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1. Introduction

Malware is one of the most important tools used in cybersecurity attacks, and this fact has been reaffirmed in the
last years with the appearance of zero-days attacks and advanced persistent threats [1,2]. The risks associated to these
cyberattacks in the new paradigms as the Internet of Things [3,4] and Industry 4.0 [5,6] are enormous and, consequently,
this threat must be properly managed.

Although the scientific approach to combat malware is mainly focused on the design of efficient methods to detect all
types of malware [7], the design and computational implementation of mathematical models to simulate its spreading is
also a very important task. These models allow us not only to predict the behavior of the evolution of malware, but also to
study the efficacy of different possible countermeasures. As a consequence, these analytical tools could play a very important
role in the forensic computing and cybercrime investigation.

The great majority of the mathematical models for malware spreading that have been proposed in the scientific literature
are compartmental, global, complete and deterministic [8,9].

They are compartmental models since the devices are divided into some types (or compartments) according to their
status: susceptible (S), exposed (E), infectious (I), recovered (R), vaccinated (V), immunized (P), damaged (D) etc. As a conse-
quence, and considering the dynamics between these compartments, we obtain different types of models: SI [10], SIR [11],
SEIR [12], SEIRS [13-15], SVEIR [16,17], SIRP [18], SED [19], etc.

They are global models since each compartment is considered as an unique entity with their own characteristics. More-
over, the dynamics of resources used by these compartments are explicitly represented in the equations of the model. In
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Fig. 1. Flow diagram representing the dynamics of the SCIRS model.

contrast, individual-based models consider each device as an entity taking into account their particular characteristics and
local interactions [20].

They can be considered as complete models since it is supposed that the contact topology is defined by means of a
complete graph; that is, all devices are in contact with each other all time. On the other hand, network models (based on,
for example, scale-free networks) have also recently been proposed [21,22].

Finally, they are deterministic models based on a system of ordinary differential equations. In fact, the temporal evolution
of each compartment is ruled by one of these differential equations. The relevance of these models lies on the fact that the
qualitative theory of ordinary differential equations can be used to study the behavior and dynamics of their solutions. On
the other hand, stochastic models have also been proposed [23].

A detailed analysis of these models based on ordinary differential equations reveals that:

(1) As far as we know, no proposed model considers in its dynamics the devices that can be infected by the malware but
cannot be damaged, although they can act as transmission vectors (i.e. they can transmit the infection to susceptible de-
vices). This new type is constituted by the devices whose operative systems is not targeted by the malware (for example,
iOS devices for Android malware), and they can be denoted as carrier devices (C).

(2) The analytical study of the basic reproductive number, Ry, (the main threshold parameter which indicates whether a
malware outbreak can become epidemic) is basic in order to design efficient control strategies. As far as we know, there
is not any profound effort to analyze Ry based on the epidemiological parameters on which depends. Actually, its study
usually depends on an only parameter at most.

Consequently, it is of interest to design new mathematical models that overcome the last mentioned drawbacks. In this
sense, the main goal of this work is to proposed a novel mathematical model to simulate malware spreading considering
the new class of carrier devices. Moreover, a detailed analysis of the basic reproductive number will be performed in order
to obtain efficient control measures that involve several parameters.

The rest of the paper is organized as follows: In Section 2 a detailed description of the new mathematical model is
presented; the stability analysis of the equilibrium points is introduced in Section 3; in Section 4 the analysis of the control
measures is given, and finally, the conclusions are presented in Section 5.

2. New mathematical model to simulate malware propagation
2.1. Description of the model

The model proposed in this work is a compartmental model where the population is divided into four classes: susceptible
S(t), carrier C(t), infectious I(t), and recovered R(t). Specifically, it is a SCIRS model (i.e., reinfection is considered) with
vaccination process and without population dynamics: S(t) + I(t) + C(t) + R(t) = N > 0. The dynamics of the model is ruled
by means of the following assumptions (see Fig. 1):

Both, carriers and infectious devices, can infect susceptible devices at the same transmission rate a. In this sense, let §
be the fraction of susceptible devices endowed with the targeted operative system. As a consequence §aS(t)(C(t) +I(t))
stands for the new infectious devices at every step of time. Similarly, (1 —8)aS(t)(C(t) + I(t)) represents the number of
new carrier devices at t.

Susceptible devices can acquire temporal immunity to malware attack according to the vaccination rate v. As a conse-
quence, vS(t) is the number of susceptible devices moved to recovered class at time t.

If security software successfully detects and removes the malware, carriers and infectious devices acquire temporal im-
munity at rates b¢ and by, respectively. Thus, bc((t) and bjI(t) stand for the number of new recovered devices from carrier
and infectious compartments respectively.

Finally, recover devices lose their temporal immunity and turn back to be susceptible compartment at recovery rate €.
Consequently, €R(t) represents the new susceptible devices at time t.
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Considering these assumptions, the dynamics of the model is governed by means of the following system of ordinary
differential equations:

ds(t)

g = RO —aSO ) +C(0)) —vS(0). (1)
% =a(1—=38)S(t)(I(t) +C(t)) —bcC(t), (2)
% = adS(t)(I(t) +C(t)) — bi(), 3)
% = beC(t) + bil(t) + vS(t) — €R(t). (4)

2.2. Existence and uniqueness of the solutions of the model

As S(t) + C(t) +I(t) + R(t) = N the system (1)-(4) can be written as follows:

% = —aS(t)I(t) + C(t)) —vS(t) + (N = S(t) — C(t) — I(t)). "
% =a(1-8)S(t)U(t) +C(t)) — bcC(t), -
% = adS(t)(I(t) + C(t)) — bi(t). ”

The feasible region for this system is £2 = {(5.C,I) e R : 0 <S+C+1 < N}, where its boundary 0£2 is delimited by four
faces:

F={GSChHeRf:S+C+I=Nwith 0<5CI<N}, (8)
E ={(5CI) eR}f:S=0with C+I <N}, 9)
E={(CIeRf:C=0with S+I<N}, (10)
F={(S.CI)eRf:1=0withS+C<N}, (11)

such that their outer normal vectors are, respectively, 1y = (1,1,1), 1y = (-1,0,0), n3 = (0,—-1,0), and iy = (0,0,-1). A
simple computation shows that:

(%, ‘:Tf’ %)ﬁ oily = —bcC— bl — S <0, (12)
(%,Z—f,%)ﬁ.ﬁz= (C+I1-N)e <0, (13)
(%,Z—f,%)ﬁ-ﬁ; —alS(§-1) <0, (14)
(g, ‘:Tf’ %)a oil; = —aCSs < 0. (15)

Now, §2 is compact and invariant since §2 is closed -which implies £2 = §2- [10,24]. As a consequence, the solutions of the
system (5)-(7) initiating in the feasible region £2, exist and are unique for all t>0 [25].
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2.3. Equilibrium points

The equilibrium points of the system (1)-(4) can be obtained by solving the following system of non-linear equations:

0= —aS(t)I(t) +C(t)) —vS(t) + (N —S(t) —C(t) —I(t)), (16)

0 =a(1-38)St)I(t) +C(t)) —bcC(t), (17)

0 = adS(t)(I(t) + C(t)) — bil(t). (18)
It is easy to check that there are two solutions: the disease-free equilibrium point

Fo = (50.Colo) = (5. 0.0), (19)

and the endemic equilibrium point

v rox e pev [ bcbr bi(1=8)L bcSL

E —(S,C,I)—(T,T,]T ) (20)
where

] = ab, + abc8 — ab,B, (21)

K = bi(1 = 8)€ + bc(by + 8¢), (22)

L = abjN(1 —8)€ + bc(aNSe — by (v +€)). (23)
Note that the endemic solution only exists if

ﬂN(b[ +bc8 - b18)€ o1 (24)

beb (v +¢€)
2.4. Basic reproductive number

As is well-known, the basic reproductive number, Rg, is an important epidemiological threshold parameter whose nu-
meric value characterizes the behavior of the solutions of the system. The next-generation matrix method [26] is used to
calculate it. Through certain computations we obtain that the next-generation matrix at the disease-free equilibrium point
is G=F-V~1, where:

aN(1-8)c  aN(1-8)¢ be 0
_ (%3 (%3 _
=1 awe ave |’ V‘(o b,)' (25)
v+€ V+€

Consequently, the spectral radius of G is the basic reproductive number:

Ry = aN(b, +bc8 - bI(S)E
0= beby (v +€) ’

Note that the condition for the existence of the endemic equilibrium point is, precisely, that Ry > 1.
3. Study of the stability
3.1. Local stability of the equilibrium points

The following results hold dealing with the local stability of the equilibrium points:

Theorem 1. The disease-free equilibrium point Eq = (,ﬁr—"’é 0, 0) is locally asymptotically stable if Ry < 1.

Proof. The disease-free equilibrium point is locally asymptotically stable if the eigenvalues of the matrix F—V and
;T"S(—VS +€(N - S)) have all negative real parts (see [27]). Note that the eigenvalues of

aN(-d) _ py aN(1-8)¢
F_V= [ C Ute (27)

aNde aNde b
(23 vt I
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are
b?(1 - 8) + b28 + bibc(1 — Ro) £ VU (28)
2b;(—=1+68) — 2bcs ’
where
U = (b — bc)* (by(~1+8) — bcd)’
+2b;y(b; — bc)bc (=1 + 28) (b (=1 + 8) — bc8)Ro + b?b2R2. (29)

A simple computation shows that these eigenvalues have negative real part if 1 —Ro > 0, that is, if Ry < 1. On the other hand
A (~vS+€e(N=S)) = —v—e¢ <0, thus finished. [

Theorem 2. The endemic equilibrium point E* is locally asymptotically stable if Rg > 1.

Proof. The Routh-Hurwitz criterion [28] will be applied to show that the endemic equilibrium E* is locally asymptotically
stable for Ry > 1. Let P(A) = pgA® + p1A? + po + p3 be the characteristic polynomial of the Jacobian matrix of system (5)-
(7) at endemic-free equilibrium point, then:

po=1, (30)
a(—bcbiK + bjL + bcLd — biL8) + JK(bc + by + v + €)
p1= K , (31)
p2=b,(v+€)+bc(b,+v+€) (32)
a(b%(L —Kb))é —biL(5 —1)(by +¢€))
+
JK
a(bc(bZK(8 — 1) + L8e + bi(L — K(v +€))))
+ s
JK
ps =L (33)

Therefore, by certain calculations we get pg >0, p; >0, p3 >0, and p1p, — p3 > 0, for Ry > 1. Consequently, the claimed result
follows from Routh-Hurwitz criterion. [J

3.2. Global stability of the equilibrium points

3.2.1. Global stability of the disease-free equilibrium point
In this section we will demonstrate the global stability of the disease-free equilibrium point Eg in §2. The following result
holds:

Theorem 3. The disease-free equilibrium Eg is globally asymptotically stable if Ry < 1.

Proof. We will apply the LaSalle invariance principle [29] to proof the global stability. According to (5) we have
S<eN-SW+e), (34)
X =eN-X(v+e), (35)

where X is an auxiliary variable. Using the Comparison Theorem [30] we have that X(t) is an upper solution of S(t), that is,
X(t)> S(t) for all t> 0. Since lim;_, o, X(t) = (eN)/(v+ €), then

s< <N (36)
v+e€
as t— oo.
Now, if we consider the Lyapunov function V = b;C + b¢l, from inequality (36), we obtain
dv
T bi((1 = 8)SU+C) — bcC) + be(8SU+C) — byl)

= (bi(1 — 8)S + bcdS — bibc)C + (by(1 — 8)S + bc8S — bibe)l
< bibc(Ro — 1)C + bibc(Ro — 1)1 (37)
Note that 9/ <0 holds for Ry <1 and (S,C, 1) € £2. Furthermore, % = 0 if and only if (C.I) = (0,0) or S= (éN)/(V+¢€)
and Rg = 1. Here, (S, I, C)— Eg as t— oo. Then, the maximum invariant set in {(S,C,I) € §2 : lth‘t/ =0} is the singleton Ej.

Finally, the claimed result follows from LaSalle invariance principle [29, Chapter 2, Theorem 6.4] and the explicit expression
of the Lyapunov function defined. O
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3.2.2. Global stability of epidemic equilibrium
Now we will demonstrate the global stability of the endemic equilibrium point E* in int(§2) under certain assumptions.
Applying the geometrical approach we obtain the following results:

Theorem 4. The system (5)-(7) is uniformly persistent for Ry > 1.
Proof. It is easy to check that the system (5)-(7) satisfies the following statements:

o As the vector field of the system is subtangential to §2 for all point of 32, then £2 is closed and invariant [24].

o If x(t, X) is a solution of the system initiating in xy = (S(0),C(0),1(0)), and M is the set of all points belonging to 952
such that the vector field of the system is tangential to §2, then M = {xg € 082 : x(t,xg) € 082 for all t > 0} is (C,I) =
(0, 0). Here, (S, I, C)— E* as t— oo. Furthermore, E; is isolated as Rg>1 (see Theorem 2) and acyclic. Then, Ny is the
singleton E*.

Applying [31, Theorem 4.3] we obtain the claimed result. [

Note that the uniformly persistence of the model implies the existence of an absorbent compact in int(§2) [32]. More-
over, int(£2) is a simply connected set and E* is the only equilibrium point in int(£2).

Theorem 5. Under the assumptions
asN

C2
—v—a(]—8)N—2ac+v+6(8+2)+6<0, (38)
b —a(1-5)S + ONE L 1oN — deymax{(1 - 5).5) <0 (39)
—1—(—)N vre (2N —4c) (1-9),6} <0,

where c is the persistence constant, the endemic equilibrium point E* is globally asymptotically stable if Ry > 1 with respect to
solutions of (5)-(7) initiating in int(£2).

Proof. The explicit expression of the second additive compound matrix of Jacobian matrix is

~bc—v—-a(l+C-S(1-68))—¢€ as(1-39) aS+e€
J2 = ass —bj—a(C+I)—v+aSs —e€ —aS—¢ . (40)
—a(l+C)s aC+DH(1-96) —bc — by +aS
If
.. (S S S
A=dlag(Ev E'E) (41)
is the diagonal matrix, and Ay stands for the directional derivative of A along (S, C, I), we obtain:
1dS 1dC 1dS 1dC 1dS 1dC
. 71: i —_—— e —e—— —e— e —— —— e — ——
Ar-A dlag(sm Cdt’Sdt ~ Cdt’ Sdt Cdt)' (42)
Therefore, the matrix B = A;A~! + AJl2IA~1 can be written as follows:
G+b —v—a(l+C-S(1-48))—¢€ as(1-24) as+e€
ass G+bc—a(C+1)—v+aSé—€ —aS—e€], (43)
—a(l+0C)8 a(C+DH(1-96) G+as
where
1dS 1dC
=Sd cd b (44)
According to Martin [33], its Lozinskii measure ((B) associated with a norm ||.|| can be evaluated as follows:
1 (B) = inf{c : D, [|z|| < c||z|| for all solutions of Z =Bz}, (45)

where D, is the right-hand derivative [34,35]. Moreover, if we define the norm of z = (z;,2,,23) as ||z|| = max{||z;|| +
|1z211, |1z3]], it is possible to estimate D, ||z|| through two cases:

e If [|z]| = [lz1]] + l|z2||. then:
1dS I
D+||Z|| = Ea_a(l_S)SE_U_G(I+C)+GS(S+ZGS+€ ||Z|| (46)
o If ||z|| = [|z3]], then:

D, |lz|| < (%% —b—a(1 —8)% +as$ + a(C + 1) max{(1 —8),8})||z||. (47)
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Fig. 2. Evolution of the system to a disease-free steady state.

Taking into account the Eqs. (45)-(47) and the assumptions (38) and (39), we have
1ds
Sdt

with @ > 0. Then, there exists a constant T> 0 such that t > T implies I(t) < e®*/2) and, thus

w(B) < 0, (48)

1 6
7 logS(t) < 5 (49)
along each solution of system (5)-(7) in int(§2). For big enough t, we have
t
g, = limsup sup 1/ n(B)dt < —19 <0, (50)
t>c0 (5(0).C(0).1(0))<int(2) £ Jo 2
thus finishing applying the geometrical approach [36]. O

3.3. Numerical simulations

Suppose that there are 1001 devices in the network such that initially all devices are susceptible with the exception
of only one that is infectious: S(0) = 1000, 1(0) = 1,C(0) = R(0) = 0. Moreover, set a = 0.0002, € = 0.004, bc = 0.004, b; =
0.03 and § = 0.9. Moreover, the time is measured in hours and the simulation period comprises the first two weeks (336
hours) after the onset of the first infectious device.

3.3.1. Disease-free steady state
If we suppose that v = 0.05 then Ry~ 0’81563 <1 and consequently the number of infected computers does not increase.
This behavior is shown in Fig. 2. Moreover, the system reaches the following disease-free steady state:

Eo = (So.Co. Io. Ro) ~ (74'1481,0. 0, 926'852). (51)

3.3.2. Endemic steady state
On the other hand, if we set v = 0.01 then Ry~ 3146 > 1 and consequently the outbreak becomes epidemic as it is shown
in Fig. 3. Furthermore, the endemic steady state is given by the following values:

E*= (S, CI",R) ~ (90’9091, 55’9687, 67'1624, 786’96). (52)
4. Design of efficient control measures

As is mentioned above, the basic reproductive number Ry plays a very important role in the design of efficient control
measures. Specifically, if Ry <1 the malware outbreak dies out and, consequently, the reduction of the numeric value of the
Ro will be the main goal of all control measures. In what follows, we will analyze the basic reproductive number in order
to provide explicit expressions for the control of the malware epidemic.
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Fig. 3. Evolution of the system to an endemic steady state.

4.1. One-parameter analysis

From the explicit expression of the basic reproductive number (26) and taking into account that 0 < a, by, bc, 8, v,€ <1,
we obtain the following:

dRo

_ Ne((1-8)b; +bcd)

da

9Ro
ON

dRy

e

dRo

Ry

ae((1—38)b; + bcd) N

0
bbc(w+e)

bibc(v+€) 0,

adNe

_b,z(v+e) =

dRo _ a(1-8)Ne
dbc

F

Ry
v
dRy
e

_ _aNe((1-48)b; + bcd) -0

bZ(+e€)

aNe (bc — by) {< 0, ifbc<by

blbc(v+6) >0, ifbc>b1’

s

blbc(U + 6)2

_ aNv((1 —(g)b’-‘rbc(g) -0

bibc(v+ 6)2

(53)

(54)

(55)

(56)

(57)

(58)

(59)

From these results we can obtain that Ry decreases as a, N or € decreases (supposing that the rest of parameters remain
constant). On the other hand, Ry decreases as b, bc and v increases (supposing that the rest of parameters remain constant).
Furthermore, Ry decreases if § increases when bc <bj, or if § decreases when bc> b;. As a consequence, in absence of
additional measures, the following reduce the impact of the malware epidemic:

« Decreasing the transmission rate or the rate of lose of immunity by increasing the security knowledge and awareness of
devices’ users.
« Increasing the recovery rates and the vaccination rate by using efficient anti-virus software.

The rest of control measures obtained from the above implies the control of the population (decreasing the total number
of devices N and increasing/decreasing the fraction of devices with a non-targeted operative system §), and this is not

realistic.
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Fig. 4. Graphic scheme for the optimization of control measures based on a and v.

4.2. Two-parameter analysis

Now, we will study the basic reproductive number when all parameters remain constant with the exception of two. For
the sake of simplicity we will study the pairs (v, a) and (v, €).

If we suppose that all parameters remain constant with the exception of a and v, the Ry can be understood as a function
of two variables: Ry = Ry(a, v). Set p = (vg, ap) the initial point in the va-plane such that it is placed in the endemic region
defined Ry > 1 (see Fig. 4).

The optimal trajectory to the disease-free region is given by the line connecting the points p and p (which is perpendic-
ular to the line Ry = 1). A simple computations shows that:

. Ao + a?vg — € ag + (Vo +€) _D+e
p=(v,a)=< a?+1 ’ az+1 =\ ) (60)

where

(1 —=368)b; + 8bc
bibc ’

As a consequence the best strategy to reduce Ry modifying only the parameters a and v is to increase v and decrease a such

that a = €, for each value of the modified v.

Similarly, if Ry = Ro(v, €) and p = (v, €g) belongs to the endemic region, the nearest point to p of the straight line Ry = 1
is given by:

a=eN (61)

S oo (a—1)(avg — Vo + €) aVy—Vo+ € 5 v

== s aaia) = (a1 (62)
where

o = gy =8)bi +dbc. (63)

bibc

Consequently the better way to reduce Ry considering only the parameters v and € is to increase v and decrease € such that
€ = 7% for each value of the modified v.

5. Conclusions

In this work a novel mathematical model to simulate malware spreading has been introduced. It is a compartmental
model where the new class of carrier devices is considered (apart from susceptible, infectious and recovered). This new
compartment is constituted by those devices that can be reached by the malware but they cannot be damaged although
they can act as transmission vectors. Consequently, the incidence of the model depends both on infectious and carrier
devices.

This additional type plays an important role since the temporal immunity rate for carriers and the fraction of the total
population that belongs to carrier compartment appear in the expression of the basic reproductive number Rj.

The model presented is global and deterministic and its dynamics is governed by means of a system of ordinary dif-
ferential equations. As a consequence, the qualitative theory can be used to study the stability of the disease-free and the
endemic equilibrium points. In this sense, it is shown that the disease-free steady state is locally and globally asymptoti-
cally stable if Ry < 1. On the other hand, the local and global stability of the endemic equilibrium point not only depends
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on the numeric value of the Ry (in fact, it is locally and globally asymptotically stable when Ry > 1) but also on other two
conditions involving the parameters of the system.

Finally, an analytical study of the basic reproductive number yields mathematical expressions for the efficient control
measures depending on only one epidemic parameter and two epidemic parameters.
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