA (a PP2A inhibitor), to
allow in vitro transition from zygotene to metaphase I (40).
OA-treated wild-type spermatocytes showed 20 bivalents
joined by at least one chiasma and were positive for SYCP3 la-
beling at the interchromatid and centromeric domain. Bivalents
always showed two pairs of unseparated sister kinetochores
by ACA staining (Fig. 5). However, OA-treated Stag32/2

spermatocytes displayed 80 unattached chromatids with label-
ing for SYCP3 at some centromeres but also as aggregates
(Fig. 5). This phenotype was similar in OA-treated Rec82/2

spermatocytes (Fig. S2). As noted above, in early prophase,
Stag32/2 (and to a much lesser extent in Rec82/2) spermato-
cytes display a partial loss of centromeric cohesion. These
results suggest the existence of some degree of cohesin turnover
during or after prophase I or alternatively, the existence of tech-
nical limitations in the chromosome spread and/or microscopic
resolution that might obscure the detection of loss of cohesion
at all the centromeres. Similarly, Smc1ß2/2 spermatocytes
show partial loss of sister chromatid cohesion at prophase I
(33) and complete loss of centromeric cohesion at OA-induced
metaphase I (15). Altogether, these observations firmly
support that STAG3/SMC1b-containing cohesin complexes
are necessary for the centromeric cohesion at metaphase I and
chiasma formation, and support, but not demonstrate, that the
role of these STAG3/SMC1b-containing cohesin complexes in
centromeric cohesion is very likely performed through interac-
tions with REC8, although perhaps not exclusively.

Complexes of STAG3 with other cohesin subunits

The absence of the two meiosis-specific cohesin subunits
RAD21L and REC8 prevents the normal loading of other cohe-
sins and the assembly of AEs. Thus, we analyzed whether the
loss of STAG3 also compromised the loading of other cohesins
in spermatocytes. The double immunofluorescence of the
various meiotic cohesin subunits and SYCP3 in wild-type and
Stag32/2 spermatocytes showed that the loss of STAG3
induced a reduction in the co-localization of SMC1b with
SYCP3 (Fig. 6). Thus far, the effect on the localization of
other cohesin subunits has been shown to be stronger only in
Rec82/2;Rad21L2/2 double knockout spermatocytes (12).
Interestingly, although Rec8 immunolabeling was observed, it
was close to our limit of detection. Rad21, SMC3 and
RAD21L immunolocalization was not apparently affected
(Fig. 6). Interestingly, this phenotype was more severe in the
Stag32/2 oocytes where Rec8 was not detected at all using the
same procedures and antibodies (18), indicating that there is a
sexual dimorphism in the different STAG3-containing cohesin
complexes. Female meiosis would thus be more dependent on
STAG3-containing cohesin complexes than male meiosis.
This sexual dimorphism could be explained if we accept that
RAD21L could have STAG3-independent functions such as
those performed at the sex body and the inner centromere at
metaphase I and II (13,41), two cytological domains that are
exclusively labeled by RAD21L antibodies at male meiosis
(i.e. no other cohesins co-localize at these sites). Further
studies are needed to provide a mechanistic explanation.

Overall, these results indicate that in spermatocytes STAG3 is
complexed in vivo with REC8 and with SMC1b, and is apparent-
ly independent of the kleisins RAD21 and RAD21L. Under a
simple model of the cohesin complex in which the lack of one
subunit impedes the association of the remaining subunits of
the complex and their detection along the AE/LEs, these data
are not congruent with the deficient loading of STAG3 in
Rad21l2/2 spermatocytes (13) and would resemble to some
extent the RAD21L-deficient oocytes in which STAG3 labeling
was not altered (13). Similarly, the genetic ablation of Rec8 does

Table 1. Quantification of RAD51 and DMC1 foci

Number of RAD51 foci Number of DMC1 foci

Wild-type 132.6+20.1; n ¼ 22 155.6+39.2; n ¼ 20
Stag3 KO L-type 69.7+11.4a ; n ¼ 22 86.9+15.4; n ¼ 22
Stag3 KO S-type 67.5+9.9a ; n ¼ 22 85.6+11.7; n ¼ 22

aSignificantly different from wild-type (P , 0.001).
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not substantially alter the immunodetection of SMC1b nor
STAG3 (Supplementary Material, Fig. S4) and, in turn,
SMC1b deficiency does not alter neither the loading of REC8
nor that of STAG3 (15). Thus, and although counterintuitively,
it seems that the interactions between subunits are not always
reciprocal. This deserves further exploration.

From a cohesive point it can be noted that (i) RAD21L-
deficient meiocytes do not present defects in cohesion (13 and
Supplementary Material, Fig. S2), (ii) REC8 mutants exhibit a
faint loss of centromeric cohesion at prophase I that leads to a
total loss of cohesion in the OA-induced metaphase I (15,16,42
and Supplementary Material, Fig. S2), (iii) STAG3 and
SMC1b mutant spermatocytes show premature loss of centro-
meric cohesion at very early prophase (18,33, Fig. 3) and iv)
STAG3 mutant oocytes, but not SMC1b, show premature loss
of cohesion (15,17). This shows that STAG3 is a crucial
meiotic cohesin subunit in the maintenance of centromeric
cohesion in early prophase I. We propose that STAG3 (likely
complexed with SMC1b and REC8) is essential for the mainten-
ance of centromeric sister chromatid cohesion in spermatocytes
starting at early prophase I until metaphase I.

STAG3 is thus essential for mammalian gametogenesis in
both males and females and is arguably the most relevant
single meiotic cohesin since none of Rad21l, Smc1b and Rec8
mouse mutants (13,15,16,42) shows a meiotic phenotype as

severe as the one described in males (this work) and in female
mice (18).

STAG3 mutations causing a recessive form of non-obstructive
oligo-/azoospermia are most likely to be at a heterozygous state in
the general human population, as was the case in the fertile men
carrying the STAG3 mutation in the previously reported POF
family (18). However, the existence of homozygotes and com-
pound heterozygotes for recessive mutations or even the existence
of dominant forms acting through a dominant negative mechan-
ism, as has been demonstrated for the recombinase DMC1 in
the mouse (43) and suggested in humans (44), is plausible and
expected. In the latter case, a heterozygous mutation in STAG3
would poison the macromolecular complexes in which it is
involved and lead to infertility (ranging from azoospermia for
the most damaging homozygous mutations to milder conditions).

In conclusion, this study identifies a crucial role of the cohesin
subunit STAG3 in male spermatogenesis through the analysis of
a loss-of-function mouse model. Male mice lacking STAG3
were infertile and showed a severe meiotic phenotype that
included a meiotic arrest at zygonema-like with shortening of
their chromosome AE/LEs and loss of centromeric cohesion.
Our results indicate that STAG3-containing cohesin complexes
are essential for mammalian gametogenesis and support our
initial proposal that STAG3 is a strong candidate gene for
human male infertility.

Figure 5. The deficiency of STAG3 prevents CO and leads to total loss of centromeric cohesion at metaphase I. Double immunolabeling of SYCP3 (red) or REC8
(green) with ACA (green) and 4’,6-diamidino-2-phenylindole (blue) in wild-type and Stag32/2 spermatocytes. OA-induced metaphase I plates of wild-type sperma-
tocytes give rise to 20 bivalents each with two opposed centromere signals (ACA) and positive for SYCP3 and REC8 labeling at the interchromatid and centromeric
domain, whereas Stag32/2 spermatocytes lead to 80 separated centromere signals with ACA and delocalization of SYCP3 and REC8 labeling from the centromeres
(aggregates). Bar represents 2.5 mm.
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MATERIALS AND METHODS

Immunocytology and antibodies

Testes were detunicated and processed for spreading using the
‘dry-down’ technique (45). The primary antibodies used for im-
munofluorescence were rabbit aSMC3 serum K987 (1:20),
rabbit aSMC1b serum K974 (1:20) (46), rabbit aSTAG3
serum K403 (1:20) (22), aREC8 serum K1019 (13), rabbit
aRAD21 IgG K854 (1:5) (43), mouse aSYCP3 IgG sc-74569
(1:100), rabbit aRAD51 sc-8349 (1:30) and PC130 (1:50),
rabbit aDMC1 sc-22768 (1:20) (Santa Cruz Biotechnology,
CA, USA), rabbit a-STAG2 ab422 (1:20), rabbit a-STAG1
(1:20), rabbit aSYCP1 IgG ab15090 (1:200) (Abcam, Cam-
bridge, UK), rabbit anti-gH2AX (ser139) IgG #07-164 (1:200)
(Millipore, Eschborn, Germany), ACA or purified human
a-centromere proteins IgG 15-235 (1:5, Antibodies Incorpo-
rated), rabbit aRAP1 IgG (1:400, provided by Dr Titia de
Lange, The Rockefeller University, New York, NY, USA) and
rabbit aRPA IgG (1:300, provided by Dr E. Marcon, Toronto
University, Canada). The secondary antibodies used were
tetramethylrhodamine isothiocyanate a-mouse 115-095-146/

a-rabbit 111-025-144 and fluorescein isothiocyanate a-mouse
115-095-146/a-rabbit 111-095-045 (Jackson ImmunoResearch,

West Grove, PA, USA) (all 1:100). Slides were visualized at
room temperature using a microscope (Axioplan 2; Carl Zeiss,
Inc., Jena, Germany) with 63 × objectives with an aperture of
1.4 (Carl Zeiss, Inc.). Images were taken with a digital camera
(ORCA-ER; Hamamatsu) and processed with OPENLAB
4.0.3 and Photoshop (Adobe, Mountain View, CA, USA). Quan-
tification of gH2AX fluorescence signal was measured by the
Image J software.

Mice

The OVE2312C mouse line was obtained from the Jackson La-
boratory. It harbours an insertion of a lentiposon cassette in the
Stag3 gene that leads to a null allele (18). The STAG3 mutation
was maintained on a pure Friend Virus B-type genetic back-
ground. Mice were genotyped by polymerase chain reaction
from tail biopsies, using the primers 5′-TGAGGTTTTTCAGCA
GTGGCATT-3′and 5′-GCTGCTGGAAAGGGAAAGTCAG.

T-3′ for the wild-type allele; 5′-CTTCAAACTCCTGCTT
CAGGTT-3′ (391 bp) and 5′-TCACAAAAACAGTGTCCTC
TGG-3′ and 5′-CGTCTGTTGTGTGACTCTG.

GTAAC-3′ for the targeted allele (494 bp). REC8 and
RAD21L mutants have been previously described (13,16).

Figure 6. Complexes of STAG3 with other cohesin subunits. Double immunolabeling of SYCP3 (red) with RAD21, SMC3, SMC1b, RAD21L or REC8 (green) in
spermatocytes. In wild-type zygotene spermatocytes, the cohesin subunits RAD21, SMC3, SMC1b, RAD21L and REC8 colocalize with SYCP3 along the AEs of the
chromosomes. However, in spermatocytes from Stag32/2 arrested at a zygotene-like stage, SMC1b showed a moderate immunofluorescence reduction, whereas
REC8 showed a more intense immunolabeling reduction in comparison with SYCP3. RAD21, RAD21L and SMC3 immunolabeling was not affected by the loss
of STAG3. Bar represents 2.5 mm.
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All animal experiments were performed in accordance with
procedures approved by the institutional animal ethics
committees.

FACs analysis

Stag3l+/+ and Stag32/2 testicular cells preparation and their
DNA content measurement were performed by a standard
procedure (30).

OA assay

Testes were detunicated and spermatocytes were short-term cul-
tured as previously described (15). Briefly, 5 × 106 cell/ml were
plated in 35 mm culture dishes in complete medium supplemen-
ted with 25 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfo-
nic acid). Cells were cultured at 328C for 5–6 h with 5 mM
OA (Sigma-Aldrich, St Louis, MO, USA) in 7% CO2. Spreading
and immunofluorescence was performed following the ‘dry-
down’ technique as previously described (42).

Histology

Mice were perfused and their testes extracted or directly fixed in
Bowin’s fixative and processed into serial paraffin sections and
stained with hematoxylin-eosin. For TUNEL assay, sections
were deparaffinized and apoptotic cells were detected with the
In Situ Cell Death Detection Kit (Roche Mannheim, Germany)
and counterstained with 4’,6-diamidino-2-phenylindole. Apop-
totic cells were pseudocolored in green.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Supplemental Legends 
 

 

Figure S1. STAG1 and STAG2 are not upregulated in STAG3-/- spermatocytes. 

Double immunolabelling of SYCP3 (red) with STAG1 and STAG2 (green) in Stag3-/- 

and wild type spermatocytes showing that STAG2 and STAG1 labelingis not increased 

in the absence of STAG3. 

 

Figure S2. REC8 but not RAD21L deficiency lead to premature loss of centromeric 

cohesion at Metaphase I. Double immunolabelling of SYCP3 (red) with ACA (green) 

and DAPI (blue) in Rec8-/- and Rad21l-/- spermatocytes. OA-induced metaphase I plates 

of Rec8-/- spermatocytes give rise to 80 separated centromeric signals, whereas Rad21l-/- 

spermatocytes lead to 40 centromere signals.  

 

 

Figure S3. Shortened axial elements represent whole chromosomes. Triple 

immunolabeling of SYCP3 (blue), RAP1 (blue) and ACA (green) in STAG3-/- arrersted 

spermatocytes showing RAP1 foci at both ends (telomeres) of the short AEs. Asterisks 

show some very clear examples. 

 

Figure S4. Immunolabeling of STAG3 and SMC1β in the absence of REC8. Double 

immunolabelling of SYCP3 (red) with SMC1β and STAG3 (green) in Rec8-/- and wild 

type spermatocytes showing similar immunolabeling. 
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SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes

an arrest at the pachytene-like stage and results in infertility. In accordance with its role as

a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate

processing of intermediate recombination nodules before crossover formation.

DOI: 10.1038/ncomms13298 OPEN

1 Instituto de Biologı́a Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain. 2 Departamento de Medicina, Universidad de
Salamanca, 37007 Salamanca, Spain. 3 Transgenic Facility, Nucleus platform, Universidad de Salamanca, 37007 Salamanca, Spain. 4 Institute for Cell and
Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK. 5 Reproductive Biology Group, Division of Developmental Biology,
Department of Biology, Faculty of Science, Utrecht University, 3584CM Utrecht, The Netherlands. 6 Institute of Physiological Chemistry, Medical Faculty of TU
Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany. 7 Departamento de Biologı́a Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Madrid
28040, Spain. 8 Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany. 9 Departamento de Fisiologı́a
y Farmacologı́a, Universidad de Salamanca, 37007 Salamanca, Spain. * These authors contributed equally to this work. Correspondence and requests for
materials should be addressed to A.M.P. (email: amp@usal.es) or to E.L. (email: ellano@usal.es).

NATURE COMMUNICATIONS | 7:13298 | DOI: 10.1038/ncomms13298 | www.nature.com/naturecommunications 1

mailto:amp@usal.es
mailto:ellano@usal.es
http://www.nature.com/naturecommunications


D
uring meiosis, two successive rounds of chromosome
segregation occur following a single round of replication,
resulting in the formation of haploid gametes from

diploid progenitors1. This ploidy reduction is achieved through a
series of meiosis-specific events, including pairing, synapsis,
crossover formation between homologues, suppression of sister
centromere separation during the first (reductional) division and
separation of sister chromatids during the second (equational)
division. Homologous chromosomes become tethered together
through numerous recombination events between homologous
non-sister chromatids, which are triggered by double-strand
break induction. Through resolution, a subset of recombination
events mature into crossovers (chiasmata) that maintain the
physical tethering between homologues until the onset of
anaphase I (ref. 1).

In humans, the number of crossovers occurring across the
genome differs between individuals. Through exploitation of data
resources in Iceland, Kong et al.2 recently analysed over two
million recombination events and putative variants from 2,261
whole genome–sequenced individuals to identify variants that
influence the global recombination rate. Among the new variants,
several coding SNPs in very well-known meiotic players were
identified, including the histone methyltransferase PRDM9
and the meiotic cohesin RAD21L, the latter of which has been
the focus of our previous meiotic studies3–5.

In addition to their well-established role in mediating sister
chromatid cohesion through ring structure formation, cohesin
complexes are also responsible for the assembly of the synapto-
nemal complex (SC)5–7. The SC is a proteinaceous structure that
holds homologous chromosome pairs in synapsis during
prophase I, from zygonema to pachynema. It consists of two
parallel axial elements (AEs) that bind sister chromatids together,
and which become known as lateral elements (LEs) upon
chromosome pairing. It also contains transverse filaments, which
connect (synapse) the two LEs together. Transverse filament
proteins are recruited to LEs and undergo zipper-like assembly,
bridging between LEs through the formation of the midline central
element (CE), and thereby generating the tripartite structure of the
SC8. To date, only seven protein structural components of the SC
have been identified in mammals, namely LE proteins SYCP2 and
SYCP3, transverse filament protein SYCP1, and CE proteins
SYCE1, SYCE2, SYCE3 and TEX12 (ref. 9). The location of
CE-specific proteins is, by definition, restricted to the synapsed
regions of the chromosomes from zygotene to diplotene9. The SC
provides the structural framework for synapsis, double-strand
break (DSB) repair and exchange between homologues10,11.
It is known from mouse mutants and through human genetic
analysis of families with non-obstructive azoospermia and
premature ovarian failure, that alterations in these genes
(that is, meiosis-specific cohesin subunit STAG3, and SYCE1)
can result in meiotic arrest and human infertility12,13.

To gain further insight into the biological processes affecting
recombination rates across the human genome, we have
investigated the list of genes that were recently identified as
having coding variants2. We focus our analysis on the anonymous
C14ORF39/SIX6OS1 gene (herein SIX6OS1) based on its
restricted pattern of transcription and expression. Here, we show
that C14ORF39/SIX6OS1 encodes a component of the CE of
the SC. Yeast two-hybrid analysis reveals that SIX6OS1 interacts
with SYCE1. In addition, mice lacking SIX6OS1 are defective
in chromosome synapsis at meiotic prophase I, which provokes an
arrest at the pachytene-like stage and results in mouse infertility.
In accordance with its role as a modifier of the human
recombination rate, SIX6OS1 is essential for the appropriate
processing of intermediate recombination nodules before crossover
formation in mice.

Results
C14ORF39/SIX6OS1 is a protein of the mammalian SC. The
sequence variants identified by Kong et al.2 include known
genes functioning in meiotic recombination such as RNF212
(refs 14,15), RAD21L (ref. 4), PRDM9 (ref. 16), MSH4 (ref. 17)
and CCNB1P1 (ref. 18). They also include an anonymous open
reading frame, containing a nonsynonymous SNV with unknown
function (rs1254319, p.Leu524Phe). This gene, named SIX6OS1,
is also annotated as coding for a natural antisense transcript
(NAT) that is associated with the eye transcription factor SIX6
(ref. 19). However, and in contrast to most natural antisense
transcripts, SIX6OS1 shows a high degree of sequence similarity
between mouse (4930447C04Rik) and human (C14ORF39), and
contains large theoretical conserved open reading frames
encoding putative proteins of 587 and 574 residues in mouse
and human, respectively (Supplementary Fig. 1). Phylogenetic
analysis indicates that SIX6OS1 is a unique gene that appeared
firstly in the genomes of cartilaginous fish, and it can be
clearly identified from lobed fin fish to mammals (Supplementary
Fig. 1). Interestingly, in the variant rs1254319 (p.Leu524Phe),
the phenylalanine residue is very well conserved in all genomes
(including several other primates, for example, Orangutan and
Baboon) except humans (Supplementary Fig. 1).

Analysis of Six6os1 mRNA expression in mouse tissues by
RT–qPCR (Fig. 1a) revealed that it is most abundantly expressed
in testis (in agreement with GTEx database20).

The Six6os1 open reading frame predicts a protein of
around 70 kDa, in agreement with our western blot analysis
(Supplementary Fig. 3a). Sequence analysis reveals the presence of
an evolutionarily conserved region of high helical content within
its N terminus (corresponding to amino acids 1–261), including a
short stretch of predicted coiled-coil structure towards the
C-terminal end of this region (Supplementary Fig. 2a).
These features are typical of SC proteins, which commonly
contain a high percentage of helical content and adopt homo- or
hetero-oligomeric helical bundle or coiled-coil structures21,22.
The presence of conserved proline residues between predicted
helices suggests that the structure includes helix–turn–helix
motifs, rather than adopting an extended helical conformation
such as that observed in the crystal structure of SYCP3 (ref. 22).
This feature is in common with SC central element proteins
SYCE1 and SYCE3, but contrasts with the elongated helical
structure predicted and observed in solution for central element
complex SYCE2-TEX12 and transverse filament protein SYCP1
(ref. 21). We therefore predict that this N-terminal helical region
could mediate interactions with structural proteins of the SC. The
remainder of the SIX6OS1 sequence is predicted to be largely
unstructured, but importantly contains patches of evolutionary
conservation towards its C-terminal end (Supplementary Fig. 2b).
These features are characteristic of flexible sequences that
interact with globular proteins at specific peptide motifs
through induced fit, and thereby mediate the assembly of
macromolecular complexes. The unstructured C-terminal region
further contains numerous predicted phosphorylation sites,
including four conserved S/TP potential CDK phosphorylation
sites (Supplementary Fig. 2c), which may function in regulating
the timely assembly of such macromolecular complexes during
the first meiotic division.

To explore the localization of SIX6OS1, we in vivo
electroporated an expression plasmid encoding SIX6OS1-GFP23

into mouse testis. After 48 h, SIX6OS1-GFP co-localized with
SYCP3 along the synapsed LEs at pachynema (spermatocytes in
which homologues are fully synapsed) (Fig. 1b). In addition,
we carried out a detailed analysis of mouse spermatocytes and
oocytes spreads through double labelling with specific antibodies
against SIX6OS1 (which were intensively validated, Fig. 5c;
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Figure 1 | Transcriptional analysis and distribution of SIX6OS1 in mouse meiocytes. (a) Relative transcription of Six6os1 and Rad21l (ref. 4) mRNA by

quantitative reverse transcription PCR (RT–qPCR) in mouse tissues. b-Actin transcription was used to normalize the expression (mean±s.d., three

replicates). (b) Immunolabelling of in vivo electroporated SIX6OS1-GFP in mouse testis. SIX6OS1 was detected with anti-GFP (green) and endogenous

SYCP3 was detected using mouse anti-SYCP3 (red). DNA was stained with DAPI (blue). During pachytene, SIX6OS1 colocalizes with SYCP3 along

synapsed lateral elements (LEs) including the pseudoautosomic region (PAR) of the XY bivalent (spermatocytes). In diplotene and late diplotene, SIX6OS1

localizes at the still synapsed LEs. (c) Double immunolabelling of endogenous SIX6OS1 (green) and SYCP3 (red) in spermatocytes. DNA was stained with

DAPI (blue). During pachynema, SIX6OS1 is located at the synapsed autosomal LEs and at the PAR of the sex XY bivalent. (d,e) Co-labelling of

spermatocytes spread preparations with SIX6OS1 (green) and SYCP1, SYCE1, SYCE3, SYCE2 or TEX12 (red), showing that SIX6OS1 localizes to the

synapsed LEs but best mirrors SYCE1 localization. (f) Immunoelectron microscopy of frozen mouse testis sections marked with goat anti-SIX6OS1 antibody.

Left panel corresponds to an autosomal chromosome and right panel to the XY bivalent in which the PAR is shown. Gold particles 6 nm. Scale bar in

b–e, 10mm. PAR is indicated with an asterisk in b and c.
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Supplementary Fig. 3) and SYCP3 or SYCP1 (Fig. 1c,d;
Supplementary Fig. 4). SIX6OS1 was detected from zygonema
to pachynema, co-localizing with SYCP1 along synapsed LEs, but
with diminished co-localization at telomeres (Fig. 1d). On the XY
bivalent, the pseudoautosomal synapsed region labelled positively
for SIX6OS1 (Fig. 1c; Supplementary Fig. 4b). As desynapsis

progressed through diplonema, SIX6OS1 (together with SYCP1)
was not observed at the desynapsed regions of spermatocytes and
oocytes (Fig. 1d; Supplementary Fig. 4a). Thus, SIX6OS1 partially
overlaps the distribution of SYCP1 at the synapsed axes.

We next measured and compared the fluorescence profile
of SIX6OS1 along the chromosome axes with those of CE

F
lu

or
es

ce
nc

e 
in

te
ns

ity
F

lu
or

es
ce

nc
e 

in
te

ns
ity

3

2

1

0

–1

–2

3

2

1

0

–1

–2

1 2 30–1–2

1 2 3 40–1–3 –2

1 2 3 40–1–4 –3 –2

1 2 3 40–1–3 –2

1 2 3 40–1–2

3
4
5

2
1
0

–1
–2
–3
–4

5

3
4

2
1
0

–1
–2
–3
–4

0 20 40 60 80

0 20 40 60 10080

SIX6OS1

SIX6OS1

SYCP1

S
IX

6O
S

1 
in

te
ns

ity
S

IX
6O

S
1 

in
te

ns
ity

S
IX

6O
S

1 
in

te
ns

ity
S

IX
6O

S
1 

in
te

ns
ity

S
IX

6O
S

1 
in

te
ns

ity

SYCE1

F
lu

or
es

ce
nc

e 
in

te
ns

ity 3
4

2
1
0

–1
–2
–3
–4

3

2

1

0

–1

–2

–3

–40 20 40 60 80
SIX6OS1 SYCE3

F
lu

or
es

ce
nc

e 
in

te
ns

ity

3

4

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3
0 20 40 60 80

SIX6OS1 SYCE2

F
lu

or
es

ce
nc

e 
in

te
ns

ity

3
4

2
1
0

–1
–2
–3

3

4

2

1

0

–1

–2

–30 20 40 60 80

SIX6OS1 TEX12

SYCP1 intensity

R2 = 0.432

R2 = 0.5898

SYCE1 intensity

SYCE3 intensity

SYCE2 intensity

TEX12 intensity

R2 = 0.3776

R2 = 0.1422

R2 = 0.2609

SIX6OS1 colocalization

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

R
2

SYCP1

SYCE1

SYCE3

SYCE2

TEX12

a

b

SIX6OS1/SYCP1

SIX6OS1/SYCE1

SIX6OS1/SYCE3

SIX6OS1/SYCE2

SIX6OS1/TEX12

Figure 2 | Co-localization profile of SIX6OS1 with central element proteins. (a) Double immunostaining of SIX6OS1 (green) and SYCP1, SYCE1, SYCE3,
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proteins SYCP1, SYCE1, SYCE2, SYCE3 and TEX12 (Figs 1e, 2a).
This revealed that SIX6OS1 localization is more similar to the
continuous pattern of SYCP1 and SYCE1/3 (best regression with
SYCE1) than to the more punctate pattern of SYCE2 and TEX12
(ref. 24) (Fig. 2b). However, the SIX6OS1 localization pattern is
not strictly identical to SYCP1, especially at the telomeres, where
SIX6OS1 stained more weakly (Figs 1d and 2a).

In addition, we performed immuno-gold electron microscopy
on testis sections using the same SIX6OS1 antibody. The gold
particle distribution agrees with those previously reported for CE
proteins SYCE1, SYCE2, TEX12 and SYCE3 (refs 24,25) thus
supporting the localization of SIX6OS1 at the CE (Fig. 1f). Taken
together, these results demonstrate that SIX6OS1 is a meiotic
protein that is located at the CE of the SC.

SIX6OS1 interacts with SYCE1. To understand the role of
SIX6OS1 in meiosis, we searched for proteins that interact with
mouse SIX6OS1 through yeast two hybrid (Y2H) screening (see
Methods). Of the 6.1 million independent clones screened, 90
colonies containing interacting bait and prey fusion proteins grew
under the highest stringency conditions. Analysis of the positively
interacting clones (Methods) revealed that they all encode SYCE1,
a well-known protein of the CE of the SC26. To confirm and
validate this interaction, we made use of heterologous HEK 293T
cells by transiently transfecting expression plasmids encoding
GFP-SIX6OS1 and Myc-SYCE1. SIX6OS1 was found to co-
immunoprecipitate (co-IP) reciprocally with SYCE1 (Fig. 3a).

Through biochemical, biophysical and crystallographic studies,
all SC proteins studied to date have proven to exist as homo-
and/or hetero-oligomers. To explore the possible self-association of
SIX6OS1, we co-transfected Six6os1 tagged with two different
epitopes (GFP and Flag) and found that they co-immunoprecipitate
(Fig. 3b), suggesting that it exists as a homo-oligomer.

Next, we adopted a candidate gene approach to identify
additional putative interactors of SIX6OS1. We co-transfected
Six6os1 with cDNAs encoding each of the known central
element proteins (SYCE1, SYCE2, SYCE3 and TEX12), transverse
filament protein SYCP1, LE protein SYCP3, and the meiotic
cohesins REC8 and Sororin (a recently identified cohesin
subunit localized to synapsed regions27) (Fig. 3a;
Supplementary Fig. 5a,b). As positive controls we used the
well-known interaction between SYCE2 and TEX12 (ref. 21),
and between SYCE3 and SYCE1 (ref. 28; Supplementary Fig. 5c).
We detected co-immunoprecipitation only between SIX6OS1
and SYCE1.

Finally, we used truncated forms of SIX6OS1 to show that the
N-terminal half (1–286), but not the C-terminal half (287–574), is
able to interact with SYCE1 in isolation (Fig. 3c). Together,
these results indicate that the interaction between SIX6OS1 and
SYCE1 occurs in a very specific manner through the N-terminal
half of SIX6OS1.

Polycomplex formation of SIX6OS1. SYCP1 and SYCP3 form
filamentous structures, so-called polycomplexes, in the cytoplasm
of transfected cells. Thus, co-expression of an interacting
partner with SYCP1 or SYCP3 may lead to its recruitment to
polycomplexes25,29. To analyse this, we transfected the cDNA
encoding SIX6OS1 in combination with SYCP1 alone or in
different combinations with SYCE1, SYCE2, SYCE3 and TEX12,
and studied their distribution by immunofluorescence. In absence
of SYCP1, single transfections of SYCE1, SYCE3, SYCE2, TEX12
and SIX6OS1 produced different distributions (cytoplasmic
aggregates, whole cell, cytoplasmic and nuclear, respectively),
but in all cases without the appearance of self-assembled higher
order structures (Fig. 3d; Supplementary Fig. 6a).

When transfected in combination with SYCP1, SIX6OS1 was not
recruited to the filamentous structures, and its cellular localization
was not modified (Fig. 3d). We then tested whether the distribution
pattern of transfected Six6os1 in COS7 cells was altered by its co-
transfection with Syce1, Syce3, Syce2 or Tex12. This revealed that
the SIX6OS1 distribution is drastically affected only in the presence
of SYCE1 (from diffuse pattern to punctate, Fig. 3d; Supplementary
Fig. 6b). Moreover, when COS7 cells were transfected with cDNAs
encoding SYCP1, SYCE1, SYCE3 and SIX6OS1 simultaneously, all
components co-localized in speckled cytoplasmic aggregates
(Fig. 3e). This pattern was only altered when SYCE1 was
absent (Supplementary Fig. 6c–f). We further validated the
interaction between SYCE1 and SIX6OS1 in transfected
COS7 cells by proximity ligation assay (PLA) (Supplementary
Fig. 7). In summary, these results further support the findings
of the Y2H and co-IP experiments by showing that SIX6OS1
interacts specifically and exclusively with SYCE1 in transfected
COS7 cells.

SIX6OS1 loading is dependent on synapsis. To investigate the
possible dependence of SIX6OS1 localization on the presence of
other SC proteins, we analysed spermatocytes of mice deficient
for Syce3 (ref. 30), Sycp1 (ref. 31) and meiotic cohesins Rad21l
(ref. 4), Rec8 (ref. 32) and Stag3 (ref. 33). These meiotic mutants
display different synaptic defects, from mild to more severe. In
the absence of RAD21L or REC8, double labelling of SIX6OS1
and SYCP3 shows that SIX6OS1 is localized to synapsed-like
regions (Fig. 4a). Interestingly, in Rec8 mutants, where there is no
synapsis between homologues but instead the AEs of 40
univalents are decorated with SYCP1 as a result of ‘synapsis-like’
events between sister chromatids34, SIX6OS1 is also present at
these atypical synapsed-like regions (Fig. 4b). In Stag3-deficient
mice, in which spermatocytes show almost no synapsis and very
short AEs, SIX6OS1 also mimics SYCP1 localization. Finally, in
mice lacking the central element proteins SYCE3 and SYCP1, in
which AEs completely fail to synapse in a pachytene-like
stage30,31, SIX6OS1 was not detected despite the presence
of a weak discontinuous pattern of SYCP1 deposition in the
Syce3 mutant (Fig. 4; Supplementary Fig. 9c)30. These results,
obtained through immunofluorescence analysis, allow a precise
comparison of the different CE-mutant phenotypes (compare
Fig. 4 with Fig. 7a by Schramm et al.30), and thus provide a global
picture of the biology of the CE proteins. In this regard, we
predict that Syce1 mutants will also be defective in SIX6OS1
loading since SYCE3 deficiency leads to failure in loading of both
SYCE1 (ref. 30) and SIX6OS1 onto the LEs (Fig. 4).

Together, our results indicate that SIX6OS1 is a new protein of
the CE, and its loading is consequently dependent on the
assembly of the tripartite SC structure that occurs upon synapsis
between homologous chromosomes or, interestingly, even
between sister chromatids.

Mice lacking SIX6OS1 are infertile. To investigate the function
of SIX6OS1 we generated a mutation of the murine Six6os1 gene
by CRISPR/Cas9 genome editing (Fig. 5a). The a priori most
suitable null mutation was chosen by PCR sequencing of the
targeted region of the murine Six6os1 gene (Fig. 5b). A founder
line was crossed with wild-type C57BL/6J and the resulting
heterozygotes were interbred. Spermatocytes from homozygous
targeted mice showed no SIX6OS1 protein expression by
immunofluorescence when analysed using two independent
polyclonal antibodies (Fig. 5c; Supplementary Fig. 3c). These
results indicate that the mutation is a null allele of the Six6os1
gene (herein Six6os1� /� ).
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Mice lacking SIX6OS1 did not display any obvious abnorm-
alities but were sterile. Consistent with this, testes size from
Six6os1� /� mice was only 30% of wild-type mice, and their
epididymides exhibited complete absence of spermatozoa
(Fig. 6a,b). Histological analysis of adult Six6os1� /� testes
revealed seminiferous tubules that lacked postmeiotic cell types.
The presence of spermatogonia, spermatocytes and Sertoli
and Leydig cells was not altered. (Fig. 6b). By identifying groups
of associated germ cell types in seminiferous tubule sections,
the twelve stages of the epithelial cycle can be distinguished.
Following these criteria, mutant adult mice showed an arrest at
stage IV of the epithelial cycle. Spermatogenesis proceeds

apparently normally in these mice up to prophase I, and then
at stage IV, there is a massive apoptosis of spermatocytes
(Fig. 6b). At 18 days of age, extensive apoptosis was also
detected (Fig. 6c), suggesting that SIX6OS1 deficiency already
affects spermatocytes during the first wave of meiosis. Thus,
we conclude that SIX6OS1 is essential for spermatogenesis and
its deficiency leads to non-obstructive azoospermia and
consequently to infertility.

Histological analysis of whole ovaries of Six6os1� /� female
mice at 4 months of age showed a lack of oocytes and a dense
stroma (Fig. 6d). To investigate when this ovarian failure
occurred, we histologically analysed ovaries from 6 day old
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Figure 3 | SIX6OS1 interacts specifically with SYCE1. (a–c) HEK 293T cells were transfected or co-transfected with the indicated expression vectors.
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females (6 d.p.p.), a time point at which all oocytes are arrested in
dictyate and present a large number of primordial follicles
(outer cortex) and growing oocytes (inner cortex) (Fig. 6d).
At 6 d.p.p., ovaries of Six6os1� /� mice are already depleted of
follicles and show a severe ovarian dysgenesis (Fig. 6d) that is
responsible for the absence of oogenesis and consequently for the
severe premature ovarian failure.

SIX6OS1 is essential for chromosome synapsis. To characterize
the meiotic defect in detail, Six6os1-deficient meiocytes were
analysed using spread preparations from males as well as from
fetal females. They were initially stained for AEs proteins
(that is, SYCP3), revealing that mutant spermatocytes have AEs
of normal morphology and composition (Fig. 7). Further,
cohesins SMC3, REC8, STAG3, RAD21L and SMC1B are all
present in AEs together with SYCP3 in Six6os1-deficient mice
(Supplementary Fig. 8). As expected, in wild-type spermatocytes
homologues were aligned in close juxtaposition during
zygotene, and full synapsis was achieved at pachynema (Fig. 7a;
Supplementary Fig. 9a). However, in both male and female
Six6os1-deficient mice, synapsis failed to develop between
homologues and all meiocytes were arrested in a pachytene-like
stage, in most cases with their AEs properly aligned (A-type).
However, a subset of meiocytes, more frequently observed in
oocytes than in spermatocytes, showed poorly or even
completely unaligned chromosome pairs (U-type; 17.6±3.7% in
spermatocytes; n¼ 3 and 79.06±18.9% in oocytes; n¼ 3,

Fig. 7a,b; Supplementary Fig. 9a). The lack of synapsis, and the
absence of breaks in unsynapsed AEs, were further analysed by
counting the number of centromeres (ACA staining, 21 versus 40
in spermatocytes and 20 versus 40 in oocytes, Supplementary
Fig. 10a) and telomeres (RAP1 marker, 40 versus 80,
Supplementary Fig. 10b) in arrested meiocytes. This confirmed
complete desynapsis but with the full integrity of AEs (all of the
AEs have two RAP1 signals at their ends). Finally, and to refine
the stage of the blockade, we immunolabelled Six6os1� /�

spermatocytes with the mid pachytene-specific histone variant
H1t (ref. 35). The positive staining for H1t (Supplementary
Fig. 10c) indicates that arrested spermatocytes reach the
mid-pachytene stage.

To gain further insight into the synaptic defects, we double
immunolocalized SYCP3 and SYCP1. In contrast to other CE
mutants such as Syce3, and even more so for Syce2 (ref. 36) and
Tex12 (ref. 37), Six6os1-deficient spermatocytes have reduced
levels of SYCP1 labelling (93.70% reduction in Six6os1� /�

versus 54.36% reduction in Syce3� /� ). Mutant oocytes,
however, show a slightly weaker reduction of SYCP1 staining
(79.28% reduction, Fig. 7a,b; Supplementary Fig. 9c for
quantification). We next double immunolocalized SYCP3 with
SYCE1, SYCE3, SYCE2 and TEX12, revealing the absence
of staining of all CE components in Six6os1� /� spermatocytes
(Fig. 7c) and oocytes (Supplementary Fig. 11). Similarly,
the regulatory cohesin subunit Sororin, which is located at the
CE27, is also lacking in Six6os1-deficient spermatocytes
(Supplementary Fig. 8).
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Figure 4 | SIX6OS1 loading is dependent on synapsis but not on AE proteins. (a) Double labelling of SIX6OS1 (green) and SYCP3 (red) or (b) SYCP1

(red) in Rad21l� /� , Rec8� /� , Stag3� /� , Syce3� /� and Sycp1� /� showing that loading of SIX6OS1 is dependent on synapsis. SIX6OS1 is detected in

the synapsed LEs of meiotic cohesin mutants but is absent from unsynapsed AEs in Syce3� /� and Sycp1� /� spermatocytes. Scale bar, 10mm.
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To establish a direct causal role of SIX6OS1 deficiency in the
observed phenotype, we analysed mice during the first almost
synchronous wave of spermatogenesis at 18 d.p.p. We find that
the meiotic arrest observed at this stage mimics that observed in
adult males. Interestingly, the arrest is more homogeneous, with a
lack of SYCP1 labelling in all AEs, despite the presence of both
A- and U-type AEs (U-type 35.37±2.3%; Supplementary
Fig. 7b). This suggests that the weak SYCP1 staining observed
in the adult mutants could be a byproduct of a longer arrest.

In Sycp1-deficient mice, SIX6OS1 (Fig. 4), SYCE1-3 and TEX12
are not recruited to the SC30. Surprisingly, the lack of any of
these central element proteins also leads to the aberrant
deposition of SYCP1 in a weak discontinuous pattern, with the
severest phenotype occurring in SIX6OS1 deficiency (weakest
staining). This mutual interdependence, in addition to the fact
that biochemical reactions (that is, DSB processing) take place
in the three-dimensional (3D) mesh of the SC, make it difficult to
distinguish cause and effect when analyzing mutant mice such as
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Figure 5 | Generation and genetic characterization of Six6os1-deficient mice. (a) Schematic representation of the wild-type locus (WT) and the genome
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codon. The nucleotide sequence of the 124 base pair deletion derived from PCR amplification of DNA from the Six6os1 edited/edited is indicated. Primers are

represented by arrows. (b) PCR analysis of genomic DNA from three littermate progeny of Six6os1þ /� heterozygote crosses. The PCR amplification with

primers F and R (indicated by arrows) revealed 413 and 289 bp fragments for wild-type and disrupted alleles, respectively. (þ /þ ), (þ /� ) and (� /� )
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obtained from Six6os1þ /þ and Six6os1� /� mice using SYCP3 (red) and a goat polyclonal antibody against SIX6OS1 (green). Scale bar, 10mm.
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those of the SC. Based on recent progress in elucidating the
organization of the SC38, and on the specific interaction of
SIX6OS1 with SYCE1, it seems most plausible that SYCP1
recruits CE proteins, and the nascent CE then stabilizes
SYCP1 assembly. Thus, absence of CE proteins disrupts the
full accumulation of SYCP1, leading to weak/discontinuous
staining patterns.

Defective DSB processing in Six6os1� /� meiocytes. During
leptonema, DSBs are generated by SPO11 and are then resected to
form ssDNA ends that invade into the homologous chromosome.
DSBs are marked by the presence of phosphorylated H2AX
(g-H2AX)39, which is formed through phosphorylation by the
kinase ATR following its recruitment by BRCA1 (ref. 37). Thus,
we monitored the formation of DSBs by analyzing the presence of
g-H2AX. While g-H2AX distribution in mutant spermatocytes
resembles that of wild-type cells in early prophase I (leptotene,
zygotene) (Supplementary Table 1), g-H2AX is not restricted
to sex chromosomes during pachynema (Fig. 8a). In contrast,
g-H2AX shows a moderate labelling on the chromatin of AEs in
mutant pachytene-like spermatocytes (WT 23.40±3.2; U-type
26.02±5.0; A-type 30.74±3.6; see Supplementary Table 2).
In females, the distribution of g-H2AX is slightly different.
Oocytes at pachytene-like stage show a similar overall pattern of
g-H2AX labelling as spermatocytes (WT 20.85±3.5; U-type

28.14±9.8; A-type 27.01±10.9; see Supplementary Table 2),
but it is more strictly localized to their AEs (Fig. 8b).
The distribution of g-H2AX-labelling during early prophase I,
and its persistence in meiocytes during the pachynema-like stage,
suggest that DSBs are generated in Six6os1� /� meiocytes but are
not properly repaired. To better understand the processing of
DSBs, we explored the kinetics and distribution of proteins
involved in DSB recombination and repair. After DSBs are
induced, the recombinase RAD51 is recruited to early
recombination nodules and promotes homologous strand
invasion40. In wild-type zygotene spermatocytes, RAD51
assembles on numerous foci along the AEs/LEs, which are
substituted by the single strand binding protein RPA and finally
disappear towards pachytene, with the exception of the
unsynapsed sex AEs (Fig. 8a). During early stages (leptonema),
RAD51 distribution in mutants was similar to wild-type
controls (Supplementary Table 1). However, in Six6os1� /�

spermatocytes at zygotene and pachytene-like stage, both
RAD51 and RPA remained partially associated with the AEs
(Fig. 8a; see Supplementary Tables 1 and 2). We obtained similar
results when we analysed spreads from Six6os1� /� oocytes
(Fig. 8b; Supplementary Table 2).

Next, we analysed the presence of MSH4 and MLH1 foci in
mutant spermatocytes. MSH4 mediates the transition after
synapsis from initial to late recombination nodules. MLH1 is a
component of the post-replicative mismatch repair system and
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Figure 6 | The absence of SIX6OS1 provokes azoospermia and ovarian failure. (a) Genetic ablation of Six6os1 leads to a reduction of the testis size (n¼8

wild-type and knock out, Welch’s t-test analysis: Po0.0001), and (b) a complete arrest of spermatogenesis in epithelial stage IV as shown in hematoxylin-

eosin stained testis sections. Massive apoptosis of spermatocytes is indicated (asterisks). The spermatogenic arrest leads to empty epididymides and
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mice (13 d.p.p. and 18 d.p.p.) lacking SIX6OS1 and spermatogenic arrest before pachytene studied by histology. At 13 d.p.p. spermatogenesis has reached late

zygotene; at 18 d.p.p. it has reached late pachytene. Spermatocyte degeneration (apoptosis is indicated by asterisks) was first seen in 18 d.p.p. Six6os1� /� .

(d) Ovaries from Six6os1-deficient mice show atrophy with fibrosis and depletion of follicles. Comparative histological analysis of ovaries from Six6os1� /� and

wild-type mice at 6 days (6 d.p.p.), and 4 months (4 m) of age. Asterisks indicate corpora lutea. Scale bars represent 100mm in 4 m, and 20mm in 6 d.p.p.
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marks sites of future chiasmata41,42. During early stages, MSH4
foci in mutants resemble those in wild-type spermatocytes.
However, these foci persisted in pachytene-like arrested
spermatocytes from Six6os1-deficient mice (Supplementary
Fig. 12). Lastly, MLH1 foci were absent in Six6os1� /�

pachytene-like chromosomes (Fig. 9a), while one/two MLH1
foci per bivalent were observed in wild-type spermatocytes.
Similar results were obtained in oocytes lacking SIX6OS1
(Fig. 9a), suggesting a direct function of SIX6OS1 in homologous
recombination rather than in the elimination of arrested
spermatocytes at the so-called pachytene checkpoint of males.
To further validate this, and in light of the late arrest at
mid-pachytene-like stage (H1t positive), we exposed mutant
spermatocytes to the PP2A inhibitor okadaic acid to allow
in vitro transition from pachytene to metaphase-like I (ref. 43).
After okadaic acid treatment, there was a rapid induction of
chromosome condensation, leading to 20 bivalents that stain for
SYCP3, with the formation of at least one chiasma in the wild
type (Fig. 9b). In contrast, okadaic acid-treated Six6os1� /�

spermatocytes displayed 40 free univalents, with characteristic
labelling for SYCP3 (Fig. 9b). Together, our data strongly
suggest that processing of recombination intermediates into
MLH1-marked late recombination nodules (chiasmata) is
critically dependent on SIX6OS1.

X–Y chromosome behaviour and sex body formation. In
Six6os1 mutant spermatocytes, the X and Y chromosomes are
aligned in only 25.49±0.06% of cells (Fig. 10a). In contrast, the
degree of alignment of the sex bivalent in Syce3 null mutants is
44.10±3.17%. In mutant spermatocytes that lack aligned sex
chromosomes, the sex body is not formed (see below H2AX
staining Fig. 10b). The remaining fraction of Six6os1� /�

spermatocytes with aligned XY chromosomes show apparent
synapsis at the PAR, but without staining for SYCP1, in contrast
to the positive SYCP1 labelling of the PAR in Syce3� /�

spermatocytes (Fig. 10a). These results suggest that whilst the sex
body is not formed in either mutant, the synapsis defect in the
absence of SIX6OS1 is more severe than in the Syce3 knockout.

The X and Y chromosomes show homology only along the
distal pseudoautosomal region44 of their chromosome lengths,
and the remaining unsynapsed parts are subjected to meiotic sex
chromosome inactivation. This is a meiotic specific process that
uses the DNA damage response to recognize unsynapsed regions
and reconfigure their chromatin to a silent epigenetic domain
named the sex body. The act of silencing is itself dependent upon
phosphorylation of histone H2AX (g-H2AX) by ATR in a
BRCA1-dependent manner45. We performed g-H2AX labelling
of mutant spermatocytes and found moderate staining of the
X and Y chromosomes in those cells showing aligned sex
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Figure 7 | Six6os1� /� meiocytes are not able to synapse. (a) Double labelling of spermatocyte spreads of wild-type pachytene, and Six6os1� /� and

Syce3� /� arrested pachytene-like spermatocytes with SYCP3 (red) and SYCP1 (green). In Six6os1� /� spermatocytes, SYCP1 does not localize to the

unaligned-type (U-type) AEs but shows a very weak staining in spermatocytes with more aligned AEs (aligned-type, A-type). By direct comparison, in

Syce3� /� arrested spermatocytes SYCP1 localizes in a discontinuous pattern along AEs independent of whether or not they are closely aligned. (b) Double

labelling of spreads of wild-type pachytene and Six6os1� /� pachytene-like oocytes (aligned and unaligned) with SYCP3 and SYCP1. (c) Double labelling of

spreads of wild-type pachytene and Six6os1� /� pachytene-like spermatocytes of SYCP3 (red) and SYCE1, SYCE3, SYCE2 or TEX12 (green) (see also

extended Supplementary Fig. 11 for staining in oocyte spreads). All proteins are completely absent from the AEs in Six6os1-deficient mice. Scale bar, 10mm.
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Figure 8 | DSBs are generated but defectively repaired in Six6os1-deficient meiocytes. (a) Double immunolabelling of g-H2AX (green) with SYCP3 (red)

in wild-type and Six6os1� /� spermatocytes (left panel). In wild-type pachytene, g-H2AX labels intensely the chromatin of the unsynapsed sex bivalent. In

Six6os1� /� pachytene-like spermatocytes g-H2AX labelling remains in the chromatin. Double immunolabelling of SYCP3 (red) and RAD51 (green) (central

panel) or RPA (green) (right panel). Both RAD51 and RPA remain associated to the AEs in Six6os1� /� pachytene-like spermatocytes, showing a higher

number of foci than wild-type pachytene. (b) Immunostaining of spread preparations of wild-type pachytene and Six6os1� /� pachytene-like oocytes for

g-H2AX (green), RAD51 (green) and RPA (green) together with SYCP3 (red). g-H2AX labelling in Six6os1� /� arrested oocytes is more restricted to the AEs

than in spermatocytes. Plots under each image panel represent the quantification of intensity or number of foci from wild-type and pachytene-like arrested

meiocytes. Welch’s t-test analysis: *Po0.01; **Po0.001; ***Po0.0001. (See numeric data at Supplementary Table 2). Scale bar, 10mm.
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chromosomes. This is in contrast with the strong labelling
observed in the sex body chromatin of control spermatocytes at
pachynema (Fig. 10b). Given the interplay between synapsis and
DNA damage response, we directly analysed the status of 53BP1,
a component of the DNA damage response that collaborates with
BRCA1 in the sex body formation. In contrast to its accumulation
on the unsynapsed XY45 in wild type, 53BP1 signals were not
observed in Six6os1 mutant spermatocytes (Fig. 10c). Together,
these results indicate that SIX6OS1 deficiency, similar to most
asynaptic mice mutants, impedes sex body formation46.

Discussion
Synapsis of homologous chromosomes is essential for the
completion of meiosis and thus for fertility. The SC provides
the structural framework for synapsis and for the processing of
recombination intermediates into crossovers. Recently, the gene
variant rs1254319 (p.Leu524Phe) in the anonymous C14ORF39/
SIX6OS1 gene was identified as an influencing polymorphism
affecting the human recombination rate2. In addition, the same
rs1254319 (p.Leu524Phe) variant has been associated with age at
menarche, an indirect fertility trait47, in a meta-analysis of 32

genome-wide association studies in 87,802 women of European
descent48. Accordingly, we show that this coding variant of
SIX6OS1 lies in a conserved residue of the SIX6OS1protein.
Cytological analysis revealed that SIX6OS1 is a new component of
the CE of the SC that co-localizes with SYCE1 and SYCE3 at the
synapsed chromosome axes (Fig. 1e).

By comparison of the cytological localization of CE proteins,
their protein–protein interaction network, and the phenotypes
obtained from their knockout mice, it has been suggested that
there are two discernible subdomains within the central element.
One domain, formed by SYCP1, SYCE1 and SYCE3, would act in
concert through a network of interactions, specifically between
SYCP1 and SYCE3, and between SYCE3 and SYCE1 (refs 49,50).
The other, more inner domain of TEX12 and SYCE2 would
form a separate complex by themselves. The SYCE2–TEX12
complex is an equimolar hetero-octamer, formed by the
association of a SYCE2 tetramer and two TEX12 dimers21, and
their corresponding mutant mice show some degree of synapsis
with small but intense foci of SYCP1, SYCE1 and SYCE3
between their aligned AEs24,30,51. Mutant spermatocytes for Syce3
show an intermediate phenotype, with defective recruitment
of CE proteins but a weak discontinuous pattern of SYCP1
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Figure 9 | SIX6OS1 is essential for the processing of intermediate recombination nodules. (a) Double immunolabelling of SYCP3 (red) with MLH1

(green). MLH1 foci are absent at the AEs/LEs of Six6os1� /� meiocytes whereas at least one focus is present along each autosomal SC in wild-type pachytene

meiocytes. (b) Immunostaining of SYCP3 (red) and ACA (green) in wild type and Six6os1� /� spermatocytes. Okadaic acid-induced metaphase I plates of

wild-type spermatocytes give rise to 20 bivalents each, with two opposed centromere signals (ACA) and positive staining for SYCP3, whereas Six6os1� /�

spermatocytes lead to 40 free univalents, each with an ACA signal and SYCP3 labelling the centromeric and interchromatid domain. Scale bar, 10mm.
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staining30. SIX6OS1 deficiency produces a more severe
phenotype, with weaker discontinuous SYCP1 loading and also
lack of recruitment of CE proteins (Fig. 7). Thus, SIX6OS1 would
belong to the first subdomain (together with SYCP1, SYCE1
and SYCE3), in which mutant mice display aligned homologues
and normally assembled AEs, but no CE structures at all. From a
cytological perspective, the pattern of SIX6OS1 distribution along
LEs in pachynema (revealed through co-localization curves and
regression coefficients) is also in agreement with the continuous
distribution of SYCE1 and SYCP1 along synapsed LEs24,30

(Fig. 2). This localization of SIX6OS1 is also congruent with the
Y2H, co-immunoprecipitation and PLA results we have obtained
showing its specific ability to interact and co-localize with SYCE1.
Taken together with the presence of more unaligned chromosome

pairs in Six6os1� /� than in Syce3� /� spermatocytes, and the
interdependent loading of SIX6OS1 and SYCE3 (Figs 4a,b
and 7c), we suggest that SIX6OS1 is required at a similar
hierarchy level (neither upstream nor downstream) to SYCE3,
and downstream of SYCP1.

Despite the recent advances in reconstructing the 3D molecular
organization of the mammalian SC with isotropic resolution
through super-resolution imaging52, several gaps still remain in
the net of interactors and partners involved in the assembly of the
SC tripartite structure. In this regard, it has been postulated that
SYCE1 stabilizes SYCP1 N-terminal interactions in the CE25,
suggesting that SYCE1 can act alongside SYCP1 with SYCE3.
However, this view is neither validated by the phenotype of
Syce3� /� spermatocytes, in which SYCP1 stains weakly and
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Figure 10 | X–Y chromosome behaviour. (a) Double immunolabelling of SYCP3 (red) and SYCP1 (green) in wild-type pachytene, and Six6os1� /� and

Syce3� /� pachytene-like arrested spermatocytes. Yellow letters indicate aligned/unaligned sex chromosomes in mutant spermatocytes. (b) Co-labelling
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strong labelling of the sex body in wild type. Scale bar, 10mm.
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SYCE2/TEX12 is absent from AEs30, nor by Y2H studies21.
Recently, a direct interaction between SYCP1 and SYCE3, but
not with SYCE1, SYCE2 or TEX12, has been shown by co-IP
experiments and biochemical studies50, which is in closer
agreement with the genetic depletion phenotype. Similarly, with
the present knowledge of interactions and components of the SC,
we have no explanation for the weaker SYCP1 staining in
adult Six6os1 mutants in comparison with the Syce3 mutant
(which also lacks SIX6OS1). In this sense, the appearance of a
new player in the CE family of proteins such as SIX6OS1, which
is essential for the stabilization of the central region and for
synapsis, deepens the complexity of the multilayered structure of
the CE and suggests that unknown players could help to elucidate
several open questions.

It has been shown through mouse mutants lacking CE-specific
proteins that assembly of the SC central region is essential
for recombination progression and chiasmata formation9.
Similarly, Six6os1-deficient meiocytes showed an arrest in the
processing of recombination intermediates into MLH1-marked
late recombination nodules (chiasmata). Together, these
observations raise the possibility that interaction between
components of the CE and recombination machinery would be
critical for meiotic recombination. In this context, interactions
have been described between RAD51 and both SYCP1 and SYCE2
(ref. 26). Based on sequence analysis, we predict that SIX6OS1
contains a highly helical structural region within its N terminus,
followed by a flexible linker and then a C-terminal flexible protein
docking sequence that could recruit multiple globular proteins to
induce macromolecular protein complex. In accordance with other
SC proteins, self-association and SYCE1-binding are likely
mediated by the helical N-terminal domain, suggesting that this
region may function in the structural assembly of the CE. The
predicted unstructured nature of the remainder of the sequence
suggests it may act as a flexible linker between the N-terminal
structural domain and protein–protein interactions mediated by
conserved patches of residues within the C terminus of the
molecule. It is tempting to speculate that the predicted
protein–protein interaction motifs of the C-terminal region may
be responsible for the recruitment and/or stabilization of
components of recombination nodules necessary for proper
recombination progression. Consequently, subtle variations in
the protein sequence of human SIX6OS1 (that is, rs1254319,
p.Leu524Phe), could act by modifying the CO/NCO ratio, which is
ultimately responsible for the observed number of recombination
events genome wide. Interestingly, allele A in rs1254319
p.Leu524Phe is associated with higher recombination rate in
women (53 cM) but not in men2. This observation fits well
with the observed sexual dimorphism in several cellular aspects
of Six6os1-deficient mice, such as differences in the deposition of
SYCP1 (Fig. 7a,b; Supplementary Fig. 9c) and difference in the
frequency of U-type AEs between mutant oocytes and
spermatocytes.

In summary, we have identified the biological pathway by
which the SNV identified in SIX6OS1 affects the recombination
rate in humans. Our functional data show how this protein of the
SC is dispensable for the generation of DSBs, but is required for
the appropriate processing of intermediate recombination
nodules immediately before reciprocal recombination and CO
formation, and is thus essential for chromosome synapsis and
fertility.

Methods
Histology. For histological analysis of adult testes, mice were perfused and their
testes/ovaries were processed into serial paraffin sections and stained with
hematoxylin-eosin. For histological studies of 13 and 18 day mice, testes were fixed
in Bouin’s fixative.

Immunocytology and antibodies. Testes were detunicated and processed
for spreading using the ‘dry-down’ technique. Oocytes from fetal ovaries
(E17.5 embryos) were digested with collagenase, incubated in hypotonic buffer,
disaggregated, fixed in paraformaldehyde and incubated with the indicated
antibodies for immunofluorescence. Goat polyclonal antibodies against
C14ORF39/SIX6OS1 were developed by Santa Cruz (sc-245304) and used for the
immunofluorescence analysis. This antibody was raised against a conserved
internal region of human SIX6OS1. Rabbit polyclonal antibodies against SIX6OS1
were developed by Proteintech (22664-1-AP) against a fusion protein of GST with
SIX6OS1 (C-350 aa) of human origin (see Supplementary Fig. 3 for validation) and
was used to validate the immunofluorescence results obtained with the goat
polyclonal antibody against C14ORF39/SIX6OS1 developed by Santa Cruz. The
primary antibodies used for immunofluorescence were rabbit aSMC3 serum K987
(1:20), rabbit aSMC1b serum K974 (1:20), rabbit aSTAG3 serum K403, aREC8
serum K1019, rabbit aRAD21 IgG K854 (1:5)4,5, mouse aSYCP3 IgG sc-74569
(1:100), rabbit aRAD51 sc-8349 (1:30) and PC130 (1:50), rabbit aSYCP1 IgG
ab15090 (1:200) (Abcam), rabbit anti-gH2AX (ser139) IgG #07-164 (1:200)
(Millipore), ACA or purified human a-centromere proteins IgG 15–235
(1:5, Antibodies Incorporated), mouse aMLH1 51-1327GR (1:5, BD Biosciences),
rabbit a53BP1 sc-22760 (1:20), rabbit aRAP1 IgG (1:400, provided by Dr Titia de
Lange, The Rockefeller University, USA), and rabbit aRPA IgG (1:300, provided by
Dr E. Marcon, Toronto University, Canada), rabbit aTEX12 IgG (1:100) and
guinea pig aSYCE3(1:20) (provided by Dr R. Benavente, University of Würzburg,
Germany), guinea pig aSYCE1 (1:100), rabbit aSYCE1 (Proteintech), guinea
pig aSYCE2 (1:50) (provided by C. Höög, Karolinska Institutet, Sweden) and
guinea pig aH1t (Provided by MA Handel). The secondary antibodies used
were TRITC a-mouse 115-095-146/a-rabbit 111-025-144 and FITC a-mouse
115-095-146/a-rabbit 111-095-045 (Jackson ImmunoResearch) (all 1:100).
Slides were visualized at room temperature using a microscope (Axioplan 2;
Carl Zeiss, Inc.) with 63� objectives with an aperture of 1.4 (Carl Zeiss, Inc.).
Images were taken with a digital camera (ORCA-ER; Hamamatsu) and processed
with OPENLAB 4.0.3 and Photoshop (Adobe). Quantification of gH2AX and
SYCP1 fluorescence signals was performed using Image J software. Chromosome
counts of A-type and U-type cells were performed on at least 100 pachytene-like
spermatocytes and oocytes from three individuals.

In vivo electroporation. Testes were freed from the abdominal cavity and 10 ml of
DNA solution (50 mg) mixed with 1 ml of 10� FastGreen (Sigma Aldrich F7258)
was injected in the rete testis with a DNA embryo microinjection tip. After a period
of 1 h following the injection, testes were held between a pair of electrodes and
electric pulses were applied four times (35 V for 50 ms each pulse) using a CUY21
BEX electroporator23.

Electron microscopy. For immunoelectron microscopy, 10mm cryosections of
mouse testis were fixed with acetone for 10 min at � 20 �C and air dried.
Incubation with primary antibodies was carried out in a humidified box for 4 h at
room temperature. After rinsing twice in PBS, sections were fixed for 10 min in 2%
formaldehyde and blocked with 50 mM NH4Cl. Secondary antibodies conjugated to
6 nm gold particles were incubated overnight at 4 �C, and samples were subsequently
washed in PBS. Samples were fixed for 30 min in 2.5% glutaraldehyde and postfixed
in 2% osmium tetroxide. After rinsing three times with H2O, samples were dehy-
drated in an ethanol series and embedded in Epon. Ultrathin sections were stained
with uranyl acetate and lead citrate according to standard procedures30.

Okadaic acid assay. Testes were dissected into a Petri dish containing ice cold
sterile medium (4 mM L-glutamine, 10% fetal calf serum, and 25 mM Hepes in
Dulbecco’s Modified Eagle’s medium) and cell suspensions (5� 106 cells per ml)
were exposed to 5 mM okadaic acid (Sigma-Aldrich) for 5 h at 32 �C and 5% CO2

before spreading the cells by the dry down procedure4.

Generation of plasmids. Full-length cDNAs encoding SIX6OS1, TEX12, SYCE1,
SYCE2, SYCE3, SYCP1 and SYCP3 were RT–PCR amplified from murine testis
RNA. Full-length cDNAs were cloned into the pcDNA3, pcDNA3 x2Flag, pCEFL
HA or pcDNA3.1 Myc-His (-) or pEGFP-C1 mammalian expression vectors.

Cell lines and transfections. HEK 293T and COS7 cell lines were transfected with
Lipofectamine (Invitrogen) or Jetpei (PolyPlus) and obtained from the ATCC. Cell
lines were tested for mycoplasma contamination (Mycoplasma PCR ELISA, Sigma).

Immunoprecipitation and proximity ligation assay. HEK 293T cells were
transiently transfected and whole cell extracts were prepared and cleared with
protein G Sepharose beads (GE Healthcare) for 1 h. The antibody was added for 2 h
and immunocomplexes were isolated by adsorption to protein G Sepharose beads
for 1 h. After washing, beads were loaded onto reducing 10% polyacrylamide SDS
gels and proteins were detected by western blotting with the indicated antibodies.
Immunoprecipitations were performed using mouse aFlag IgG (5 mg; F1804,
Sigma-Aldrich), rabbit aMyc Tag IgG (4mg; #06-549, Millipore), mouse aHA.11

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13298

14 NATURE COMMUNICATIONS | 7:13298 | DOI: 10.1038/ncomms13298 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


IgG MMS- (5ml, aprox. 10mg per 1 mg prot; 101R, Covance), goat aGFP IgG
(4mg; sc-5385, Santa Cruz), ChromPure mouse IgG (5 mg/1 mg prot; 015-000-003),
ChomPure rabbit IgG (5 mg per 1 mg prot.; 011-000-003, Jackson ImmunoR-
esearch), ChomPure goat IgG (5 mg per 1 mg prot.; 005-000-003, Jackson
ImmunoResearch). Primary antibodies used for western blotting were mouse aFlag
IgG (F1804, Sigma-Aldrich) (1:10,000), rabbit aHA IgG (H6908, Sigma-Aldrich)
(1:1,000), rabbit aFlag IgG (1:800; F7425 Sigma-Aldrich), mouse aMyc obtained
from hybridoma cell myc-1-9E10.2 ATCC (1:1,000). Secondary horseradish
peroxidase-conjugated a-mouse (NA931V, GE Healthcare), a-rabbit (#7074,
Cell Signaling), or a-goat (A27014, Thermo Scientific) antibodies were used at
1:10,000, 1:3,000 or 1:10,000 dilution, respectively. Antibodies were detected by
using Immobilon Western Chemiluminescent HRP Substrate from Millipore.
Proximity Ligation Assay was performed using goat aSIX6OS1 (sc-5385) and
rabbit aSYCE1, with the corresponding anti-goat PLA Probe PLUS and anti-rabbit
PLA probe MINUS, following the manufacturer’s instructions (Duolink Using PLA
Technology, SIGMA).

The uncropped versions of western blots in Fig. 3 are shown in Supplementary
Fig. 13.

Production of CRISPR/Cas9-edited mice. Six6os1-gRNAs (G68 50-CACCGAT
CTGTTTGTCAGTTTGGAC-30 and 50-AAACGTCCAAACTGACAAAC AG
ATC-30 and G75 50-CACCGTACTTATGTCTT GCTCATAC-30 and 50-AAAC
GTATGACAAGACATAAGTAC-30 targeting exon 2 and exon 3 were predicted
at crispr.mit.edu. Six6os1-sgRNAs were produced by cloning annealed
complementary oligos at the BbsI site of pX330 (#42230, Addgene), generating
PCR products containing a T7 promoter sequence that were purified (NZYtech),
and then performing in vitro transcription using the MEGAshortscript T7
Transcription Kit (Life Technologies). The plasmid pST1374-NLS-flag-linker-Cas9
(#44758; Addgene) was used for generating Cas9 mRNA after linearization with
AgeI. In vitro transcription and capping were performed using the mMESSAGE
mMACHINE T7 Transcription Kit (AM1345; Life Technologies). Products were
purified using the RNeasy Mini Kit (Qiagen). RNA (100 ng ml� 1 Cas9 and
50 ng ml� 1 each guide RNA) was microinjected into zygotes (F1 hybrids between
strains C57BL/6J and CBA/J)53. Edited founders were identified by PCR
amplification (Taq polymerase, NZYtech) with primers flanking exons 2 and 3
(Primer F 50-CACTTACATTTTCCTTTTAAGAATGC-30 and R 50-CCCCTC
TCAT ACATACAAGTTGC-30) and subcloned into pBlueScript (Stratagene)
followed by standard Sanger sequencing. The length of the corresponding
wild-type and mutant allele were 413 and 289 bp, respectively. The selected founder
was crossed with wild-type C57BL/6J to eliminate possible unwanted off-targets
and to generate pure heterozygous. Six6os1þ /� heterozygous mice were sequenced
again by Sanger sequencing and crossed to give rise to Six6os1� /� homozygous.
Genotyping was performed by agarose gel electrophoresis analysis of PCR products
produced from DNA isolated from tail biopsy specimens. Mouse mutants for Rec8,
Rad21l, Syce3, Sycp1 and Stag3 have been previously developed4,13,30–32.

Mice were housed in a temperature-controlled facility (specific pathogen free, spf)
using individually ventilated cages, standard diet and a 12h light-dark cycle,
according to European Union regulations at the ‘Servicio de Experimentación
Animal, SEA’. Mouse protocols were approved by the Ethics Committee for Animal
Experimentation of the University of Salamanca (USAL). We made every effort to
minimize suffering and to improve animal welfare. Blinded experiments were not
possible since the phenotype was very obvious between wild-type and Six6os1-
deficient mouse for all of the experimental procedures used. No randomization
methods were applied since the animals were not divided in groups/treatments. The
minimum size used for each analysis was three animals/genotype. The mice analysed
were between 2 and 4 months of age, except in those experiments where is indicated.

Quantitative PCR. Total RNA was isolated from various tissues of wild-type adult
mice. To analyse the expression of Six6os1 and Rad21l mRNAs, equal amounts of
cDNA were synthesized using SuperScript II Reverse Transcriptase (Invitrogen,
Life Technologies) and Oligo (dT). qPCR was performed using FastStart Universal
SYBR Green Master Mix (ROX) (Roche) and specific forward and reverse primers:
qSIX6OS1_F 50- GCTGAATGTGGAGATAAAGAG-30 and qSIX6OS1_R 50-AG
GAGTTTCAGGAGTTTGAGG-30 ; qRAD21L_F 50-TTGCAGCTCACTGGGAG
AAGA-30 and qRAD21L_R50-AGTCCTGGGCGAAATGTCATC-30 . All qPCR
reactions were performed at 95 �C for 10 min, and then 40 cycles of 95 �C for 15 s
and 62 �C for 1 min on the iQ5 Thermal Cycler (Bio-Rad). b-Actin was amplified
as a housekeeping gene with the primers qb-actin_F 50-GGCACCACACCTTCT
ACAATG-30and qb-actin_R 50-GTGGTGGTGAAGCTGTAGCC -30 .

Y2H assay and screening. Y2H assay was performed using the Matchmaker Gold
Yeast Two-Hybrid System (Clontech) according to the manufacturers’ instructions.
Mouse Six6os1 cDNA encoding the N terminus (1-138) was subcloned into the
vector pGBKT7 and was used as bait to screen a mouse testis Mate & Plate cDNA
library (Clontech Laboratories Inc.). Positive clones were initially identified on
double dropout SD (synthetic dropout)/–Leu/–Trp/X-a-Gal/Aureobasidin A plates
before further selection on higher stringency quadruple dropout SD/–Ade/–His/–
Leu/–Trp/X-a-Gal/Aureobasidin A plates. Pray plasmids were extracted from the
candidate yeast clones and transformed into Escherichia coli. The plasmids from two

independent bacteria colonies were independently grown, extracted and Sanger
sequenced. Southern blotting was also used for plasmid screening.

Sequence analysis. Protein sequences were extracted from the UniProt database
and analysed using Jalview 2 (ref. 54). Multiple sequence alignments and secondary
structure predictions were performed using MUSCLE (EBI)55 and Jpred 4 (ref. 56),
respectively.

Co-localization profile. SIX6OS1 and either SYCP1, SYCE1, SYCE3, SYCE2 or
TEX12 were stained on spreads of wild-type spermatocytes. Images were captured
with identical camera settings. Fluorescence signals were measured along the 19
autosomal AEs of pachytene cells using the ‘Plot profile’ tool of ImageJ. Signal
intensities were standardized, acquiring values between � 1 and 1, and the
overlay profiles of SIX6OS1 and other CE proteins were plotted. Regression
analysis for each pair of proteins was performed to determine the correlation
between their profiles. The values of the coefficients of determination R2 are shown
in the scatter plots.

Statistics. To compare counts between genotypes at different stages, we used the
Welch’s t-test (unequal variances t-test), which was appropriate as the count
data were not highly skewed (that is, were reasonably approximated by a normal
distribution) and in most cases showed unequal variance. Asterisks denote
statistical significance: *P value o0.01, **P value o0.001 and ***P valueo0.0001.

Data availability. Genomic DNA sequences of H. sapiens (human, 317761),
M. musculus (mouse, 75801) are available on GenBank (http://www.ncbi.nlm.
nih.gov/genbank/). Amino acid sequences of H. sapiens (Q8N1H7), M. musculus
(NP_083381), P. troglodytes (Chimp, H2Q8E6), S. charissii (Tasmnaina devil,
G3WQS7), O. anatinus (Latypus, F6ZZ02), P. sinensis (Chinese turtle, K7GAG2),
G. gallus (Chick, E1C952) and L. chalumnae (West india coelacanth, M3XIB0) were
obtained from the UniProt database (http://www.uniprot.org/). All remaining data
generated in this study are available in the Article and Supplementary Information
files or available from the authors upon request from the authors.
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Supplementary Figure 1. Sequence alignment. Sequence alignment of SIX6OS1 

homologues in vertebrates. Amino acid sequences of H. sapiens (human, Q8N1H7), M. 

musculus (mouse, NP_083381), P. troglodytes (Chimp, H2Q8E6), S. charissii 

(Tasmnaina devil, G3WQS7), O. anatinus (Latypus, F6ZZ02), P. sinensis (Chinese 

turtle, K7GAG2), G. gallus (Chick, E1C952) and L. chalumnae (West india coelacanth, 

M3XIB0) are derived from the UniProt database. Mouse data are derived from cDNA 

clone (4930447C04Rik). The protein is conserved among most vertebrates (with the 

exceptions of Amphibia, Reptilia and Actinopterygii). SIX6OS1 orthologues were 

identified by BLASTP and/or UniProt server. Phylogenetic analysis through genome 

databases indicated that SIX6OS1 is a unique gene without paralogues that seems to 

appear firstly in the genomes of cartilaginous fish (absent in ray-finned fish) and can be 

clearly identified in the genomes of lobed fin fish (Sarcopterigii as coelacantus), 

Sauropsida (birds and turtles but not in lizards and amphibians) and mammals. When no 

orthologues were found deposited in databases (i.e. boney fish, and reptiles), we 

verified its presence/absence by intensive tBLASTN search against their genomic 

sequences. Amino acid alignments were performed with ClustalW, using the default 

settings. No hits were found against the recent sequenced genome of Spotted gar 

(Lepisosteus oculatus, unduplicated genome from the sister lineage of teleost named 

Holostei) when using as a probe the sequence of the west india coelacanth. However, a 

small piece of homology was found in the genome of the shark elephant (scaffold_114 

from position 2479341 to 945433 at http://esharkgenome.imcb.a-star.edu.sg/blast/ or 

http://skatebase.org/ skateBLAST) covering the conserved AKEYFKKK sequence and 

flanking residues. This recent evolutionary origin of SIX6OS1 is in concordance with 

the evolutionary origins of SYCE1 and SYCE3 (billateria and vertebrates, respectively) 

and in contrast to the more ancestral origin of the proteins SYCE2, TEX12 and SYCP1-

3
1,2

. The variant rs1254319 (p.Leu524Phe) is indicated (grey). 
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Supplementary Figure 2. Sequence analysis of SIX6OS1. (a) Secondary structure 

analysis of mouse SIX6OS1 in which the α-helical, β-sheet, unstructured and coiled-coil 

predictions are plotted on the basis of their confidence as calculated by JPred4
3
. (b) 

Conservation of the SIX6OS1 sequence, based on an alignment of all full length 

sequences produced in MUSCLE
4
, plotted as the per residue conservation scores 

calculated in Jalview 2
5
. (c) Schematic diagram of the predicted SIX6OS1 structure, in 

which an N-terminal α-helical domain is linked to an unstructured protein-protein 

interaction module in the C-terminus through a flexible linker sequence. The putative 

protein-protein interaction region of the C-terminus includes multiple predicted 

phosphorylation sites, including four SP/TP potential CDK sites between amino acids 

426-472, which may function in the dynamic regulation of interactions.  

 



 

 

Supplementary Figure 3.  Validation of SIX6OS1 antibodies.  

(a) HEK 293T cells were transfected with a plasmid encoding GFP-SIX6OS1 or GFP 

and the whole extracts were analyzed by western blot using goat α-SIX6OS1 (left 

panel), rabbit  α-SIX6OS1 (central panel) and α-GFP (right panel). Ponceau S staining 

of the blotted membranes was used as loading control. A band around 100 kDa, 

corresponding to the expected GFP-SIX6OS1 fusion protein (32,7 kDa + 70 kDa), was 



detected with the goat α-SIX6OS1, rabbit α-SIX6OS1 and goat α-GFP (arrowheads). (b) 

Immunofluorescence of HEK 293T cells transfected with plasmids encoding GFP-

SIX6OS1 or GFP. SIX6OS1 was detected with either goat α-SIX6OS1 (left panel) or 

rabbit  α-SIX6OS1 (right panel, red) and GFP by direct fluorescence signal (green). 

Green and red signals co-localize in the cytoplasm of the transfected HEK 293T cells. 

(c) Double immunofluorescence of spermatocytes at pachytene stage obtained from 

Six6os1
+/+

 and Six6os1
-/-

 mice using the polyclonal rabbit antibody α-SIX6OS1 (green) 

and mouse α-SYCP3 (red). The experiments were reproduced three times. Bars 

represent 10 µm. 

 

  



 

Supplementary Figure 4. Distribution of SIX6OS1 in mouse meiotic prophase I. 

Double immunolabelling of endogenous SIX6OS1 (green) and SYCP3 (red) in 

meiocytes. (a) In spermatocytes, SIX6OS1 is not present at leptotene, and appears in the 

synapsed regions of the lateral elements (LEs)  at zygotene. During pachytene, 

SIX6OS1 is located at the synapsed autosomal LEs and at the pseudoautosomic region 

(PAR) of the sexual XY bivalent. At diplotena, SIX6OS1 appears on synapsed LEs but 

is absent from de-synapsed axial elements (AEs), with no signal when spermatocytes 

reach diakinesis. (b) Details of the sex chromosomes (upper panel) and an autosomal 

AE in pachytene (lower panel). Asterisks show SIX6OS1 signal in the PAR. The signal 

of SIX6OS1 is diminished at the telomeres (see arrows). (c) Distribution of SIX6OS1 in 

oocytes along synapsed AEs from zygotene to pachytene. The localization mimics that 

observed in males. Bar in panels a and c, 10 μm. Bar in panel b, 2 μm. 

 



 

Supplementary Figure 5. SIX6OS1 does not interact with SYCP3, REC8 and 

Sororin. HEK 293T cells were co-transfected with the indicated expression vectors. 

Immunoprecipitations (IPs) were performed with the indicated antibody. (a) SIX6OS1 

does not co-immunoprecipitate with either SYCP3, or the cohesins REC8 and Sororin 

(b). (c) IPs of TEX12 with SYCE2, and SYCE3 with SYCE1, were used as positive 

controls. The experiments were reproduced three times.  



 

Supplementary Figure 6. Polycomplex formation by synaptonemal complex (SC) 

proteins in COS7 cells. COS7 cells were transfected with expression vectors encoding 

SIX6OS1, SYCP1, SYCE3, SYCE1, SYCE2 or TEX12 alone or in different 

combinations. (a) Individual transfections of all SC proteins. (b) Co-transfection of 

Six6os1 with either Sycp1, Syce1, Syce3, Syce2 or Tex12. SIX6OS1 localization only 

changes in the presence of SYCE1. (c) Co-transfection of Flag-Sycp1, Myc-Syce1 and 

GFP-Syce3 showing co-localization with two different patterns: polycomplexes (left) 

and cytoplasmic speckles (right). (d) Co-transfection of Flag-Sycp1, Myc-Syce1 and 



GFP- Six6os1 showing co-localization in cytoplasmic speckles. (e) Co-transfection of 

Flag-Sycp1, Myc-Syce3 and GFP-Six6os1 showing no co-localization. (f) Co-

transfection of Syce1, Syce3 and GFP-Six6os1 showing co-localization in cytoplasmic 

speckles of either SYCE1 (anti-SYCE1) with GFP-SIX6OS1 (anti-GFP) or between 

SYCE3 (anti-SYCE3) with GFP-SIX6OS1 (anti-GFP). The experiments were 

reproduced at least three times. Bar in panels, 15 μm. 

 

  



 

Supplementary Figure 7. Proximity ligation assay. COS7 cells were transfected with 

plasmids encoding EGFP-SIX6OS1 and Myc-SYCE1 (upper panel), and Flag-SIX6OS1 

with SYCP3-HA (negative control, lower panel). Proximity Ligation Assay (PLA) was 

performed using goat αSIX6OS1 (sc-5385) and rabbit αSYCE1, with the corresponding 

anti-goat PLA Probe PLUS and anti-rabbit PLA probe MINUS. Red fluorescence 

indicates close proximity (interaction) between SIX6OS1 and SYCE1 at the 

cytoplasmic speckles where both proteins co-localize. Similarly, Proximity Ligation 

Assay was performed on the negative control (no interaction previously observed by IP, 

see Supplementary Fig. 5) using goat αSIX6OS1 and rabbit αSYCP3. No red labelling 

was observed. The experiments were reproduced twice. Bar represents 15 μm. 

 

 

  



 

Supplementary Figure 8. SIX6OS1 and cohesin loading. Double 

immunofluorescence of SYCP3 (red) with either SMC3, SMC1β, STAG3, REC8, 

RAD21L or Sororin (green) in wild-type and Six6os1
-/-

spermatocytes. In wild-type 

pachytene spermatocytes, the cohesins SMC1β, SMC3, STAG3, REC8 and RAD21L 

colocalize with SYCP3 along the autosomal AEs and sex AEs, whereas Sororin co-

localizes to synapsed LEs and the pseudoautosomal synapsed region of the XY bivalent. 

In the absence of synapsis in Six6os1
-/-

spermatocytes, the levels or distribution of 

cohesin subunits SMC1β, SMC3, STAG3, REC8 and RAD21L are not altered, whereas 

Sororin is not loaded, as expected for a cohesin located at the central element (CE) of 

the SC.  Bar in panels, 10 μm. 

 



 

 

Supplementary Figure 9. SIX6OS1 is necessary for the initiation of synapsis. 

Double labelling of SYCP3 (red) and SYCP1 (green) in adult (a) and 18 dpp (b) mice. 

(a) Six6os1
-/-

 adult spermatocytes assemble AEs of normal morphology and composition 

(SYCP3) from leptotene to zygotene. They arrest at pachytene-like stage, showing two 

phenotypes, A-type, with aligned AEs and U-type, poorly aligned or even completely 

unaligned. In the absence of SIX6OS1, SYCP1 is unable to load to the AEs or appears 

in very low levels. (b) Six6os1
-/-

 spermatocytes at the first wave of spermatogenesis (18 

dpp) fail to synapse, mimicking the adult phenotype, with a complete absence of 

SYCP1. (c) Quantification of SYCP1 levels (relative to SYCP3 fluorescence intensity) 

at pachytene-like stage of Six6os1
-/- 

spermatocytes and oocytes, and Syce3
-/-

 

spermatocytes. Represented data are related to wild-type pachytene levels, considered as 

100%. Welch´s t-test analysis: * p<0.0001; n= 30 AE/LEs, mean ± s.d. Bar in panels, 10 

μm. 



 

 

Supplementary Figure 10. Centromeres and telomeres fail to synapse in Six6os1
-/- 

meiocytes. (a) Double immunofluorescence of ACA (green) and SYCP3 (red) in 

spermatocyte (left panel) and oocyte (right panel) spreads. Wild-type pachytene 

spermatocytes show 21 single signals of ACA at one end of the LEs. However, the 

number of ACA signals is 40 in Six6os1
-/- 

pachytene-like arrested spermatocytes owing 



to the absence of synapsis. Six6os1
-/- 

oocytes show 40 ACA signals vs 20 in wild-type. 

(b) Co-labelling of RAP1 (green) and SYCP3 (red) in spermatocyte (left panel) and 

oocyte (right panel) spreads. Six6os1
-/-

 meiocytes show 80 RAP1 foci, one at each end 

(telomere) of the AEs, while wild-type meiocytes show 40 RAP1 signals. (c) Double 

immunofluorescence of H1t (green) and SYCP3 (red) in spermatocytes from Six6os1
-/-

 

and Six6os1
+/+

 showing loading of H1t in the arrested pachytene-like and wild-type 

pachytene spermatocytes. Bar in panels, 10 μm. 
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Supplementary Figure 12. Immunolabelling of MSH4 in the absence of SIX6OS1. 

Double immunolabelling of SYCP3 (red) with MSH4 (green) in wild-type pachytene 

and Six6os1
-/-

 pachytene-like spermatocytes, showing that MSH4 persists in Six6os1
-/-

 in 

contrast to wild-type. Bar in panels, 10 μm. 

  



 

Supplementary Figure 13. Uncropped western blots of SIX6OS1 interactions.  (a-c) 

HEK 293T cells were transfected or co-transfected with the indicated expression 

vectors. Protein complexes were immunoprecipitated overnight with either an anti-Flag, 

an anti EGFP or an anti-Myc antibody and were analyzed by immunoblotting with the 

indicated antibody. (a) SIX6OS1 co-immunoprecipitates with SYCE1 (as well as in the 

reciprocal IP) but not with either SYCP1, SYCE3, SYCE2 or TEX12. (b) SIX6OS1-



Flag co-immunoprecipitates with SIX6OS1-GFP, suggesting that it is able to form at 

least dimers. (c) SYCE1 co-immunoprecipitates with the SIX6OS1 N-terminal half (1-

286) but not with the C-terminal half (287-574). IP of SYCE1 and full length SIX6OS1 

was used as positive control. 

 

 

 

 

 

 

  



Supplementary Table 1. Quantification of γ-H2AX levels and RAD51 foci in early 

meiotic prophase of spermatocytes. 

 

γ-H2AX 
 

Mean (intensity) SD n 

Leptotene 
WT 58,91 14,78 28 

KO 51,26 19,41 27 

Zygotene 
WT 55,00 13,91 36 

KO 57,20 16,75 30 

 

 

RAD51 
 

Mean (foci) SD n 

Leptotene 
WT 100,1 32,77 25 

KO 117,2 21,79 29 

Zygotene 
WT 86,73 24,38 30 

KO 130,2*** 24,63 27 
 

 

Welch´s t-test analysis between WT and KO: *** p<0.0001.  

  



Supplementary Table 2. Quantification of γ-H2AX levels, and RAD51 and RPA 

foci.  

 

γ-H2AX 
 

Mean (intensity) SD n 

Spermatocytes 

WT 23,40 3,201 45 

A-type 30,74 3,593 39 

U-type 26,02 4,956 29 

Oocytes 

WT 20,85 3,48 27 

A-type 27,01 10,88 16 

U-type 28,14 9,830 27 

 

 

RAD51 
 

Mean (foci) SD n 

Spermatocytes 

WT 21,13 12,23 40 

A-type 121,7 21,85 32 

U-type 50,36 16,96 25 

Oocytes 

WT 21,90 12,11 20 

A-type 157,1 34,05 14 

U-type 147,8 33,96 10 

 

 

RPA 
 

Mean (foci) SD n 

Spermatocytes 

WT 10,38 9,485 29 

A-type 123,9 17,26 29 

U-type 85,80 15,83 20 

Oocytes 

WT 38,10 22,88 21 

A-type 158,2 44,52 10 

U-type 130,9 25,39 13 

 

Significance of the comparisons between groups is shown in the plots of Fig. 8. 
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Laura Gómez-H1, Natalia Felipe-Medina1, Yazmine B. Condezo1, Rodrigo Garcia-

ValienteID
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Abstract

The ubiquitin proteasome system regulates meiotic recombination in yeast through its asso-

ciation with the synaptonemal complex, a ‘zipper’-like structure that holds homologous chro-

mosome pairs in synapsis during meiotic prophase I. In mammals, the proteasome activator

subunit PA200 targets acetylated histones for degradation during somatic DNA double

strand break repair and during histone replacement during spermiogenesis. We investigated

the role of the testis-specific proteasomal subunit α4s (PSMA8) during spermatogenesis,

and found that PSMA8 was localized to and dependent on the central region of the synapto-

nemal complex. Accordingly, synapsis-deficient mice show delocalization of PSMA8. More-

over, though Psma8-deficient mice are proficient in meiotic homologous recombination,

there are alterations in the proteostasis of several key meiotic players that, in addition to the

known substrate acetylated histones, have been shown by a proteomic approach to interact

with PSMA8, such as SYCP3, SYCP1, CDK1 and TRIP13. These alterations lead to an

accumulation of spermatocytes in metaphase I and II which either enter massively into apo-

ptosis or give rise to a low number of aberrant round spermatids that apoptose before his-

tone replacement takes place.

Author summary

Proteins within the cells that are unnecessary or damaged are degraded by a large protein

complex named the proteasome. The proteins to be degraded are marked by a small pro-

tein called ubiquitin. The addition of a small modification (acetyl group) to some proteins

also promotes their degradation by the proteasome. Proteasomal degradation of proteins
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is an essential mechanism for many developmental programs including gametogenesis, a

process whereby a diploid cell produces a haploid cell or gamete (sperm or egg). The

mechanism by which this genome reduction occurs is called meiosis. Here, we report the

study of a protein, named PSMA8 that is specific for the testis proteasome in vertebrates.

Using the mouse as a model, we show that loss of PSMA8 leads to infertility in males. By

co-immunoprecipitation-coupled mass spectroscopy we identified a large list of novel

PSMA8 interacting proteins. We focused our functional analysis on several key meiotic

proteins which were accumulated such as SYCP3, SYCP1, CDK1 and TRIP13 in addition

to the known substrate of the spermatoproteasome, the acetylated histones. We suggest

that the altered accumulation of these important proteins causes a disequilibrium of the

meiotic division that produces apoptotic spermatocytes in metaphase I and II and also

early spermatids that die soon after reaching this stage.

Introduction

Intracellular protein content is controlled through the balance between the rates of their syn-

thesis and degradation. In eukaryotic cells, the bulk of the degradation is carried out by the

ubiquitin-proteasome system (UPS). The proteasome is a multi-subunit complex that elimi-

nates proteins, typically labeled with ubiquitin, by ATP-driven proteolysis [1]. Proteasome

complexes comprise a cylindrical catalytic core particle (CP, 20S) and different regulatory par-

ticles (RPs, 19S) that regulate the access to the CP by capping it at either end [2]. The CP is

composed of seven α-type subunits and seven β-type subunits arranged as a cylinder of four

rings (α1–7, β1–7, β1–7, α1–7) [1, 3]. RPs are composed of 20 subunits and their association

with the CP is ATP-dependent. There are four additional activators, the 11S regulator PA28α/

β/γ and the ubiquitous PA200 (Psme4) regulator that stimulates protein degradation indepen-

dently of ubiquitin [4] and plays a main role in acetylation-dependent degradation of somatic

core histones during DNA repair and spermiogenesis [5, 6]. Hybrid proteasomes enclosing a

RP at one end and an activator at the other end are also possible [7]. In addition, there are

paralogs for three β-genes that are expressed only in the immunological system, which consti-

tutes the immunoproteasome [8], and one β5t gene expressed exclusively in the thymus, which

constitutes the thymoproteasome [9]. Finally, there is a meiotic paralog of the α4 subunit

(Psma7), named α4s (Psma8) [10], which might provide substrate specificity and heterogeneity

to the α4s-cotaning proteasome.

The proteolytic activity of the proteasome is regulated by the rate of protein ubiquitylation,

but also by its association with E3 ubiquitin ligases and deubiquitinating enzymes that edit

their potential substrates [11, 12]. The classical targets of the UPS are misfolded or damaged

proteins and/or short-lived regulatory proteins, whose concentration is regulated by fine-tun-

ing of their synthesis and degradation kinetics [13, 14]. Typical examples of the latter proteins

are cyclins [15, 16]. More recently, it has been hypothesized but not proven that the ZMM

complex (also known as the synapsis initiation complex) involved in meiotic homologous

recombination is similarly regulated in the mouse [17, 18].

Meiosis is a fundamental process in sexually reproducing species that ensures the produc-

tion of genetic diversity and the generation of haploid gametes from diploid progenitors [19].

This reduction in genome content is achieved by the physical connections between homologs

by chiasmata [20], which are mediated by the repair of self-induced DNA double-strand

breaks (DSBs) as crossing-overs (COs). Meiotic recombination takes place on proteinaceous

core structures or axial elements (AEs) that scaffold the chromosomal DNA content and
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physically connect (synapse) homologs through the assembly of the synaptonemal complex

(SC) during prophase I [21].

The UPS regulates meiotic recombination in yeast and mouse via its physical association to

AEs [17, 22]. Given the unknown function that the α4s-containing proteasome plays during

spermatogenesis, we explored its function in the mouse. In this study, we show that PSMA8 is

localized to and dependent on the central element of the SC, and promotes the assembly of the

proteasome activator PA200. Accordingly, synapsis-deficient mice show delocalization of

PSMA8. Also, Psma8-deficient mice are proficient in meiotic homologous recombination, but

show alterations in the proteostasis of several key meiotic players including acetylated histones,

SYCP3, SYCP1, CDK1 and TRIP13, which in turn leads to an aberrant meiotic exit, accumula-

tion of apoptotic spermatocytes in metaphase I and II, and finally early spermatid arrest long

before histone replacement takes place.

Results

PSMA8 is expressed in spermatocytes and its localization to the SC is

dependent on synapsis

Psma8 mRNA expression in mouse tissues is almost exclusively restricted to the testis (GTEx

database [23] and previous studies [10]). To elucidate the cell type in which PSMA8 is

expressed, we examined by western blotting testis extracts at various postnatal ages during the

first wave of spermatogenesis, which progresses more synchronously than in adult mice.

PSMA8 expression (using a specific antibody against the PSMA8 C-terminus [10], see Fig 1A)

was first detected at P12 and increased from P14 to P20. We also used a PSMA8-R2 antibody

raised against the entire recombinant PSMA8 protein, which detected the expression of both

PSMA7 (already apparent at P8, before meiosis has started) and PSMA8 (Fig 1A and S1 Fig).

Analysis of testis cell lines (including spermatogonium GC1-spg, Leydig cell TM3, and Sertoli

cell TM4 lines), revealed the expression of PSMA7 but not PSMA8 (Fig 1A). These results indi-

cate that its expression is restricted to cells undergoing meiosis.

To explore the subcellular localization of PSMA8, we employed the R2 antibody (PSMA7/

8) since the PSMA8 C-terminus antibody did not produce any specific labeling. Double immu-

nolabeling of PSMA8 with the AE protein SYCP3 or with SYCP1, the transverse filament pro-

tein essential for synapsis (Fig 1B and S2 Fig), revealed PSMA7/8 presence at the central

region of the synaptonemal complex (super resolution imaging, Fig 1B). We validated this

localization by in vivo electroporating [24] an expression plasmid encoding GFP-PSMA8 in

the testis (Fig 1C). These results agree with the recent localization of the proteasome to the

chromosome axes [17].

To investigate the possible dependence of PSMA8 localization on synapsis, we analyzed

synaptic mutants with mild (Rec8-/- [25]) and severe (Six6os1-/- [24]) phenotypes. Mutants for

the meiotic cohesin REC8 show pseudo-synapsis between sister chromatids [25], and PSMA8

was detected at these atypical synapsed-like regions (Fig 1D). In mice lacking the novel central

element protein SIX6OS1, in which AEs are physically separated and unsynapsed at pachy-

nema [24], PSMA8 signal was not restricted to their AEs and showed a broader and more dis-

perse labeling (Fig 1D). These results indicate that PSMA8 localization to the SC central region

is consequently dependent on the assembly of the SC.

Male mice lacking PSMA8 are infertile

To study the role of PSMA8, we generated a targeted mutation in exon 1-intron 1 of the

murine Psma8 gene by CRISPR/Cas9 genome editing (S3A and S3B Fig). Homozygous mutant
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testes showed no PSMA8 protein expression by western blotting when analyzed using two

independent polyclonal antibodies (S3C Fig). Immunofluorescence analysis of PSMA8 expres-

sion (R2 antibody, S3D Fig) revealed a weaker signal in the SC of the mutant spermatocytes

than in WT spermatocytes (51% less; 4.22±1.9 WT vs 2.05±1.7 KO), likely representing

PSMA7 detected by the R2 antibody (also observed in the western blot; S3C Fig). These results

indicate that the generated mutation is a null allele of the Psma8 gene (herein termed

Psma8-/-).

Mice lacking PSMA8 did not display any somatic abnormalities; however, male but not

female mice were sterile (S1 Table). Indeed, Psma8 mutation resulted in a reduction of the tes-

tis weight (63.09% decrease; N = 6) and the absence of spermatozoa in the epididymides (Fig

2A and 2B). Histological analysis of adult Psma8-/- testes revealed the presence of apparently

normal numbers of spermatogonia, spermatocytes, Sertoli cells and Leydig cells (Fig 2B).

Fig 1. Expression analysis and localization of PSMA8 in the mouse. (A) Western blot analysis of protein extracts from mouse testis (from P8 to

adult) and cell lines (TM3, TM4 and GC1) with a specific antibody against the C-terminal (α4S) and whole recombinant PSMA8 protein

(PSMA8-R2). β-Actin was used as loading control. The corresponding bands to PSMA8 and PSMA7 are indicated in the right of the panel. Note that

from P16 to adult the intensity of both PSMA8 and PSMA7 bands impedes its independent observation. (B) Double immunolabeling of

spermatocyte spread preparations with PSMA8 (green) and SYCP3 (red) by Stimulated emission depletion (STED) microscopy, showing that

PSMA8 localizes to the central region of the SC. PAR (pseudo-autosomal region) of the XY bivalent is indicated with an arrow. (C) Immuno-

localization of PSMA8 in mouse testis after in vivo electroporation of a plasmid encoding a protein fusion of PSMA8 with GFP (GFP-PSMA8).

PSMA8 was detected with anti-GFP antibody (green) and endogenous SYCP3 was detected using mouse anti-SYCP3 (red). (D) Triple labeling of

PSMA8 (green), SYCP3 (blue) and SYCP1 (red) in Rec8-/- and Six6os1-/-. PSMA8 is detected in the pseudosynapsed AEs of the meiotic Rec8 cohesin

mutant but is absent from the unsynapsed AEs in Six6os1-/- spermatocytes. Bar in panels, 5 μm (B, upper panel), 1 μm (B, lower panel) and 10 μm (C,

D).

https://doi.org/10.1371/journal.pgen.1008316.g001
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Fig 2. PSMA8 deficiency leads to azoospermia. (A-B) Genetic ablation of Psma8 leads to a reduction of the testis size (A) (n = 6, WT and KO;

Welch´s t-test analysis: p<0.0001), and (B) the accumulation of metaphase I (black asterisks), apoptotic meiotic division (red asterisks), round

spermatids entering apoptosis (arrowheads), and apoptotic round spermatids (blue asterisks) in PAS stained testis sections. The spermatogenic

arrest leads to empty epididymides and azoospermia. Bar in upper panels 100 μm, lower panels 200 μm and in right panels, 5 μm. (St) Seminiferous

tubules and (Ep) Epididymides. (C) Immunofluorescence analysis of p-ser10-H3 (green) of paraffin sections of Psma8+/+ and Psma8-/- tubules.

Nuclei were counterstained with DAPI. Bar represents 10 μm. The diagram represents the quantification of the fraction of tubules showing the

indicated number of metaphase I/II. Number of tubules counted for each genotype is expressed in S2B Table. (D) Low magnification view of a
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Mouse seminiferous tubules can be classified from epithelial stage I to XII by determining the

groups of associated germ cell types in histological sections. Following these criteria, we found

that spermatogenesis in the mutant testes proceeded normally up to diplotene in epithelial

stage XI. However, the proportion of tubules at stage XII was more than 2-fold increased in

the mutant sections (12.5% in mutants versus 5.4% in WT, S2A Table). Given that spermato-

cytes in meiotic divisions were seen to occur at epithelial stage XII, we used p-ser10-H3 (pH3)

staining to analyze the number of metaphase I and II cells present in these tubules, finding an

increase in the mutant (Fig 2C and S2B Table). Quantitative analysis of seminiferous tubules

in squashed preparations confirmed the increase in the number of metaphase I and metaphase

II cells as compared with WT testes (77% and 89% respectively, Fig 2D and S2C Table). More-

over, a large proportion of these metaphases were positive for Caspase-3 and TUNEL indicat-

ing apoptosis (Figs 2D, 3A and 3B and S2C Table).

Together with the accumulation of apoptotic meiotic divisions, other apoptotic cells could

be also observed that, from their size and molecular markers of the acrosome and chromatoid

body, were round spermatids (Fig 3C and S4 Fig). Indeed, seminiferous tubules in PSMA8-de-

ficient testes sometimes contained a few surviving round spermatids. However, these round

spermatids were unable to form a proper acrosome but did accumulate some PAS positive

material. Apoptotic round spermatids were also seen and no elongating spermatids were

observed (Fig 2B). We corroborated that round spermatids were arrested at early stages by

immunolabeling for H2AL2. H2AL2 is a transition histone essential for the first replacement

of histones by TNP1 and TNP2 before protamine incorporation [26]. H2AL2 was absent from

mutant spermatids (S5A Fig). We also used FACs analysis of whole cells from seminiferous

tubules to verify this analysis. The results obtained confirmed the presence of a small haploid

compartment in Psma8-/- testes (Fig 3D and S5B Fig). We conclude from these results that

PSMA8 deficiency causes the accumulation of spermatocytes in metaphase I and II which

either enter massively into apoptosis or give rise to a low number of aberrant round spermatids

that finally apoptose long before histone replacement takes place.

Psma8-deficient spermatocytes show normal synapsis/desynapsis and DSB

repair but have abnormal metaphases I and II

Metaphase I accumulation can occur either because of a failure to enter anaphase or because of

some event taking place during prophase (SC formation, DBSs repair or chromosome recom-

bination) that aberrantly triggers a checkpoint-mediated delay.

To test this, we first analyzed the assembly/disassembly of the SC by monitoring the distri-

bution of SYCP1, as co-labeling of SYCP3 and SYCP1 highlights regions of synapsis in sper-

matocytes. We did not observe any differences in this process from zygonema to diakinesis (S6

Fig).

We next studied the kinetics of DSB repair during meiosis. Meiotic DSBs are generated by

the nuclease SPO11 and are then resected to form ssDNA ends that invade into the homolo-

gous chromosome. DSBs are marked by the presence of phosphorylated H2AX (γ-H2AX)

[27]. The distribution of γ-H2AX in mutant spermatocytes was similar to that found in WT

cells at prophase I (S7A Fig and S3 Table). We also did not observe any differences in the

representative squash preparation of seminiferous tubules showing the accumulation of metaphases I and metaphases II in knock-out Psma8 in

comparison with a representative wild-type view. The identity of metaphases I /metaphases II (asterisks) was confirmed by the immunolabeling of

SYCP3 (red) in squash preparations. Chromosomes were counterstained with DAPI (blue). The diagram represents the percentage of spermatocytes

at metaphase I and II (normal and apoptotic) in relation with the total number of spermatocytes from Psma8+/+ and Psma8-/- tubules (right).

Quantification and number of cells analyzed are described in S2C Table. Welch´s t-test analysis: � p<0.01; �� p<0.001; ��� p<0.0001.

https://doi.org/10.1371/journal.pgen.1008316.g002
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Fig 3. Apoptosis, FACs and aberrant metaphase II and spermatid cells in Psma8-deficient mice. (A) Double immunolabeling of Caspase3

(green) and (B) TUNEL (green) with SYCP3 (red). Non-apoptotic metaphase I cells from Psma8+/+ show absence of green staining whereas

apoptotic metaphases I from Psma8-/- show intense Caspase-3 and TUNEL labeling. Chromatin was counterstained with DAPI. (C) Acrosome

positive labeling of round spermatids by PNA staining (green). (D) FACs analysis of cells from whole seminiferous tubules from wild type and

Psma8-/- showing in both genotypes (N = 2) the presence of 4C, 2C and 1C compartment as a result of the early spermatid arrest. Source data
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distribution of RAD51, a recombinase that promotes homologous strand invasion [28], (S7B

Fig and S3 Table). Because defective DNA repair ultimately abrogates CO formation [29] and

because of the involvement of ubiquitylation / sumoylation in CO designation [30], we ana-

lyzed the distribution of MLH1 foci [31], a mismatch repair protein (marker of crossover sites)

that functions in the resolution of joint molecules at the end of crossover formation [32]. We

found a similar value between the KO (24.9±0.9 foci) and the WT (24.3±1.1 foci; S7C Fig and

S3 Table). These results indicate that the repair of meiotic DSBs and synapsis/desynapsis pro-

ceed normally during prophase I in the absence of PSMA8, and is not responsible for the

observed metaphase I accumulation.

We also analyzed the morphology of the metaphase I / II cells by staining for tubulin (spin-

dle) and SYCP3. The results showed an aberrant morphology, the presence of multipolar spin-

dles (Fig 3E), and also a striking aberrant labeling of SYCP3 at the centromeres of metaphase

II chromosomes (SYCP3 labeling is barely visible in metaphase II sister kinetochores in WT

cells, Fig 3F). Finally, the arrested round spermatids showed the presence of multiple patches

of heterochromatin after DAPI staining (Fig 3C and S4 Fig, chromocenter fragmentation),

suggesting abnormal chromosome segregation or cytokinesis.

PSMA8 deficiency abolishes H4ac turnover from late prophase to round

spermatids

During spermiogenesis, most of the histones are replaced by basic transition proteins, and ulti-

mately by protamines, facilitating chromatin compaction. Hyperacetylation of core histones

during this process, and especially the acetylation of H4K16, is assumed to play a pivotal role

in the initiation of histone displacement and chromatin ultracondensation [33, 34]. The pro-

teasome activator subunit PA200 targets acetylated histones for degradation during histone

replacement [5].

The core subunit PSMA8 co-immunoprecipitated PA200 (S4 Table). Given the stoichio-

metric relationship between the CP and RP, we analyzed the expression of PA200 by immuno-

fluorescence in the absence of PSMA8. Whilst PA200 decorated the AEs of WT spermatocytes,

we failed to observe any signal in the AEs of mutants (Fig 3G and S8 Fig). In addition, we were

not able to detect PA200 by mass spectrometry analysis of PSMA7/8 immunoprecipitation of

Psma8-deficient testis extracts (see section Purification of PSMA8-interacting proteins, S4

Table). These results indicate that PSMA8 is necessary or promotes the assembly of PA200 to

the CP. Thus, within the limits of detection, the deficiency of Psma8 leads to a drastic decrease

of PA200.

To understand the acetylated-dependent degradation of histones by the proteasome [5], we

measured the acetylation status of three core histones, H2AK5ac, H3ac and H4ac (pan-H4ac

and H4K16ac) in chromosome spreads by double immunolabeling for SYCP3 and the corre-

sponding acetylated histone (Fig 4A–4D and S9–S12 Figs). This procedure enables a more pre-

cise staging of the spermatocytes and is a more efficient mean to quantitate signals than

peroxidase immunostaining of testis sections [5]. The loss of PSMA8 led to the accumulation

of H2AK5ac, H3ac, H4ac and H4K16ac, albeit to different degrees. Results showed that the lev-

els of H2AK5ac, H3ac, H4ac and H4K16ac were moderately higher in Psma8-/- cells, with a

describing the gating strategy is shown in S5B Fig. (E) Double immunolabeling of metaphase I cells with tubulin (green) and ACA (red) showing

normal (Psma8+/+) and abnormal spindles (Psma8-/-). (F) Double immunolabeling of SYCP3 (green) with ACA (red) in wild-type and Psma8-/-

spermatocytes at metaphase II which shows aberrant accumulation of SYCP3 at the centromeres. (G) Double immunolabeling of PA200 (green) and

SYCP3 (red) in chromosome spreads. PA200 is detected at the chromosome axes of the autosomal and XY bivalents during pachytene in wild type

spermatocytes in contrast to the absence of labeling in Psma8-/- spermatocytes. Bar in panels (C, E) 5 μm and 10 μm (A, B, F and G).

https://doi.org/10.1371/journal.pgen.1008316.g003
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Fig 4. Histone acetylation, nuclei ubiquitylation and proteasome activity in PSMA8-deficient mice. (A-D) Plots represent the quantification of the

fluorescence intensity from Psma8+/+ and Psma8-/- spermatocytes at early pachytene (EP), mid pachytene (MP), late pachytene (LP), early diplotene

(ED), late diplotene (LD), diakinesis (DK), metaphase I (MI) and round spermatid (RS) corresponding to the immunolabeling of (A) H2AK5ac, (B)

H3ac, (C) H4ac, and (D) H4K16ac. Representative figures for each immunofluorescence are presented in S9–S12 Figs. (E) Proteasome activity of

Psma8-deficient testis. 100 μg of protein from whole testis extracts of Psma8+/+and Psma8−/− mice were inoculated into 96-well plate and the

proteasome peptidases activities were measured. The enzymatic activities relative to WT are shown. (F) Plots represent the quantification of the
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relative increase at late prophase I (Fig 4A–4D and S9–S12 Figs). We failed to detect staining

for H2AK5ac and H3ac in spermatocytes in late diakinesis and round/arrested spermatids. In

contrast, pan-H4ac and H4K16ac also labeled metaphase I chromosomes, interkinesis nuclei

and round/arrested spermatids, with greater intensity in mutant than in WT cells (Fig 4C and

4D and S11 and S12 Figs). The accumulation of acetylated histones during prophase I and par-

ticularly of H4ac and H4K16ac in the arrested round spermatids suggests that the PSMA8--

containing proteasomes are involved in the acetylation-dependent degradation of histones.

Proteasomal activity in Psma8-deficient mice

We next investigated the biochemical activity of testis extracts lacking PSMA8-containing pro-

teasomes by measuring chymotrypsin-like activity (corresponding to the catalytic subunit β1),

caspase-like activity (corresponding to β5) and trypsin-like activity (β3) by a standard fluoro-

genic assay [35] in the presence and absence of SDS (activated proteasome). Results showed

that proteasomal activity in Psma8-deficient testis extracts was not noticeably different from

that in WT extracts. Indeed, the trypsin-like activity was the only proteolytic function with a

modest reduction in the KO (Fig 4E). Overall, these results show that the general proteasome

activity of the Psma8-deficient testis is not radically changed, which is likely due to the pres-

ence of PSMA7-dependent CPs (see dataset 1 in [36]).

To ascertain the degree of activity in vivo, we first investigated the steady-state levels of pro-

tein ubiquitylation in testis during mouse meiosis. Using immunofluorescence, we analyzed

spermatocytes obtained from spreads and squashed preparations with ubiquitin antibodies

(Fig 4F and S13 Fig). The results showed a slight decrease of chromatin bound ubiquitylated

proteins but an increase in the soluble fraction of ubiquitylated proteins during prophase I

(Fig 4F and S13 Fig). These results are partially in agreement with the observed increase in the

ubiquitylation state of cultured spermatocytes treated with the proteasome inhibitor MG132

(18), and suggest a specific function of the PSMA8-containing proteasomes in the controlled

degradation of ubiquitylated proteins during spermatogenesis.

Purification of PSMA8-interacting proteins

The composition of the CP and its RPs has previously been established by mass-spectrometric

analysis of crude preparation of proteasomes from whole testes [37]. To better understand the

molecular mechanism underlying the mutant phenotype, we purified PSMA7/8-interacting

proteins by single-step affinity chromatography (see Material and methods for a detailed

description). Most of the canonical subunits of the CP and RP were present within the more

than 596 proteins of the PSMA8 proteome (S5 Table, using a conservative cut-off, see meth-

ods). In agreement with previous results, among the two activators of the testis-specific protea-

some detected (PA200 and Pa28γ) [5], PA200 was the most abundant. In contrast to previous

observations, we were unable to detect Pa28α and Pa28β or the inducible catalytic subunits of

the immunoproteasome (β1i, β2i and β5i) [5], suggesting a very low abundance or absence.

We could not detect PA200 as an interacting protein of PSMA7/8 in testis extracts from

Psma8-deficient testes (S4 Table).

Among the novel proteasome-interacting proteins (PIPs) detected were chaperones includ-

ing CCT6b and CCT2, ubiquitin ligases (TRIP12, NEDD4, TRIM36 and RAD18), and novel

ubiquitin specific proteases (USPs) such as USP9X, USP34, USP5 and USP47 (S6 Table). We

fluorescence intensity from Psma8+/+ and Psma8-/- spread (upper) and squashed (lower) spermatocytes. Welch´s t-test analysis: � p<0.01; �� p<0.001;
��� p<0.0001.

https://doi.org/10.1371/journal.pgen.1008316.g004
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studied the proteins enriched in the immunoprecipitation through functional (gene ontology,

GO) and pathway analysis (KEGG). The top GO and KEGG results were related to the protea-

some and to ribonucleoproteins. Pathway analysis showed links to spermatogenesis, cell cycle,

and meiosis (see S1 Text), in accordance with the observed mutant phenotype.

Interestingly, we identified meiotic proteins a priori unrelated to the UPS such as DAZL

(deleted in azoospermia), SPAG1 (Sperm-associated antigen 1), SPATA5/20 (Spermatogene-

sis-associated protein 5/20), the tudor domain proteins TDRD1/6/9, MAEL (repressor of

transposable elements), and RNF17. These PIPs could represent proteins captured during ubi-

quitin-dependent targeted degradation [38] and/or proteins interacting via ubiquitin-indepen-

dent proteasomal degradation, as has been shown for the related subunit α4/PSMA7 [39].

Altogether, the list of novel PIPs included novel potential readers, erasers and writers of the

ubiquitin code [40] of the testis-specific proteasome, reflecting its complexity. Among these

PIPs, we focused our attention on the following candidates for their role in chromosome segre-

gation and synapsis: SYCP1, TRIP13, TEX30, PIWIL1, PIWIL2 and CDK1 (S6 Table).

Among the possible interactors, we first evaluated the transverse filament protein SYCP1.

Because Sycp1 mutant mice are infertile but otherwise healthy [41], we analyzed the interaction

of SYCP1 with PSMA8 and its localization in mutant meiosis. We co-transfected Sycp1 with

Psma8 in HEK293T cells and we detected co-immunoprecipitation between SYCP1 and

PSMA8 (Fig 5A). Despite the observation that SYCP1 is properly loaded to the SC and

removed from desynapsed regions (S6 Fig), we observed an abnormal accumulation of SYCP1

in Psma8-deficient metaphase I cells, (Fig 5B). These results suggest defective degradation of

SYCP1 with very likely detrimental functional consequences in the exit of meiosis.

We next extended the validation analysis of the remaining candidate interactors by co-

immunoprecipitation with PSMA8, making use of the same heterologous system of HEK293T

cells. These included TEX30, PIWIL1, PIWIL2, CDK1 and TRIP13. All protein-protein inter-

action assays carried out were negative (S14A Fig) with the exceptions of the cyclin dependent

kinase CDK1 and the AAA-ATPase TRIP13 (AAA-ATPases associated with diverse cellular

activities; see Figs 6A and 7A). Because of the relevance of CDK1 in metaphase transition, we

first determined the expression levels of CDK1 by immunofluorescence. The results showed

that more CDK1 but not the related kinase CDK2 [42] could be detected in the centromeres of

metaphase I chromosome from mutant cells (Fig 6B and S15A Fig; KO 0.31±0.2 vs 0.19±0.1

WT; an increase of ~ 40%). To determine whether the increased level of CDK1 corresponded

to its active or inactive phosphorylated form, we used an antibody against CDK1-Tyr15-p

(inactive form, Fig 6C). The results showed no differences in the labeling at the centromeres of

the metaphase I chromosomes, and therefore a decrease in phospho-CDK1/total CDK1 ratio

in mutant cells. Given that CDK1 must be complexed with cyclin B1 to be active, we reasoned

that if higher levels of active CDK1 are present, cyclin B1 would be similarly increased. Results

showed an increase of cyclin B1 at the centromeres of metaphase I chromosomes (Fig 6D).

This result was congruent with the increased amount of CDK1 and CyclinB1 observed by

western blot and in squashed seminiferous tubules (Fig 6E and S15B and S15C Fig). Overall,

these findings suggest that loss of PSMA8 causes an increase of CDK1 / CyclinB1 which would

cooperate in the accumulation of metaphase I / metaphase II that ultimately results in apopto-

tic metaphase plates.

We also analyzed the distribution of TRIP13, a pleiotropic ATPase that participates in mei-

otic DNA repair and chromosome synapsis through HORMAD interaction and somatic spin-

dle assembly checkpoint (SAC) proficiency through MAD2 interaction [43–46]. We first

performed immunofluorescence analysis of TRIP13 in Psma8-deficient and WT spermato-

cytes. Results using two independent antibodies showed robust labeling of the telomeres from

zygonema (two dots) to pachynema (fused to a single dot) in WT cells, which declined from
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diplonema to diakinesis. The staining pattern was similar but enhanced in mutant spermato-

cytes (Fig 7B). However, the staining pattern of TRIP13 at metaphase I differed between WT

and mutant cells. Specifically, it was detected at the kinetochores of Psma8-/- spermatocytes

but was absent in WT cells (Fig 7B). This labeling pattern at the metaphase I kinetochores

resembles TRIP13 staining in somatic cells [47]. These results thus suggest that TRIP13 accu-

mulates in the absence of a functional PSMA8-containing proteasome.

We next analyzed several downstream effectors of TRIP13, HORMAD1, HORMAD2, and

the mitotic checkpoint protein MAD2 [48–50]. No differences were observed in the HOR-

MAD1/2 labeling pattern between WT and mutant cells (S16 Fig). It has been shown in C. ele-
gans that in the absence of TRIP13, MAD2 recruitment to kinetochores is delayed and that in

addition to its role in checkpoint silencing, TRIP13 also contributes to spindle checkpoint acti-

vation [50]. It could thus be argued that an excess of TRIP13 would increase MAD2 loading to

kinetochores thereby delaying mitotic exit. We confirmed this prediction and found that

MAD2 expression at the kinetochores was enhanced in Psma8-/- spermatocytes (Fig 7C), fur-

ther validating a functional consequence of TRIP13 accumulation at the kinetochores.

In order to validate the substrate specificity of the PSMA8-containing proteasome in pro-

tein degradation, we analyzed the expression levels of the separase inhibitor securin (PTTG1),

Fig 5. SYCP1 interacts with PSMA8 and is accumulated in Psma8-deficient metaphase I cells. (A) HEK293T cells

were transfected with Flag-PSMA8 and GFP-SYCP1. Protein complexes were immunoprecipitated overnight with

either an anti-Flag or anti-EGFP or IgGs (negative control), and were analyzed by immunoblotting with the indicated

antibody. PSMA8 co-immunoprecipitates with SYCP1. (B) Double immunolabeling of squashed tubules with SYCP1

(green) and SYCP3 (red) in wild-type and Psma8-/- spermatocytes at metaphase I. Chromatin was stained with DAPI

(blue). Bar in panel, 10 μm.

https://doi.org/10.1371/journal.pgen.1008316.g005
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Fig 6. PSMA8 deficiency causes an accumulation of CDK1 and Cyclin B1 in spermatocytes. (A) HEK293T cells were transfected with Flag-

PSMA8 and GFP-CDK1. Protein complexes were immunoprecipitated with either an anti-Flag or anti-EGFP or IgGs (negative control) and were

analyzed by immunoblotting with the indicated antibody. PSMA8 co-immunoprecipitates with CDK1 (as well as reciprocally). (B) Double labeling of

endogenous CDK1 (green) and SYCP3 (red) in mouse spermatocytes at metaphase I. Chromatin was stained with DAPI (blue). During metaphase I,

CDK1 labels in a slight and disperse way the chromosomes and in a more intensely fashion the centromeres of bivalents. This labeling pattern is

enhanced in a normal Psma8-deficient metaphase I. Plot under the panel represents the quantification of the fluorescence intensity from Psma8+/+

and Psma8-/- metaphase I cells. (C) Double labeling of endogenous CDK1-Tyr15phosphorylated (green) and SYCP3 (red) in mouse spermatocytes at
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a well-known substrate of the somatic proteasome. Immunofluorescence analysis showed sim-

ilar levels of PTTG1 in Psma8-/- and WT spermatocytes (S17 Fig). This result suggests that

PSMA8-containing proteasomes are not involved in the degradation of classical ubiquitylated

substrates degraded by the somatic proteasome.

PSMA8 interacts with proteins of the synaptonemal complex

To investigate the molecular basis of PSMA8 localization in the SC, and considering the alter-

ation of SYCP3 and SYCP1 in Psma8-/- spermatocytes (Fig 3F and Fig 5B), we used a candidate

gene approach to identify additional putative interactors of PSMA8. We co-transfected Psma8
with cDNAs encoding each of the known central element proteins (SIX6OS1, SYCE1, SYCE2,

SYCE3, and TEX12), and the AE protein SYCP3. As positive controls, we exploited the well-

known interaction between SYCE2 and TEX12 [51] (S14C Fig). Surprisingly, we detected spe-

cific co-immunoprecipitation of PSMA8 with SIX6OS1 and SYCE3 (Fig 8A and S14B Fig). We

were unable to immunoprecipitate transfected SYCP3 (using several tags or antibodies against

SYCP3), likely due to the highly complex structures of transfected SYCP3, which prevented to

perform co-immunoprecipitation experiments. Because SYCP3 forms filamentous structures

in the cytoplasm of transfected cells, termed polycomplexes [52], co-expression of an interact-

ing protein with SYCP3 may lead to its recruitment to polycomplexes [24], an indication of

protein interaction. Indeed, we obtained self assembled higher structures when Psma8 was co-

transfected with Sycp3 (Fig 8B). This SYCP3-dependent cytological interaction was not

observed when Psma7 was co-transfected (Fig 8B), further validating the specificity of the

interaction given the extensive protein similarity between both PSMA8 and PSMA7 (92%). To

validate this interaction in vivo, we performed a detailed analysis of SYCP3 in mouse mutant

squashed spermatocytes, a procedure in which no solubilization or protein extraction is per-

formed. We observed SYCP3 aggregates/polycomplexes in the Psma8-deficient spermatocytes

during prophase I and metaphase I / II (Fig 8C and 8D and S7 Table). SYCP3 accumulated in

metaphase II chromosomes as abnormal SYCP3 labeling at the centromeres between sister

kinetochores and as aggregates in the cytosol (Fig 3F and Fig 8D). Global accumulation of

SYCP3 was also observed by western blot of whole testis under high denaturing conditions

(Fig 8E) [53]. Interestingly, it has been previously shown that cultured spermatocytes chemi-

cally treated with the proteasome inhibitor MG132 form SYCP3 aggregates [17]. Overall, our

results suggest that SYCP3 is targeted for degradation by the PSMA8-containing proteasome

and that in the absence of PSMA8 its accumulation could mediate, at least in part, the arrest

and apoptosis of spermatocytes.

Discussion

The testis-specific proteasome is one of the three tissue-specific proteasomes identified in

mammals (together with the immunoproteasome and the thymoproteasome); however, little

is known about its biochemical and physiological function. The groundbreaking work of

Xiao-Bo Qiu and colleagues showing the acetyl-histone preference of the PA200 subunit of

the proteasome [5] has provided novel insights into the proteasome-dependent degradation

of non-ubiquitylated proteins and led to the designation of spermatoproteasome to the

metaphase I showing similar expression levels in Psma8+/+ and Psma8-/-. Chromatin was stained with DAPI (blue). (D) Double labeling of

endogenous cyclin B1 (green) and SYCP3 (red) in mouse spermatocytes at metaphase I showing higher expression levels in Psma8-/-. Plot under the

panel represents the quantification of the fluorescence intensity from Psma8+/+ and Psma8-/- metaphase I cells. Welch´s t-test analysis: � p<0.01; ��

p<0.001; ��� p<0.0001. (E) CDK1 and CyclinB1 were measured by western blot analysis of protein extracts from whole testis of Psma8+/+ (WT) and

Psma8-/- (KO) (n = 2 mice). Bar in panels, 10 μm. Welch´s t-test analysis: � p<0.05; �� p<0.001; ��� p<0.0001.

https://doi.org/10.1371/journal.pgen.1008316.g006

PSMA8 is essential for gametogenesis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008316 August 22, 2019 14 / 31

https://doi.org/10.1371/journal.pgen.1008316.g006
https://doi.org/10.1371/journal.pgen.1008316


Fig 7. TRIP13 and MAD2 levels are increased in Psma8-deficient spermatocytes. (A) HEK293T cells were transfected with a plasmid encoding

GFP-TRIP13 and Flag-PSMA8. Protein complexes were immunoprecipitated with either an anti-Flag or anti-EGFP or IgGs (negative control), and
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PA200-containing proteasome. However, following the criteria employed for the designation

of the thymoproteasome, which were devised based on the restricted expression of its β5t sub-

unit in the thymus [9] (GTEx portal), we suggest that the term spermatoproteasome be

restricted exclusively to the PSMA8-containing proteasome instead of the widely expressed

PA200 subunit [5].

We have shown that genetic depletion of Psma8 causes the delocalization and the drastic

decrease (loss of detection) of the proteasome activator PA200 in spermatocytes. Accordingly,

Psma8-deficient spermatocytes accumulate acetylated histones. PSMA8 deficiency is compara-

tively more severe than that of the PA200 single mutant (subfertile) and of the PA200 and

PA28γ double mutant, which do not show an arrest in spermatogenesis despite being infertile

in vivo but not in vitro (spermatozoa are not motile but can fertilize in vitro [54]). From a

genetic analysis perspective, this result would suggest that PSMA8 has additional functions

that are independent of the activators PA200 and PA28γ. Our proteomic analysis, together

with other data [10], supports this notion and indicates that PSMA8-containing proteasomes

can be associated with other regulators such as the 19S subunit, expanding its targets.

Beyond its role in initiation of histone replacement [34], H4K16ac is involved in the three

waves of H2AX phosphorylation during prophase I [55]. We have shown that Psma8 defi-

ciency causes the accumulation of H4ac and H4K16ac during prophase I. However, we did not

observe defects in this process in the form of a different staining pattern for γ-H2AX (lepto-

nema and zygonema), including the expansion of γ-H2AX staining to the chromatin of the sex

body (in pachynema). However, the observed premature accumulation of H4K16ac at early

round spermatid might cause a defect in histone removal later on in spermiogenesis if the

Psma8-/- mutants spermatids would not have entered apoptosis before this event.

We have shown that spermatoproteasome deficiency causes severe defects in protein turn-

over of key meiotic players that affect metaphase I/II exit, but not the complex process of mei-

otic recombination that occurs during prophase I (CO). By using a candidate approach of

PIPs, we have identified CDK1 and TRIP13 as likely crucial proteins that have an abnormal

expression pattern during meiotic metaphase in mutant mice. Given the key roles of these pro-

teins in all aspects of mitotic/meiotic division (including SAC activation), the accumulation of

aberrant metaphase I/II spermatocytes in Psma8-deficient mice is to be expected.

The role of CDK1 in the metaphase-anaphase transition is complex and is multifaceted.

CDK1 inhibits and activates APC/C by promoting the SAC and also by a SAC-independent

mechanism [56]. The balance between these opposing functions determines cyclin B1 destruc-

tion and separase activation, giving rise to cohesin cleavage and anaphase onset [57]. Based on

the normal expression levels of PTTG1 in Psma8-/- metaphase I cells, it can be argued that

there is no precocious APC activation in Psma8-deficient cells (S17 Fig). Given that CDK1

activation of the SAC is dominant over the activation of APCCdc20 [58] in oocytes, we suggest

that the former effect is acting on Psma8-deficient spermatocytes. The question how CDK1

promotes the SAC is still unresolved in oocytes and even less is known about this in

spermatocytes

immunoblotted with the indicated antibody. (B) Double immunolabeling of TRIP13 (green) and SYCP3 (red). TRIP13 labels the telomeres at

pachytene and the intensity of the labeling decreases through desynapsis at diplotene and diakinesis. This labeling is enhanced during prophase I in the

Psma8 mutants but its main pattern is not altered. At metaphase I, a faint labeling of sister kinetochores is observed in the Psma8-/- spermatocytes that

is absent in the wild type. Plot over the panel represents the quantification of the fluorescence intensity from Psma8+/+ and Psma8-/- spermatocytes at

pachytene and late diplotene. (C) MAD2 (green) labels with enhanced intensity the centromeres of the chromosomes from Psma8-/- metaphase I cells

in comparison with the WT controls. Plot right to the panel represents the quantification of the fluorescence intensity from Psma8+/+ and Psma8-/-

spermatocytes at metaphase I spermatocytes. Bar in panels, 10 μm. Welch´s t-test analysis: � p<0.01; �� p<0.001; ��� p<0.0001.

https://doi.org/10.1371/journal.pgen.1008316.g007
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Another group of proteins found to be deregulated in spermatoproteasome-deficient mice

are the SC structural proteins SYCP1 and SYCP3. The precise effect of the accumulated

SYCP1 in the cytoplasm of Psma8-/- spermatocytes cannot be experimentally analyzed. How-

ever, the coiled-coil structure and self-assemblance abilities of SYCP1 strongly suggest a func-

tionally detrimental consequence. Similarly, the presence of SYCP3 aggregates during

pachynema and metaphase I mutant spermatocytes and its persistence at metaphase II

Fig 8. PSMA8 interacts with proteins of the SC. (A) PSMA8 co-immunoprecipitates with SIX6OS1 and SYCE3. HEK293T cells were transfected

with plasmids encoding Flag-PSMA8 and GFP-SIX6OS1 or GFP-SYCE3. Protein complexes were immunoprecipitated overnight with either an anti-

Flag or anti-EGFP or IgGs (negative control), and were analyzed by immunoblotting with the indicated antibody. (B) Double immunofluorescence of

transfected HEK293T cells with plasmids encoding Flag-PSMA8 and Flag-PSMA7 alone or together with plasmid encoding SYCP3-HA and

immuno-detected with antibodies against Flag (green) or HA (red). Transfected PSMA8 alone is delocalized and occupies the whole cell whereas

when co-transfected with SYCP3-HA is recruited to form polycomplexes. PSMA7 do not form polycomplexes when co-transfected with SYCP3-HA.

(C-D) SYCP3 is accumulated in vivo in Psma8-/- spermatocytes. (C) Double immunolabeling of squashed tubules with SYCP3 (red) and SYCP1

(green) in wild-type and Psma8-/- spermatocytes at prophase I showing large SYCP3 aggregates surrounding the nuclei (arrows). (D) Double

immunolabeling of squashed tubules with SYCP3 (green) and ACA (red) in wild-type and Psma8-/- spermatocytes at metaphase I and II. Psma8-/-

metaphases I show labeling of SYCP3 in aggregates (arrows, absent in the WT) in addition to its typical labeling at the centromeres. Metaphases II

from Psma8-/- show labeling for SYCP3 at the centromeres between the sister kinetochores and as aggregates in the cytosol (arrows) whereas wild

type metaphases II show barely visible SYCP3 labeling. (E) SYCP3 was measured by western blot analysis of protein extracts from whole testis of

Psma8+/+ (WT) and Psma8-/- (KO) (n = 2 mice). Bar in panels, 10 μm. Welch´s t-test analysis: � p<0.05; �� p<0.001; ��� p<0.0001.

https://doi.org/10.1371/journal.pgen.1008316.g008
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centromeres, where SYCP3 is barely visible in WT cells, also suggest a detrimental effect on

these cells causing their entrance into apoptosis.

We have also shown that PSMA8 is delocalized in the severe synapsis Six6os1 mutant,

which is consistent with the observed co-immunoprecipitation of PSMA8 with SYCP1,

SIX6OS1 and SYCE3. All the synapsis-less mutants of CE proteins failed to load properly or

lacked SYCP1 and the remaining CE proteins [24, 59–61]. Thus, we would predict delocaliza-

tion of the spermatoproteasome from the SC in the remaining mouse mutants of the CE pro-

teins. Overall, our results support the idea of a physical anchorage or recruitment of the

spermatoproteasome to the SC especially through SYCP3, possibly facilitated or mediated by

SYCP1, SIX6OS1 and SYCE3 as their most relevant structural partners. Supporting this

notion, the Zip1 transverse filament protein of the yeast SC participates in the recruitment of

the proteasome to the SC [22], suggesting an evolutionary conservation of the mechanism.

Yeast mutated for a nonessential subunit of the proteasome (pre9) showed abnormal mei-

otic recombination, pairing and synapsis [22]. Similar but milder defects were also observed in

spermatocytes cultured with a proteasome inhibitor [17]. It has been proposed that the UPS

regulates the proteostatic turnover of the ZMM which is required for efficient synapsis and

CO [17], through the RNF212 (E3 sumo ligase)-Hei10 (E3 ubiquitin ligase) pathway [31].

Given this, the lack of a meiotic recombination phenotype (DSBs are generated and repaired

and COs are generated normally) in our Psma8-deficient mouse is surprising. It can be argued

that PSMA7-containing proteasomes are still present and at the early stages of meiosis are

compensating for the loss of function of Psma8. Another possible but not mutually exclusive

explanation is that the main targets of the PSMA8-containing proteasome are proteins from

mid-prophase I onwards.

The spermatoproteasome through its complex interactome would serve as a hub for the

fine tuning of several fundamental key molecules of the spermatogenic process such as those

analyzed during the present work (SYCP1, SYCP3, TRIP13, CDK1 and acetyl-histones). Our

data suggest that deregulation of proteostasis of key meiotic proteins promoting cell division

leads to the presence of multipolar spindles and aberrant meiotic exit. Thus, we favor an expla-

nation in which the joint contribution of several pathways is responsible for the observed

infertility.

In relation to human disease, protein degradation was one of the top cellular functions

found in an unbiased differential proteomic profiling of spermatozoa proteins from infertile

men with a varicocele [62]. More specifically, PSMA8 is among the top 7 in this list of proteins

that are differentially expressed, suggesting a causal role in the severity of the disease. From an

organismal perspective, Psma8 transcription is mainly restricted to the human testis and to

some tumors like Burkit lymphoma and melanoma (TCGC database). Altogether, and consid-

ering the PSMA8 dependency of the mouse male germline, we suggest that the spermatopro-

teasome may be an effective target for male contraception and for the treatment of some

human malignancies.

Material and methods

In vivo electroporation of testes

Testes were freed from the abdominal cavity and 10 μl of DNA solution (50 μg) mixed with 1μl

of 10×FastGreen (Sigma Aldrich F7258) was injected into the rete testis with a DNA embryo

microinjection tip. After a period of 1 h following the injection, testes were held between elec-

trodes and four electric pulses were applied (35 V for 50 ms each pulse) using a CUY21 BEX

electroporator.
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Production of CRISPR/Cas9-Edited mice

Psma8-sgRNAs G71 5’- GGGCATACT CCACTTGGAAA -3’ G84 5’-ACCGCGGTAAGCTG

CTCCCC-3’ targeting exon 1 and intron 1 were predicted at crispr.mit.edu. Psma8-sgRNAs

were produced by cloning annealed complementary oligos at the BbsI site of pX330 (#42230,

Addgene), generating PCR products containing a T7 promoter sequence that were purified

(NZYtech), and then in vitro transcribed with the MEGAshortscrip T7 Transcription Kit (Life

Technologies). The plasmid pST1374-NLS-flag-linker-Cas9 (#44758; Addgene) was used for

generating Cas9 mRNA. After linearization with AgeI, it was transcribed and capped with the

mMESSAGE mMACHINE T7 Transcription Kit (AM1345; Life Technologies). RNAs were

purified using the RNeasy Mini Kit (Qiagen). RNAs (100 ng/μl Cas9 and 50ng/μl each guide

RNA) were microinjected into B6/CBA F2 zygotes (hybrids between strains C57BL/6J and

CBA/J) [63] at the Transgenic Facility of the University of Salamanca. Edited founders were

identified by PCR amplification (Taq polymerase, NZYtech) with primers flanking exons 1

and intron 1 (Primer F 5‘-CTTCTCGGTATGACAGGGCAATC-3’ and R 5’- ACTCTACCTC

CACTGCCAAC CTG-3’) and either direct sequenced or subcloned into pBlueScript (Strata-

gene) followed by Sanger sequencing. The predicted best null mutation was selected by PCR

sequencing of the targeted region of Psma8 (S3B Fig). The selected mutant allele was 166 bp

long versus 222bp of the wild-type. The founder was crossed with wild-type C57BL/6J to elimi-

nate possible unwanted off-targets. Psma8+/- heterozygous mice were re-sequenced and

crossed to give rise to Psma8-/- homozygous. Genotyping was performed by analysis of the

PCR products of genomic DNA with primers F and R. Mouse mutants for Rec8 and Six6os1

have been previously developed [24, 25].

Histology

For histological analysis of adult testes, mice were perfused and their testes were processed

into serial paraffin sections and stained with hematoxylin-eosin or were fixed in Bouin´s fixa-

tive and stained with Periodic acid–Schiff (PAS) and hematoxylin.

Microscopy

Slides were visualized at room temperature using a microscope (Axioplan 2; Carl Zeiss, Inc.)

with 63 × objectives with an aperture of 1.4 (Carl Zeiss, Inc.). Images were taken with a digital

camera (ORCA-ER; Hamamatsu) and processed with OPENLAB 4.0.3 and Photoshop

(Adobe). Quantification of fluorescence signals was performed using Image J software.

Squashed preparations were visualized with a Delta vision microscopy station. Stimulated

emission depletion (STED) microscopy (SP8, Leica) was used to generate the super-resolution

images. Secondary antibodies for STED imaging were conjugated to Alexa 555 and 488 (Invi-

trogen). Slides were mounted in Prolong Antifade Gold without DAPI.

Immunocytology

Testes were detunicated and processed for spreading using a conventional "dry-down" tech-

nique or squashing [64]. Antibody against the C-term of PSMA8 was a gift from Dr. Murata

(Univ of Tokyo, Japan) and has been previously described [10]. Rabbit polyclonal antibodies

against PSMA8 were developed by Proteintech (R1 and R2) against a fusion protein of poly-

His with full length PSMA8 (pET vector) of mouse origin (see S1 Fig for validation) and was

used to validate the immunofluorescence and western results. The primary antibodies used for

immunofluorescence were rabbit αSYCP1 IgG ab15090 (1:200) (Abcam), rabbit anti-γH2AX

(ser139) IgG #07–164 (1:200) (Millipore), ACA or purified human α-centromere proteins IgG
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15–235 (1:5, Antibodies Incorporated), mouse αMLH1 51-1327GR (1:5, BD Biosciences),

mouse αSYCP3 IgG sc-74569 (1:100), rabbit αRAD51 PC130 (1:50, Calbiochem), Mouse

αCDK1 sc-54 (1:20 IF; 1:1000 wb, Santa Cruz), rabbit αCDK1 Tyr15p #4539 (1:10, Cell Signal-

ing), rabbit αCDK2 sc-6248 (1:20, Santa Cruz), rabbit αPTTG1 serum K783 (1:20 IF, 1:1000

wb), rabbit αTRIP13 19602-1-AP (1:20, Proteintech), rabbit αH2AL2 (1:100, from Dr. Saadi

Khochbin), rabbit αPA200 (1:20, Bethyl A303-880A), rabbit α-Caspase3 #9661 (1:30, Cell Sig-

naling), rabbit αH2AK5ac ab45152 (1:20, Abcam), Rabbit αH4K16ac #07–329 (1:50 Milli-

pore), Rabbit αH3ac (K9 and K14) #06–599 (1:20, Millipore), Rabbit αH4ac (K5, K8, K12 and

K16) #06–598 (1:20, Millipore), Mouse αUbiquitin 11023 (1:20 IF, 1:1000 wb, QED Biosci-

ence), Rabbit αHORMAD1 and αHORMAD2 and chicken anti SYCP1 (1:50, from Dr. Attila

Toth; [65]), Rabbit anti p-ser10-H3 06–570 (1:100, Millipore), Mouse anti α-tubulin T9026

(1:100, Sigma), Rabbit αCyclin B1 ab72 (1:20, Abcam), Rabbit αMAD2 (1:30 provided by Dr.

Stemmann), Peanut agglutinin lectin L7381 (15μg/ml, Sigma), SMC6 ab18039 (1:50, Abcam),

Human αVASA 560189 (1:100, BD), Rabbit αINCENP 1186 (1:50, provided by Dr. Earnshaw).

TUNEL staining of chromosome spreads was performed with the in situ cell death detection

kit (Roche).

FACs analysis

Psma8+/+ and Psma8−/− testicular cells preparation and measurement of their DNA content

were performed by a standard procedure [66]. Briefly, the testes were detunicated and the sem-

iniferous tubules were kept in 5 ml of ice-cold separation medium (DMEM supplemented

with 10% FCS, 0.1 mM NEAA, 1.5 mM sodium pyruvate, 4 mM L-glutamine and 75 μg/ml

ampicillin). They were treated with 0.1 mg/ml collagenase at 37˚C for 10 min under mild shak-

ing. The sedimented seminiferous tubules were washed twice with separation medium and

treated for 2 min at 37˚C with 2.5 μg/ml trypsin and 1 U/ml DNAse I in separation medium

and transferred to ice. Afterwards, single cells were extracted from the seminiferous cords with

a Pasteur pipette and filtered through a 40 μm nylon mesh. The cell suspension (2 × 106 cells/

ml) was diluted 1:1 with a solution containing 0.05 mg/ml propidium iodide and 0.1 mg/ml

RNAse for 15 min. Finally, the cells were analyzed through flow cytometry in a cytometer

FACSCalibur and the BD Cell-Quest software. The cell cycle distribution was analyzed with

the Kaluza Analysis software (Beckman Coulter).

Proteasome assay

The 26S proteasome assay was carried out in a total volume of 250 μl in 96 well plates with 2

mM ATP in 26S buffer using 100 μg of protein supernatants from whole extracts of mouse tes-

tis. Fluorescently labeled substrates employed were: succinyl-Leu-Leu-Val-Tyr-7-amino-

4-methylcoumarin (Suc-LLVY-AMC), Z-Ala-Arg-Arg-AMC (Z-ARR-AMC, Bachem), and

Z-Leu-Leu-Glu-AMC (Z-LLE-AMC) for the detection of the chymotrypsin- (β5 catalytic sub-

unit), trypsin- (β2 catalytic subunit) and caspase- (β1 catalytic) like activity measurements

respectively. The final substrate concentration in each assay was 100 μM.

Cell lines

The HEK293T, GC1-spg, Leydig TM3, and Sertoli TM4 cell lines were directly purchased at

the ATCC and cultured in standard cell media. HEK293T cell line was transfected with Lipo-

fectamine (Invitrogen) or Jetpei (PolyPlus). Cell lines were tested for mycoplasma contamina-

tion (Mycoplasma PCR ELISA, Sigma).
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Generation of plasmids

Full-length cDNAs encoding PSMA8, PSMA7, CDK1, SYCP1 and SIX6OS1, SYCP3, SYCE2,

TEX12, TEX30, PIWIL1 and PIWIL2 were RT-PCR amplified from murine testis RNA. Full-

length cDNAs were cloned into the EcoRV pcDNA3-2XFlag or SmaI pEGFP-C1 expression

vectors under the CMV promoter. In frame cloning was verified by Sanger sequencing.

Immunoprecipitation and western blotting

200 μg of antibody R1 and R2 were bound to 100 μl of sepharose beads slurry (GE Healthcare).

Testis extracts were prepared in 50mM Tris HCl (pH8), 500mM NaCl, 1mM EDTA 1% tri-

tonX-100. 20 mg of proteins extracts were incubated o/n with the Sepharose beads. Protein-

bound beads were packed into columns and washed in extracting buffer for three times. Pro-

tein were eluted in 100 mM glycine pH3. The whole immunoprecipitation of PSMA8 was per-

formed in a buffer lacking ATP and glycerol to increase the stringency of the interactors and

regulators/activators subunits. HEK293T cells were transiently transfected and whole cell

extracts were prepared and cleared with protein G Sepharose beads (GE Healthcare) for 1 h.

The antibody was added for 2 h and immunocomplexes were isolated by adsorption to protein

G-Sepharose beads o/n. After washing, the proteins were eluted from the beads with 2xSDS

gel-loading buffer 100mM Tris-Hcl (pH 7), 4% SDS, 0.2% bromophenol blue, 200mM β-mer-

captoethanol and 20% glycerol, and loaded onto reducing polyacrylamide SDS gels. The pro-

teins were detected by western blotting with the indicated antibodies. Immunoprecipitations

were performed using mouse αFlag IgG (5μg; F1804, Sigma-Aldrich), mouse αGFP IgG (4 μg;

CSB-MA000051M0m, Cusabio), rabbit αMyc Tag IgG (4μg; #06–549, Millipore), mouse

αHA.11 IgG MMS- (5μL, aprox. 10μg/1mg prot; 101R, Covance), ChromPure mouse IgG

(5μg/1mg prot; 015-000-003), ChomPure rabbit IgG (5μg/1mg prot.; 011-000-003, Jackson

ImmunoResearch), ChomPure goat IgG (5μg/1mg prot.; 005-000-003, Jackson ImmunoRe-

search). Primary antibodies used for western blotting were rabbit αFlag IgG (1:2000; F7425

Sigma-Aldrich), goat αGFP IgG (sc-5385, Santa Cruz) (1:3000), rabbit αHA IgG (H6908,

Sigma-Aldrich) (1:1.000), mouse αMyc obtained from hybridoma cell myc-1-9E10.2 ATCC

(1:5). Secondary horseradish peroxidase-conjugated α-mouse (715-035-150, Jackson Immu-

noResearch), α-rabbit (711-035-152, Jackson ImmunoResearch), or α-goat (705-035-147,

Jackson ImmunoResearch) antibodies were used at 1:5000 dilution. Antibodies were detected

by using Immobilon Western Chemiluminescent HRP Substrate from Millipore. Protein

extracts for the analysis of SYCP3, CDK1 and CyclinB1 were extracted in Tris-HCl 250mM,

SDS10%, Glycerol 50% (denaturing buffer).

MS/MS data analysis

Raw MS data were analized using MaxQuant (v. 1.5.7.4) and Perseus (v. 1.5.6.0) programmes

71. Searches were generated versus the Mus musculus proteome (UP000000589, May 2017

release) and Maxquant contaminants. All FDRs were of 1%. Variable modifications taken into

account were oxidation of M, acetylation of the N-term and ubiquitylation remnants di-Gly

and LRGG, while fixed modifications included considered only carbamidomethylation of C.

The maximum number of modifications allowed per peptide was 5. For the case of the protein

group of CDK1 to 3, experimental results showed that the protein detected was CDK1. For the

PSMA8 antibodies R1 and R2, ratios of their respective iBAQ intensity versus the correspon-

dent iBAQ intensity in the control sample were calculated. Proteins with ratio higher or equal

to 5 and two or more unique peptides for at least one RP antibody were selected for ulterior

analysis. Additionally, in order to avoid filtering rare proteins, those with at least one unique
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peptide and one peptide for both Rabbit antibodies (R1 and R2) and none for anti-IgG were

also selected for further analysis.

Functional and pathway analysis

GO and KEGG over-representation tests were performed using the R package clusterProfiler
[67] using standard parameters except for a FDR cutoff of 0.01. KEGG pathways where some

key genes (TRIP13, CDK1, SYCP1, DDX4, SYCP3, SYCE3, SIX6OS1) operate and the role of

the co-immunoprecipitated proteins were studied using the R package pathview [68].

Statistics

In order to compare counts between genotypes at different stages, we used the Welch´s t-test

(unequal variances t-test), which was appropriate as the count data were not highly skewed

(i.e., were reasonably approximated by a normal distribution) and in most cases showed

unequal variance. We applied a two-sided test in all the cases. Asterisks denote statistical sig-

nificance: �p-value <0.01, ��p-value <0.001 and ���p-value<0.0001.

Ethics statement

Mice were housed in a temperature-controlled facility (specific pathogen free, spf) using indi-

vidually ventilated cages, standard diet and a 12 h light/dark cycle, according to EU laws at the

“Servicio de Experimentación Animal, SEA”. Mouse protocols were approved by the Ethics

Committee for Animal Experimentation of the University of Salamanca (USAL). We made

every effort to minimize suffering and to improve animal welfare. Blinded experiments were

not possible since the phenotype was obvious between wild type and Psma8-deficient mouse

for all of the experimental procedures used. No randomization methods were applied since the

animals were not divided in groups/treatments. The minimum size used for each analysis was

two animals/genotype.

Supporting information

S1 Fig. Validation of the antibodies raised against PSMA8. (A) HEK293T cells were trans-

fected with a plasmid encoding PSMA8-GFP, PSMA7-GFP or GFP and the whole extracts

were analyzed by western blot using rabbit α-PSMA8 C-terminal (left panel, α4S), rabbit α-

PSMA8 (central panel, R2) and α-GFP (right panel, GFP). Immunodetection of β-actin was

used as loading control. The rabbit α-α4S antibody detected exclusively the 60 kDa band rep-

resenting PSMA8-GFP. The rabbit α-PSMA8 R2 antibody detected both bands representing

PSMA8-GFP and PSMA7-GFP. The bands of 60 kDa (PSMA7 and PSMA8) and 30 kDa

(GFP) were all detected with the goat α-GFP validating the experiments. (B) Immunofluores-

cence of HEK293T cells transfected with plasmids encoding PSMA8-GFP, PSMA7-GFP or

GFP. Both PSMA8 and PSMA7 were detected with rabbit α-PSMA8-R2 (red) and GFP by

direct fluorescence signal (green). Green and red signals co-localize in the cytoplasm of the

transfected HEK293T cells. The experiments were reproduced three times. Bar represents

10 μm.

(TIF)

S2 Fig. Localization of PSMA8 in mouse spermatocytes. (A) Double immunolabeling of

endogenous PSMA8 (R2 antibody, green) and SYCP3 (red) in mouse spermatocytes. From the

leptotene to zygotene stage, PSMA8 is detected at the synapsed autosomal LEs. At pachytene,

PSMA8 is located at the totally synapsed axes and at the PAR of the sex XY bivalent. In diplo-

tene, PSMA8 localizes at the still synapsed AEs and disappears at diakinesis. (B) Double
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immunolabeling of spermatocytes spread preparations with PSMA8 (green) and SYCP1 (red),

showing that PSMA8 localizes to the synapsed LEs but do not perfectly co-localize with SYCP1

(upper panel). Magnification of the XY bivalent (lower panel) showing the PAR (arrow). Bars

represent 10 μm (A and B, upper panel) and 1.5 μm (B, lower panel).

(TIF)

S3 Fig. Generation and genetic characterization of Psma8-deficient mice. (A) Diagram-

matic representation of the mouse Psma8 locus (WT) and the genome editing strategy show-

ing the sgRNAs located on exon 1 and intron 1 (see methods), the corresponding coding

exons (light grey) and non-coding exons (open boxes). Thin (non-coding) and thick (coding

sequences) lines under exons represent the expected transcript derived from wild-type (black)

and Psma8 edited allele (blue). ATG, initiation codon; TGA and �, stop codon. The nucleotide

sequence of the 56 base pair deletion derived from PCR amplification of DNA from the

Psma8 edited/edited is indicated (Δ). Primers (F and R) are represented by arrows. (B) PCR analy-

sis of genomic DNA from three littermate progeny of Psma8+/- heterozygote crosses. The PCR

amplification with primers F and R revealed 222 and 166 bp fragments for wild-type and dis-

rupted alleles respectively. Wild-type (WT, +/+), heterozygous (Het, +/-), and homozygous

knock-out (KO, -/-) animals. (C) Western blot analysis of protein extracts from wild type testis

(P22 and adult), KO testis (P16, P22 and adult) with a specific antibody against the C-terminal

(α4S) and whole recombinant PSMA8 protein (PSMA8-R2). β-actin was used as loading con-

trol. The corresponding bands to PSMA8 and PSMA7 are indicated in the right of the panel.

Note that at the P22 and in adult stages the intensity of both bands abolishes its independent

observation. (D) Double immunofluorescence of spermatocytes at pachytene stage obtained

from Psma8+/+ and Psma8-/- mice using SYCP3 (red) and PSMA8 (R2 antibody, green). Green

labeling in Psma8-/- spermatocytes (49% of the wild type) represents cross-reactivity of the

antiserum with PSMA7. Plot under the image panel represents the quantification of intensity

from Psma8+/+ and Psma8-/- spermatocytes. Welch´s t-test analysis: � p<0.01. Bar in panel,

10 μm.

(TIF)

S4 Fig. Validation of the identity of round spermatids with molecular markers. (A) PNA

staining (green) of acrosome in spread preparations from wild type and Psma8-/- cells. Double

labeling of squash tubules of VASA (chromatoid body), INCENP [1], SMC6 [2] (green) with

SYCP3 (red) from wild type and Psma8-/- mice. The combined labeling of INCENP (labels

both interkinesis and round spermatids, [1]) and SYCP3 (mainly labels interkinesis with a typ-

ical barr patterning at the chromocenters, see below S4B Fig) is compatible with round sper-

matids. The combined double immunolabeling of SMC6 (labels both interkinesis and round

spermatids, [2]) and SYCP3 (mainly labels interkinesis with a typical barr patterns at the chro-

mocenters, see below S4B Fig) is also compatible being round spermatids. (B) Double labeling

of SYCP3 (green) and ACA (red) showing the different pattern of secondary spermatocytes at

interkinesis and round spermatids. Bars in panels represent 10 μm (A, PNA panel) and 5 μm

(rest of panels).

(TIF)

S5 Fig. Early arrest of Psma8-/- spermatids and gating strategy of the FACs analysis. (A)

Immunolabeling of H2AL2 (green) show positive staining in elongating spermatids from wild

type mice but lack of staining in Psma8-/- mice. Chromatin was stained with DAPI. Bar repre-

sents 10 μm. (B) Gating strategy employed in the FACs analysis of Fig 3D. Grey dots represent

cells that were excluded from the analysis whilst dots included in the polygon represent cells

that were employed for the analysis. Red dots enclose 1C cells, blue dots represent 2C cells and
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green dots enclose 4C cells.

(TIF)

S6 Fig. Normal synapsis and desynapsis in spermatocytes lacking PSMA8. Double immu-

nolabeling of SYCP3 (red) and SYCP1 (green) showing normal synapsis and desynapsis from

early zygotene to diakinesis in Psma8-/- in comparison with Psma8+/+. Bar represents 10 μm.

(TIF)

S7 Fig. DSBs are generated and repaired as COs in spermatocytes lacking PSMA8. (A)

Double immunolabeling of γ-H2AX (green) with SYCP3 (red) in wild-type and Psma8-/- sper-

matocytes from leptotene to diplotene (upper panel). In WT and KO leptonemas, γ-H2AX

labels intensely the chromatin. After repair, γ-H2AX labeling remains only in the chromatin of

the sex body of the pachynemas. Plot right to the panel represent the quantification of the fluo-

rescence intensity from Psma8+/+ and Psma8-/- spermatocytes at leptotene and pachytene. Late

round spermatids (LR) but not early round spermatids (ER) from wild type mice show positive

staining for γ-H2AX but these highly differentiated cells are lacking in the Psma8-/- tubules

which are arrested at early round spermatids without γ-H2AX staining (bottom panel). (B)

Double immunolabeling of SYCP3 (red) and RAD51 (green). RAD51 foci associates to the

AEs in leptonema spermatocytes of both genotypes (similar number of foci) and dissociate

towards pachytene with a similar kinetics. Plot right to the image panel represents the quantifi-

cation of the number of foci from Psma8+/+ and Psma8-/- spermatocytes. (C) Double immuno-

labeling of SYCP3 (red) with MLH1 (green). MLH1 foci are present along each autosomal SC

in wild-type and Psma8-/- pachynema meiocytes in a similar way. Plot right to the panel repre-

sents the quantification of the values of the MLH1 foci from Psma8+/+ and Psma8-/- spermato-

cytes. Bars represent 10 μm. Welch´s t-test analysis: � p<0.01; �� p<0.001; ��� p<0.0001.

Quantification data is indicated in S3 Table.

(TIF)

S8 Fig. PA200 localization in prophase I from Psma8+/+ and Psma8-/- spermatocytes. Dou-

ble immunolabeling of PA200 (green) and SYCP3 (red) in chromosome spreads from zygo-

tene to diakinesis. PA200 is detected at the chromosome axes in wild type spermatocytes in

contrast to the absence of labeling in Psma8-/- spermatocytes. Bar in panels, 10 μm.

(TIF)

S9 Fig. PSMA8 deficiency provokes an slight increase of H2AK5ac at prophase I. Double

immunolabeling of H2AK5ac (green) with SYCP3 (red) in wild-type (left panel) and Psma8-/-

spermatocytes (right panel). In WT and KO spermatocytes chromatin start to be labelled at

early pachytene around chromosomes axes. Plots from each panel representing the quantifica-

tion of fluorescence intensity from Psma8+/+ and Psma8-/- spermatocytes are depicted in Fig

4A. Bar represents 10 μm.

(TIF)

S10 Fig. PSMA8 deficiency provokes an slight increase of H3ac at prophase I. Double

immunolabeling of H3ac (green) with SYCP3 (red) in wild-type (left panel) and Psma8-/- sper-

matocytes (right panel). Spermatocytes from Psma8+/+ and Psma8-/- show labeling for H3ac at

early pachytene in a very diffuse manner surrounding chromosomes axes. Plots from each

panel representing the quantification of fluorescence intensity from Psma8+/+ and Psma8-/-

spermatocytes are in Fig 4B. Bar represents 10 μm.

(TIF)

S11 Fig. PSMA8 deficiency provokes an slight increase of H4ac at prophase I and in round

spermatids. Double immunolabeling of H4ac (green) with SYCP3 (red) in wild-type and
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Psma8-/- spermatocytes. Spermatocytes from Psma8+/+ and Psma8-/- show labeling for H4ac in

a very diffuse manner surrounding chromosomes from pachytene to metaphase I (right

panel). In wild type metaphase I, H4ac labeling appears weakly painting the chromosomes and

on some of the centromeres. However, Psma8-deficient cells show a more intense labeling spe-

cially at the centromeres (lower panel). Round spermatid from Psma8-/- accumulates H4ac

labeling at the chromatin in comparison with the WT. Plots from each panel representing the

quantification of fluorescence intensity from Psma8+/+ and Psma8-/- spermatocytes are in Fig

4C. Bars represent 10 μm.

(TIF)

S12 Fig. PSMA8 deficiency provokes an increase of H4K16ac at prophase I and in meta-

phase I / round spermatids. Double immunolabeling of H4K16ac (green) with SYCP3 (red)

in wild-type and Psma8-/- spermatocytes. Spermatocytes from Psma8+/+ and Psma8-/- show

labeling for H4K16ac in a very diffuse manner surrounding chromosomes from pachytene to

metaphase I (right panel). In wild type metaphase I, H4K16ac labeling appears weakly painting

the chromosomes. However, Psma8-deficient cells show enhance labeling in the chromosomes

of metaphase I cells (lower panel). Round spermatid from Psma8-/- accumulates H4K16ac

labeling at the chromatin in comparison with the WT. Plots from each panel representing the

quantification of fluorescence intensity from Psma8+/+ and Psma8-/- spermatocytes are in Fig

4D. Bars represent 10 μm.

(TIF)

S13 Fig. PSMA8 deficiency alters Ubiquitylation of mouse spermatocytes. (A) Double

immunolabeling of Ubiquitin (green) and SYCP3 (red) in mouse chromosome spreads at

pachytene stage from Psma8+/+ and Psma8-/-mice. (B) Double immunolabeling of Ubiquitin

(green) and SYCP3 (red) in mouse squashed tubules from Psma8+/+ and Psma8-/- mice. Chro-

matin was stained with DAPI. Bars represent 10 μm (A) and 5 μm (B).

(TIF)

S14 Fig. Lack of co-immunoprecipitation of PSMA8 with candidate interactors. (A-B)

HEK293T cells were co-transfected with GFP-TEX30, GFP-PIWIL1, GFP-PIWIL2,

GFP-SYCE1, GFP-SYCE2, and GFP-TEX12, and with Flag-PSMA8. PSMA8 does not co-

immunoprecipitates (co-IP) with any of them. (C) Positive control was generated by transfect-

ing HEK293T cells with Flag-SYCE2 and GFP-TEX12. Protein complexes were immunopre-

cipitated overnight with either an anti-Flag or anti-EGFP or IgGs (negative control) and were

analyzed by immunoblotting with the indicated antibody.

(TIF)

S15 Fig. CDK1 / Cyclin B1, but not CDK2, are accumulated in Psma8 mutant spermato-

cytes. (A) Double immunolabeling of endogenous CDK2 (green) and SYCP3 (red) in WT and

KO mouse chromosome spreads at pachytene and metaphase I showing similar labeling at the

telomeres and centromeres, respectively. (B) Double immunolabeling of CDK1 (green) and

SYCP3 (red) in mouse squashed metaphases I from Psma8+/+ and Psma8-/-mice showing

CDK1 accumulation. Plot right to the panel represents the quantification of total CDK1 fluo-

rescence intensity from Psma8+/+ and Psma8-/- metaphase I cells. (C) Double immunolabeling

of Cyclin B1 (green) and SYCP3 (red) in mouse squashed tubules from Psma8+/+ and Psma8-/-

mice showing CyclinB1 accumulation. Plot right to the panel represents the quantification of

total CyclinB1 fluorescence intensity in metaphase I cells. Bars represent 10 μm (A), and 5 μm

(B,C). Welch´s t-test analysis: � p<0.01; �� p<0.001; ��� p<0.0001.

(TIF)
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S16 Fig. HORMADs are not affected by the increased expression of TRIP13 in the Psma8-/-

spermatocytes. (A-B) Double immunolabeling of HORMAD1 (A) and HORMAD2 (B)

(green) with SYCP3 (red) in Psma8+/+ and Psma8-/- spermatocytes at zygotene and pachytene

stages. As synapsis progresses HORMAD1 and HORMAD2 are released from the AEs and

maintained at the AE of the sex body similarly in the wild type and in the mutant spermato-

cytes. Bars represent 10 μm.

(TIF)

S17 Fig. PTTG1 expression is not altered in the absence of PSMA8. Double immunofluores-

cence of PTTG1 (green) and SYCP3 (red) in metaphase I cells showing similar expression lev-

els of PTTG1. Plot under the panel represents the quantification of the fluorescence intensity

from Psma8+/+ and Psma8-/- metaphase I cells. Bar in panels, 10 μm. Welch´s t-test analysis: �

p<0.01; �� p<0.001; ��� p<0.0001.

(TIF)

S1 Table. Fertility assessment of Psma8+/+, Psma8+/- and Psma8-/- mice.

(PDF)

S2 Table. Quantification of metaphases I/II in Psma8-/- testis. (A) Quantification of the

proportion of tubules with metaphase I/II in PAS stained tubule sections from the histology

example shown in Fig 2B. (B) Quantification of the number of metaphase I and II cells present

in p-Ser10-H3 stained tubules that show meiotic divisions (Fig 2C). (C) Quantification of the

percentage of metaphases-anaphases I and metaphases-anaphases II in squash preparations

(double immunolabeled with ACA and SYCP3) measured as the N˚ of Metaphase-Anaphase

I/II divided by the N˚ of cells (prophase I + Metaphase-Anaphase I + Interkinesis +-

Metaphase-Anaphase II) (Fig 2D). Apoptotic Metaphase-Anaphase I and Metaphase-Ana-

phase II within each genotype are indicated.

(PDF)

S3 Table. Quantification of γH2AX levels, RAD51 foci, and MLH1 foci (S7 Fig).

(PDF)

S4 Table. Proteasome subunits and proteasome regulators co-immunoprecipitated with

PSMA8 from Psma8+/+and Psma8-/- testis protein extracts using anti-PSMA8 R2 antibody.

(PDF)

S5 Table. Proteasome subunits and proteasome regulators co-immunoprecipitated with

PSMA8 selected after analysis and filtering of the data.

(PDF)

S6 Table. Selection of some of the proteasome-related proteins co-immunoprecipitated

with PSMA8 selected after analysis and filtering of the data.

(PDF)

S7 Table. Quantification of the percentage of spermatocytes showing SYCP3 aggregates

during prophase I stages in squash of seminiferous tubules of Psma8+/+ and Psma8-/- testis.

They have been classified in cells with small or large aggregates (n = 2 mice).

(PDF)

S1 Text. Exploratory representation of representative KEGG pathways. (A) Cell cycle

(mmu04110). (B) Progesterone-mediated oocyte maduration (mmu04914). (C) Oocyte meio-

sis (mmu04114). In red, proteins detected in the co-IP experiment over the established cut-off.

(HTM)
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Gómez-H. S1 Table 
 
S1 Table. Fertility assessment of Psma8+/+, Psma8+/- and Psma8-/- mice. 

 

Male Female nº litters nº pups 

Psma8+/- Psma8+/- 40 6.45 ± 2.24 

Psma8-/- Psma8+/+ 0 0 ± 0 

Psma8+/+ Psma8-/- 2 6.50 ± 0.71 

Psma8+/- Psma8-/- 25 8.28 ± 2.17 
  

 



Gómez-H. S2 Table 
 
 
S2 Table. Quantification of metaphases I/II in Psma8-/- testis.  

(A) Quantification of the the proportion of tubules with metaphase I/II in PAS stained 

tubule sections from the histology example shown in Fig 2B. (B) Quantification of the 

number of metaphase I and II cells present in p-Ser10-H3 stained tubules that show 

meiotic divisions (Fig 2C). (C) Quantification of the percentage of metaphases-anaphases 

I and metaphases-anaphases II in squash preparations (double immunolabeled with ACA 

and SYCP3) measured as the Nº of metaphase-anaphase I/II divided by the Nº of cells 

(prophase I + Metaphase-Anaphase I + Interkinesis +Metaphase-Anaphase II) (Fig 2D). 

Apoptotic Metaphase-Anaphase I and Metaphase-Anaphase II within each genotype are 

indicated. 

 

A 
 

n (mice) Tubules with 
meiotic divisions  

Other 
stages 

Total 
tubules 

% meiotic 
divisions 

Mean (%) 

WT 1 17 362 379 4.5 
5.37 ± 1.50 2 32 419 451 7.1 

3 27 569 596 4.5 
KO 1 51 377 428 12.6 

12.50 ± 0.10 2 50 353 403 12.4 
3 46 323 369 12.5 

 

B 
 % tubules 

Nº cells pH3 positive WT KO 
0 77.22 54.36 
1- 4 cells 16.11 23.49 
5-9 cells 2.78 10.07 
≥ 10 cells 3.89 12.08 

n (tubules) 180 149 
 

C 
 MI - AI MII - AII  

WT KO WT KO 
Total 1.66 ± 0.50 6.75  ± 0.52 0.92  ± 1.03 8.32  ± 3.35 
Apoptotic 0.09 ± 0.13 3.90  ± 0.53 0.00  ± 0.00 6.17  ± 4.05 

 



Gómez-H. S3 Table 
 

S3 Table. Quantification of γH2AX levels, RAD51 foci, and MLH1 foci (S7 Fig). 

 
 

γH2AX  

 
Mean (intensity) SD n 

Leptotene 
WT 82.23 19.64 27 
KO 81.58 26.69 27 

Pachytene 
WT 1.33 0.79 28 
KO 1.17 0.59 28 

 
 
 
 
 

RAD51 
 

Nº foci SD n 

Leptotene 
WT 104.13 19.80 23 
KO 111.53 18.79 18 

Zygotene 
WT 65.52 9.69 29 
KO 66.79 10.98 24 

Pachytene 
WT 9.90 3.39 29 
KO 10.55 3.23 22 

 
 
 
 
 

MLH1 
 

Nº foci SD n Mean 

WT 

1 23.78 2.64 51 

24.35 ± 1.12 
2 23.07 2.12 94 
3 25.07 2.03 41 
4 25.48 1.91 67 

KO 

1 26.03 2.80 62 

24.90 ± 0.94 
 

2 24.11 2.00 85 
3 24.13 1.94 39 
4 25.32 2.66 60 

 
 
 
 



Gómez-H. S4 Table 

S4 Table: Proteasome subunits and proteasome regulators co-immunoprecipitated with PSMA8 from Psma8+/+ 
and Psma8-/- testis protein extracts using anti-PSMA8 R2 antibody. 

 

 

 

 

 

Name Uniprot 
Accession ID 

Nº of unique peptides     iBAQ Intensity   

WT KO IgG   WT KO IgG   Ratio WT/KO 

20 S Proteasome subunits         

PSMA1 (α1) Q9R1P4 4 1 0  1213200 6249.7 0  194.1 

PSMA2 (α2) P49722 1 0 0  163770 0 0  ∞ 

PSMA3 (α3) O70435 4 2 2  1215300 52164 216190  23.3 

PSMA4 (α4) Q9R1P0 2 0 3  452740 0 55451  ∞ 

PSMA5 (α5) Q9Z2U1 5 1 1  1107800 76592 111540  14.5 

PSMA6 (α6) Q9QUM9 2 3 2  354100 126040 154580  2.8 

PSMA7 (α7) Q9Z2U0 6 2 1  11121000 509900 32808  21.8 

PSMA8 (α4s) Q9CWH6 6 2 2  120340000 892150 359850  134.9 

PSMB1 (β1) O09061 4 2 3  1344300 58017 153670  23.2 

PSMB2 (β2) Q9R1P3 2 1 0  113520 20656 0  5.5 

PSMB3 (β3) Q9R1P1 4 0 2  853790 0 56617  ∞ 

PSMB4 (β4) P99026 2 0 0  263710 0 0  ∞ 

PSMB5 (β5) O55234 6 2 2  1387200 66683 115990  20.8 

PSMB6 (β6) Q60692 1 0 0  44701 0 0  ∞ 

PSMB7 (β7) P70195 1 0 0  218870 0 0  ∞ 
           

Proteasome  activators         
PSME3 (PA28γ) A2A4J1 0 1 0  0 33185 0  0.0 

PSME4 (PA200) Q5SSW2 1 0 0   3386.8 0 0   ∞ 



Gómez-H. S5 Table  

 
S5 Table: Proteasome subunits and proteasome regulators co-immunoprecipitated with PSMA8 selected after analysis 
and filtering of the data. 

Name Uniprot 
Accession ID No of unique peptides  Sequence coverage  iBAQ Intensity Ref. 

    Ab1 Ab2 Control  Ab1 Ab2 Control  Ab1 Ab2 Control  

20 S Proteasome subunits             

 PSMA1 (α1) Q9R1P4 8 4 0  35.7 15.6 0  21249000 1213200 0 A 
 PSMA2 (α2) P49722 7 1 0  41.5 6 0  12548000 163770 0 A 
 PSMA3 (α3) O70435 7 4 1  33.3 19.6 4.7  20726000 1215300 79317 A 
 PSMA4 (α4) Q9R1P0 7 2 1  38.7 10 3.8  29307000 452740 54041 A 
 PSMA5 (α5) Q9Z2U1 9 5 0  49.8 24.1 0  21477000 1107800 0 A 
 PSMA6 (α6) Q9QUM9 7 2 1  35.4 10.2 4.1  9870500 354100 28488 A 
 PSMA7 (α7) Q9Z2U0 4 6 0  46.8 52.4 5.6  11999000 11121000 0 A 
 PSMA8 (α4s) Q9CWH6 9 6 1  62 43.2 8.8  259210000 120340000 176410 A 
 PSMB1 (β1) O09061 13 4 1  61.2 21.7 5.8  35406000 1344300 69458 A 
 PSMB2 (β2) Q9R1P3 5 2 0  35.8 12.9 0  6124800 113520 0 A 
 PSMB3 (β3) Q9R1P1 7 4 1  41.5 26.3 7.8  26797000 853790 66486 A 
 PSMB4 (β4) P99026 5 2 0  35.6 13.3 0  8425400 263710 0 A 
 PSMB5 (β5) O55234 13 6 2  57.2 23.1 8.7  26458000 1387200 91924 A 
 PSMB6 (β6) Q60692 3 1 0  12.6 3.8 0  6322100 44701 0 A 
 PSMB7 (β7) P70195 2 1 0  11.6 3.6 0  1435700 218870 0 A 

Proteasome regulators             

19 S subunits             

 PSMC1 (S4) P62192 9 5 1  28.4 16.4 2.7  1670700 342000 62230 A 

 PSMC2 (S7) P46471 8 4 4   23.3 10.6 11.3   1372900 289950 147590 A 

 PSMC3 (S6a) A2AGN7 7 4 4  25.2 12.2 17.8  1011500 126150 172160 A 

 PSMC4 (S6b) A0A140LIZ5 7 2 2  22.5 4.9 4.9  710210 136800 55476 A 
 PSMC5 (S8) P62196 5 8 1  16.5 24.6 2.7  674310 255690 33610 A 

 PSMC6 (S10b) P62334 9 5 5  29.6 15.2 16.2  1830300 176350 145970 A 

 
PSMD1 
(Rpn2/S1) 

Q3TXS7 9 2 2  14.5 2.3 3.3  288850 15023 26996 A 

 
PSMD2* 
(RPN1/S2) 

Q8VDM4 7 7 11  10.7 8.8 13.9  439090 144410 263690 A 

 
PSMD3 
(Rpn3/S3) 

P14685 8 5 5  17.9 11.1 11.7  1333400 156560 129110 A 

 
PSMD4* 
(Rpn10/S5A) 

O35226 1 1 0  4.8 3.2 0  246070 35322 0 A 

 PSMD5  
(S5B) 

Q8BJY1 2 2 1  5.6 3.6 1.8  106410 66715 18125 A 

 
PSMD6* 
(Rpn7/S10) 

Q99JI4 1 1 0  3.1 2.6 0  71743 15485 0 A 

 PSMD11  
(Rpn6/S9) 

Q8BG32 4 2 2  10.9 4 5.5  220960 42386 31410 A 

 PSMD13 
(Rpn9/S11) 

E9Q5I9 0 2 0  0 5.2 0  0 42839 0 A 

 
Psmd14* 
(Rpn11) O35593 1 1 1  4.2 4.2 4.2  175390 96458 47666 

A 

Other activators             

 PSME3 (PA28γ) A2A4J1 2 0 1  14.8 0 7.4  236880 0 33185 A 
 PSME4 (PA200) Q5SSW2 3 1 0  1.7 0.7 0  25422 3386.8 0 A 

Substoichiometric proteasome protein           

 TXNL1 Q8CDN6 2 3 1  10 10.7 2.4  359900 110780 17998 B 



 
 

   
 

            

*Due to their relevance, these proteins were also included in the present table as an “ad-hoc” 
selection to show their behavior in spite of them not passing our cut-off. 

A Wang, X., Chen, C. F., Baker, P. R., Chen, P. L., Kaiser, P., and Huang, L. (2007) Mass 
spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 
46, 3553–3565 

B Andersen, K. M., Madsen, L., Prag, S., Johnsen, A. H., Semple, C. A., Hendil, K. B., & 
Hartmann-Petersen, R. (2009). Thioredoxin Txnl1/TRP32 Is a Redox-active Cofactor of the 26 S 
Proteasome. The Journal of Biological Chemistry, 284(22), 15246–15254. 
http://doi.org/10.1074/jbc.M900016200 

 



Gómez-H. S6 Table 

S6 Table: Selection of some of the proteasome-related proteins co-immunoprecipitated with PSMA8 selected 
after analysis and filtering of the data. 

 

Name Uniprot 
Accession ID No of unique peptides  Sequence coverage  iBAQ Intensity 

    Ab1 Ab2 Control  Ab1 Ab2 Control  Ab1 Ab2 Control 

E3 ligases            

CAND1 Q6ZQ38 10 8 5  10 7.9 5.2  275300 143200 27601 

CCT2 P80314 14 5 7  37.2 15 21.3  1713000 367550 184630 
CUL3 Q9JLV5 3 6 1  6.8 9.6 1.3  104730 187950 6432.1 
CUL9 E9QP09 3 2 0  1.1 0.6 0  20528 4934 0 
NEDD4 P46935 2 0 0  4.7 0 0  68196 0 0 
RAD18 E9Q392 3 0 0  43.7 0 0  20227000 0 0 

RBX1 P62878 0 2 0  0 17.6 0  0 192900 0 
SKP1 Q9WTX5 2 1 1  10.4 7.4 7.4  503960 136060 60179 
TRIP12 A0A087WRV6 3 0 0  4.7 0 0  11882 0 0 
TRIM36 E9Q3A0 5 1 0  9.3 2 0  237780 18278 0 
UBR5 E9Q2H1 2 0 0  1.1 0 0  17518 0 0 
UFL1 Q8CCJ3-1 2 0 0  3.8 0 0  57646 0 0 
ZC3HC1 D3Z3D0 0 2 0  0 7.4 0  0 50351 0 

Deubiquitinases            

USP5 Q3U4W8 1 2 0  1.9 4.1 0   3715.8 28815 0 
USP7 F8VPX1 5 0 0  5.7 0 0  105410 0 0 
USP9X Q4FE56 10 2 0  4.9 1 0   121220 7683.3 0 

USP14* E9PYI8 0 1 0  0 5.2 0  0 32751 0 
USP34 F6WJB7 6 0 0  2 0 0   41209 0 0 

USP40* Q8BWR4-3 1 1 0  1 1 0  22401 0 0 
USP47 A0A1L1SV73 2 1 0  2.5 1.2 0  18169 2177.4 0 

Chaperones            

AHSA1 Q8BK64 2 1 1  8.6 3 6.5  227160 2825.1 20386 
CCT6B Q61390 3 1 0  12.1 4.9 3.2  132900 25309 0 
DNAJA1 P63037 2 1 0  8.1 3 0  1047200 67368 0 
DNAJB9 Q9QYI6 1 2 0  4.5 11.3 0  66228 60676 0 
DNAJC7 Q9QYI3 13 8 2  31.6 18.2 4  1376900 227200 25321 

HSP90B1 P08113 17 8 9  28.8 12.2 14.5  4511300 1355800 619050 

HSP90AB1 P11499 8 5 5  23.9 19.8 19.6  3171500 1127200 452050 
HSPBP1 A0A0U1RPF2 2 0 0  6.9 0 0  46940 0 0 
PSMG1 
(PAC1) Q9JK23 2 1 1  5.9 3.5 3.5  258480 35351 19395 
TRAP1 Q9CQN1 4 5 0  6.9 8.1 0  143070 57267 0 

Putative PIPs/ a priori unrelated / spermatogenesis related       

ADAD1 F8WI80 3 0 0  10 0 0  202110 0 0 

BOLL G3UYE8 3 1 1   11.7 3.2 3.2   400070 23474 37352 
CAP1 P40124 0 2 2  0 4 6.8  0 46407 28930 

CDK1 P11440 1 1 0  8.1 6.4 0  7093.3 41663 0 



  
 

CDK5 P49615 3 1 2  12 6.5 6.5  542280 197000 29690 

CDK16 Q04735-2 0 2 0  1.7 6.3 0  0 25675 0 

DAZL Q64368 3 3 0   13.4 15.4 0   473450 206150 0 

MAEL A0A0A6YWQ9 2 0 0  4.8 0 0  247850 0 0 

RNF17 Q99MV7 8 4 1  5.7 2.9 0.7  161450 29164 4053.3 

SHCBP1L Q3TTP0 13 5 4  24.4 11 9.5  6787500 299050 173530 

SMC4 E9Q2X6 4 1 0  3.6 0.7 0  130810 9056.2 0 

SMC6 Q924W5 2 0 0   2.3 0 0   17639 0 0 

SPAG1 Q80ZX8-3 4 3 0   8.1 6.1 0   290980 30285 0 

SPATA5 A0A0G2JFY0 9 2 0   17.5 3.1 0   239890 13235 0 

SPATA20 Q80YT5 7 7 3   11.6 12.4 4.1   1291900 234350 63556 

SYCP1 Q62209 11 0 0  13.7 0 0  727550 0 0 

TDRD1 Q99MV1 4 1 0   4.2 0.9 0   60474 3896.1 0 

TDRD6 F2Z429 18 8 3   11.3 5 1.6   586920 46319 10974 

TDRD9 Q14BI7 8 1 0  7.4 0.8 0  133480 5407.1 0 

TDRKH A0A0G2JFB2 4 2 0   9.4 4 0   384790 71610 0 

TRIP13 Q3UA06 2 2 0   5.3 5.3 0   98523 41275 0 
 
 

              

 

*Due to their relevance, these proteins were also included in the present table as an “ad-hoc” 
selection to show their behavior in spite of them not passing our cut-off.  

 



Gómez-H. S7 Table 
 
 
S7 Table. Quantification of the percentage of spermatocytes showing SYCP3 aggregates 

during prophase I stages in squash of seminiferous tubules of Psma8+/+ and Psma8-/- 

testis. They have been classified in cells with small or large aggregates (n=2 mice). 
 

 WT KO p-value 

Leptotene 
Small 75.3 ± 13.6 58.2 ± 9.4 0,28162 
Large 16.5 ± 10.5 17.8 ± 9.2 0,90562 

Zygotene Small 30.3 ± 26.3 22.5 ± 0.5 0,71665 
Large 9.1 ± 2.6 60.6 ± 5.2 0,00630 ** 

Pachytene 
Small 8.8 ± 3.1 24.5 ± 3.9 0,04666 
Large 0.4 ± 0.1 11.3 ± 12.3 0,33571 

Diplotene 
Small 0.2 ± 0.3 1.3 ± 0.6 0,14999 
Large 0.0 ± 0.0 0.0 ± 0.0 - 
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Supporting information 

  

S1 Fig. Validation of the antibodies raised against PSMA8.  

(A) HEK293T cells were transfected with a plasmid encoding  PSMA8-GFP, PSMA7-

GFP or GFP and the whole extracts were analyzed by western blot using rabbit α-PSMA8 

C-terminal (left panel, α4S), rabbit α-PSMA8 (central panel, R2) and α-GFP (right panel, 

GFP). Immunodetection of β-actin was used as loading control. The rabbit α-α4S 

antibody detected exclusively the 60 kDa band representing PSMA8-GFP. The rabbit α-

PSMA8 R2 antibody detected both bands representing PSMA8-GFP and PSMA7-GFP. 

The bands of 60 kDa (PSMA7 and PSMA8) and 30 kDa (GFP) were all detected with the 

goat α-GFP validating the experiments. (B) Immunofluorescence of HEK293T cells 

transfected with plasmids encoding PSMA8-GFP, PSMA7-GFP or GFP. Both PSMA8 

and PSMA7 were detected with rabbit α-PSMA8-R2 (red) and GFP by direct fluorescence 

signal (green). Green and red signals co-localize in the cytoplasm of the transfected 

HEK293T cells. The experiments were reproduced three times. Bar represents 10 µm. 

 

S2 Fig. Localization of PSMA8 in mouse spermatocytes.  

(A) Double immunolabeling of endogenous PSMA8 (R2 antibody, green) and SYCP3 

(red) in mouse spermatocytes. From the leptotene to zygotene stage, PSMA8 is detected 

at the synapsed autosomal LEs. At pachytene, PSMA8 is located at the totally synapsed 

axes and at the PAR of the sex XY bivalent. In diplotene, PSMA8 localizes at the still 

synapsed AEs and disappears at diakinesis. (B) Double immunolabeling of spermatocytes 

spread preparations with PSMA8 (green) and SYCP1 (red), showing that PSMA8 

localizes to the synapsed LEs but do not perfectly co-localize with SYCP1 (upper pannel). 

Magnification of the XY bivalent (lower panel) showing the PAR (arrow). Bars represent 

10 μm (A and B, upper panel) and 1.5 μm (B, lower panel). 

 

S3 Fig. Generation and genetic characterization of Psma8-deficient mice.  

(A) Diagrammatic representation of the mouse Psma8 locus (WT) and the genome 

editing strategy showing the sgRNAs located on exon 1 and intron 1 (see methods), the 

corresponding coding exons (light grey) and non-coding exons (open boxes). Thin (non-

coding) and thick (coding sequences) lines under exons represent the expected transcript 

derived from wild-type (black) and Psma8 edited allele (blue). ATG, initiation codon; 
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TGA and *, stop codon. The nucleotide sequence of the 56 base pair deletion derived 

from PCR amplification of DNA from the Psma8 edited/edited is indicated (Δ). Primers (F 

and R) are represented by arrows. (B) PCR analysis of genomic DNA from three 

littermate progeny of Psma8+/- heterozygote crosses. The PCR amplification with primers 

F and R revealed 222 and 166 bp fragments for wild-type and disrupted alleles 

respectively. Wild-type (WT, +/+), heterozygous (Het, +/-), and homozygous knock-out 

(KO, -/-) animals. (C) Western blot analysis of protein extracts from wild type testis (P22 

and adult), KO testis (P16, P22 and adult) with a specific antibody against the C-terminal 

(α4S) and whole recombinant PSMA8 protein (PSMA8-R2). β-actin was used as loading 

control. The corresponding bands to PSMA8 and PSMA7 are indicated in the right of the 

panel. Note that at the P22 and in adult stages the intensity of both bands abolishes its 

independent observation. (D) Double immunofluorescence of spermatocytes at pachytene 

stage obtained from Psma8+/+ and Psma8-/- mice using SYCP3 (red) and PSMA8 (R2 

antibody, green). Green labeling in Psma8-/- spermatocytes (49% of the wild type) 

represents cross-reactivity of the antiserum with PSMA7. Plot under the image panel 

represents the quantification of intensity from Psma8+/+ and Psma8-/- spermatocytes. 

Welch´s t-test analysis: * p<0.01. Bar in panel, 10 μm.  

 

S4 Fig. Validation of the identity of round spermatids with molecular markers.  

(A) PNA staining (green) of acrosome in spread preparations from wild type and Psma8-

/- cells.  Double labeling of squash tubules of VASA (chromatoid body), INCENP (1), 

SMC6 (2) (green) with SYCP3 (red) from wild type and Psma8-/- mice. The combined 

labeling of INCENP (labels both interkinesis and round spermatids, (1) ) and SYCP3 

(mainly labels interkinesis with a typical barr patterning at the chromocenters, see below 

S4B Fig) is compatible with round spermatids. The combined double immunolabeling of 

SMC6 (labels both interkinesis and round spermatids, (2)) and SYCP3 (mainly labels 

interkinesis with a typical barr patterns at the chromocenters, see below S4B Fig) is also 

compatible being round spermatids. (B) Double labeling of SYCP3 (green) and ACA 

(red) showing the different pattern of secondary spermatocytes at interkinesis and round 

spermatids. Bars in panels represent 10 μm (A, PNA panel) and 5 μm (rest of panels). 

 

S5 Fig. Early arrest of Psma8-/- spermatids and gating strategy of the FACs analysis.  

(A) Immunolabeling of H2AL2 (green) show positive staining in elongating spermatids 

from wild type mice but lack of staining in Psma8-/- mice. Chromatin was stained with 
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DAPI. Bar represents 10 μm. (B) Gating strategy employed in the FACs analysis of Fig 

3D. Grey dots represent cells that were excluded from the analysis whilst dots included 

in the polygon represent cells that were employed for the analysis. Red dots enclose 1C 

cells, blue dots represent 2C cells and green dots enclose 4C cells.  

 

S6 Fig. Normal synapsis and desynapsis in spermatocytes lacking PSMA8. 

Double immunolabeling of SYCP3 (red) and SYCP1 (green) showing normal synapsis 

and desynapsis from early zygotene to diakinesis in Psma8-/- in comparison with 

Psma8+/+. Bar represents 10 μm. 

 

S7 Fig. DSBs are generated and repaired as COs in spermatocytes lacking PSMA8.  

(A) Double immunolabeling of γ-H2AX (green) with SYCP3 (red) in wild-type and 

Psma8-/- spermatocytes from leptotene to diplotene (upper panel). In WT and KO 

leptonemas, γ-H2AX labels intensely the chromatin. After repair, γ-H2AX labeling 

remains only in the chromatin of the sex body of the pachynemas. Plot right to the panel 

represent the quantification of the fluorescence intensity from Psma8+/+ and Psma8-/- 

spermatocytes at leptotene and pachytene. Late round spermatids (LR) but not early round 

spermatids (ER) from wild type mice show positive staining for γ-H2AX but these highly 

differentiated cells are lacking in the Psma8-/- tubules which are arrested at early round 

spermatids without γ-H2AX staining (bottom panel). (B) Double immunolabeling of 

SYCP3 (red) and RAD51 (green). RAD51 foci associates to the AEs in leptonema 

spermatocytes of both genotypes (similar number of foci) and dissociate towards 

pachytene with a similar kinetics. Plot right to the image panel represents the 

quantification of the number of foci from Psma8+/+ and Psma8-/- spermatocytes. (C) 

Double immunolabeling of SYCP3 (red) with MLH1 (green). MLH1 foci are present 

along each autosomal SC in wild-type and Psma8-/- pachynema meiocytes in a similar 

way. Plot right to the panel represents the quantification of the values of the MLH1 foci 

from Psma8+/+ and Psma8-/- spermatocytes. Bars represent 10 µm. Welch´s t-test 

analysis: * p<0.01; ** p<0.001; *** p<0.0001. Quantification data are indicated in S3 

Table.  

 

S8 Fig. PA200 localization in prophase I from Psma8+/+ and Psma8-/- spermatocytes.  

Double immunolabeling of PA200 (green) and SYCP3 (red) in chromosome spreads from 

zygotene to diakinesis. PA200 is detected at the chromosome axes in wild type 
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spermatocytes in contrast to the absence of labeling in Psma8-/- spermatocytes. Bar in 

panels, 10 μm. 

 

S9 Fig. PSMA8 deficiency provokes an slight increase of H2AK5ac at prophase I.  

Double immunolabeling of H2AK5ac (green) with SYCP3 (red) in wild-type (left panel) 

and Psma8-/- spermatocytes (right panel). In WT and KO spermatocytes chromatin start 

to be labelled at early pachytene around chromosomes axes. Plots from each panel 

representing the quantification of fluorescence intensity from Psma8+/+ and Psma8-/- 

spermatocytes are depicted in Fig 4A. Bar represents 10 μm. 

 

S10 Fig. PSMA8 deficiency provokes an slight increase of H3ac at prophase I.  

Double immunolabeling of H3ac (green) with SYCP3 (red) in wild-type (left panel) and 

Psma8-/- spermatocytes (right panel). Spermatocytes from Psma8+/+ and Psma8-/- show 

labeling for H3ac at early pachytene in a very diffuse manner surrounding chromosomes 

axes. Plots from each panel representing the quantification of fluorescence intensity from 

Psma8+/+ and Psma8-/- spermatocytes are in Fig 4B. Bar represents 10 μm. 

 

S11 Fig. PSMA8 deficiency provokes an slight increase of H4ac at prophase I and in 

round spermatids.  

Double immunolabeling of H4ac (green) with SYCP3 (red) in wild-type and Psma8-/- 

spermatocytes. Spermatocytes from Psma8+/+ and Psma8-/- show labeling for H4ac in a 

very diffuse manner surrounding chromosomes from pachytene to metaphase I (right 

panel). In wild type metaphase I, H4ac labeling appears weakly painting the 

chromosomes and on some of the centromeres. However, Psma8-deficient cells show a 

more intense labeling specially at the centromeres (lower panel). Round spermatid from 

Psma8-/- accumulates H4ac labeling at the chromatin in comparison with the WT. Plots 

from each panel representing the quantification of fluorescence intensity from Psma8+/+ 

and Psma8-/- spermatocytes are in Fig 4C. Bars represent 10 μm. 

 

S12 Fig. PSMA8 deficiency provokes an increase of H4K16ac at prophase I and in 

metaphase I / round spermatids.  

Double immunolabeling of H4K16ac (green) with SYCP3 (red) in wild-type and      

Psma8-/- spermatocytes. Spermatocytes from Psma8+/+ and Psma8-/- show labeling for 

H4K16ac in a very diffuse manner surrounding chromosomes from pachytene to 
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metaphase I (right panel). In wild type metaphase I, H4K16ac labeling appears weakly 

painting the chromosomes. However, Psma8-deficient cells show enhance labeling in the 

chromosomes of metaphase I cells (lower panel). Round spermatid from Psma8-/- 

accumulates H4K16ac labeling at the chromatin in comparison with the WT. Plots from 

each panel representing the quantification of fluorescence intensity from Psma8+/+ and 

Psma8-/- spermatocytes are in Fig 4D. Bars represent 10 μm.  

 

S13 Fig. PSMA8 deficiency alters Ubiquitylation of mouse spermatocytes. 

(A) Double immunolabeling of Ubiquitin (green) and SYCP3 (red) in mouse 

chromosome spreads at pachytene stage from Psma8+/+ and Psma8-/-mice. (B) Double 

immunolabeling of Ubiquitin (green) and SYCP3 (red) in mouse squashed tubules from 

Psma8+/+ and Psma8-/- mice. Chromatin was stained with DAPI. Bars represent 10 µm 

(A) and 5 µm (B).  

 

S14 Fig. Lack of co-immunoprecipitation of PSMA8 with candidate interactors.  

(A-B)  HEK293T cells were co-transfected with GFP-TEX30, GFP-PIWIL1, GFP-

PIWIL2, GFP-SYCE1, GFP-SYCE2, and GFP-TEX12, and with Flag-PSMA8. PSMA8 

does not co-immunoprecipitates (co-IP) with any of them. (C) Positive control was 

generated by transfecting HEK293T cells with Flag-SYCE2 and GFP-TEX12. Protein 

complexes were immunoprecipitated overnight with either an anti-Flag or anti-EGFP or 

IgGs (negative control) and were analyzed by immunoblotting with the indicated 

antibody.  

 

S15 Fig. CDK1 / Cyclin B1, but not CDK2, are accumulated in Psma8 mutant 

spermatocytes.   

(A) Double immunolabeling of endogenous CDK2 (green) and SYCP3 (red) in WT and 

KO mouse chromosome spreads at pachytene and metaphase I showing similar labeling 

at the telomeres and centromeres, respectively (3). (B) Double immunolabeling of CDK1 

(green) and SYCP3 (red) in mouse squashed metaphases I from Psma8+/+ and Psma8-/-

mice showing CDK1 accumulation. Plot right to the panel represents the quantification 

of total CDK1 fluorescence intensity from Psma8+/+ and Psma8-/- metaphase I cells. (C) 

Double immuno labeling of Cyclin B1 (green) and SYCP3 (red) in mouse squashed 

tubules from Psma8+/+ and Psma8-/-mice showing CyclinB1 accumulation. Plot right to 
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the panel represents the quantification of total CyclinB1 fluorescence intensity in 

metaphase I cells. Bars represent 10 μm (A), and 5 μm (B,C). Welch´s t-test analysis: * 

p<0.01; ** p<0.001; *** p<0.0001. 

 

S16 Fig. HORMADs are not affected by the increased expresion of TRIP13 in the 

Psma8-/- spermatocytes.  

(A-B) Double immunolabeling of HORMAD1 (A) and HORMAD2 (B) (green)  with 

SYCP3 (red) in Psma8+/+ and Psma8-/- spermatocytes at zygotene and pachytene stages. 

As synapsis progresses HORMAD1 and HORMAD2 are released from the AEs and 

maintained at the AE of the sex body similarly in the wild type and in the mutant 

spermatocytes. Bars represent 10 μm. 

 

S17 Fig. PTTG1 expression is not altered in the absence of PSMA8.  

Double immunofluorescence of PTTG1 (green) and SYCP3 (red) in metaphase I cells 

showing similar expression levels of PTTG1. Plot under the panel represents the 

quantification of the fluorescence intensity from Psma8+/+ and Psma8-/- metaphase I cells. 

Bar in panels, 10 μm. Welch´s t-test analysis: * p<0.01; ** p<0.001; *** p<0.0001. 

 

 

S1 Appendix. Exploratory representation of representative KEGG pathways. 

(A) Cell cycle (mmu04110). (B) Progesterone-mediated oocyte maduration (mmu04914). 

(C) Oocyte meiosis (mmu04114). In red, proteins detected in the co-IP experiment over 

the established cut-off. 

 

 

 

S1 Table. Fertility assessment of Psma8+/+, Psma8+/- and Psma8-/- mice. 

 

S2 Table. Quantification of metaphases I/II in Psma8-/- testis. (A) Quantification of 

the proportion of tubules with metaphase I/II in PAS stained tubule sections from the 

histology example shown in Fig 2B. (B) Quantification of the number of metaphase I and 

II cells present in p-Ser10-H3 stained tubules that show meiotic divisions (Fig 2C). (C) 

Quantification of the percentage of metaphases-anaphases I and metaphases-anaphases II 

in squash preparations (double immunolabeled with ACA and SYCP3) measured as the 
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Nº of Metaphase-Anaphase I/II divided by the Nº of cells (prophase I + Metaphase-

Anaphase I + Interkinesis +Metaphase-Anaphase II) (Fig 2D). Apoptotic Metaphase-

Anaphase I and Metaphase-Anaphase II within each genotype are indicated. 

 

S3 Table. Quantification of γH2AX levels, RAD51 foci, and MLH1 foci (S7 Fig). 

 

S4 Table: Proteasome subunits and proteasome regulators co-immunoprecipitated with 

PSMA8 from Psma8+/+and Psma8-/- testis protein extracts using anti-PSMA8 R2 

antibody. 

 

S5 Table: Proteasome subunits and proteasome regulators co-immunoprecipitated with 

PSMA8 selected after analysis and filtering of the data. 

 

S6 Table: Selection of some of the proteasome-related proteins co-immunoprecipitated 

with PSMA8 selected after analysis and filtering of the data. 

 

S7 Table. Quantification of the percentage of spermatocytes showing SYCP3 aggregates 

during prophase I stages in squash of seminiferous tubules of Psma8+/+ and Psma8-/- 

testis. They have been classified in cells with small or large aggregates (n=2 mice).  
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STAG3 is essential for mammalian gametogenesis 

 In mammals, at least six different cohesin complexes have been identified in meiosis in addition 

to the mitotic ones due to the existence of the meiotic specific subunits SMC1β, REC8, RAD21L and STAG3. 

Among them, STAG3 is the only subunit that is common to all of the meiotic cohesin complexes. Until that 

moment mouse mutants for SMC1β, REC8 and RAD21L had been analysed (Bannister et al., 2004, Herran 

et al., 2011, Llano et al., 2012, Revenkova et al., 2004, Xu et al., 2005), but the role of STAG3 remained 

elusive.  

 A previous work of our group identified the presence of a homozygous deletion in STAG3 gene in 

a consanguineous family with hereditary POF (Caburet et al., 2014). Female mice lacking STAG3 were also 

sterile and showed an absence of oocytes and follicles at one week of age. Since none of the men of the 

studied family were homozygous mutants and given that the phenotype of meiotic-deficient mice 

frequently shows sexual dimorphism, we analysed STAG3-deficient males in order to validate Stag3 as an 

infertility male candidate gene. Here we have shown that Stag3-/- male mice were infertile, suffering NOA. 

Stag3-deficient spermatocytes progressed until zygotene-like stage and assembled their AEs with partial 

synapsis. Additionally, a fraction of the spermatocytes showed short AEs that appeared to be completely 

desynapsed, showing the most severe phenotype among the meiotic cohesin mutants described so far. 

Nevertheless, spermatocytes showed a milder synapsis defect than Stag3-/- oocytes, which became 

arrested in a leptotene-like stage owing to the inability to assemble the AEs. Hence, these results indicate 

that STAG3 is the most relevant meiotic cohesin subunit for the formation of the chromosome axis and is 

essential for synapsis between homologues.  

Interestingly, the absence of STAG3 in spermatocytes led to a partial lack of centromeric cohesion 

between sister chromatids in early prophase I. This was completely evidenced later on by the 80 

unattached chromatids observed in OA-induced metaphases I. The defect in centromeric cohesion was 

also observed in Stag3-/- oocytes, but with higher penetrance. Likewise, it has been shown that Smc1β-/- 

mutant spermatocytes at zygotene and OA-induced metaphases I also have loss of centromeric cohesion 

in a null SPO11 background (Biswas et al., 2013, Revenkova et al., 2004). Despite the fact that REC8 is 

considered the main responsible for meiotic centromeric cohesion, our analysis in Rec8-/- spermatocytes 

did not report lack of centromeric cohesion in zygonema, although they also showed 80 unjoined 

chromatids in OA-induced spermatocytes. This lower penetrance of the absence of REC8 in comparison 

to STAG3 in the loss of centromeric cohesion could be due to the existence of partial synapsis between 

homologues which mask doublets of ACA foci as single ACA signals. This could be uncovered through the 

analysis of the depletion of REC8 in a null SPO11 background, similar to the Smc1β-/- analysis. Altogether, 

these results highlight that STAG3, complexed with SMC1β and most probably with REC8, mediate the 

centromeric cohesion between sister chromatids from the beginning of prophase I until metaphase I.  

In addition, the lack of STAG3 in spermatocytes caused the drastic shortening of the AEs, a 

phenotype observed to a lesser extent in Smc1β-/- mice although these spermatocytes showed partial 

synapsis between homologues (Novak et al., 2008, Revenkova et al., 2004). This observation would 

suggest that cohesin complexes composed by STAG3 and SMC1β are directly involved in DNA looping and 
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chromosome axis organization. However, the low decrease of SMC1β in the Stag3-/- spermatocytes would 

indicate that STAG3 might also mediate this function complexed with SMC1α.  

It is known the active role that cohesins play in DNA looping, which also affects DSBs formation 

and repair (Kleckner et al., 2003, Novak et al., 2008). In this respect, the deficiency of STAG3 does not 

alter the formation of DSBs indirectly measured through γH2AX labelling. However, we have shown that 

the loading of the recombinases RAD51 and DMC1 is lessened, which together with the observed 

unsynapsis would contribute to the accumulation of unrepaired DSBs in the Stag3-/- spermatocytes. 

The assembly of the organized tetrapartite cohesin complex requires at least the simultaneous 

presence of their four structural subunits so that the depletion of a specific subunit leads to the 

destruction of the whole complex and of the remaining interacting subunits. In this way, the absence of 

STAG3 in the spermatocytes led to a nearly complete absence of REC8, besides of an evident reduction in 

the levels of SMC1β. These observations strongly indicate that STAG3 is complexed in vivo with REC8 and 

SMC1β in mouse spermatocytes. In addition, it is known that REC8 and RAD21L interact only with STAG3 

(Lee & Hirano, 2011). But contrary to what would be expected, RAD21L did not appear to be affected, 

what is not congruent with the reduced loading of STAG3 shown in the Rad21l-/- spermatocytes (Herran 

et al., 2011). This result could suggest that at least RAD21L could form complexes with STAG1 or STAG2 

that would compensate for the lack of STAG3. However, this explanation does not seem to be very 

plausible since i) co-immunoprecipitation analysis or RAD21L subcellular localization (Gutierrez-Caballero 

et al., 2011, Herran et al., 2011), ii) neither STAG1 nor STAG2 were upregulated in the Stag3-/- 

spermatocytes (our results). Moreover, the phenotype of the spermatocytes lacking STAG3 is only 

overtaken by the Rec8-/- Rad21l-/- double knock out, supporting the existence of additional RAD21L-

containing cohesin complexes independent on STAG3. Interestingly, the Stag3-/- oocytes showed a more 

severe phenotype, with a complete absence of REC8 and a decrease in the levels of RAD21L, in addition 

to SMC1β and SMC3. These results indicate the existence of sexual dimorphism in the STAG3-containing 

cohesin complexes so that oocytes would be more dependent on those STAG3-containing cohesin 

complexes than males. The higher dependence is also supported by the earlier arrest of the oocytes 

lacking STAG3. The differences between spermatocytes and oocytes could be also explained by the 

existence of RAD21L functions independent on STAG3, such as those performed at the sex body and the 

inner centromere at metaphase I/II, two cytological domains where no other cohesins co-localize (Herran 

et al., 2011).  

Following the publication of our work, three additional different knock-out mice models have 

been reported describing the role of STAG3 in the mouse (Fukuda et al., 2014, Hopkins et al., 2014, 

Winters et al., 2014). All of them were infertile, albeit their phenotypes differ partially. Winters et al. 

reported a severe disruption in the formation of the chromosome axis that prevented the progression of 

the mutant meiocytes to zygotene (Winters et al., 2014). In line with this work, Fukuda et al. showed that 

the meiocytes of their hypomorphic Stag3-mutant were able to assemble AEs in a higher extent than the 

previous one, with partial synapsis between homologues, due to the presence of a small amount of STAG3 

(Fukuda et al., 2014). However, our results do not support this explanation, since the complete depletion 

of STAG3 in our mutant led also to a zygotene-like arrest. According to our work, Hopkins et al. showed 
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that Stag3-/- meiocytes were able to progress until zygotene-like stage showing unsynapsed AEs (Hopkins 

et al., 2014). Taking together, STAG3 would mediate its functions complexed with REC8, however, the 

dependence of SMC1β of the STAG3-containing cohesin complexes is not supported by the first two 

mutants.  Despite these differences in the assembly of the chromosome axes, all these mutant mice 

support the essential role of STAG3 in the establishment of centromeric cohesion, as well as in the repair 

of the DSBs.  

Our contribution with this work is based on modelling the mutation in STAG3 in the otherwise 

healthy males of the family (fertile) making use of the Stag3-deficient mice. Given that mice lacking STAG3 

suffer NOA, we hypothesized that men with homozygous mutations in STAG3 would be infertile. In 

agreement with this prediction, very recently two heterozygous pathogenic variants in the STAG3 gene 

have been identified in a man suffering sporadic NOA (Riera-Escamilla et al., 2019). The man exhibited a 

frameshift insertion (NM001282718:c.1759dupG) in STAG3 that originated a premature stop codon, in 

addition to a splicing variant in the other allele (NM001282716: c.2394+1G>A). These mutations led to an 

arrest of the spermatocytes in zygotene, similar to the phenotype observed in the mutant mouse. This 

result indicates that mutations in STAG3 are thus a real cause of infertility not only in women but also in 

men, and supports our initial proposal that STAG3 is a strong candidate gene for human male infertility. 

In conclusion, we have demonstrated the essential role of STAG3 in mouse spermatogenesis by showing 

that Stag3-/- male mice were infertile and showed arrested meiocytes in early zygotene-like stage, with 

shortened AEs and partial loss of centromeric cohesion. Altogether, we have shown how the STAG3-

containing cohesin complexes are essential for mammalian gametogenesis.  

 

SIX6OS1 is a new CE component of the mammalian SC 

As we have previously mentioned, cohesins are essential for the assembly of the SC between 

homologues in prophase I. The main role of the SC is the establishment of synapsis, providing the 

structural framework necessary for the processing of the recombination intermediates into COs. Given 

the interplay between these proteinaceous complexes, both the SC and cohesins are involved in 

homologous recombination. Through the analysis of over two million recombination events and putative 

variants from 2,261 whole genome–sequenced individuals, Kong et al. identified gene variants that 

influence the recombination rate in humans, including known genes as the cohesin RAD21L or the 

methyltransferase PRDM9, and a variant (rs1254319, p.Leu524Phe) in the anonymous C14ORF39/SIX6OS1 

(Kong et al., 2014). This same variant has also been associated with age at menarche in a meta-analysis of 

32 genome-wide association studies in 87802 women of European descent (Elks et al., 2010). Accordingly, 

in this work we have shown that this genetic polymorphism affects a conserved residue of a novel protein 

named SIX6OS1 that we have shown for the first time that it is a new component of the CE of the SC that 

colocalizes and interacts with SYCE1 in the synapsed chromosome axes.  

The in depth analysis of the i) subcellular localization of the central element proteins with new 

techniques of high resolution microscopy, ii) complex interaction and iii) mutant mice models of all the SC 

components have enabled to envision a model in which in the central region of the SC two discernible 
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subdomains can be differentiated (Dunce et al., 2018). SYCP1, SYCE1 and SYCE3 would constitute the first 

domain, so that SYCE1 and SYCE3 behave as synapsis initiation factors, stabilizing the N-terminal 

interactions of SYCP1 in the central region of the SC (Bolcun-Filas et al., 2009, Costa et al., 2005, Schramm 

et al., 2011). The other domain would be formed by SYCE2 and TEX12 that assemble in an inner region of 

the CE, behaving as a synapsis elongation complex (Bolcun-Filas et al., 2007, Davies et al., 2012, Hamer et 

al., 2008).  

The study of the subcellular localization of the central element proteins with new techniques of 

high resolution microscopy, the complex interactome, and the analysis of the SC mutant mice models, 

have enabled to envision a model in which in the central region of the SC two discernible subdomains can 

be differentiated (Dunce et al., 2018). SYCP1, SYCE1 and SYCE3 would constitute the first domain, so that 

SYCE1 and SYCE3 behave as synapsis initiation factors, stabilizing the N-terminal interactions of SYCP1 in 

the central region of the SC (Bolcun-Filas et al., 2009, Costa et al., 2005, Schramm et al., 2011). The other 

domain would be formed by SYCE2 and TEX12 that assemble in an inner region of the CE, behaving as a 

synapsis elongation complex (Bolcun-Filas et al., 2007, Davies et al., 2012, Hamer et al., 2008). Thus, the 

loading of SYCE2 and TEX12 takes place once SYCE1 and SYCE3 are bound to the TFs. This is evidenced in 

the Syce2 and Tex12 mice mutants, that show some degree of synapsis, being able to assemble patches 

of CE containing SYCP1, SYCE1 and SYCE3 (Bolcun-Filas et al., 2007). However, SYCE3 and SYCE1 would 

have a more crucial role for synapsis since their corresponding mutant mice show unsynapsed AEs, with 

a weak discontinuous pattern of SYCP1 (Bolcun-Filas et al., 2009, Schramm et al., 2011). In this context, 

Six6os1-/- mice have shown the most severe phenotype among all the CE mutants, with no loading of any 

of the CE components and even more scarce assemble of SYCP1. This suggests that SIX6OS1 would belong 

to the first subdomain, in which mutant mice show aligned homologues and normally assembled AEs, but 

do not form CE structures. Thus, SIX6OS1 loads early after the formation of the TFs, stabilizing them.  

The components of the SC show a high interdependence in the formation of the tripartite 

structure which makes very difficult to analyse their interaction in a simple one to one relationship. In this 

respect, the direct interaction between SIX6OS1 and SYCE1 by Y2H, co-immunoprecipitations and PLA 

assay was also validated by the observation that SIX6OS1 colocalizes more precisely with SYCE1 (along the 

LEs in pachytene) than with any other CE protein, strongly indicating that SIX6OS1 is an in vivo interactor 

of SYCE1. In addition, the greater impaired alignment of homologues that we have observed in the 

Six6os1-/- meiocytes compared to the Syce3-/-, together with the interdependency in the loading of 

SIX6OS1 and SYCE3 in both mutants, suggest that SIX6OS1 is located at the same hierarchical level to 

SYCE3 in the three-dimensional structure of the SC and downstream of SYCP1. SYCE1 would load 

thereupon, interacting with both SIX6OS1 and SYCE3.  

In addition to the structural components already described, it has been recently identified a new 

protein, SCRE, that is essential for the stabilization of the SC (Liu et al., 2019). It is localized in the CE with 

a sparse dotted pattern, acting as a fastener of the SC that reinforces the linkage between SYCP1 and 

SYCE3. Despite all these advances in the reconstruction of the 3D organization of the SC, there are gaps 

that remain unresolved. All the mutants of any of the CE components generated so far result in the 

disruption of the central region. This fact, together with the interdependence between the CE proteins, 
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makes it difficult to determine how they assemble. In order to bypass this problem, it would be interesting 

to generate mutants with partial loss of function by editing the known regions of interaction between 

them, following a similar approach to the recently reported in Drosophila (Billmyre et al., 2019).  

 It has been reported that the depletion of any of the CE proteins preclude the efficient repair of 

the DSBs (Bolcun-Filas et al., 2007, Bolcun-Filas et al., 2009, de Vries et al., 2005, Hamer et al., 2008, 

Schramm et al., 2011, Yuan et al., 2000), indicating that the assembly of the SC central region is essential 

for recombination progression and chiasmata formation. Six6os1-/- mice are not different in this respect. 

We have shown that Six6os1-/- pachytenes are not able to form MLH1 foci, indicating that the absence of 

SIX6SO1 precludes the processing of the recombination nodules into COs. This fact underscores the 

interdependence between the CE and the recombination machinery, whose interaction is essential for 

the meiotic recombination, as evidenced by the direct interaction between the recombinase RAD51 and 

SYCP1 and SYCE2 (Bolcun-Filas et al., 2009, Tarsounas et al., 1999). 

The lack of predicted domains in SIX6OS1 prevented us to analyse the molecular mechanism of 

how the SNV (rs1254319) could affect the recombination rate. However, within the mostly unstructured 

protein SIX6OS1, the SNV (p.Leu524Phe) is located in the C-terminal region with conserved patches of 

residues putatively involved in globular protein-protein interactions. This observation led us to 

hypothesize that SIX6OS1 could be interacting with the components of the recombination intermediates 

through these protein-protein interacting region mediating their recruitment or their stabilization in the 

SC. In this same manner, subtle changes in the conserved residues of SIX6OS1 could modify the CO/NCO 

ratio, which is ultimately responsible for the observed number of recombination events genome-wide. 

Interestingly, the variant rs1254319 in SIX6OS1 encodes a Phe that is very well conserved among 

vertebrates, except in humans, that have a Leu at this position. We propose to undertake the 

humanization of the mouse Six6os1 locus to address the molecular mechanism through which this subtle 

variation in SIX6OS1 interferes in the processing of the recombination intermediates. 

 The identified variant rs1254319 was associated with an increase in the recombination rate only 

in women (Kong et al., 2014). The fact that the variant allele was associated only with a higher female 

recombination rate (effect of 53 cM) agrees with the sexual dimorphism observed in some aspects of the 

meiosis in Six6os1-/- mice. The higher degree of unalignment between homologues observed in the mutant 

females (higher frequency of U-type oocytes), as well as increase of SYCP1 labeling and γH2AX staining in 

mutant oocytes, fit well with the differences observed in the structure of the SC between both sexes. 

These differences somehow would lead to a slight divergence in the mechanism through which SIX6OS1 

acts in the homologous recombination. 

More recently, an expanded new genomic study on the same Icelandic population confirmed this 

genetic polymorphism in SIX6OS1 and identified new variants affecting other genes encoding SC 

components, meiotic cohesins and other known meiotic players (Halldorsson et al., 2019). The description 

that this variant in females (p.Leu524Phe) had a positive effect on recombination rate by its association 

to COs distal to the telomeres, suggests that SIX6OS1 could be involved in the distribution of the 

recombination hotspots or in the resolution of the recombination intermediates as COs.  
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  In summary, we have identified the pathway through which the coding SNV identified in SIX6OS1 

affects the recombination rate. Our data have identified SIX6OS1 as the novel sixth member of the CE that 

is essential for synapsis between homologues and the processing of the recombination nodules before 

CO formation, and consequently, for mammalian fertility.  

 

The PSMA8 subunit of the spermatoproteasome is essential for meiotic exit 

and round spermatid formation 

By the genomic analysis of common and low-frequency variants associated with genome-wide 

recombination rate and genome-wide distribution of COs, the UPS was among the most represented 

pathways with the E3 ligases RNF212 (SUMO) and HEI10 (Ubiquitin) as known modifiers of the CO 

homeostasis. It has been postulated that the RNF212-HEI10 pathway recruits proteasomes to the 

chromosome axes, thereby regulating the turnover of the ZMM complexes which are indispensable for 

CO formation (Rao et al., 2017). Given the existence of a testis-specific proteasome with unknown 

function during meiosis, we decided to explore its role in the mouse.  

The pathogenicity of mutations in PSMA8 gene has been also suggested in humans. Protein 

degradation was one of the top pathways identified in an unbiassed proteomic profile of spermatozoa 

from infertile men with varicocele (Agarwal et al., 2015). This study reported PSMA8 among the 8 top 

proteins differentially expressed in these men, suggesting a causal role of PSMA8 in the development of 

this disease and the consequent infertility. In addition, PSMA8 has been found to show changes in DNA 

methylation linked to conception by in vitro fertilization that propose the involvement of PSMA8 in 

parental subfertility (Castillo-Fernandez et al., 2017). Thus, these observations together with the PSMA8 

dependency of the mouse spermatogenesis, strongly suggest that PSMA8 could be a cause of human male 

infertility, but also, that the spermatoproteasome could be considered a good target for male 

contraception. 

 The novel attempt to study how histones are replaced during spermiogenesis brought out a novel 

way for the degradation of non-ubiquitylated proteins by the proteasome (Qian et al., 2013). These 

findings revealed how the proteasomes containing the PA200 subunit targeted acetylated histones for 

proteasomal degradation during the histone by protamine replacement process and also in the DNA 

damage response. This hitherto unknown role of the proteasome led them to designate the 

spermatoproteasome as the PA200-containing proteasomes. Nonetheless, attending to the specific 

composition of the immunoproteasome and thymoproteasome (Griffin et al., 1998, Murata et al., 2007), 

we proposed that the spermatoproteasome should be defined by a subunit whose expression would be 

confined to the male germ line, as is the case of α4s (PSMA8), and not by the widely expressed PA200 

activator. The highly restricted tissue expression of the proteasome subunit PSMA8 could thus provide 

functional specificity to the proteasome, hypothetically by targeting meiotic proteins for proteasomal 

degradation. Consistent with this, the observed phenotype of the Psma8-/- mice generated in our work is 

more severe than the reported single  Pa200-/- and the double Pa200-/- Pa28γ-/- mutants previously 

developed (Huang et al., 2016, Khor et al., 2006, Qian et al., 2013). The subfertility phenotype of the 
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Pa200-/- mice showed a delay in the histone replacement during spermiogenesis, whilst the infertility of 

the Pa200-/- Pa28γ-/- mice was due to postmeiotic defects. Conversely, the infertility of the Psma8-/- male 

showed a partial meiotic arrest that occasionally can lead to early spermatid stage. Thus the additional 

functions played by PSMA8 would be to some extent independent of the activators PA200 and PA28γ and 

would be supported by the association of PSMA8-proteasome to other 19S regulators that would expand 

its targets. 

The genetic depletion of PSMA8 gave rise to a large decrease of PA200 and its delocalization from 

the AEs, indicating that PSMA8 is necessary for the assembly of this activator into the CP of the 

spermatoproteasome. Additionally, it suggested that PA200 only takes part of the constitutive 

proteasome (PSMA7-containing proteasomes) in a small fraction if any, in the male germ line. Given the 

known function of PA200 in targeting acetylated histones for proteasomal degradation, it is tempting to 

suggest that PSMA8 could be also involved in the turnover of core histones independently on ubiquitin. 

On this view, the PSMA8-dependent accumulation of acetylated core histones from pachytene to 

diakinesis, and specifically of H4ac and H4K16ac from metaphase I to round spermatid, support a direct 

role of the PSMA8-containing spermatoproteasome in the turnover of histones during prophase I and 

likely during spermiogenesis. However, we cannot prove it due to the arrest of the Psma8 mutant in round 

spermatids prior to the beginning of the histone replacement process. Beyond its role in histone removal, 

H4K16ac is also involved in the three waves of γH2AX phosphorylation during prophase I (Jiang et al., 

2018). However, the genetic depletion of Psma8 had no effect on this process.  

 Following the reasoning of PSMA8 providing substrate specificity to the spermatoproteasome, 

we prompted to identify those substrates through the purification of the PSMA8-interacting proteins by 

a proteomic approach. The revealed interactome of PSMA8 showed some important meiotic players that 

affect metaphase I/II exit, but not proteins affecting the process of meiotic recombination and CO 

formation. As a result of PSMA8 deficiency and by selecting the most prominent key meiotic players 

affecting meiosis, we identified CDK1 and TRIP13 as two interactors that exhibited increased expression 

levels and aberrant expression patterns which can be responsible in the control of metaphase entry and 

progression. Therefore, their defective proteasomal degradation could explain the accumulation of 

metaphases I/II and the apoptosis of these metaphases. 

Specifically, CDK1 is involved in the regulation of metaphase to anaphase transition in a dual way. 

On one hand, CDK1 promotes the SAC, inhibiting metaphase I progression (Rattani et al., 2014), although 

the mechanism remains elusive. On the other hand, CDK1 activates APC/C independently on the SAC, 

triggering a feedback loop through which APC/C induces the inhibition of CDK1 (Yang & Ferrell, 2013). The 

balance between both pathways leads finally to the degradation of CyclinB1 with the subsequent 

inactivation of CDK1 and Separase activation, allowing the removal of cohesins in metaphase I/II and the 

progression to anaphase. Given that CDK1 activation of the SAC is dominant over the activation of APCCdc20 

in oocytes (Rattani et al., 2014), we suggest that the defective degradation of CDK1 in Psma8-/- 

spermatocytes is leading to a steady activation of the SAC, hindering the progression to anaphase I/II. As 

already mentioned, APC/CCdc20 also mediates the degradation of the Separase inhibitor Securin by the 

proteasome. However, as we did not observe changes in securin levels in the absence of PSMA8, we 
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concluded that classical proteasome substrates are not the main target of the PSMA8 highlighting the 

substrate specificity of the spermatoproteasome. 

 Regarding TRIP13, the pleiotropic AAA-ATPase is involved in the regulation of the metaphase 

progression also through the SAC, promoting the recruitment of MAD2 to the kinetochores (Nelson et al., 

2015). Thus, the defective degradation of TRIP13 and the consequent increased recruitment of MAD2 in 

the absence of PSMA8 would be contributing also to boost the activation of the SAC and thus to the 

accumulation of metaphases I/II.   

 Interestingly, another group of proteins that are deregulated in the absence of PSMA8 are the SC 

proteins SYCP1 and SYCP3. Although SYCP1 showed a normal downloading from the LEs upon desynapsis 

in prophase I, we observed an aberrant accumulation in the cytoplasm of PSMA8-deficient metaphases I. 

The consequences of this SYCP1 accumulation cannot be predicted, but probably could have a detrimental 

effect on those metaphases I, contributing to their apoptosis. Similarly, the observed cytoplasmic 

accumulation of SYCP3 polycomplexes from prophase I to metaphase II in the mutant spermatocytes in 

conjunction with the persistent accumulation of SYCP3 associated to the centromeres, where it is barely 

visible in wild type cells, point towards a proteasome-dependent accumulation. Reinforcing this notion, a 

similar SYCP3 accumulation has also been observed previously in mouse spermatocytes upon inhibition 

of the proteasome (Rao et al., 2017), suggesting its proteasome-dependent accumulation. This 

accumulation of SYCP3 in the metaphases I/II suggests a deleterious effect on these cells, contributing 

also to their apoptosis.  

Curiously, the persistence of SYCP3 at metaphase II mimics the phenotype caused by the 

depletion of Securin, however, the cause of both seems to be slightly and apparently different. While the 

Securin-/- spermatocytes show a defective release of cohesins that induces the tenure of SYCP3 in the 

centromere, the absence of PSMA8 is provoking impaired proteolysis of SYCP3. Overall, both mutants 

share molecular alterations such as the accumulation of CDK1 and a higher inhibition of separase 

activation either directly through the absence of the chaperone Securin (Securin mutant) or indirectly 

through the accumulation of CDK1 (Securin and Psma8 mutants). Because of that, both mutants would 

share a similar SYCP3 phenotype due to a common alteration in the hypoactivation of separase 

 In addition, we have shown that PSMA8 co-immunoprecipitates with the CE components SYCP1, 

SYCE3 and SIX6OS1. Previous studies have shown that the proteasome is associated to the axis in meiosis 

(Ahuja et al., 2017, Rao et al., 2017) and that the yeast proteasome is recruited by the TF protein Zyp1. 

Accordingly, here we have shown that both PSMA8 and PA200 are located in the AEs in prophase I. 

Interestingly, in the absence of SIX6OS1, and therefore, when no CE is built up between homologues, 

PSMA8 is delocalized from the AEs. Supporting this notion, we have obtained PSMA8 as a SIX6OS1 

interacting protein through immunoprecipitation by antibodies against SIX6OS1 (data not shown). 

Altogether, these findings suggest that the SC acts a hub for the anchorage of the spermatoproteasome 

to the chromosome axis, stabilized by the CE components SYCP1, SYCE3 and specially SIX6OS1 wherein 

would regulate axis associated molecular process.  
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  Due to the reported role of the PA200-proteasomes in the DNA damage response, it is tempting 

to speculate that the spermatoproteasome would be also involved in the DSB repair during meiotic 

recombination. Moreover, the localization of PSMA8 in the AE would support this idea. Nevertheless, we 

have shown that the absence of PSMA8 did not cause any alteration in recombination, showing normal 

DSBs generation, repair and CO formation. Simultaneously with our study, it has been reported that 

PSMA8 containing proteasomes would be responsible for the degradation of some of the proteins of the 

recombination machinery, as RAD51 and RPA1 (Zhang et al., 2019). This work indicated that both 

recombinases were retained in Psma8-/- diplotenes. However, there were no differences in the number 

of RAD51 and RPA foci nor accumulation of γH2AX in pachytene between the Psma8-/- and the wild type. 

This was translated into an equal number of COs (MLH1 foci), indicating that PSMA8 is not involved in 

homologous recombination. These last results agree with our observations, as we did not find any 

alteration in recombination, showing normal DSBs generation, repair and CO formation. Thus, it seems 

more plausible to think that the persistence of RAD51 and RPA protein in diplotene is due to a defect in 

their degradation after being downloaded from the AEs, and not in their activity in the repair of DSBs. In 

addition, regarding the proposed role of the UPS in the turnover of the ZMM proteins (Rao et al., 2017), 

the absence of defects in recombination suggests that this function could be mediated by the PSMA7-

containing proteasomes or even that PSMA7 compensates the absence of PSMA8 in the performance of 

this function in the mutant spermatocytes.  

 Altogether, the spermatoproteasome, defined as PSMA8-containing proteasomes, through its 

association to the chromosome axis by attaching to the CE, mediates the proteolysis of important meiotic 

players, such as SYCP1, SYCP3, TRIP13, CDK1 and acetylated histones. Therefore, the phenotype caused 

by the depletion of PSMA8 is the consequence of the deregulation of multiple meiotic pathways, so that 

all of them contribute to the aberrant metaphase I/II exit, leading to apoptosis and the arrest in early 

round spermatids, being responsible for the infertility.  

 

 

Throughout the different works carried out in this thesis it has been addressed several aspects 

of the mammalian gametogenesis in order to deepen into the specialized reductional cell division that 

takes place during this differentiation process. As it is very well known, the aim of meiosis is the generation 

of haploid gametes from diploid progenitors, which requires high and faithful coordination of all the 

molecular events involved. Early in meiosis, the establishment of cohesion between sister chromatids 

mediated by the cohesin complexes allows the concomitant assembly of the SC, generating physical 

connection between the homologous chromosomes in prophase I. Defects in the assembly of these 

proteinaceous structures prevent the full synapsis between homologues (Stag3-/- and Six6os1-/-), and 

therefore, the progress of prophase I. The homologues, through the exchange of segments of their 

chromatids by homologous recombination, generate chiasmata. Together with distal cohesins, chiasmata 

hold homologues together until the onset of anaphase I to ensure their accurate segregation. As we have 

seen, a defective release of cohesins (Securin-/-) or an altered proteostasis of different meiotic regulators 

by the proteasome (Psma8-/-) disrupt the correct progress of meiosis, leading to an arrest of the meiocytes 
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or the generation of aneuploid gametes that finally result in infertility. Therefore, here we have tried to 

provide experimental evidence to state that the occurrence of mutations in meiotic genes, such as Stag3, 

Securin, Six6os1 and Psma8, are a cause of infertility in mice that could similarly explain some of the 

idiopathic human infertilities, as it has been already shown for STAG3. 
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1. STAG3 is essential for the maintenance of centromeric cohesion in mouse spermatocytes from early 

prophase I until metaphase I, carrying out this function in vivo complexed most likely with SMC1β and 

REC8. 

2. STAG3 is necessary for the early assembly of the AEs of the SC and the chiasmata formation in mouse 

spermatocytes and its deficiency causes a zygotene-like arrest.  

3. Mutations in mouse Stag3 causes NOA supporting that STAG3 is a strong candidate for human male 

infertility. 

4. SIX6OS1 is a new component of the CE of the mammalian SC that interacts with SYCE1 and its loading 

is synapsis-dependent. 

5. SIX6OS1 is essential for chromosome synapsis and fertility, and its genetic depletion results in the 

arrest of the meiocytes at pachytene-like stage. 

6. SIX6OS1 is dispensable for the generation of DSBs, but essential for the processing of recombination 

nodules into COs. 

7. The spermatoproteasome is a testis-specific proteasome defined by the presence of the subunit 

PSMA8 that loads into the LEs of the SC upon synapsis.  

8. The absence of PSMA8 leads to a defective histone turnover in prophase I. 

9. PSMA8 deficiency results in an altered proteostasis of several key meiotic players, such as SYCP3, 

SYCP1, CDK1 and TRIP13, leading to an aberrant meiotic exit and early spermatid arrest prior to the 

histone displacement process that ultimately causes male infertility. 
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INTRODUCCIÓN 
 

1. Gametogénesis 

La gametogénesis es uno de los procesos de diferenciación más complejos y estrictamente 

regulados en el que a partir de progenitores diploides se generan células haploides altamente 

especializadas, los gametos. Las células germinales primordiales (PGCs) son las células madre progenitoras 

de la línea germinal, las cuales presentan potencial de diferenciación tanto hacia espermatogonias como 

a oogonias. Este proceso de diferenciación tiene lugar durante el desarrollo embrionario, de forma que 

las PGCs, de origen extragonadal, se especifican inicialmente en el epiblasto (ratón) o en el mesodermo 

en humanos y migran hacia las gónadas primitivas, donde se produce la diferenciación sexual (Tang et al., 

2016).  

En mamíferos, las PGCs en las hembras se diferencian a oogonias que se dividen mitóticamente 

un número limitado de veces. Éstas inician la meiosis entre el tercer y el quinto mes (E13.5 – E15.5 en 

ratón) de desarrollo embrionario, originando los oocitos primarios que quedan bloqueados al final de la 

profase I meiótica en un estadio específico de diplotena denominado dictiata. La oogénesis y 

foliculogénesis se producen simultáneamente y de manera coordinada en el ovario, de forma que a la vez 

que el oocito va pasando por los distintos estadíos se produce el crecimiento y maduración de los folículos. 

Al alcanzar la pubertad, en cada ciclo menstrual un grupo de los oocitos bloqueados reanuda la meiosis, 

pero sólo uno de ellos completa la meiosis I, generando un oocito secundario, que constituirá el folículo 

de Graaf. Este oocito secundario progresa hasta metafase II donde queda bloqueado de nuevo y sólo si es 

fecundado completa la segunda división meiótica originando el óvulo maduro.    

En el caso de la espermatogénesis, las PGCs se diferencian en la gónada y proliferan originando 

las proespermatogonias, que quedan quiescentes en el embrión. Tras el nacimiento, estas se diferencian 

a células madre espermatogoniales (SSCs) en la base de los túbulos seminíferos. En la pubertad, las SSCs, 

que presentan capacidad de autorenovación, comienzan a proliferar dando lugar también a las 

espermatogonias B, que finalmente inician la meiosis. En mamíferos, la espermatogénesis se produce en 

un microambiente especializado aislado por la denominada barrera hemato-testicular (BTB), que está 

formada por células de Sertoli unidas entre sí a través de uniones estrechas (tight junctions). De esta 

forma, la diferenciación se produce desde la base del túbulo, donde se sitúan las espermatogonias, hacia 

el lumen atravesando la BTB (Smith & Braun, 2012). La espermatogénesis es un proceso dinámico en el 

que sucesivas rondas de meiosis tienen lugar de forma simultánea. Por esta razón, se pueden diferenciar 

12 estadios del ciclo epitelial (I-XII), atendiendo al grupo de células germinales que aparecen 

simultáneamente en una misma sección del túbulo seminífero (Ahmed & de Rooij, 2009). 
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2. Meiosis 

La meiosis es un proceso de división celular adquirido por los eucariotas con reproducción sexual 

en el que tras una única ronda de replicación del DNA tienen lugar dos rondas sucesivas de división, una 

primera reduccional y otra segunda ecuacional, en las que los cromosomas segregan generando 

finalmente los gametos haploides (Handel & Schimenti, 2010).  

El complejo sinaptonémico 

La primera fase de la meiosis es la profase I, cuya finalidad es conectar físicamente los 

cromosomas homólogos a través de la formación de los sobrecruzamientos (COs) mediante 

recombinación homóloga. La profase se divide en cinco etapas, leptonema, zigonema, paquinema, 

diplonema y diacinesis, atendiendo al ensamblaje y desensamblaje del complejo sinaptonémico (SC). El 

SC es una estructura proteica que se construye entre los cromosomas homólogos, estabilizando las 

interacciones entre ellos, y que actúa como plataforma para la recombinación meiótica.  

En leptonema los cromosomas homólogos comienzan a condensarse organizando la cromatina 

en bucles que se anclan a los ejes de los cromosomas donde se encuentran las cohesinas. De forma 

simultánea se produce el apareamiento de los cromosomas homólogos. El SC comienza a ensamblarse a 

lo largo de los cromosomas, formando los elementos axiales (AEs). Para ello es necesario que previamente 

la nucleasa SPO11 genere las roturas de doble hebra (DSBs) en el DNA.  A lo largo de la zigonema, los 

homólogos sinapsan mediante la unión de los filamentos transversales (TFs) que cierran la estructura del 

SC a modo de los dientes de una cremallera. Esta estructura es estabilizada por el elemento central (CE) 

que se ensambla en la región interna. De esta forma los homólogos quedan completamente sinapsados 

en paquinema.  Los cromosomas homólogos desinapsan desde diplonema hasta diacinesis mediante el 

desensamblaje de los TFs y el CE. Por tanto, el SC presenta una estructura tripartita altamente conservada 

entre organismos.  

En mamíferos se han identificado hasta el momento siete componentes del SC: SYCP3 y SYCP2 

en los AEs, la proteína de los TFs SYCP1 y los componentes del CE SYCE1, SYCE2, SYCE3 y TEX12 (Costa et 

al., 2005, Hamer et al., 2006, Lammers et al., 1994, Meuwissen et al., 1992, Offenberg et al., 1998, 

Schramm et al., 2011). SYCP1 forma dímeros que se ensamblan a lo largo de cada uno de los AEs, y que 

interaccionan entre sí en la región central a través de su región N-terminal. Los CEs se agrupan a su vez 

en dos subdominios. SYCE1 y SYCE3 actúan como iniciadores de la sinapsis junto con SYCP1; y a su vez, 

SYCE2 y TEX12 forman un octámero que se ancla en la región más interna del SC estabilizando la 

estructura. El desensamblaje del SC en mamíferos está mediado por las quinasas PLK1, Aurora B y 

CDK1/CyclinaB1, aunque el mecanismo aún no está del todo claro.  
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La recombinación meiótica 

De forma simultánea a la sinapsis se produce la recombinación meiótica, que es el proceso 

mediante el cual los cromosomas homólogos intercambian segmentos de las cromátidas no hermanas por 

recombinación homóloga dando lugar a los quiasmas. La recombinación comienza con la formación de los 

DSBs por la topoisomerasa SPO11 (Keeney et al., 1997). Los extremos de ssDNA 3’-sobresalientes 

generados son protegidos por unión de la proteína RPA, que comienza la búsqueda del homólogo. RPA es 

reemplazado por las recombinasas RAD51 y DMC1 que inducen la invasión del cromosoma homólogo. 

Posteriormente, estos nódulos de recombinación tempranos maduran mediante el progresivo 

reclutamiento de RPA, MSH4 y MSH5 entre otras proteínas. Finalmente, los DSBs son reparados 

generando dos tipos de productos de recombinación, los sobrecruzamientos y los no-sobrecruzamientos 

(NCO). La formación de COs implica el intercambio de material genético y en su resolución está implicada 

MLH1, de forma que al final de paquitena cada bivalente presenta al menos un CO.  

La formación de los DSBs no se produce al azar, sino que existen sitios más propensos a su 

formación denominados “hotspots”. Gran parte estos “hotspots” están determinados por la trimetilación 

de H3K4 mediada por la metiltransferasa PRDM9. Existen otros factores adicionales que influyen en la 

distribución de los COs como son la organización de la cromatina en bucles, así como el ensamblaje del 

SC al cual se asocia físicamente la maquinaria de recombinación. Además, el número de COs que se 

forman a lo largo del genoma varía entre individuos de la misma especie. Esto es debido a la presencia de 

polimorfismos genéticos que influyen en la tasa de recombinación. En humanos muchas de estas variantes 

están localizadas en genes meióticos conocidos que actúan en la recombinación homóloga, como PRDM9, 

RNF212, HEI10, MSH4 o las cohesinas meióticas RAD21L o SMC1Β (Halldorsson et al., 2019, Kong et al., 

2014).  

3. Complejos de cohesinas en meiosis 

Una vez que los cromosomas se han replicado en la fase S, las cromátidas se mantienen unidas 

por un mecanismo denominado cohesión, que asegura la correcta segregación de las cromátidas tanto en 

mitosis como en meiosis. Esta cohesión se establece por un complejo multiproteico con forma de anillo 

denominado complejo de cohesinas, que atrapa a las cromátidas hermanas hasta el inicio de la anafase. 

El complejo de cohesinas somático está formado por 4 subunidades: SMC3 y SMC1α forman un 

heterodímero en forma de V al que se une la kleisina RAD21 cerrando el anillo, y STAG1 o STAG2 que 

interaccionan con la kleisina. Existen parálogos de estas proteínas específicos de meiosis: SMC1β, las 

kleisinas REC8 y RAD21L, y STAG3 (Gutierrez-Caballero et al., 2011, Parisi et al., 1999, Pezzi et al., 2000, 

Prieto et al., 2001, Revenkova et al., 2001).  

Durante la profase I, la cohesión entre cromátidas hermanas se establece por complejos de 

cohesinas que contienen SMC1β, formando complejo principalmente con REC8. Las dos kleisinas 

meióticas, REC8 y RAD21L actúan sinérgicamente y son esenciales para la formación del SC. Además, REC8 

es la principal responsable del mantenimiento de la cohesión centromérica en meiosis I, una característica 



Appendix

 

210 
 

clave de la meiosis. La subunidad STAG3 es común a todos los complejos específicos de meiosis. Además 

de estas funciones en el establecimiento de la cohesión, el complejo de cohesinas también participa en 

otros eventos cruciales de la meiosis, como son la formación y la reparación de los DSBs durante la 

recombinación meiótica. Además, mediante la interacción con CTCF, también participan en la regulación 

de la transcripción, así como en el remodelado de la cromatina en espermatogénesis. 

Liberación de las cohesinas 

En metafase I los cromosomas homólogos se mantienen unidos a través de los quiasmas, que se 

estabilizan por cohesión distal, oponiéndose a la fuerza ejercida por el huso. Los complejos de cohesinas 

situados en los centrómeros mantienen la cohesión entre las cromátidas hermanas hasta el inicio de la 

anafase II. Durante la meiosis, los complejos de cohesinas se eliminan en dos pasos gracias a la existencia 

de dos olas de activación de Separasa, una cistein proteasa que corta de forma específica la subunidad 

kleisina al comienzo de la anafase I/II. La primera activación de Separasa en meiosis I libera los complejos 

de cohesinas situados a lo largo de los brazos, permitiendo la segregación de los homólogos a polos 

opuestos. Las cohesinas situadas en los centrómeros son liberadas durante la segunda activación de 

Separasa al inicio de la anafase II, haciendo posible la segregación de las cromátidas hermanas. Dada la 

relevancia de la activación de Separasa, en mamíferos existen dos mecanismos de inhibición de esta 

proteasa que son mutuamente excluyentes, Securina y CDK1/CyclinaB1. Una vez que los bivalentes se 

alinean correctamente en la placa metafásica y se satisfacen los requerimientos del SAC (“checkpoint” de 

ensamblaje del huso), APC/CCdc20 se activa y ubiquitina tanto a Securina como a CyclinaB1, marcándolos 

para la degradación por el proteasoma, permitiendo la activación de Separasa.  

Securina es una proteína muy conservada que está codificada en mamíferos por el gen Pttg1. A 

pesar de que es esencial en S. pombe y D. melanogaster, Securina es dispensable en S. cerevisiae y en 

vertebrados debido a la existencia de mecanismos adicionales de inhibición de Separasa. Estudios previos 

en líneas celulares humanas deficientes en Securina no mostraron grandes alteraciones en la progresión 

del ciclo celular ni defectos de cohesión entre cromátidas hermanas. De acuerdo con esto, varios 

mutantes murinos deficientes en Securina son viables y fértiles, aunque presentan hipoplasia de testículo. 

Esto contrasta con los resultados obtenidos en los estudios llevados a cabo en oocitos. Estos trabajos 

muestran que la sobreexpresión de una Securina no degradable impide la segregación de las cromátidas 

hermanas, mientras que la downregulación de Securina provoca pérdida de cohesión.  

El responsable del mantenimiento de la cohesión centromérica hasta el comienzo de la anafase 

II es una familia de proteínas denominadas shugoshinas. En mamíferos, SGOL2 protege las cohesinas 

centroméricas que contienen REC8 del corte por Separasa. SGOL2 se recluta al centrómero de los 

cromosomas en diplotena mediado por varias modificaciones de histonas en la cromatina 

pericentromérica. Las quinasas BUB1 y AuroraB reclutan a SGOL2 al centrómero a través de la 

fosforilación de H2AT120 y H3S10, respectivamente. Se han postulado mecanismos adicionales de 

reclutamiento de SGOL2, como la fosforilación de H3T3 mediada por Haspin, que a su vez actúa como 
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sitio de unión del CPC (complejo pasajero del cromosoma), del que forma parte AuroraB. Una vez situada 

en el centrómero, SGOL2 media la protección de la cohesión en meiosis I mediante el reclutamiento de la 

fosfatasa PP2A-B56, que contrarresta la fosforilación de REC8, impidiendo el corte por Separasa. En 

meiosis II se ha postulado que la redistribución de SGOL2 hacia los cinetocoros deja a las cohesinas 

desprotegidas permitiendo ser liberadas por Separasa en anafase II.  

4. El proteasoma y su función en meiosis 

El sistema ubiquitina-proteasoma (UPS) cataliza la degradación de la mayor parte de las proteínas 

celulares. El proteasoma, como constituyente principal del UPS, degrada proteínas típicamente marcadas 

con residuos de ubiquitina. Sus sustratos son proteínas mal plegadas, dañadas o proteínas reguladoras 

que requieren una dinámica de síntesis y degradación muy controlada. El proteasoma constitutivo 26S es 

un complejo multiproteico con actividad proteasa compuesto por la partícula central (CP, 20S) que 

presenta actividad catalítica y una o dos partículas reguladoras (RP, 19S) que controlan el acceso de los 

sustratos. El CP está formado a su vez por 4 anillos heptaméricos (α1–7, β1–7, β1–7, α1–7), donde β1, β2 

y β5 poseen la actividad catalítica. La partícula reguladora 19S media la proteólisis de sustratos poli-

ubiquitinados, pero además existen otras partículas reguladoras, el 11S PA28α/β/γ y PA200, que median 

la degradación de sustratos independiente de ubiquitina. Así mismo, en vertebrados existen parálogos de 

algunas de las subunidades del proteasoma 20S, que forman parte de proteasomas específicos de tejido: 

el immunoproteasoma (β1i, β2i y β5i), el timoproteasoma (β5t) y el espermatoproteasoma específico de 

testículo.  

Recientemente se ha planteado que el proteasoma tendría una función específica en meiosis, a 

través de su asociación física a los AEs. RNF212 y HEI10 establecen un sistema de reclutamiento de SUMO-

Ubiquitina-proteasoma a los ejes de los cromosomas que regularía el turnover de las proteínas ZMM y 

por tanto el metabolismo de los COs durante la profase I (Ahuja et al., 2017, Rao et al., 2017). Además, el 

UPS también tiene un papel en la espermiogénesis degradando histonas acetiladas durante el proceso de 

reemplazamiento de estas histonas por protaminas. Esta función está catalizada por proteasomas que 

contienen el activador PA200  (Qian et al., 2013). Recientemente se ha identificado una subunidad del 

proteasoma que se expresa de forma específica en la línea germinal masculina, α4s, codificada por el gen 

PSMA8, un parálogo de la subunidad α4 (PSMA7) (Qian et al., 2013, Uechi et al., 2014). 
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RESULTADOS 

STAG3 es un firme candidato causante de infertilidad masculina.  

La infertilidad se refiere a la incapacidad de una pareja para concebir y afecta en torno al 10-15% 

de las parejas. Aproximadamente en la mitad de las parejas infértiles el hombre es el agente causante. 

Dentro de las infertilidades masculinas, sólo una pequeña proporción son debidas a alteraciones genéticas 

conocidas siendo la mayor parte de ellas idiopáticas. Sin embargo, se ha postulado que una fracción de 

las infertilidades idiopáticas sean debidas a mutaciones en genes meióticos. Las formas más severas de 

infertilidad masculina son la oligo- y la azoospermia. 

En un estudio previo realizado por nuestro grupo en el que se llevó a cabo un análisis mediante 

secuenciación del exoma completo en una familia consanguínea con fallo ovárico prematuro (POF) 

hereditario se identificó una deleción de 1 pb en el gen STAG3 que genera un codón de stop prematuro 

(Caburet et al., 2014). Esta delección se encontró en homocigosis en cuatro mujeres de esta familia 

afectadas de POF, sin embargo, ninguno de los hombres mostró infertilidad ni la deleción en homocigosis. 

STAG3 es una de las subunidades del complejo de cohesinas específica de meiosis. La patogenicidad de la 

mutación se demostró en las hembras de un modelo murino por pérdida de función de STAG3, las cuales 

fenocopiaban el POF observado en la familia.  

Teniendo en cuenta estos antecedentes, en el presente trabajo nos propusimos determinar si la 

mutación de STAG3 en homocigosis podría ser causa también de infertilidad en los machos. Para ello, 

hicimos uso del modelo murino de pérdida de función para STAG3. Los ratones macho deficientes en 

STAG3 generados no mostraron ningún fenotipo somático evidente, pero presentaron hipoplasia 

testicular, y al igual que las hembras, eran infértiles. El análisis histológico de los túbulos seminíferos 

mostró un bloqueo en estadio IV del ciclo epitelial, y como consecuencia ausencia de espermatozoides en 

el epidídimo, que en último término es responsable de la azoospermia no obstructiva (NOA).   

Para determinar las causas que subyacen dicha infertilidad, se analizó en detalle la 

espermatogénesis en ausencia de STAG3. Los espermatocitos Stag3-/- mostraron un ensamblaje 

defectuoso de los elementos axiales (AEs) y reducción del tamaño de los mismos a lo largo de sus 

cromosomas homólogos, los cuales no sinapsaron completamente, quedando bloqueados en un estado 

de “zigotena-like”. Estos defectos en el ensamblaje de los AEs son ligeramente menos graves que los 

observados en el doble mutante Rec8-/- Rad21l-/-, los cuales representan los defectos más severos 

descritos hasta la fecha. 

La reparación por recombinación homóloga de los DSBs (DNA double strand breaks) generados 

por SPO11 da lugar a la formación de los sobrecruzamientos (COs) que mantienen unidos los cromosomas 

homólogos. En ausencia de STAG3, los DSBs se generaban de forma adecuada en leptotena, sin embargo, 

la carga de las recombinasas que los reparan se encontró reducida, lo que, junto con los defectos en 

sinapsis, llevan a la acumulación en zigotena de DSBs sin reparar.  



Appendix

 

214 
 

La correcta sinapsis entre cromosomas homólogos es dependiente del complejo de cohesinas 

meióticas. La ausencia de la cohesina STAG3 en espermatocitos promueve la pérdida parcial de cohesión 

centromérica manifestada por la presencia mayoritaria de dos centrómeros diferenciables en los AEs en 

el estadio de zigotena. REC8 es la principal responsable del mantenimiento de la cohesión centromérica 

en meiosis durante metafase I. Sin embargo, la ausencia de REC8 en zigotena no provocó pérdida de 

cohesión entre las cromátidas hermanas en los centrómeros. Esto indica que la cohesión entre cromátidas 

hermanas y la sinapsis en profase está mediada por complejos de cohesinas que contienen STAG3. De 

acuerdo con esto, la evasión del bloqueo en profase con ácido okadaico (OA) en cultivos de 

espermatocitos en ausencia de STAG3 o REC8, generó en lugar de 20 bivalentes unidos, 80 cromátidas 

separadas.  Estudios previos muestran observaciones similares en espermatocitos que carecen de SMC1β, 

con pérdida parcial de cohesión tanto en profase como en metafases inducidas por OA. Estos resultados 

indican que los complejos de cohesinas formados por STAG3 y REC8, junto con SMC1β, son responsables 

del mantenimiento de la cohesión centromérica en espermatogénesis desde profase hasta metafase I y 

son esenciales para la formación de los quiasmas. No obstante, no excluye la posibilidad de que otros 

complejos de cohesinas adicionales lleven a cabo también esta función. 

Dado que las cohesinas llevan a cabo su función formando parte del complejo de cohesinas y no 

individualmente, la depleción de STAG3 impediría el ensamblaje de las subunidades con las que forme 

complejo en meiosis, alterando su carga a los AEs. Por ello, se analizaron los niveles de las distintas 

subunidades del complejo de cohesinas en ausencia de STAG3. En los espermatocitos Stag3-/- la carga de 

SMC1β a los AEs estaba reducida, así como la de REC8, que se encontraba en el límite de detección. Sin 

embargo, los niveles de SMC3 y las kleisinas RAD21 y RAD21L no se mostraban alterados en ausencia de 

STAG3. Esto indica que en espermatogénesis STAG3 forma complejos de cohesinas con REC8 y SMC1β.  

En conclusión, estos resultados indican que los complejos de cohesinas que contienen STAG3 son 

esenciales para la espermatogénesis en mamíferos, y sugieren que el gen STAG3 es un firme candidato 

causante de infertilidades masculinas.  

 

C14ORF39/SIX6OS1 es un componente del complejo sinaptonémico esencial para 

la fertilidad en ratón.  

 La recombinación meiótica genera sobrecruzamientos entre los cromosomas homólogos que son 

esenciales para que se produzca la haploidización del genoma. Para la formación de los 

sobrecruzamientos (COs, crossovers) es necesario el ensamblaje previo del complejo sinaptonémico (SC), 

una estructura proteica que mantiene unidos los homólogos durante la profase I, generando la base 

estructural necesaria para el procesamiento de los intermediarios de recombinación en COs. El SC está 

formado por dos elementos axiales (AEs) que se ensamblan a lo largo de los cromosomas homólogos y 

están conectados a través de los filamentos transversales (TFs) unidos al elemento central (CE), cerrando 

la estructura a modo de dientes de una cremallera.  

En humanos, el número de COs que se generan en el genoma difiere entre individuos. Además, se 

sabe que la tasa de recombinación está influenciada por variantes que se encuentran en el genoma. Se han 
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identificado algunas de dichas variantes, gran parte de ellas localizadas en genes meióticos implicados en 

recombinación homóloga, como son PRDM9, RNF212 o RAD21L (Kong et al., 2014). Además, entre esas 

variantes se ha descrito un cSNP en una ORF anónima (rs1254319, p.Leu524Phe) que está asociada a una 

mayor tasa de recombinación en mujeres. Teniendo en cuenta estos datos, en este trabajo abordamos la 

caracterización funcional de esta posible nueva ORF y su implicación en la recombinación meiótica.  

Este gen, denominado SIX6OS1, presenta un elevado grado de homología entre la secuencia 

aminoacídica humana (C14ORF39) y la de ratón (4930447C04Rik). Su ORF (C14ORF39) codifica una 

proteína sin ningún dominio conservado, a excepción de una región de coiled-coil, que es un motivo 

común de interacción entre proteínas y que es muy frecuente en las proteínas del SC. Mediante qRT-PCR 

(PCR reversa cuantitativa) en diferentes tejidos, determinamos que Six6os1 se transcribe 

mayoritariamente en testículo. Con el fin de determinar la función de esta nueva proteína, analizamos su 

localización mediante electroporación in vivo en testículos de ratón de un plásmido de expresión del cDNA 

de SIX6OS1 fusionado a GFP. Esto nos permitió determinar que SIX6OS1 se localiza a lo largo de los 

elementos laterales (LEs) en paquitena. El análisis más detallado de la localización de la proteína endógena 

en espermatocitos y oocitos mostró que SIX6OS1 se localizaba desde zigotena hasta diplotena a lo largo 

de las regiones sinapsadas entre los cromosomas homólogos de los meiocitos, colocalizando con SYCP1 y 

todas las proteínas del CE. Por esta razón, modelamos la co-distribución de SIX6OS1 con respecto a las 

diferentes proteínas del CE a lo largo de los AEs en paquitena. Así, por comparación de los coeficientes de 

correlación, determinamos que la distribución de SIX6OS1 era más similar a la localización de SYCE1. Estos 

resultados en conjunto indican que SIX6OS1 es un componente del CE del SC.  

Dado que SIX6OS1 es un elemento estructural del SC, tratamos de determinar con qué otros 

componentes del SC interacciona. Así, mediante un ensayo de doble híbrido no dirigido, observamos que 

SIX6OS1 interacciona con SYCE1 y mediante co-inmunoprecipitación que dicha interacción se produce 

específicamente a través de su región N-terminal. La interacción entre ambas proteínas también se 

confirmó mediante un ensayo de ligación por proximidad (PLA) y a través de la formación de 

“polycomplex” al cotransfectar en células somáticas SIX6OS1 con cada uno de los componentes del SC, 

siendo SYCE1 el único que modificaba la localización citoplasmática de SIX6OS1 reclutándolo a los 

agregados moteados que forma en el citoplasma. No se detectó interacción con ninguna otra proteína del 

SC lo que sugiere una elevada especificidad. 

La localización de SIX6OS1 podría ser dependiente de la presencia previa de otras proteínas del 

SC, por ello analizamos varios mutantes meióticos con defectos en sinapsis en distinto grado. SIX6OS1 se 

localizaba a lo largo de las regiones pseudosinapsadas en los espermatocitos Rad21l-/-, Rec8-/- y Stag3-/-, 

sin embargo, estaba completamente ausente en los knock-out de las proteínas del SC SYCP1 y SYCE3, en 

los que los homólogos no sinapsan. Estos resultados indican que la carga de SIX6OS1 es dependiente del 

ensamblaje previo de otros elementos del SC que se produce a medida que los homólogos sinapsan.  

Para determinar cuál es la función de SIX6OS1 en meiosis, generamos un ratón mutante del gen 

Six6os1 mediante edición génica por CRISPR/Cas9 (llevado a cabo por Natalia Felipe-Medina, co-primera 

autora del artículo). Mediante cruzamientos genéticos se generaron ratones Six6os1-/- los cuales no 
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mostraban ningún fenotipo somático, sin embargo, tanto las hembras como los machos eran estériles. 

Los túbulos seminíferos de los machos presentaban un bloqueo en estadio IV del ciclo epitelial, por lo que 

carecían de espermatozoides en el epidídimo, y como consecuencia sufrían NOA. En cuanto a las hembras, 

mostraban una disgénesis ovárica severa que es la responsable de la ausencia de folículos y como 

consecuencia del POF.  

 La caracterización de la infertilidad de los ratones Six6os1-/- indicó que tanto los espermatocitos 

como los oocitos mostraban cromosomas homólogos incapaces de sinapsar, dando lugar a un bloqueo en 

estado de “paquitena-like”. Un análisis más detallado mostró la presencia de dos fenotipos diferentes, 

uno en el que la mayoría de los AEs se encuentran correctamente alineados (tipo-A, “Aligned”), y otro con 

escaso alineamiento entre los AEs (el tipo-U, “Unaligned”). Sin embargo, no se observaron alteraciones 

en la integridad de sus AEs ni en la carga de las diferentes cohesinas. 

Teniendo en cuenta el defecto en sinapsis entre cromosomas homólogos en ausencia de 

SIX6OS1, analizamos cómo se produce el ensamblaje del SC en estos meiocitos. Los resultados mostraron 

la ausencia total de todas las proteínas conocidas del CE y tan solo niveles muy reducidos de la proteína 

SYCP1 (elemento lateral) localizada de forma discontinua a lo largo de los LEs. Conjuntamente, la ausencia 

de un elemento lateral continuo y la ausencia del elemento central explicaría los severos defectos en 

sinapsis entre cromosomas homólogos cuando SIX6OS1 no está presente. Aunque probablemente se trate 

del fenotipo más severo entre los mutantes del SC, los ratones que carecen de SYCE1-3 y TEX12 también 

cargan niveles bajos de SYCP1 (aunque en mayor grado) a los ejes a pesar de la ausencia de sinapsis. 

Finalmente, se abordó la dependencia de la carga de SIX6OS1 en mutantes asinápticos del CE como son 

Sycp1-/- y Syce3-/-. Los resultados mostraron ausencia de carga de SIX6OS1 en ambos casos. Todo ello pone 

de manifiesto la interdependencia entre los distintos componentes del SC en el establecimiento de la 

sinapsis. 

 El SC aporta el marco estructural necesario para que se lleve a cabo la recombinación meiótica 

de los DSBs generados por la nucleasa SPO11 utilizando el cromosoma homólogo como molde para así 

generar los COs. Dados los defectos en sinapsis en ausencia de SIX6OS1 se analizó el procesamiento de 

sus DSBs. Los resultados mostraron que en los meiocitos deficientes en SIX6OS1 los DSBs se generaban 

de forma correcta al inicio de profase I. Sin embargo, estos DSBs mostraron el acúmulo de distintas 

proteínas de reparación y recombinación como RAD51, DMC1, RPA y MSH4. Como consecuencia de ello, 

no se observaron quiasmas mediante tinción de los espermatocitos con MLH1 ni mediante la inducción 

de metafases in vitro por OA. Por tanto, estos resultados mostraron que SIX6OS1, como consecuencia de 

la asinapsis entre cromosomas homólogos, es esencial para el procesamiento de los intermediarios de 

recombinación en COs.  

 Finalmente se abordó el análisis del comportamiento de los cromosomas sexuales dadas sus 

características especiales como son su pequeña región de homología (región pseudoautosómica, PAR) y 

su comportamiento asíncrono en la sinapsis (último par de cromosomas en sinapsar y primero en 

desinapsar). Los resultados mostraron que los cromosomas X e Y sólo se alinearon en un 25.5% de los 

espermatocitos mutantes en “paquitena-like”, y en aquellas que estaban alineados su PAR carecía de 
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SYCP1 a pesar de la aparente sinapsis. Finalmente se observó que la deficiencia de SIX6OS1 impide la 

formación del cuerpo sexual lo cual puede ser una causa suficiente de bloqueo meiótico y apoptosis. 

 Por tanto, se ha identificado un nuevo componente del CE del SC, SIX6OS1, que afecta a la tasa 

de recombinación en humanos. El estudio funcional muestra que SIX6OS1 es esencial para el 

establecimiento de la sinapsis entre los cromosomas homólogos y el procesamiento de los intermediarios 

de recombinación para dar lugar a los COs, y como consecuencia, para la fertilidad. 

 

La subunidad PSMA8 del espermatoproteasoma es esencial para la correcta salida 

meiótica y para la fertilidad en el ratón. 

En eucariotas el sistema ubiquitina proteasoma (UPS) participa en la regulación de la 

recombinación meiótica a traves de su asociación al SC. Se ha hipotetizado que la regulación del 

metabolismo de los sobrecruzamientos es llevada a cabo por el balance entre ubiquitinación y 

sumoilación, y éste estaría mediado a su vez por las E3 ligasas HEI10 (Ubiquitina) y RNF212 (sumo) además 

de por la actividad del proteasoma. El proteasoma, mediante un proceso de reconocimineto dependiente 

de ubiquitina, degrada proteolíticamente las proteínas que son innecesarias o están dañadas en la célula. 

Además, la adición de otras modificaciones, como grupos acetilo, también promueven el reconocimeinto 

y  degradación de sustratos por el proteasoma. En mamíferos, la subunidad activadora del proteasoma 

PA200 reconoce y dirige para su degradacion a las histonas acetiladas durante la reparación de roturas de 

doble cadena de DNA somático (DSBs) y durante el reemplazo de histonas durante la espermiogénesis. 

Además del proteasoma constitutivo 26S, existen subunidades adicionales entre las que se encuentra la 

subunidad α4s, específica de testículo, que define el espermatoproteasoma conjuntamente con PA200 y 

que podría aportarle especificidad de sustrato. La subunidad α4s está codificada por el gen Psma8, un 

parálogo de Psma7 (α4) con expresión testicular. Dada la especificidad de esta subunidad, se ha abordado 

caracterizar la función del espermatoproteasoma dependiente de PSMA8 en  la  espermatogénesis y sus 

posibles implicaciones en enfermedades humanas.  

La expresión en el ratón de PSMA8 se observó restringida al testículo, detectándose por primera 

vez en individuos de 12 dpp coincidiendo con el inicio de la meiosis. La localización de PSMA8 se observó 

a lo largo de las regiones sinapsadas entre los cromosomas homólogos correspondiente a la región central 

del SC desde zigotena hasta diplotena. El analisis de mutantes con defectos en sinapsis como Rec8 

(autosinapsis) y carentes de sinapsis como Six6os1 mostraton que la localizacion de PSMA8 es 

dependiente del grado sinapsis y por tanto del ensamblaje previo del SC.  

El análisis funcional in vivo de PSMA8 en el ratón se llevo a cabo mediante edición génica con 

CRISPR/Cas9. Los resultados mostraron infertilidad en los machos con hipoplasia de testículo y ausencia 

de espermatozoides en el epidídimo. Un análisis más detallado mostró un incremento en el número de 

túbulos en estadio XII del ciclo epitelial, además de una acumulación de metafases I/II, que en una elevada 

proporción eran apoptóticas. A pesar de estos defectos en metafase, algunas de ellas eran capaces de 

proseguir generando espermátidas redondas con la heterocromatina muy fragmentada, lo que sugiere la 

existencia de defectos en la segregación de los cromosomas o la intercinesis. Debido a su morfología 
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aberrante, verificamos la identidad de estas células (espermatidas redondas tempranas) mediante el uso 

de marcadores que nos permitieron comprobar la presencia de acrosoma y de cuerpo cromatoide así 

como la ausencia de la histona de transición H2AL2. Conjuntamente, estos resultados nos indicaron que 

en ausencia de PSMA8 las espermátidas redondas quedan bloqueadas y entran en apoptosis muy pronto 

tras su formación, antes del inicio del remplazamiento de las histonas. 

La acumulación de metafases puede ser debida a defectos en profase que induzcan un retraso 

en la progresión de la meiosis mediada por el checkpoint o bien por dificultades en la entrada en anafase. 

Con el fin de determinar cuál es la causa de dicha acumulación evaluamos estas dos posibilidades. Los 

resultados mostraron que en ausencia de PSMA8 no se producían defectos en la sinapsis entre los 

cromosomas homólogos, ni en la formación y reparación de los DSBs, así como en la formación de los COs 

en profase. En cambio, las metafases a menudo presentaban una morfología aberrante, con husos 

multipolares, además de la persistencia de SYCP3 en el centrómero de los cromosomas en metafase II.   

PA200 es el activador principal del espermatoproteasoma. Dado que los proteasomas que 

contienen PA200 median la degradación de histonas acetiladas, y la relación estequiométrica entre las 

distintas subunidades del proteasoma, analizamos la expresión de PA200 en los espermatocitos Psma8-/-

. PA200 se situa a lo largo de los AEs en profase de forma análoga a PSMA8, sin embargo, en ausencia de 

PSMA8 no detectamos la presencia de PA200. El drástico descenso en los niveles de este regulador sugiere 

que PSMA8 es necesario para el ensamblaje de PA200 al núcleo catalítico (CP, core particle) del 

proteasoma. Con el fin de determinar si el espermatoproteasoma es el responsable de la degradación de 

las histonas acetiladas, analizamos la dinámica de las histonas del nucleosoma acetiladas (H2AK5ac, H3ac 

y H4ac) en ausencia de PSMA8 a lo largo del progreso de la espermatogénesis.  Los espermacitos Psma8-

/- mostraron un ligero acúmulo de todas ellas en profase, y un acumulo mas notable de pan-H4ac y 

H4K16ac desde metafase I hasta espermátida redonda. Esto resultados sugieren que los proteasomas que 

contienen PSMA8 están implicados en el recambio de las histonas acetiladas desde profase hasta 

espermátida redonda. 

 Mediante la purificación de las proteínas que interaccionan con PSMA8/7 en extractos de 

testículo se identificaron numerosos potenciales sustratos, entre ellos algunas proteínas meióticas no 

relacionadas previamente con el UPS como SYCP1, CDK1 y TRIP13.  

El análisis de SYCP1 en profase I de espermatocitos Psma8-/- reveló que, a pesar de cargarse y 

descargase de los ejes de forma adecuada, SYCP1 se encontraba acumulado anormalmente en el 

citoplasma de las metafases I, sugiriendo una degradación deficiente del mismo. Por otra parte, el análisis 

de CDK1, una cinasa esencial en la transición de metafase a anafase, en espermatocitos mutantes mostró 

su acumulación en el citoplasma y en los centrómeros de los cromosomas en metafase I, al igual que 

CiclinaB1, con quien tiene que formar complejo para estar activo. Este incremento en los niveles de 

CDK1/CiclinaB1 podría cooperar en la acumulación de metafases I/II. Finalmente, el análisis de TRIP13, 

una AAA-ATPasa implicada tanto en la reparación de los DSBs como en sinapsis, en espermatocitos Psma8-

/-, mostró una mayor presencia en los cinetocoros de los cromosomas en metafase I, donde TRIP13 

prácticamente es indetectable en el control silvestre. Como consecuencia de este acúmulo de TRIP13 se 
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observó un exceso de reclutamiento de MAD2 a los centrómeros, el cual podría estar promoviendo el 

retraso en la salida de metafase mediada por el SAC.  

La localización de PSMA8 en los ejes nos indujo a abordar su posible interacción con otras 

proteínas del SC como SYCP3, SIX6OS1 y SYCE3. El análisis de SYCP3 en espermatocitos carentes de PSMA8 

mostró su acumulación formando grandes “polycomplex” en profase I y en agregados citoplasmáticos en 

metafase I/II además de permanecer asociado a los centrómeros en metafase II. Esto sugiere de nuevo 

que la degradación defectuosa de SYCP3, al igual que ocurría con SYCP1, podría tener consecuencias 

deletéreas en la salida de metafase I observada en el mutante deficiente en PSMA8. La interacción de 

PSMA8 con SYCP1 y los las proteínas del CE SIX6OS1 y SYCE3, junto con la deslocalización de PSMA8 de 

los AEs en ausencia de sinapsis,  ponen de manifiesto que el espermatoproteasoma se ancla físicamente 

al SC cuando los cromosomas homólogos están correctamente sinapsados. 

En conjunto, se ha identificado una subunidad del proteasoma específica de la línea germinal 

masculina que define el espermatoproteasoma, cuya función es esencial para la fertilidad masculina. En 

ausencia de PSMA8, se produce una proteostasis defectuosa de proteínas clave en meiosis, como son 

SYCP3, SYCP1, CDK1 y TRIP13, que podrían ser la causa de los defectos en la salida de metafase que 

finalmente originan un bloqueo en espermátida redonda.   
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CONCLUSIONES  
 

1. STAG3 es esencial para el mantenimiento de la cohesión centromérica en espermatocitos de ratón 

desde profase temprana hasta metafase I, y lleva a cabo su función formando complejo con SMC1β y 

REC8. 

2. STAG3 es necesario para el ensamblaje de los AEs del SC y para la formación de los quiasmas en 

espermatocitos de ratón y su deficiencia provoca un bloqueo en “zigotena-like”. 

3. Mutaciones en Stag3 en ratón provocan NOA, lo que apoya que STAG3 es un firme candidato 

causante de infertilidad en hombres. 

4. SIX6OS1 es un nuevo componente del CE del SC de mamíferos que interactúa con SYCE1 y su carga 

es dependiente de sinapsis. 

5. SIX6OS1 es esencial para la sinapsis cromosómica y la fertilidad, y su deficiencia provoca el bloqueo 

los meiocitos en “paquitena-like”. 

6. SIX6OS1 es prescindible para la formación de los DSBs, pero es esencial para el procesamiento de los 

nódulos de recombinación en COs. 

7. El espermatoproteasoma es un proteasoma específico del testículo definido por la presencia de la 

subunidad PSMA8 que se carga en los LEs del SC en las regiones de sinapsis. 

8. La ausencia de PSMA8 provoca un recambio defectuoso de las histonas en profase I. 

9. La deficiencia de PSMA8 resulta en la proteostasis alterada de proteínas clave en meiosis, como son 

SYCP3, SYCP1, CDK1 y TRIP13, lo que provoca una salida meiótica aberrante y el bloqueo temprano de las 

espermátidas antes del comienzo del reemplazamiento de las histonas, que finalmente causa la 

infertilidad masculina. 
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