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1. Introduction

Cybersecurity is one of the basis pillars of the digital and social environment defined by the new emerging paradigms
such as the Internet of Everything or the Industry 4.0. Among the main techniques used in cyber-attacks we must
highlight malicious code (also known as malware). It is possibly the most important threat to cybersecurity and the
economic and social costs caused by their malicious actions (damage to devices, theft or deletion of personal information,
etc.) are extremely high. The use of wireless sensor networks (WSNs for short) is crucial in the development of these
paradigms [1,2] and their security is a major issue [3].

The scientific and technological efforts to combat malware are focused in two ways: the detection and the simulation
of malware spreading. The main research line deals with the design and analysis of protocols for detecting malware [4];
the other approach tries to combat malware through designing theoretical models to simulate its propagation [5]. Most
of these models are usually deterministic and global [6] and the dynamics is usually modeled using a system of ordinary
differential equations. Moreover, in these models the devices can be classified into several classes like susceptible devices
(5), exposed devices (E), infectious devices (I), recovered devices (R), etc.

Although several models have appeared in the scientific literature simulating not only biological agents spreading but
also malware propagation over Internet or computer networks (see, for example, [7-10]), very few have dealt with WSNs
(see, for example, [11-13]). On the other hand population dynamics is an important feature (see, for example, [14-29])
and, to our knowledge, only one WSNs model has been proposed taken into account it [30].

The main goal of this work is to introduce a new theoretical model considering population dynamics and carrier
compartment. Moreover a vaccination process and a reinfection process are taken into account to define its dynamics.
This work can be considered as an improvement of the model presented in [31]. We will use the theory of the stability to

* Corresponding author.
E-mail addresses: diaman@usal.es (J.D. Hernandez Guillén), delrey@usal.es (A. Martin del Rey).

https://doi.org/10.1016/j.physa.2019.123609
0378-4371/© 2019 Elsevier B.V. All rights reserved.



2 J.D. Herndndez Guillén and A. Martin del Rey / Physica A 545 (2020) 123609
o
Al a(l y Carriers &

S ptibles 4 2
Y2
" \ ,71
U
€

Fig. 1. Scheme that represents the dynamics of the mathematical model.

Table 1
Epidemiological coefficients of the model.
Symbol Description
a Transmission rate
8 Fraction of susceptible devices targeted by malware
v Temporal immunity rate
m Removal rate
bc Recovery rate from carrier compartment
by Recovery rate from infectious compartment
A Birth rate
€ Loss of immunity

describe the behavior of the evolution of the compartments involved in the system and, also, the most efficient control
measures will be obtained from the analysis of the expression of the basic reproductive number Ry.

The rest of the paper is organized as follows: the main characteristics of the model are presented in Section 2; in
Section 3 the study of the local and global stability is detailed; in Section 4, the analysis of the most efficient security
countermeasures is presented and, finally, the conclusions and future work are introduced in Section 5.

2. Description of the model to simulate the spread of malicious code
2.1. General dynamics and equations

The model presented in this work is global and deterministic such that the population of nodes is classified into the
following compartments: susceptible S (t), infectious I (t), carrier C (t), and recovered devices R (t). Population dynamics
is considered (new nodes can be added to the network and some nodes can be removed from it) and temporal immunity
is assumed (see Fig. 1). Susceptible nodes are those that are free of malware; infectious nodes are those that have been
reached by the malicious code and it can perform its malicious action (cause damage to the node and spread to other
nodes); when malware is no able to cause some damage to the host node but the node serves as a transmission vector,
the state of the node is that of carrier; finally, recovered are those (infectious or carrier) devices in which the malicious
code has been removed by means of security countermeasures.

A susceptible node becomes infectious or carrier when the malicious code reaches it. The new infectious devices at time
t are given by the expression adl (t) S (t) (incidence) such that a stands for the transmission coefficient, and § represents
the fraction of susceptible devices targeted by malware. Similarly, the number of new carrier devices at step of time ¢ is
givenby a (1 — §) I (t) S (t). Thanks to preventive measures, a fraction of susceptible nodes can acquire temporal immunity
at rate v: consequently the “vaccinated” devices at t are defined by vS (t). Infectious and carrier devices can recover at
rates bc and by, respectively. Permanent immunity is not considered thus recovered devices become susceptible again at
rate €. Finally, as population dynamics is assumed then the nodes are removed at rate ;« and new (susceptible) nodes
appear at rate A. In Table 1 a brief description of these epidemiological parameters is done.

Consequently, the dynamics of the system is governed by a SODE whose equations are the following:

S'(t) = A+ €R(t) —al (£)S (t) — S (¢) — uS (1),
C'(t) = a1 =8I (t)S (t) — beC (t) — puC (1),

I'(t) = adl () S (t) — byl (£) — jul (b),

R (t) = beC (t) 4 byl (t) + vS (t) — €R (1) — R (t)
N (@) =A—uN (@),

—_~ o~ o~ o~ o~
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where N (t) denotes the total number of devices at step of time t.
From Eq. (5) it is

N () = A + <N 0) — é) e M, (6)
W "

and considering the limit system, we obtain:

S'(t) = A+ e(N—=S(t) —1(t) = C(t))

—al () S (&) =S () — uS (1), (7
C'®) = a1 =8OS (®) —bcC (&) —uC(t), (8)
I'(®) = adl(©)S (&) — bl () —pl(0), (9)

where N = lim;_,, N (t) = A/ ;. As a consequence, the feasible region obtained is
2 ={(S,C,I)eRY such that 0 < S+ C +1 < A/}, (10)

such that its boundary is defined by the following four faces:

Fi = {(S5,C,1) e R} such thatS +C +1=A/;,0<S,C,1 <A/ul}, (11)
F, = {(5,C,1) € R} such that S = 0,0 < C +1 < A/u}, (12)
F3 = {(S,C,I) € R} such that C=0,0 <S+1 < A/u}, (13)
Fy = {(S,C,1) € R} such that] = 0,0 <S+C < A/u}, (14)

where n; = (1,1,1), i, = (=1,0,0), 13 = (0, —1,0), and ny = (0, 0, —1) are their outer normal vectors respectively.
Furthermore:

(Sw.co.r (r))F1 efl; = A— uN — bcC — bl —vS <0, (15)
(sSo.cm.r (t))F2 ofi; = —A+ (C+I1—N)e <0, (16)
(Sw.co.r (f>)53 efi3 = —alS(1—38) <0, (17)
(Sw.co.r (t))F4 ef, = 0. (18)

Consequently, as §2 is closed then it is compact and invariant [32]. Thus, for all ¢ > 0 the solutions in §2 of the SODE
(7)-(9) exist and are unique [33].

2.2. Computation of the steady states and the basic reproductive number

The solutions of the non-linear system:

0=A+eN—=S{t)—1I1(t)—C(t))—al (t)S(t) —vS(t) — uS(t), (19)
0 =a(1—=¥8I(t)S(t) —bcC(t) — nC(t), (20)
0 =asl(t)S(t) — b (t) — pl (). (21)
are the steady states of the system (1)-(4). This system has two solutions: the most simple is the disease-free steady
state:
A+e€N
Ep = (So, Co, lp) = ————, 0,0, 22
o = (S0, Co, lo) (v+e+u > (22)
and the other is called endemic steady state E* = (§*, C*, I*) such that:
b
§* — ﬂ’ (23)
asé
P Gl e 8)bi + u)(—ad(A+Ne)+ bi(v + € + )+ u(v + € + ) (24)

ad(ju(€ + 1) + bi(e — de + ju) + be(by + de + 1))
1e = b+ p)(—adA+ Ne)+ bi(v + e+ )+ plv+ e+ ) (25)
a(ju(e + p) + bi(e — 8¢ + )+ be(by + 8¢ + 1))
This second solution (the endemic steady state) exists if the following holds:
ad(A + Ne)

(b + p)(v + €+ )

(26)
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On the other hand, we can compute the expression of the basic reproductive number Ry considering the next-
generation matrix method [34]. In this sense, the next-generation matrix at Ey is G = F - V~! such that:

a(1—8)(A+Ne¢)
I v=(betn 0 27)
0 as(A+Ne) ’ 0 bi+p)”
vte+p
Thus, Ry is its spectral radius:
ad(A + Ne)
Ry=pG) = —"—"7———. (28)

(b +p)v+e+n)
As a consequence, the condition (26) can be reformulated as Ry > 1.

3. Local and global stability of the steady states
3.1. Local stability
Theorem 1. The disease-free steady state, Ey, is locally asymptotically stable if Ry < 1.

Proof. The eigenvalues of the matrix

b — 1 a(1-8)(A+Ne)
F—V = ¢ / vte+p (29)
5(A+Ne)
0 ﬂv+€+/f —br—n
are
A = —bc —p, (30)
ad(A + Ne)
= _bh—upu, 31
2T 0qetrn M G

whose real parts are negative if Ry < 1. Moreover, as

;—S(—US+6(N—S)—/LS+A)=—I}—€—/L<0 (32)
then Ej is locally asymptotically stable (see [35]). O
Theorem 2. The epidemic steady state, E*, is locally asymptotically stable if Ry > 1.

Proof. The characteristic polynomial of the jacobian matrix of the SODE (7)-(9) in E* is P () = poA® + p1A% + paA + ps,
where

po=1, (33)
p1 = bc +Rov + €+ (1 —Ro)p (34)
(=14 Ro)e(bj(=1+8) — v + bidp + be(by + 1 — 8(v + 1))
(e + pu) + bi(e — 8e€ + ) + be(by + de + )
(be + pu)v+e+p)
p2 = (35)
pl€ + 1) + bi(€ — 8¢ + p) + be(by + € + )
< (bF(—1+ Ro) + bcSe + Ro(be + €)iu + (—1 + 2Ro)p?
+b1(bCR0 + R0€ — e — 2//. + 3R0)) s
p3 = (=14 Ro)(bc + p)(b + p)(v + € + ). (36)
A simple calculus shows that pg > 0, p; > 0, p; > 0, and p;p, — p3 > 0, if Ry > 1. Consequently, taking into account the
Routh-Hurwitz criterion (see [36]), the local stability of the epidemic disease states follows when Ry > 1. O

5

3.2. Global stability
Theorem 3. The disease-free steady state, Ey, is globally asymptotically stable in 2 if Ry < 1.

Proof. From Eq. (7) and considering X (t) as an auxiliary variable, we have

S'(t) < A+eN—S(w+e+p), (37)
X (t) =A4+eN —X(w+e+pn). (38)
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By applying the Comparison Theorem (see [37]) we obtain that X(t) > S(t),t > 0. As a consequence, when t tends to
infinity, the following inequality holds:

A N
=< L (39)
vt+e+ i
because of lim;_ o, X(t) = Uﬁtir’\’“. Now, from (39) and considering the Lyapunov function V = I, we obtain
A+N
V' (t) = 1(aSs — (by + 1)) <1 <a (L> 5 — (b + u)) (40)
v+e+p

= I(b; + p)(Ro — 1).
Note that if Ry < 1 and (S, C,I) € £2 then % < 0. In addition, & = 0 if and only if Ry = 1and I =0 or § = v’f:;i"u. As a
consequence, (S, I, C) tends to Ey as t — oo, and consequently the maximum invariant set in {(S, C,I) € £2 : ‘Zj—‘[’ =0} is
Eo. Finally, taking into account V = I and LaSalle invariance principle [38], the result follows. [

Theorem 4. The endemic steady state, E*, is globally asymptotically stable if Ry > 1 when the following inequalities hold:
bj+aN —v—ac —bc — u — dac < 0, (41)
—p —bec +e€+aNs < 0. (42)

Proof. First of all, by applying [39, Theorem 4.3] the system (7)-(9) is uniformly persistent for Ry > 1. As a consequence,
E* is the unique equilibrium point belonging to int(§2) since there exists an absorbent compact in it which is simply
connected [40].

The second additive compound matrix of Jacobian matrix is given by the following explicit expression:

—bc—al —v—€—2u asS(1—34) asS+ €
Ji = 0 —b—al —v+aS§—e€ —2u —e . (43)
—als al(1—24) —be — by +aSé —2p
Set Ay the directional derivative of the diagonal matrix A = diag (3, 2, 3) along (S, C, 1), then:
S (t I'(t) S'(t I'(t) S'(t I'(t
A A —diag (S0 IO SO IO SO 1O 44)
S I S I S I
Set the matrix B = AfA™! + AJPIA™" = (by), _,,_, Where:
I' S —S(v+e+2n
bn:bc+al—7+—( . ) (45)
b1y = —aS(=1+9), (46)
b13 =aS+e, (47)
by = 0, (48)
I N 2
b22 = —b,—a1—7+055+w, (49)
b23 = —€, (50)
b31 = —015, (51)
b32 = —aI(—l +3), (52)
I! !
b33 = —bc - b[ - 7 + E + aSé — Z/L. (53)
Note that the Lozinskii measure of B is given by the following expression [41]:
ui(B) = inf{c € R : Dy||z| < cl|z| such that z’ = Bz}, (54)

with D, being the right-hand derivative [42,43]. In addition, one can estimate D. ||z|| by means of two cases supposing
that ||z|| = max{l|zz || + llz3ll, llz1 ]I} with z = (z1, 22, 23):

(D) If Jiz|| = llzz]l + llzs]l. then Dy |iz|| < (=& — bc + € + ald) ||z]l.
(2) If |lz|| = l|z1]l, then

Dyllz]| < (b +aS —v —al —bc — ju — 3as) ||z|l. (55)
Now, considering (54)-(55) and assumptions (41)-(42), we have

n(B) < ———06, 6>0. (56)
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Fig. 2. Behavior of the compartments when E; is reached (a), and when E* is obtained (b).
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Fig. 3. (a) Evolution of I (t) when N varies. (b) Evolution of Ry when N varies.

As a consequence we can fiend a real number T > 0 in such a way I(t) < e//?) when t > T. Consequently, % logS(t) < %
for each solution of SODE (7)-(9) in int(§2). For t > 0, it is

1t 1
q, = lim sup sup —/ u(B)dt < —=0 < 0, (57)
t—00  (S(0),C(0),1(0eint(2) £ Jo 2

and applying the geometrical approach [44], the statement is proved. [
3.3. Numerical and illustrative simulations

In this section we will introduce some illustrative simulations where the different behaviors of the system are shown.
Assume that the population is initially formed by N = 101 devices such that there is only one infectious device and the
rest are susceptible at t = 0: S(0) = 100,1(0) = 1,C(0) = R(0) = 0. In addition, suppose that A = 2, © = 0.04,
v = 0.05, € = 0.004, bc = 0.005, b; = 0.1 and § = 0.91. In our case 0 < t < 168 where t is measured in hours (the first
week after the outbreak is simulated).

If the transmission coefficient is given by a = 0.006 then Ry ~ 0.99 < 1 and consequently Ej is locally and globally
asymptotically stable (see Fig. 2(a)). This equilibrium point is given by the expression Eg = (Sp, Co, Io) ~ (25.64, 0, 0).

Now, if @ = 0.007 and the rest of coefficients are the same than in the previous example, then Ry ~ 1.164 > 1.
As a consequence the malware outbreak becomes epidemic (see Fig. 2(b)). Note that the endemic steady state is E* =
(S*,C*, I*) ~ (21.98, 0.6539, 2.125).

Now assume that the total number of devices, N, varies. Suppose that the rest of values of epidemiological coefficients,
with a = 0.006, remains constant as stated in the first paragraph of this subsection. In this case the impact of the
malware outbreak (that is, the maximum number of infected devices) grows as N grows as can shown in Fig. 3(a) where
91 < N < 111. Furthermore, in Fig. 3(b) the evolution of the basic reproductive number is shown. As is introduced in
Sections 3.1 and 3.2 this is a threshold coefficient that determines the local and global stability of steady states. This
parameter grows linearly as N increases and when N ~ 102.6 then Ry = 1. Note that the system exhibits a similar
behavior when a, § and A are studied since the basic reproductive number depends linearly on these parameters.

On the other hand suppose that the temporal immunity rate is varied such that v = 0.01,0.02,...,0.1. If each
phase diagram for susceptible, carrier and infected devices is computed and all trajectories start at the same initial
point (S (0),C (0),I(0)) = (100, 0, 1), it is observed that as the vaccination coefficient increases, these trajectories
tend to disease-free steady states with low epidemiological impact (see Fig. 4). A similar behavior is obtained when the
non-constant coefficient is the recovery rate from infected b;.
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Fig. 4. Phase diagram of S (t), C (t) and I (t) with ten different values of the temporal immunity rate.
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Fig. 5. Phase diagram of S (t), C (t) and I (t) with ten different initial points (S (0), C (0), I (0)).

Finally, if ten simulations are computed from different initial points (it is supposed that I (0) = 1,2,..., 10 with
N =101,C (0) =0, and S (0) = N — I (0)), then the phase diagrams are computed (see Fig. 5). As is shown in this figure
all trajectories starting from different initial points finally converge to the same equilibrium point.

4. Determination of efficient security countermeasures

It is well known that Ry is an important epidemiological threshold. Moreover, it is crucial in the design of efficient
security countermeasures. In this sense if Ry < 1 the malware outbreak does not start an epidemic. Consequently, it is
extremely important to reduce the value of Ry below 1, and this must be the main goal of the security countermeasures.

4.1. Analysis considering only one parameter

Taking into account the expression of Ry (28) and assuming 0 < a, i, €, by, bc, v, 8, < 1 and A, N > 1, we obtain the
following:

3R, 8(A+ Ne)

Ba (br + p)(v + € + ) >0, (58)
Ry _ aS(-A+N(v+p) (59)
de (b +pv+e+pup’
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aR 5(A+ Ne

7% AT Ne) (A + Ne) <0, (60)
ab; (b + pn)P(v+e+p)

aRo

— =0, (61)
dbc

aR S(A+ N

Wy @AING (62)
v (br + p)(v + € + p)?

aRo ade

—_— = >0, (63)
oN (b +p)v+e+n)

& _ a(A+Ne) =0, (64)
06 (b + p)v+e+n)

3R0 as

— = >0, (65)
0A (b +p)v+e+p)

9Ro ad(A + Ne) ad(A + Ne)

— = - <0, (66)
o (b +pu)v+e+pu)? (bi+pPv+e+pn)

It is easy to check that Ry, decreases when N, A, a or § decreases assuming that the remaining coefficients are
constant. Furthermore, Ry decreases when by, v and p increases (the remaining epidemiological coefficients are considered
constant). If A < N(v + ) then Ry decreases as € decreases and if A > N(v + u) then Ry decreases as e increases.
Furthermore, Ry does not change if b changes. Consequently the following security countermeasures are efficient:

e To decrease the transmission rate of infective devices by strengthening the awareness and knowledge about security
of the users.
e To increase the vaccination and recovery rates taking into account efficient security software.

The epidemiological coefficients v, bj, a, § and € are involved to a greater or lesser extent in these measures. Note that
the rest of the security countermeasures derived from the above lead to the control of the number of the sensors initially
deployed, N, and those that are subsequently added A or removed g ; this could not be realistic due to the characteristics
of WSNs since it is not always possible to control both the number of sensors that are correctly deployed, or the number
of sensors removed from the WSN due to, for example, energy consumption and end of battery life. Finally, if we change
recovery rate of carrier devices, Ry does not change.

Finally note that considering the algebraic structure of Eq. (28) the coefficients with greatest effect on the basic
reproductive number is A > 1 since it appears in a summation where the other two (positive) coefficients, a and §,
are less than 1. Moreover, also  has a great influence on Ry when it decreases — note that it appears in the denominator
of the explicit expression of the basic reproductive number as ;12 4+ (v + € + b;) +b; (v + €)-. On the other hand, the least
effect is due to e.

4.2. Analysis considering two epidemiological parameters

Now we analyze Ry to determine security countermeasures by considering it as a function of two variables. In what
follows the basic procedure to obtain such security actions is described.

Assume that the coefficients considered as variables are x and y, thus Ry = Ry (x, y). Let pg = (o, yo) be the starting
point located in the endemic region defined by Ry > 1 of the xy-plane. Set p = (x,¥) the point belonging to the curve
Ro = 1 such that d (po, {Ro = 1}) = d (po, p). As a consequence, the best way to get the malware-free region (Ry < 1) is
defined by the segment between the points py and p. As the segment pop is defined by:

x=2o+(1-1)%k (67)

y=a+0-1y (68)
with 0 < A < 1, the control measure obtained consists of modifying the coefficients x and y through the segment pop
such that A — 0. That is, the best strategy is to make (xo, yo) tend to (X, y) through the last mentioned segment.

For the sake of simplicity we will suppose that one of these variables is the vaccination coefficient v, while the other
variable varies between the rest of epidemiological coefficients a, 8, €, b; and population parameters N, A, and .

Case I: Ry = Ry (v, a). Set pg = (vo, dg) the initial point (initial state of epidemiological coefficients of the system) and
let Ry (v, @) = 1 be the threshold curve between both regions of the va-plane (endemic and disease-free regions) whose
explicit equation is
0= by + 1
" 8(A+Ne)
The desired point p = (v, a) is obtained studying the minimum distance from py to Ry (v, a) = 1. A calculus, using simple
analytical tools, shows that p = (v, a) is defined as follows:

5 B@A+Ne)— (b + p)(e + /t)’ (70)
b+ 1

w+(e+p). (69)
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(bi + 1 )(ao(by + 1) + 5(A + Ne)(vo + € + 1))

852(A+ Ne)? + (by + p)? '
Case II: Ry = Ry (v, 8). If po = (v, 8o) is in the endemic region, the point belonging to Ry = 1 that is the nearest to pg is
p = (v, ) given by:

a=

(71)

_ a8(A+Ne) — (b + p)(e + 1)

V= b + ’ (72)

5 (br + ;)(So(br + ) + a(A+ Ne)(vo + € + [l.)). (73)
a%(A+ Ne) + (by + pn)?

Case IllIl: Ry = Ry (v, ¢). Similarly, when the variables are defined by the coefficients v and ¢ the nearest point to

Po = (vo, €0) on the straight line Ry = 1is p = (v, €) such that:
l_):aAS—bIe—e—I—aNBe—b,;/.—e’u.—;l,zv (74)
by +
—a’ANS§? — b (vo — €0 + ) — £%(vo + €0 + ) + a8 (A + N(vo + )
2(b? — 2aN§ + a2N2§2 — 2aN§p + 22 + by(—2aN$ + 4p))
bi(—24(vo — eg + ) + ad(A + N(vo + 1))
2(b? — 2aN$§ + a2N282 — 2aN8 1 + 212 + by(—2aN$ + 4p))’

(75)

Case IV: Ry = Ry (v, by). 1If Rg = Ro (v, b;) and po = (vo, byo) belongs to the endemic region, p = (D, B,) is the nearest
point to po belonging the straight line Ry = 1 whose coordinates are the following:

a8(A+ Ne) — (b + p)(e + p)

v b+ p ’ e
and b; is a real and positive solution of the following equation:

2b} + (—2bjo + 6) b} + (—6bjojt + 614%) b? + at1by + g = 0, (77)
where

og = —2a*8%(A+ Ne)? — 2bjop® + 2a8(A + Ne)u(vg + € + ), (78)

o1 = —6biou® + 23 + 2a8(A + Ne)(vg + € + ). (79)

Case V: Ry = Ry (v, N). When py = (vg, Np) is in the endemic region, the point p = (z’), N) is given by:
ad(A+ Ne)— (by + p)e + )

v = R 80
b+ (80)

. No (b?a?A8%€ + 2by + p?) + ade(vo + € + ) (b + 1) (81)

- @52€2 + (b + 7 '
Case VI: Ry = Ro (v, A). If po = (vo, Ao) then p = (0, A) is defined as follows:
S(A+ Ne) — (b

l_):a( + Ne) (I+M)(€+ll)’ (82)
b[ + 1

i Ao(by + 1) + a8(—aNse + by(vo + € + p) + pu(vo + € + p)) (83)

a282 + (by + p)?
Case VII: Ry = Rg (v, j¢). Finally, if R = Ro (v, ) and pp = (vo, (o) is in the endemic zone, it is easy to check that the
nearest point to py over Ry = 1 is given by p = (v, jt) such that:

a8(A+ Ne) — (b + )€ + 1)

v= by + jt ’ (84
and j¢ is a real and positive solution of
4% + (12b; 4 2vg 4 2€ — 2u0) i* + apfi® + a1ji + 2o = 0, (85)
where
o = 2b}vg + 2bje — 2ab?8(A + Ne) + 2abyvpd(A + Ne) + 2ab;5e(A + Ne)
—2a*8*(A+ Ne)? — 2b} g (86)

a1 = 4b? + 6b?vy + 6b7e — 2ab;8(A + Ne) 4 2avo5(A + Ne)
+2a8e(A+ Ne) — 6b? juo (87)
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oy = 12b7 + 6bjvg + 6bje — 6by 0 (88)

In order to decide which is the most effective security countermeasure when two parameters can be varied, one has
to determine the pair of coefficients that minimizes the value of the distance d (p, p).

5. Conclusions

A novel model to simulate the propagation of a specimen of malware on a wireless sensor network is presented
and analyzed. It is a compartmental model considering susceptible, infectious, carrier and recovered devices. Moreover,
population dynamics is considered (new sensor devices can be deployed in the sensor environment and also sensors are
removed at every step of time due to the battery powers run out. Moreover, vaccination and reinfected processes are taken
into account.) The infection process depends on the contact between susceptible and infectious -not carrier- devices.

The basic reproductive number is computed and it does not depends on the carrier recovery rate. This threshold
influences on both the local and global stabilities of the equilibrium points. An analysis of Ry allows us to obtain some
control measures when all epidemiological coefficients are fixed with the exception of one or two. The most important
and realistic security countermeasures when one can change only one parameter are the following:

o Strength the awareness and knowledge about security of the WSN users.
o Employment of efficient detection models and recovery tools.

When two epidemiological coefficients can be modified, one has to determine in each case (considering the numeric
specific values assigned in this case) the pair of parameters that minimizes certain distance.

The great majority of theoretical models to simulate malware that has been proposed during the last years deal with
generic computer networks and very few are devoted to the study of malicious code spread over wireless sensor networks.
In fact, to our knowledge, only one WSN malware epidemic model has been proposed considering population dynamics
(see [30]). In this model susceptible, infectious, quarantined and recovered sensors are considered and vaccination process
is not taken into account; as a consequence the basic reproductive number associated to this model does not depend on
such coefficients or the total number of devices. On the contrary, with the purpose to design a more realistic model, in
our proposed model we do not take into account the quarantined class -since it is difficult to consider such compartment
in an WSN environment- but we include the carrier sensors (those sensors that are not targeted by malware but are
effectively deployed in the sensor area). Moreover, in our model a vaccination process is also considered which reflects
the awareness of WSN users.

Future work aimed at designing a networked model based on that proposed in this work where different contact
topologies could be considered (scale-free networks, small-world networks, etc.)
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