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HIGHLIGHTS

e A new mathematical model for computer worm propagation is proposed.
e Itis an improvement of the model due to Toutonji et al.

e A more realistic basic reproductive number, Ry, has been derived.

o Efficient control strategies are stated from the expression of the Rg.
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partments: susceptible, exposed, infectious, recovered, etc. The main goal of this work is
to propose an improved SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible)

ﬁzﬂm\gﬁsbmpagaﬁon mathematical model to simulate computer worm propagation. It is a continuous model
Mathematical model whose dynamic is ruled by means of a system of ordinary differential equations. It considers
Stability analysis more realistic parameters related to the propagation; in fact, a modified incidence rate
Computer worms has been used. Moreover, the equilibrium points are computed and their local and global
Basic reproductive number stability analyses are studied. From the explicit expression of the basic reproductive

number, efficient control measures are also obtained.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Malware is software created to carry out activities in a device (computer, laptop, smartphone, tablet, etc.) without the
consent of its owner. The consequences of malware affect both physical materials and the logical structure of devices. In
fact, malware is one of the most important security threats and the estimation of the cost of their malicious effects exceeds

millions of dollars, so this could cause high economic and social impacts [1].

Consequently it is very important not only to detect the presence of malware in a network, but also to simulate its
propagation. The majority of efforts in this subject are associated with development of techniques to detect malware [2],
whereas the design of mathematical models to simulate malware propagation has received less attention [3]. The importance
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of these models reside in both the obtaining of relevant information about the behavior of malware and the determination
of the efficiency of control measures.

The great majority of mathematical models to simulate malware spreading are global and deterministic [3] and they are
usually based on systems of ordinary differential equations [4]; nevertheless, also interesting individual-based proposals
based on cellular automata has appeared [5]. Furthermore, they are also compartmental models since the population of
devices are classified into several types according to the relationship with the malware. Thus, we can consider among other
types, SEIRS models where susceptible, exposed, infectious and recovered devices are taken into account.

The susceptible devices are those devices that have not been infected by the malware. Exposed devices are those that have
been successfully infected but the malware remains latent (that is, it cannot perform neither its payload nor the spreading
process). Infectious devices are those exposed devices where the malware is activated and ready to propagate, and finally,
recovered devices are those infected devices where the malware has been detected and successfully removed. Note that
when the malware reaches a susceptible device, it becomes exposed. The exposed devices change into infectious when the
malware is activated (the malicious code is ready to perform its payload and/or to propagate). Infectious or exposed devices
become recovered when the malware is successfully detected and an efficient recovery process removes it from the device.
Furthermore, also susceptible devices can change into recovered when they are supplied with adequate antivirus software.
Finally, some recovered devices become susceptible again after a temporary immunity period.

A few works proposing SEIRS models have appeared in the literature (see [6-9]). In [6] Hosseini et al. proposed a discrete-
time SEIRS model to study the dynamical behavior of malware propagation in scale-free networks considering software
diversity. Mishra and Keshri [7] introduced a SEIRS model considering vaccinated devices to simulate malware spreading in
a wireless sensor network, and Mishra and Pandey proposed an e-epidemic SEIRS model for the transmission of computer
worms in computer network through vertical transmission [8]. Nevertheless, our work is focused in the model due to
Toutonji et al. [9]. The importance of this model is that it considers accurate positions for dysfunctional hosts and their
replacements in state transition.

Although this is an influential model, we have detected some drawbacks and consequently we have set as the main goal of
this work its improvement. Specifically, in this paper an improved model is introduced and the local and global stabilities in
both, the worm-free equilibrium state and the worm-endemic equilibrium state, are derived in detail. Furthermore, efficient
control strategies are also proposed taking into account the explicit expression of the basic reproductive number obtained.

The rest of the paper is organized as follows: in Section 2 the model due to Toutonji et al. [9] is revisited; its critical analysis
and the mathematical description of the new model is shown in Section 3; Section 4 is devoted to the stability analysis of the
proposed model, and some control strategies are studied in Section 5. Finally, the conclusions and further work is presented
in Section 6.

2. The model proposed by Toutonji, Yoo and Park

As was mentioned above, the model proposed by O.A. Toutonji, S.M. Yoo and M.Y. Park [9] is a SEIRS model that takes into
consideration security countermeasures in order to prevent and protect from computer worms, and the effect of adjusting
them on the exposed and infectious compartments: in this model the abnormal functioning of devices occurs in the infectious
state, and the hosts replaced are fully up-to-date with the security countermeasures such that the replacement occurs in the
recovered state.

Specifically the establishment of security countermeasures rules (1) the transition from susceptible to recovered devices
by the rate ¥; > 0, (2) the transition from exposed hosts to recovered by the rate ¢, > 0, and (3) the transition from
infectious to recovered devices by means of the rate y > 0. In addition, these security countermeasures provide temporary
immunity to some hosts and permanent immunity to the rest of devices; in this sense, ¢ > 0 is the transition rate from
recovered devices to susceptible hosts.

On the other hand, all hosts are vulnerable to malware attacks and the force of incident is defined as f = ‘?\,—“ where 8 > 0
stands for the number of incidents per unit of time, @ > 0 is the state transition rate from exposed to infectious host and N
is the total number of devices (that is, «E (t) is the number of attacked hosts moved to the infectious compartment per unit
of time, where E (t) stands for the number of exposed hosts at step of time t).

Finally, & > 0 is the dysfunctional rate and © > 0 is the replacement rate. In this sense, as the total number of hosts N is
considered fixed, the number of replaced hosts, N, must be equal to the number of dysfunctional hosts, 61 (t), where I (t)
is the number of infectious devices at t.

Thus, taking into account the last mentioned considerations and parameters, and setting S (t) and R (t) as the number of
susceptible and recovery devices at step of time t respectively, the system of differential equations that governs the model
is the following:

ds

7 = B S+eR. (1
9 _ frs E 2
7 =B —(a+ i)k, 2)
dI

o = eE- (o 3)
R = uN 4+ y1S + V2E + vl — ¢R, (4)

dt
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where the total number of devices is fixed: N = S (t) + E (t) + 1 (t) + R(t) for every t > 0.
The basic reproductive number associated to this model is

_ apg
W1+ @) (@ +v2)

Moreover, the explicit expressions of both the worm-free equilibrium point Ef* and the worm-endemic equilibrium point E}
are the following:

(5)

Ro

N N
B = (55,55 1. k5) = (2200, 1) -
Yi+¢ Yi+¢
E; = (S.E{. I}, RY)
¢ — L2 (91 — ¢)
- [y b N, ——Ef N —S —E —17|. 7)

Pa a+w2+¢(1+y“ﬁ) v+0
The stability analysis of this model yields the following results [9,10]:
Theorem 1. The worm-free equilibrium point EJ? is locally asymptotically stable and globally asymptotically stable if Ry < 1.
Theorem 2. The worm-endemic equilibrium point E} is locally asymptotically stable if Ry > 1.

Theorem 3. If Ry < 1 and one of the following conditions holds:

(i) Y1 >a+ypandy +y +0 > «,
(i) 12 a+vaand i+ +y +6 > 2a + 9y,

then the worm-endemic equilibrium point E; is globally asymptotically stable.

As a consequence, the following statement also holds in order to prevent the widespread of computer worm:

Corollary 1. To stop the computer worm propagation, the recovery rate associated to the susceptible compartment should satisfy
the following inequality:

w1>¢(aﬁ°‘%—1). (8)

3. The new model

3.1. Critical analysis of the model due to Toutonji et al.

A critical analysis of the model introduced in the last section exhibits some drawbacks that must be overcome in order
to enhance the realism of the model. In what follows, these drawbacks are shown and how to solve them is also introduced.

There are two recovery rates in the original model not related to infectious devices: v/, associated to susceptible devices,
and -, corresponding to exposed devices. Moreover, it is supposed that these two coefficients are different: vy # . As
exposed devices are those infected devices in which the malware is not active (it is in the latent period), the malicious code is
not able to perform its payload and its propagation to other hosts neither [ 11]. Consequently, it is difficult to detect it not only
by human perception but also for malware detection techniques. This is, for example, the case of zero-days malware that
exploit unknown vulnerabilities and, consequently, have unknown signatures. Then, it seems to be reasonable to suppose
that there is no significant difference between the behavior of a susceptible and an exposed device and therefore the numeric
values of 1 and v/, must be very similar: /; ~ v, but also supposing ¥/; < v,. Note that in the original paper (see [9]) the
values considered in the simulations are very different: ¢; = 0.0003 < v, = 2.8.

In the model [9] the population dynamic is considered when the dysfunctional infectious hosts, 61 (t), are replaced and
they are fully up-to-date with security measures, having been replaced in the recovery state. In this sense, the authors
assumed that 6 (t) = uN and consequently I (t) = %N thus I (t) remains constant over the time. Obviously, this is not
a realistic situation so that in the improved model it will not be considered (in fact, the number of replaced dysfunctional
devices will be 61 (t)).

On the other hand, in the model due to Toutonji et al. the incidence (that is, the new infected hosts - exposed in our case
- per unit of time) is defined by

St
FE@®S@) = ﬁN—aE S = /3% (@E (1)) . (9)

This follows the traditional mass action law considering the factors S (t) and E (t), and consequently, the unique devices
capable of transmitting the malware are «E (t), that is, the new infected devices per unit of time (which are the new
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exposed devices per unit of time). Thus, the infectious devices are not involved in the propagation process and their roles are
undervalued. In order to improve this, the incidence will be defined as 51 (t) S (t) in the model proposed in the next section.

3.2. Mathematical description

Considering the reasoning made in the last subsection, the system of ordinary differential equations that rules the
dynamic of the improved model (see Fig. 1) is the following:

s _ ’BSI ¥1S + @R
d ~ N !
dE _ 551 (@ +Y2)E
d N TR (10)
di E—(y+0)I
o WE—
at v
dR
EZ@I+W1S+W2E+V’—¢R
where ¥y ~ ¥, and
N=S@®+E@)+I1®)+R(®). (11)
It is easy to check that the set
2={G,E.I,ReR*:0<S,E,LR<N,S+E+I1+R=N} (12)

is positively invariant with respect to the system (10). Then, we can focus our attention on the following reduced system of
three ordinary differential equations by considering the condition (11):

B oN-Lsi 05— gE— gl

dt N

dE

dr

dl

dt
Finally, note that from the first equation of the system (13) it is:

= %Sl—(a+1ﬂ2)E : (13)

=aE—(y+0)I

ds
ES¢N*(%+¢)S, (14)
and a simple computation shows that:

sy < TUI AN (15)
¢+ Y
and, consequently,
¢N
¢+

tlim S(t) < (16)

4. Stability analysis

The equilibrium points are the solutions of the following system:

0

ON = Bsi— 1 +9)5 — 9E — g

0 §51—(a+¢2>5 - (17)

0

aE — (y +0)

A simple computation shows that there are two solutions: the disease free equilibrium point defined by

N
Ef = (S, ESL 1) = (¢+—¢%,0, 0), (18)
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Fig. 1. Diagram of the improved model.

and the endemic equilibrium point, whose explicit expression is Ef = (S}, E}, I, R}), with:

PELIZLIENY) (9)
0

Ef = %1;‘, (20)

= N(aBop — (a+¥2) (v +0) (¢ + ¥1)) @1)

S B+ P+ (r+0) (@ + V)
Note that, taking into account these expressions, the number of recovered devices of the equilibrium points are:

. _ Ny
Ry = s 22
T g+ (22)
. aBt+@+y+0)yn—Ssy 23

YT a0+ 0+ v+ @ +Y)
In order to compute the basic reproductive number Ry, the Next Generation method [12] is applied to the system (13).
Then:
_Bgr_
Fe= st, F =0, (24)

VE=(a+y2)E,Vi=(y+0)] —ak, (25)
and consequently:
) ) Ve aVey\ !
_ dE  dl JE al
F.vl), = .
( )Ef oF, 0F v, v
OE 31/ g oE al /gy

Bo -1
0 o+ Y 0
<0 ¢+OW1).( —a y+9)

afo Be
=+ @+v)(@+v) F+OH@+y) . (26)
0 0
A simple calculus shows that the basic reproductive number is given by:
- apo . (27)
v +6)(@+v)(@+v2)

Ro

4.1. Stability of the disease-free equilibrium point

The Jacobian matrix at the disease-free equilibrium point Ef* is:

L _ B
¢ — Y ¢ b+

J(E) = 0 v g Tﬁ/j : (28)
1
0 o —y —6
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and, as a simple calculus shows, their eigenvalues are the following:

M= —¢— 1, (29)
AZ:W%/(H%ymu;ﬁi, (30)
A3=w+%\/(a+%y9)z+;fli¢¢- (31)

Note that they are real numbers and it is easy to check that A; < 0,and 1, < 0. Moreover, settingA = o+ y,andB = y +6,

itis:
A+B 1
b=+ 5,/(A — B)? + 4ABRy. (32)

AsA > 0and B > 0 then A3 < 0 if and only if (A — B)?> + 4ABRy < (A + B)?. A simple calculus shows that this inequality
holds iffRy < 1.
Consequently, the following theorem is obtained:

Theorem 4. The disease-free equilibrium point Ef* = (d)—ﬁ% 0,0, %) is locally asymptotically stable iff Ry < 1.

Furthermore, the following result also holds:
Theorem 5. The disease-free equilibrium point Ef* is globally asymptotically stable if Ry < 1.
Proof. Let £ : 2 C R? — R the function defined by £ (E, I) = «F + (a + ) I. It is a Lyapunov function if Ry < 1 because

it satisfies the following properties:

(1) £isa continuously differentiable function.
(2) £ is positive definite sincea > 0, ¥, > 0andE > 0,1 > 0,and £ (Ef*) =0.
(3) £ <0ifRy < 1since taking into account (10) and Eq. (16), we obtain:

L'=a5+(a+w2)i
:a[%SI—(a+wz)Ei|+(a+¢2)[aE—(y+0)1]

ap
= [WS*((M+%)(V+9)]I
N
< [O;V—ﬁd)i% —(a+1ﬂz)(y+9)]1=(Ro—1)(a+¢z)(y+9)1~ (33)

Then the orbital derivative of £ is negative semidefinite if Rp < 1becausea + ¥, > 0,y +6 > 0,and[ > 0.

It is shown that the largest invariant set in {(E,]) € | (E,I) = 0} is a singleton containing the origin. Effectively, if
£ (E,I) = 0then

o . . o
O=£(E,I)=aE+((x+w2)I=[Wﬂsf(a+1#2)(y+9):|1, (34)
and consequently either S = Mz;(ﬂyﬂ or [ = 0. In the first case a simple calculus shows that:

0 ds _7|:(a+1//2(1(y+9) +¢]

1
= — = I — ¢E 1-—|N<O 35
dr vE+o ( RO) <0, (35)
when Ry < 1, which is a contradiction. On the other hand, if| = 0 then0 = % = «F and consequently E = 0, and the origin
is obtained.
Moreover, from (16) lim;— o (S (t), E (t),1(t)) = Ef*, and applying the LaSalle’s invariance principle [13], the disease-
free equilibrium point is globally asymptotically stable if Ry < 1. O
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4.2. Stability of the endemic equilibrium point

Let
_pft(a+y+0)p+(aty+0)) —4 _¢_(V+9)(Ol+1ﬂz)
(y+0)p+aly +0+ )+ (v +6)y: o
J(E) = «B—y —0)— (v +0)@Y2+ V1 (a+ ) —a— (y +6)(a+y2) (36)
(y+0)p+aly +6+¢)+(y +0)¥: o
0 o -y —0

be the Jacobian matrix at the endemic equilibrium point. The explicit expressions of its eigenvalues are too long to be handled
and, consequently, the Routh-Hurwitz criterion [ 14] will be used to study the local stability. In this sense, the characteristic
polynomial of ] (E;) is given by P (x) = pox® + p1x* + p2x + p3, where:

po =1,
d@B+Yila+y+0)+dla+y+0)
Pla+y +0)+aly +60)+ Yoy +6)

[p(P+al(B+y+0)+(y+0))

p=a+ty+0+yo+

¢
aly +0 + @)+ vy +0)+ ¢y +0)
+y1 (@ +aly +0)+(y +07) +efla+y +0)+ava (B+v1+ )],

pr=adp(B—y —0)—(y+0) W1 (¢ +¥2) + V29). (37)

Note that pg > 0,p; > 0and p, > 0 since the parameters of the model are positive and all terms of the expressions of
Do, D1, P2 are also positive. Moreover, a simple calculus shows that p,p; — p3 > 0 and, consequently p,p; > p3 = p3po.
Finally,asps = (Ro — 1) (@ +v¥2) (y +0) (Y1 +¢),anda + ¢, > 0,y +60 > 0,v%1 + ¢ > 0, then p; > 0if and only if
Rg — 1 > 0. As a consequence the following result holds:

D2 =

Theorem 6. The endemic equilibrium point E; is locally and asymptotically stable iff Ry > 1.

Now, the global stability of the endemic equilibrium point will be studied taking into account the classic geometric
approach.

Lemma 1. If Ry > 1 the system (13) is uniformly persistent.

Proof. Taking into account that Eji‘ is unstable if Ry > 1and Ef* € 082, from Theorem 4.3 of [ 15] it yields that the system (13)
is uniformly persistent for Ry > 1. O

This result implies the existence of a compact absorbing set in int (§2) and, consequently, the geometric approach can be
used [16]. Thus, the following result holds:

Theorem 7. E} is globally and asymptotically stable in int (£2) if Ry > 1.

Proof. The Jacobian matrix of the system (13) is:

B B
i —0— — —_Zs
N ¢ — Y é N ¢
J= B B , (38)
Ly —o — =s
N a2y
0 o -y —6
and, consequently, its second additive compound matrix is given by:
I N
Bl @+ 4y +v) ES é5+¢
N N N
o — . Bl +O0+9+Y)N i . (39)
N
0 %I —a—y—0—1n
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Set
1 0 0
0 £ 0
A= T , (40)
E
0o 0 -
I
then
0 0 0
a(E+1) pSI
AfA—lz 0 —f+ﬁ+y+9—wz 0 ) (41)
a(E+I)  BSI
0 0 — = 6 —
] + NE +y+ /)
where Ay stands for the directional derivative of A along (S, E, I). A simple computation yields:
_ _ B B
B=AAT 4 AEAT = (01 D12 42
A A Ba1 B (42)
where:
1 N
B“:_ﬂ +(@+o+Y1+v) ’ (43)
N
BSI [ BS I
B, = —, (= -, 44
12 (NE AN +¢ E (44)
oE
Bz] == I B (45)
0
—a(E+1) IS —E)
; + NE é—v1— Y2 -¢
By = . (46)
Bl —a (E+2I) n BSI 2
N I NE ’
It is easy to check that
u(B) < sup{u1 (B11) + 1Bi2ll1, w1 (B22) + [1B21ll1} s (47)

where ||z|| = sup (||lz1], llz2]l + l|z3])) withz = (z1, z2, z3) € R3, 1 is the Lozinskil measure with respect this norm, and 1
is the Lozinskil measure with respect to L; norm.
As a consequence:

Bt @+o+idn+ )N

1 (Br) = N (48)
B = ps ! 49
IBi2llh = W+¢ & (49)
oE
1 (B) = T (50)
B «E+D  BIGS—E) Bl aE+20)  BSI
\|B21||1_max{— ] + NE +N*W1*W2*¢»*f+ﬁ*2'/fz+¢}
«E S
=—W—T+W—W2+max{—1ﬂ1—¢,—01—1ﬂ2+¢}- (51)
Furthermore, the following is obtained:
_E I B
w1 (Bi1) + IBr2llh = FETF N Y1 — ¢, (52)
E/
1 (B2) + [1B21llh = T + max{—y1 — ¢, —a — V2 + ¢}, (53)

and consequently:

u(B)sEf+max{—w1—¢,—a—wz+¢}+sup{o,—%—%}. (54)
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Fig. 2. Evolution of the different compartments of the model when Ry < 1.

Now, suppose that:

(1) ¢ < o+ Y, thenmax{—vy — ¢, —a — Y + ¢} < 0.
(2) £ - £ <0, thensup {0,7% - %} =0.

E N
Therefore u (B) < % — 0 with & > 0. Thus, there exists T > 0 such that fort > T itis % < e%. that is:

1 E(t 6
— log Q < -. (55)
t E(0) 4

Then we have:
1 [t 1 E(t) 1
- n(B)ydt < —-log| —=)—0 < —=6, (56)
t Jo t E(0) 2

and, consequently:
_ — 1 (" 1
q; = lim; sup — n(B)dt < —=6 < 0. (57)

(5(0).E(0).1(0))eint(2) T Jo 2

Asq, < 0, E; is global and asymptotically stable in int (£2) forRy > 1. O

4.3. Numerical analysis

In this section we will perform a numerical integration for two sets of parameters that illustrate the behavior of the model
depending on the value of the basic reproductive number. In both cases, it is assumed that 0 < t < 120, and the total number
of devices is N = 100 with S (0) = 99 and I (0) = 1. Moreover, the numeric values of the coefficients are the following:
o =0.3,8 =0.5,¢; =0.05, ¢, = 0.075,6 = 0.003, and y = 0.05. In the first simulation (see Fig. 2) it is supposed that
the loss of immunity coefficient is ¢ = 0.0005, thus a simple calculus shows that Ry &~ 0.0747 < 1 and the disease-free
steady state is obtained.

On the other hand, in the second simulation, it is considered ¢ = 0.015 and consequently Ry ~ 1.7417 > 1.As a
consequence, the system evolves to the endemic steady state (see Fig. 3).

Note that from Eq. (27), we can obtain

(y +0) (@ +v2) ¥

= . (58)
af —(y +0)(a+1y2)
As a consequence the disease-free steady state is locally and globally asymptotically stable if
0
6 < (y +0) (@ + ¥2) ¥t , (59)
af —(y +0)(«+1y2)
whereas the endemic steady state is locally and globally asymptotically stable if
0
6> (y +0) (e +y2) Y (60)

af =y +0)(@+y2)
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Fig. 3. Dynamic of the model when Ry > 1.

Taking into account the numeric values used in the examples, the transition from the disease-free regimen to the endemic
regimen occurs when ¢ = 0.0076.

5. Control strategies

As is well-known, the basic reproductive number Ry plays an important role in the control of an epidemic: in order to
prevent that a computer worm outbreak becomes an epidemic process, it is mandatory to reduce Ry as necessary. In our case,
this threshold parameter depends on all parameters of the system: the recovery coefficients ¥, ¥, and y, the infection rate
B, the dysfunctional rate 6, the infectious rate «, and loss of immunity rate ¢. Note that, this threshold parameter does not
depend on the total number of devices N.

A simple computation shows that:

R _ Byad >0 (61)
@+ (y+O) W+

3R0 Ol¢

— = >0, (62)
B @ty +0) W1+ 9)

R _ _ LIl <0 (63)
3y @ty O W+

o _ ilidd >0 (64)
3 (a+v) Y+ + )P

B __ Ll <0 (65)
30 @ty O W+

Mo _ _ Llild <0 (66)
v (@+v2) (v +0)W1 +¢)*

R _ apé <o. (67)

W2 @+ vy +0) (W + )

As a consequence, if we consider all variables of Ry constant except only one, the function Ry decreases as the coefficients
«, B, and ¢ decrease or the coefficients y, 8, ¥; and ¥, increase. Then, to reduce the value of Ry it is necessary to reduce the
numeric value of @, 8, and ¢, or to increase the value of y, 6, ¥ and .

In short, from this analysis of the basic reproductive number, the following control measures are obtained to control the
malware outbreak:

(1) Reducing the infectious rate .

(2) Reducing the infection rate 8 by installing efficient anti-virus software.

(3) Reducing the loss of immunity coefficient ¢ by using efficient malware-remove software.

(4) Increasing the recovery rate y by improving the performance of antivirus software.

(5) Increasing the recovery rates 1 and y, by sensitizing users to install security countermeasures.
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Furthermore, Ry < 1 if and only if

apg 3
G +0) @+ @+ )

that is, the malware outbreak does not become epidemic iff

afp < (y+60)@+y)(a+v2). (69)
Sincea <o+ yYrand ¢ < ¢ + ¥y, thenRy < 1if B <y + 6.

1, (68)

6. Conclusions

In this work, a critical analysis of the malware epidemiological model proposed by Toutonji et al. has been performed and
an improved mathematical model has been introduced.

A qualitative study of the proposed new model has been done: the disease-free and the endemic equilibrium points are
derived and the basic reproductive number has been computed. Moreover, the stability of the model has been stated taking
into account such threshold parameter.

In our opinion, the model introduced in this work seems to be more realistic than the early one. Specifically, in the new
model the vector transmission is given by the compartment of infectious devices and the population dynamic paradigm has
been adapted to a more realistic situation.

From the analysis of the basic reproductive number associated to the model, the main efficient security countermeasures
are presented. They include the reduction of the infectious rate, infection rate and the loss of immunity coefficient, and the
increase of the recovery rates. Moreover, it is also obtained that the malware outbreak does not become epidemic if the
portion of infectious devices that are recovered at every step of time is greater than the infection rate.

The basic reproductive number, Ry, associated to the improved model is greater that the basic reproductive number
associated to the model by Toutonji et al., Ro. Specifically, Ry = (y + 6) Ry, where obviously y + 6 < 1. As a consequence,
in the earliest model the threshold parameter was underestimated.

Further work aimed at improving this model by considering the propagation of computer worm over networks consid-
ering different non-linear incident rates. Moreover, a detailed study about the existence of damped oscillations must be
performed.

Acknowledgments

We would like to thank the anonymous referees for their valuable suggestions and comments.

].D. Hernandez Guillén thanks Ministerio de Educacién, Cultura y Deporte (Spain) for her departmental collaboration
grant.

This work has been supported by Ministerio de Economia y Competitividad (Spain) and the European Union through
FEDER funds under grants TIN2014-55325-C2-1-R, TIN2014-55325-C2-2-R and MTM2015-69138-REDT.

References

[1] R.Anderson, C. Barton, R. Bhme, R. Clayton, M.J.G. van Eeten, M. Levi, T. Moore, S. Savage, in: R. Bohme (Ed.), Measuring the Cost of Cybercrime, in: The
Economics of Information Security and Privacy, Springer, Berlin, Heidelberg, 2013, pp. 265-300.
[2] M. Masud, L. Khan, B. Thuraisingham, Data Mining Tools for Malware Detection, CRC Press, Boca Raton, FL, 2012.
[3] V. Karyotis, M.H.R. Khouzami, Malware Diffusion Models for Modern Complex Networks, Morgan Kauffmann, 2016.
[4] A.Martin del Rey, Mathematical modeling of the propagation of malware: A review, Secur. Comm. Netw. 8 (2015) 2561-2579.
[5] N.Sharma, A.K. Gupta, Impact of time delay on the dynamics of SEIR epidemic model using cellular automata, Physica A. 471 (2017) 114-125.
[6] S.Hosseini, M.A. Azgomi, A.T. Rahmani, Malware propagation modeling considering software diversity and immunization, J. Comput. Sci. 13 (2016)
49-67.
[7] B.K.Mishra, N. Keshri, Mathematical model on the transmission of worms in wireless sensor networks, Appl. Math. Model. 37 (2013) 4103-4111.
[8] B.K.Mishra, S.K. Pandey, Dynamic model of worms with vertical transmission in computer network, Appl. Math. Comput. 217 (2011) 8438-8446.
[9] O.A.Toutonji, S.M. Yoo, M. Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model. 36 (2012) 2751-2761.
[10] Y. Yang, Global stability of VEISV propagation modeling for network worm attack, Appl. Math. Model. 39 (2015) 776-780.
[11] M. Mohammed, A.S.K. Pathan, Automatic Defense Aginst Zero-day polymorphic Worms in Communication Networks, Auerbach Publications, CRC
Press, Boca Raton, FL, 2013.
[12] O.Diekmann, J.A.P. Heesterbeek, ].A.]. Metz, On the definition and the computation of the basic reproduction ratio Ry in models for infectious diseases
in heterogeneous populations, J. Math. Biol. 28 (4) (1990) 365-382.
[13] J.P. La Salle, The Stability of Dynamical Systems, in: Regional Conference Series in Applied Mathematics, Vol. 25, Society for Industrial and Applied
Mathematics, Philadelphia, 1976.
[14] A.Hurwitz, Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Math. Ann. 46 (1895) 273-284.
[15] H.L Freedman, S.G. Ruan, M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Differential Equations 6 (4) (1994)
583-600.
[16] M. Li, ].S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal. 27 (4) (1996) 1070-1083.



