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ABSTRACT 

Trichoderma is a fungal genus comprising a large number of species of great interest for 

plant protection and industry. The broad spectrum of lifestyles of the isolates belonging 

to this genus is likely supported by the diversity of their Secondary Metabolites (SMs) 

arsenal. In the present work, we combined genome mining and comparative genomic 

approaches to provide an extensive view of the SMs potential in this genus. Assessment 

of the core-genes and Biosynthetic Gene Clusters (BGCs) involved in SMs biosynthesis 

in the genomes of 21 isolates of 17 Trichoderma species showed that closest phylogenetic 

species tend to have similar SMs inventories, while lifestyle diversity could explain 

differences found among clades. Trichoderma contains a striking number of terpenoid 

synthases (TSs) genes, whose almost half is included in clusters. Characterization based 

on conserved sequence features and phylogenetic analysis with known TS proteins 

revealed the putative functions of 15 groups of prenyl transferases, terpene cyclases and 

chimeric proteins, providing an overview of the diversity of these enzymes in the genus. 

Trichodiene synthases (TRI5)-encoding genes were found in different genomic contexts 

in the non-trichothecene producer species. In particular, tri5 genes from T. gamsii isolates 

are embedded in a 21.3 Kb putative cluster including a transcription factor, some tailoring 

enzymes and a transporter. Since T. gamsii lacks the other TRI genes required for 

trichothecene production, we hypothesize that tri5 might be involved, in this species, in 

the biosynthesis of sesquiterpene/s other than trichothecenes, therefore participating in 

not yet defined metabolic pathways in Trichoderma. The characteristics of the isolate 

T6085 of T. gamsii (Tgam), known both to antagonize Fusarium spp. and to reduce 

Fusarium Head Blight (FHB) on wheat, and for its ability to colonize the rhizosphere and, 

endophytically, the wheat roots, enabled to study the regulation of the TS genes in 

different environments. Overall, oxidative and saline stresses, N starving, and availability 

of C source differentially affected TS genes expression, and results suggest that 

production of indole diterpenes could occur in response to oxidative stress. TS genes 

expression did not change significantly when the fungus was growing on wheat spikes in 

presence/absence of F. graminearum. In contrast, an evident reprogramming of terpene 

biosynthesis seems to take place when the fungus colonizes the roots (on PDA) compared 

to when it grows on PDA alone. Specifically, if we consider the expression of tri5, results 

suggest this gene in T. gamsii has a different type of regulation compared to what is 

known for tri5 of T. brevicompactum. The strong up-regulation of tri5 found when the 

fungus colonizes the wheat roots suggests this gene could have an important role in the 

interaction with the plant. In addition, metabolic profiles of Tgam revealed the absence 

of trichothecene compounds, and the ability of the fungus to produce diterpenes and high 

amounts of pyrones. In summary, we provide i) an extensive view of the SMs potential 

in Trichoderma, ii) a genomic characterization of the TS inventory in the genus, iii) a 

picture of TS gene regulation in Tgam in different environments, iv) a step forward to 

deciphering the regulation of tri5 in Tgam and its relevance in the relation with the plant, 

and v) interesting questions about the biological significance of tri5 in beneficious 

Trichoderma species.   
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RESUMEN 

Trichoderma comprende un amplio número de especies, de gran interés en el manejo de 

enfermedades de las plantas de cultivo y la industria. El amplio rango de estilos de vida 

de estas especies está respaldado por su diversidad de Metabolitos Secundarios (MSs). 

En este trabajo, se ha utilizado una combinación de enfoques de minería genómica y 

genómica comparativa generando una extensa visión sobre el potencial de biosíntesis de 

MSs en Trichoderma. La evaluación del contenido en genes core y clusters de genes 

involucrados en la producción de MSs en 21 cepas de 17 especies de Trichoderma 

muestra que las especies filogenéticamente cercanas tienen arsenales de MSs similares, y 

que las diferencias en los estilos de vida de estas especies podrían explicar las diferencias 

encontradas entre clados. Trichoderma contiene un sorprendente número de terpeno 

sintasas (TSs). La caracterización de estas enzimas, en base a elementos de secuencia 

conservados y análisis filogenético junto con TSs de función conocida, permitió asignar 

funciones putativas a 15 grupos de prenil-transferasas, terpeno ciclasas y proteínas 

quiméricas, proporcionando una visión general de la diversidad de esta familia génica 

dentro del género. Las enzimas trichodieno sintasas (TRI5) se encontraron en distintos 

contextos genómicos en especies no productoras de trichotecenos. En T. gamsii, tri5 se 

encuentra incluido en un cluster de 21.3 kb junto con un factor de transcripción, algunas 

encimas de modificaciones secundarias y un transportador. Dado que T. gamsii carece de 

los genes TRI necesarios para la biosíntesis de trichotecenos, tri5 podría estar involucrado 

en esta especie, en la biosíntesis de sesquiterpeno/s diferentes a los trichotecenos, 

participando así en vias metabólicas aun no definidas en Trichoderma. Las características 

de T. gamsii T6085 (Tgam), antagonista de Fusarium spp. y capaz de controlar la 

Fusariosis de la Espiga (FHB) en trigo, así como de colonizar la rizosfera y endofitar las 

raíces de las plantas de trigo, permitieron estudiar la regulación de los genes TSs en 

diferentes condiciones ambientales. El estrés oxidativo, salino y por baja disponibilidad 

de N, así como la presencia/ausencia de una fuente de C, afectaron diferencialmente la 

expresión de los genes TSs, y los resultados sugieren que la producción de diterpenos de 

indol podría ocurrir en respuesta al estrés oxidativo. La expresión de los genes TSs no 

cambió cuando el hongo crecía en las espigas de trigo en presencia/ausencia de F. 

graminearum. Sin embargo, una evidente reprogramación en la biosíntesis de terpenos 

parece ocurrir cuando el hongo coloniza las raíces de las plantas de trigo. Si se considera 

la expresión de tri5, los resultados sugieren que su regulación sería distinta en T. gamsii 

y T. brevicompactum. La fuerte expresión de tri5 durante la colonización de las raíces 

sugiere que este gen podría tener un papel importante en la interacción del hongo con la 

planta. Por otro lado, los perfiles metabólicos de Tgam revelaron la ausencia de 

trichotecenos, y la habilidad del hongo para producir diterpenos y grandes cantidades de 

pironas. Este trabajo proporciona i) una visión extensa del potencial de biosíntesis de MSs 

en Trichoderma, ii) una caracterización genómica detallada de la diversidad en la familia 

de TSs en Trichoderma, iii) una fotografía de la regulación de las TSs en Tgam en 

diferentes situaciones ambientales, iv) algunas claves sobre la regulación de tri5 en Tgam 

y su relevancia en la relación con la planta, y v) preguntas interesantes sobre el significado 

biológico de tri5 en especies beneficiosas de Trichoderma. 
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RIASSUNTO 

Trichoderma è un genere fungino che comprende un grande numero di specie d’interesse 

per la difesa delle piante e per l’industria. L’ampia varietà degli stili di vita degli isolati 

appartenenti a questo genere è supportata dalla diversità dei Metaboliti Secondari (MSs) 

che sono in grado di produrre. Nel presente lavoro, la combinazione di un approccio di 

genome-mining e di genomica comparata ha permesso di ottenere una visione ampia del 

potenziale biosintetico, in termini di MS, del genere Trichoderma. La valutazione dei 

geni “core” e dei cluster genici coinvolti nella biosintesi dei MSs presenti nei genomi di 

21 isolati appartenenti a 17 specie di Trichoderma, ha rivelato che le specie 

filogeneticamente vicine tendono ad avere un arsenale di MSs simile, mentre la diversità 

dello stile di vita potrebbe spiegare le differenze riscontrate tra i clade. Trichoderma 

contiene una grande quantità di enzimi appartenenti alla classe delle terpene sintasi (TSs), 

la cui caratterizzazione, sulla base delle sequenze conservate e dell’analisi filogenetica 

effettuata su quelle con funzione nota, ha rivelato le funzioni putative di 15 gruppi di 

prenil-transferasi, terpene ciclasi ed enzimi chimerici, fornendo una panoramica della 

diversità di questi enzimi all’interno del genere. Gli enzimi tricodiene sintasi (TRI5) sono 

stati trovati in diversi contesti genomici anche in specie non produttrici di tricoteceni. In 

T. gamsii, tri5 appartiene ad un cluster genico di 21.3 Kb che include un fattore di 

trascrizione, diversi enzimi responsabili di modificazioni secondarie, ed un trasportatore. 

Poiché T. gamsii non presenta altri geni TRI necessari per la biosintesi dei tricoteceni, 

tri5 potrebbe essere coinvolto, in questa specie, nella biosintesi di sesquiterpeni diversi, 

partecipando quindi a vie metaboliche non ancora definite in Trichoderma.  Le 

caratteristiche dell’isolato T6085 di T. gamsii (Tgam), noto sia per antagonizzare 

Fusarium spp. e ridurre l’incidenza della fusariosi sul frumento, che per la sua capacità 

di colonizzare la rizosfera e, endofiticamente, le radici di questa specie vegetale, ha 

permesso di studiare la regolazione dei geni TS in diverse condizioni ambientali. In 

generale, gli stress ossidativi e salini, la bassa disponibilità di N e la presenza/assenza di 

fonti di C, hanno effetti differenziali sull’espressione dei geni TS che, tuttavia, non 

cambia quando il fungo cresce nelle spighe di frumento in presenza/assenza di F. 

graminearum. Un’evidente riprogrammazione nella biosintesi dei terpeni sembra 

verificarsi, invece, quando il fungo colonizza le radici di frumento (su PDA), rispetto a 

quando cresce da solo su mezzo agarizzato. In particolare, si se considera l’espressione 

di tri5, i risultati suggeriscono che in T. gamsii questo gene è regolato diversamente 

rispetto a quanto noto per T. brevicompactum. La forte espressione di tri5 rilevata quando 

il T6085 colonizza le radici di frumento suggerisce che questo gene potrebbe avere un 

ruolo importante nell’interazione con la pianta. Inoltre, i profili metabolici di Tgam 

rivelano l’assenza di tricoteceni e la capacità di questo fungo di produrre diterpeni ed 

un’elevata quantità di pirone. Questo lavoro fornisce: i) una visione ampia del potenziale 

biosintetico dei MSs e; ii) una caratterizzazione delle TSs in Trichoderma; iii) un quadro 

sulla regolazione dei geni TS in Tgam in diverse condizioni ambientali; iv) nuove 

informazioni sulla regolazione di tri5 in Tgam e il suo coinvolgimento nelle interazioni 

tra il fungo e la pianta e; v) lascia aperti alcuni quesiti, meritevoli di indagini, sul 

significato biologico di tri5 in specie benefiche di Trichoderma.   
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1.1 Fungal secondary metabolites (SMs): when secondary actors become the main 

characters  

One of the reasons why fungal secondary metabolites (SMs) generate such a great 

fascination is, perhaps, because they can be conceived as collateral metabolic products 

that, however, have a great impact in organisms’ lifestyle. They are not indispensable for 

survival in optimal conditions, but they define the way by which organisms interact with 

their environment, thus determining their ecological identity. SMs could be defined as 

small accessories that decorate the core toolkit for survival, conferring abilities that allow 

organisms to better adapt to their niches and to colonize new ones. The biological sense 

of SMs origin is not clear, but one hypothesis could be that they originated as the result 

of the recycling of primary metabolism residues, a process where they underwent 

enzymatic modifications. These modifications conferred them new bioactive properties, 

resulting in advantageous skills which evolution has been selecting and shaping for over 

500 million years (Heitman, 2011). 

Humans feel attracted towards the study and discovery of new SMs because most of them 

are powerful bioactive and allelopathic molecules, useful for industry and biomedical 

applications. These low-molecular-weight compounds, sometimes smaller than 3 kDa 

(Keswani et al., 2017), encompass a large number of animal and plant toxins, as well as 

carcinogenic, cytotoxic, immunosuppressive or mutagenic molecules; others instead, 

exert antibacterial, antifungal, antiviral and antitumoral effects or are used as growth 

hormones, food colorants and preservative agents (Keller et al., 2005; Schor and Cox, 

2018; Linnakoski et al., 2018; Enespa and Chandra, 2019). 

In this context, fungi are well known to be the largest source of SMs (Enespa and 

Chandra, 2019). Fungi constitute a hugely diverse group, highly adapted to colonize and 

survive in any environment, and their evolutionary success might be, at least in part, due 

to the extensive and versatile repertoire of SMs they possess (Sarrocco, 2016).  

 

1.1.1. Broad spectrum of functions 

Production of SMs is highly susceptible to ambiental changes, and different biosynthetic 

replies can occur to overcome these challenges. Inside the cell, SMs are able to interact 

with proteins, nucleic acids and cellular membranes (Wink and Schimmer, 2018), 
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triggering molecular responses that enable fungi to cover their physiological demands. 

Nutritional status, mostly nitrogen, carbon and metals availability, temperature, pH, light 

and redox balance are known to induce or repress SMs synthesis in fungi (Keller, 2018). 

SMs production is dependent on the life stage of the fungus and it is intimately associated 

to the transitions occurring between development and differentiation programs. 

Formation of reproductive, resistance and other specialized structures from hyphae 

involves reprogramming in SMs production, like sporogenic factors, pigments and 

mycotoxins (Calvo et al., 2002; Keller, 2018). In addition, certain SMs (such as melanin) 

accumulate on the external layers surrounding these structures, enabling their protection 

from UV and oxidative damage or long-term conservation, and suggesting a possible role 

as chemical shields for escaping from fungivores (Bayram and Braus, 2012; Rohlfs, 

2015). 

Nevertheless, the most sophisticated feature of SMs is their ability to act as signalling 

elements, giving rise to molecular dialogues with the environment, establishing 

competition or cooperation interactions between fungi that produce them and the 

surrounding living organisms. 

In order to guarantee the survival of the own colony, an exquisite cell-to-cell 

communication has evolved in fungi to improve the adaptation to local environmental 

changes. This communication is also mediated by SMs, which are responsible of 

triggering reproduction, conidiation, competence or secretion of virulence factors 

(Mehmood et al., 2019). For example, oxylipins are fatty acid-derived molecules that 

respond to cell density, regulating sexual-asexual reproduction switches, mycotoxin 

release and plant host colonization in Aspergilli (Tsitsigiannis et al., 2006; Brown et al., 

2009). 

Fungi have to maintain their niches, facing with competitors and predators and ensuring 

enough space to grow and suitable nutrient uptake. SMs with antimicrobial activity enable 

fungi to succeed by impairing or inhibiting the growth and development of other fungi, 

bacteria, nematodes, insects or fungivores, or even killing them (Künzler, 2018). For 

example, production of the cyclic depsipeptides enniatins A1 and B1 from the endophyte 

Fusarium tricinctum are induced in presence of Bacillus subtilis and are effective 

antibiotics against several bacterial species (Ola et al., 2013). An intrinsic characteristic 

of SMs is that their effects are often gradient-dependent, being able to act as molecular 
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messengers that activate/repress certain physiological processes or instead, as mere 

molecules that kill or constrain the growth of other organisms at higher concentrations, 

as shown for phenazine in A. fumigatus (Zheng et al., 2015). In the same way, SMs with 

antimicrobial activity can act as chemo-attractants or promote the growth of other 

microbes, depending on the range of species present in the environment (Macheleidt et 

al., 2016). SMs are key mediators in modulating symbiotic associations between fungi 

and other organisms. SM-mediated signalling enables, for example, nutrient exchange, 

joint host-colonization or the development of pathogenic alliances that improve the 

ecological fitness of both partners (Schelarch and Hertweck, 2018). 

A vast group of SMs of special interest are mycotoxins, compounds produced by fungi 

that are harmful for humans and their livestock causing enormous harvest loses. In some 

producer fungi, these toxic compounds are synthesized as biocides, and play a crucial role 

in fungus-plant/animal and fungus-microbe interactions. Some mycotoxins are able to 

disrupt quorum sensing signals in competing bacteria, preventing the release of bacterial-

derived antifungal compounds and, in contrast, they can promote the formation of mixed 

biofilms leading to beneficial associations with bacteria (Venkatesh and Keller, 2019). In 

addition, mycotoxins from one species can modulate the expression of genes involved in 

the biosynthesis of mycotoxins from other species, leading to a delicate crosstalk that 

determines the antagonistic relationships between fungi (Malmierca et al., 2016). 

Nonetheless, the most remarkable feature of mycotoxins is that they contribute to 

pathogenicity and virulence of fungi, being able to subvert or suppress host defence 

responses, thus promoting the successful colonization and the establishment of infection 

in both animals and plant hosts (Susca et al., 2017).  

Probably, one of the most complex language in which fungal SMs are important players 

is that involved in communication with plants. Fungi have evolved the ability to secrete 

certain SMs that enhance plant growth and/or elicit its defense responses, including 

hormones. Some fungal SMs are really excellent mimickers of phytohormones 

(Pusztahelyi et al., 2015), boosting the plant vigour or protecting it from pathogens or 

abiotic stresses, while the fungus takes advantage of the nutrients the plant solubilizes in 

the rhizosphere or that it can uptake within plant tissues (Tejesvi and Pirttilä, 2018). 

Mycorrhizal and endophytic fungi are able to share SMs with similar or higher activity 

than those of their host plant, reducing plant colonization from pathogens and parasites, 
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even herbivores (Tanaka et al., 2005), and improving plant nutrient uptake from soil 

(Alurappa et al., 2018). 

All those properties make fungal SMs bioproducts with high potential to be employed in 

agricultural practices, that could improve yield in crop plants without releasing the 

producer organism in field (Pusztahelyi et al., 2015; Enespa and Chandra, 2019). 

 

1.1.2 Genes involved in SMs biosynthesis and gene clusters 

The high diversity of SMs is originated from molecules derived from few primary 

metabolic pathways. Alkaloids, polyketides, non-ribosomal peptides and terpenes 

constitute the major classes of SMs in fungi (Hoffmeister and Keller, 2007). 

Enzymes responsible of building these secondary compounds can be divided in core 

enzymes and additional or tailoring enzymes. The core enzymes transform simple 

precursors in backbone molecules that are further remodelled by tailoring enzymes (P450 

monooxygenases, hydrolases or methyltransferases, among others), conferring different 

bioactive properties and contributing to the vast variety of SM (Keller, 2018).  

In alkaloid biosynthesis, the first committed step is catalyzed by the dimethyl-allyl 

tryptophan synthases (DMATSs), aromatic prenyl transferases isolated for the first time 

in the fungus Claviceps purpurea, the causal agent of ergot in rye (Heinstein et al., 1971). 

Alkaloid production was extensively studied in C. purpurea, which accumulates alkaloids 

such as lysergic acid in developing sclerotia after plant infection (Tudzynski et al., 1999; 

Mahmood et al., 2010). During the last years, a great number of alkaloids have been 

isolated from other Ascomycota, showing a broad range of structures and bioactive 

properties (Xu et al., 2014). 

Polyketides are the most abundant SMs isolated from fungi (Keller, 2005). They are 

synthesized by polyketide synthases (PKSs), large multi-domain proteins that condense 

acyl-CoA thioesters in carbon skeletons varying in both chain length and reduction level. 

While the ketoacyl synthase (KS), acyl transferase (AT) and acyl carrier protein (ACP) 

domains are indispensable for polyketide biosynthesis, the dehydratase (DH), 

ketoreductase (KR) and enoyl reductase (ER) domains can be absent in fungal PKSs 

(Keller et al., 2005; Schümann et al., 2006). Most filamentous fungi can harbour 10-50 

PKSs in their genomes, giving rise to hundreds of compounds showing an enormous 
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variety of bioactive properties (Schor and Cox, 2018). One of the best characterized 

fungal polyketides due to its economic impact are aflatoxins, produced by some species 

of Aspergillus as pathogenicity factors, that lead to important harvest losses, as they 

contaminate a broad spectrum of crop plants (Taniwaki et al., 2018). In contrast, 

strobilurins have inspired the creation of the β-methoxyacrylate class of commercial 

fungicides for agricultural use (Zubrod et al., 2019). Another well studied compound 

derived from the polyketide biosynthetic pathway is melanin, one of the most stable and 

resistant pigment that protects producer fungi from a broad range of abiotic stressors, and 

also acts as a virulence factor (Belozerskaya et al., 2015). 

Non-ribosomal peptides (NRPs) derive from condensation of mostly amino acids and are 

synthesized by the non-ribosomal peptide synthases (NRPSs). NRPSs are multi-modular 

enzymes: each module contains the adenylation (A), the pantothenylation/peptidyl carrier 

(P) and the condensation/peptide bond formation (C) as core domains, along with several 

specialized C-terminal domains responsible of chain termination, while additional 

modifying domains such as epimerization (E) and methyltransferase (M), among others, 

can be present as well (Bushley et al., 2010). Fungal genomes are less enriched in NPRSs 

than in PKSs, hosting an average of ca. 10 of those signature genes (Keller, 2015). In the 

same way of polyketides, the natural functions of NRPs are as diverse as their structures. 

The most famous serendipitous compound belonging to this class is penicillin, which in 

1928 triggered an unstoppable exploration of the SMs universe in all the living organisms 

and enabled to discover other NRP-antibiotics like cyclosporine. Siderophores, another 

class of NRPs of great relevance in fungal survival, facilitate iron uptake and also act as 

virulence factors in many fungi (Anke et al., 2018). From the mycotoxin side, gliotoxin 

was originally isolated from Myrothecium verrucaria and constitutes an important 

virulence factor for some Aspergillus species (Dolan et al., 2015), it being currently used 

in medical therapy for its powerful anti-tumor and anti-metastasis activities (Comas et al., 

2019).  

Modules of PKSs and NRPSs constitute functionally independent units that can be 

exchangeable, leading to the emergence of hybrid PKS-NRPS enzymes during evolution 

(Guzmán-Chávez et al., 2018). Hybrid SMs are very common in fungal genomes and they 

are also originated in hybrid clusters containing both core enzymes (Schor and Cox, 

2018). These two types of synthetases are also found embedded in terpene biosynthetic 

gene clusters (BGCs), leading to the formation of hybrid polyketide-terpenoid 
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compounds, like the terpenophenolic metabolites known as meroterpenoids (Keller, 

2015), as well as hybrid NRP-terpenes. 

Terpenoid compounds, and the aspects concerning their biosynthesis and ecological roles 

in fungi, will be discussed in the following section (1.2). 

The availability of fungal genomes and the development of computational genomic tools 

have given a burst in the study of the genetic structure as well as of the organization of 

genes involved in SMs biosynthesis. In most cases, genes encoding enzymes involved in 

the biosynthesis of the same SMs are arranged in cluster (Keller et al., 2005). Clustering 

genes have enormous advantages, including co-inheritance, co-transcriptional regulation 

or coordinated management of post-transcriptional processes, such as exportation for 

protein synthesis or compartmentalization (Chavali and Rhee, 2017).  

Architecture of BGCs is polymorphic, and in addition to genes strictly required for carry 

out all enzymatic steps that configure the final compound, genes encoding transcription 

factors (TFs) and efflux transporters can also be present (Rokas et al., 2018). In some 

cases, BGCs encode their own specific regulatory proteins, but approximately half of the 

known fungal clusters are governed by global TFs (Macheleidt et al., 2016). The presence 

of transporter-encoding genes ensures not only the secretion of the SMs, but also protects 

producer fungi from their toxic activity; in those cases, BGCs can also harbour duplicated 

or resistant target-proteins, as well as genes encoding enzymes that chemically modifies 

the SMs, reducing or suppressing their toxicity (Keller, 2015). 

 

1.2 Terpenes and terpene synthases (TSs) as key players in the interaction between 

fungi and the environment 

Isoprenoids are a large superfamily of compounds, fundamentally encompassing 

terpenes, their precursors (polyprenyl-pyrophosphates) and derived compounds 

(terpenoids), which take this name as they can be broken away yielding isoprene units 

(Pérez-Gil et al., 2019). It is estimated that 60% of isolated natural compounds belong to 

this group (Battineni et al., 2018). 

In spite of their huge variety, all fungal terpenes are synthesized from few precursors. 

Isopentenyl-pyrophosphate (IPP) and its isomer dimethylallyl-pyrophosphate (DMAPP), 

both synthetized from acetyl-coA, are the 5 carbons (C) isoprene building blocks for the 
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biosynthesis of linear polyprenyl-pyrophosphates: 10C geranyl-pyrophosphate (GPP), 

15C farnesyl-pyrophosphate (FPP) and 20C geranylgeranyl-pyrophosphate (GGPP) 

(Quin et al., 2014). These are synthesized by the isoprenyl-pyrophosphate synthases 

(IPSs) (also known as polyprenyl synthases), and constitute the precursors that undergo 

further modifications by terpene synthases (TSs) and prenyl transferases (PTs), the core 

enzymes in terpenoid biosynthesis, both mediating the committed steps (Guzmán-Chávez 

et al., 2018). 

According to the origin of their scaffolds, terpenes can be distinguished in those 

exclusively formed by isoprenyl units (monoterpenes, sesquiterpenes, diterpenes, 

sesterterpenes and triterpenes), and those with mixed origin (meroterpenoids, indole 

terpenoids and indole alkaloids). 

Monoterpenes are 10 C compounds derived from the condensation of DAMPP with IPP. 

Although production of monoterpenes in fungi seems to be uncommon (Shmidt-Dannert 

2014), monoterpene 1,8-cineole has been recently purified from Hypoxylon sp. (Shaw et 

al., 2015), and some others have been detected in the volatilome of Trichoderma virens 

(Inayati et al., 2019). 

A significant part of the numerous terpenes produced by fungi are sesquiterpenes (Kramer 

et al., 2011). These 15 C compounds are produced by the cyclization of FPP by Class I 

sesquiterpene synthases (Guzmán-Chávez et al., 2018). As observed for other 

phytohormones, abscisic acid (ABA) is also produced by certain phytopathogenic fungi, 

such as Cercospora rosicola, Botrytis cinerea, and Rhizopus nigricans, where it is 

considered as a tool to increase their pathogenicity (Takino et al., 2018). However, fungal 

sesquiterpenes that have attracted researchers’ interest, for their impact in yield and 

quality of crop plants, are trichothecenes. Nivalenol (NIV) and deoxynivalenol (DON) 

are potent mycotoxins mainly produced by Fusarium spp. and specifically induced during 

spike colonization of wheat, acting as virulence factors in the establishment of infection 

(Venkatesh and Keller, 2019). DON production becomes indispensable for the fungus to 

spread across spikelets, but it also provides competitive advantages against other 

organisms during its saprotrophic phase, for example by inhibiting the release of 

chitinases by mycoparasites (Audenaert et al., 2013). Similarly, phytotoxin botrydial 

enhances virulence of B. cinerea during plant infection facilitating colonization and 

triggering the plant phosphatidic acid production, that positively regulates the oxidative 

burst caused by reactive oxygen species (ROS) required for B. cinerea infection 
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(D’Ambrosio et al., 2018). Is worth to mention the striking role of volatile sesquiterpenes 

as excellent carriers of information in long-distance communications, acting as 

pheromones that attract insects involved in spore dissemination, and nematodes, which 

prey on fungivore-insect larvae (Kramer et al., 2011).  

Diterpenes are a well-described class of SMs with a demonstrated role in fungal ecology. 

Cyclization of GPP by either monofunctional Class I or bifunctional class II diterpene 

synthases are required to build the 20 C diterpene scaffold (Farhat et al., 2018). 

Fascinating fungal diterpenes are gibberellins, hormones that are synthetized not only by 

those phytopathogenic fungi causing the so-called “foolish-seedling” disease, but also by 

fungal endophytes and rhizosphere competent fungi (Bömke and Tudzynski, 2009), 

suggesting a beneficial role on plant/fungal interactions. Similarly, some non-hormonal 

diterpenes are able to intercept plant hormonal signalling pathways, acting like protein 

effectors that subvert plant immune responses. Higginsianin B of Colletotrichum 

higginsianum suppress jasmonate (JA) signalling in Arabidopsis by preventing 

degradation of JAZ proteins, repressors of JA defence responses, and also affecting the 

plant auxin (indol-acetic acid, IAA) signalling (Dallery et al., 2019). Some fungal 

phytopathogens have evolved to cause extreme damage just by using a molecule. 

Brassicicenes from Alternaria brassicicola cause leaf spot by activating permanently the 

plasma membrane H+-ATPase in Brassica plants (De Boer and Leeuwen, 2012). In 

addition, diterpene production in fungi is spread in almost all ecological scenarios and 

constitutes a growing source of compounds important for human uses. For example, 

asperolides, altrosides and wentilactones are diterpenoids isolated from marine fungi that 

show herbicidal, antifungal and anti-tumor activities (Sun et al., 2012; Afiyatullov et al., 

2000; Xu et al., 2015). In addition, they can also be found in endophytes not only of 

higher plants (Feng et al., 2014), but also in those of bryophytes (Wijeratne at al., 2012) 

and in lichenous fungi (Wang et al., 2011). 

Geranylfarnesyl-pyrophosphate (GFPP) are the 25 C polyprenyl precursor of 

sesterterpenes, which are rare among terpenoid compounds and mostly produced by 

marine fungi, especially those present in mangroves (Yan et al., 2018). However, an 

increasing number of these compounds are being discovered in other ecological contexts. 

The best known sesterterpenes are probably ophiobolins – mainly produced by 

Aspergillus spp. attacking crop plants– that show phytotoxic, antimicrobial and 

nematocidal activities (Tian et al., 2017). Recently, novel sesterterpenes have been 
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isolated from Colletotrichum orbiculare, and genes involved in their biosynthesis have 

shown to be induced during infection of Nicotiana benthamiana, suggesting a possible 

role of these metabolites in modulating host plant physiology (Gao et al., 2018). 

Although some triterpenoid compounds have been identified in ascomycete fungi, the 

vast majority have been isolated in basidiomycetes (Schmidt-Dannert, 2014). In 

eukaryotes, condensation of two FPP by PT squalene synthase and posterior oxidization 

step leads to the common 30 C precursor oxidosqualene, which is cyclized by Class II 

oxidosqualene cyclases/lanosterol-protostadienol synthases in either lanosterol or 

protostadienol, providing the two-principal precursors of all triterpenes (Mitsuguchi et 

al., 2009; Quin et al., 2014). While lanosterol is the precursor of sterols and bioactive 

SMs compounds, protostadienol constitutes the backbone for helvolic acid biosynthesis, 

a compound isolated from Cephalosporium caerulens and the human pathogenic fungus 

A. fumigatus that shows antibiotic activity and could act as virulence factor during the 

infection process (Abe et al., 2001; Lodoiro et al., 2009). 

It is worth to mention that many fungi have the ability to produce carotenes, 

tetraterpenoids of 40 C that are synthesized by the condensation of two molecules of 

GGPP by PT phytoene synthase, thus originating phytoene, the primary precursor of all 

carotenoid compounds (Avalos and Limón, 2014). Lycopene, which results from 

oxidization of phytoene is, in turn, the precursor that undergoes cyclization by Class I 

lycopene cyclase leading to β-carotene. Carotenes encompass important pigments 

protecting fungi from oxidizing and light stressors, although its role as pheromones in 

sexual mating has also been showed (Avalos et al., 2017). 

Thereby, enzymes involved in canonical terpene biosynthesis (Fig. 1) can be grouped as: 

IPSs, prenyl transferases (PTs) that transfer isoprene units to allylic substrates, yielding 

polyprenyl-pyrophosphates (GPP, FPP, GGPP and GFPP) through head-to-tail 

condensation of these units; PTs, that yield long chain linear terpenes through head-to-

head condensation of polyprenyl-pyrophosphates (e.g. squalene synthase and phytoene 

synthase); and terpene cyclases (TCs), TS that yield terpenes by cyclizing polyprenyl-

pyrophosphates (Shmidt-Dannert, 2014).  

Enzymes responsible of the biosynthesis of hybrid terpenoids are known as aromatic PTs, 

since they catalyze the transference of polyprenyl-phosphates to aromatic compounds,  
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Fig. 1. Terpenoid biosynthetic pathway 

Dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP), originated from the Mevalonate pathway, 

are the 5C building blocks for the biosynthesis of all the terpenic compounds. A family of isoprenyl pyrophosphate 

synthases (IPSs) are responsible for chain elongation and biosynthesis of geranyl-pyrophosphate (GPP), farnesyl-

pyrophosphate (FPP), geranylgeranyl-pyrophosphate (GGPP) and geranylfarnesyl-pyrophosphate (GFPP). These 

intermediates constitute the substrates that are modified by terpene cyclases (TCs) and prenyltransferases (PTs), leading 

to the biosynthesis of monoterpenes (monoTS), sesquiterpenes (sesquiTS), diterpenes (diTS), triterpenes (triTS), 

sesterterpenes (sesterTS), carotenes (tetraTS) and hybrid terpenoids as indole alkaloids (ABBA-PTs), meroterpenoids 

(UbiA-PTs) and indole diterpenoids (IPPS-PTs). 
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which originate outside of the terpene biosynthesis pathways. Aromatic PTs can be 

divided in three different types, each one responsible of the biosynthesis of one type of 

mixed terpene compounds (Shmidt-Dannert, 2014). 

Meroterpenoids are synthetized by Ubi-A PTs that transfer one FPP to a polyketide-

derived aromatic ring. These less studied terpenoids exhibit interesting bioactive 

properties ranging from cytotoxic, antibiotic or anti-inflammatory effects that are being 

exploited in medical therapies (Shaaban et al., 2017). For example, terretonin produced 

by Aspergillus terreus is a meroterpenoid mycotoxin (Hamed et al., 2019) with potential 

to treat Alzheimer’s disease as it irreversibly inhibits the acetylcholinesterase (Lo et al., 

2012). 

ABBA-type PTs transfer DAMPP to indoles, polyketides, phenols, sugars, etc., to 

synthetize indole alkaloids. Fusicoccin A of Diaporthe amygdali (syn. Phomopsis 

amygdali) causes wilting disease in trees and is able to modulate plant physiology through 

a broad range of mechanisms, like stomata opening/closure control, auxin-like growth 

stimulation, antagonism with ABA or seed dormancy induction, among others (De Boer 

et al., 2012). 

Hybrid terpenes synthesized by IPPS-type PTs by transferring GPP to indole groups are 

indole-diterpenoids. One of its peculiarities is that a large part of these compounds 

isolated from fungi have tremorgenic effects, what makes them potential insecticides 

(Farhat et al., 2018). This feature could explain the ecological role of lolitrem B, produced 

by the grass-endophytic fungi Neotyphodium lolii (Young et al., 2006) and Epichloë 

festucae, which confers protection to their host plants from insects and herbivorous 

mammals Saikia et al., 2012). 

 

1.2.1 Fungal TSs  

Biosynthesis of terpenes by TSs begins with a Mg2+-mediated binding of the 

prenyl/polyprenyl-pyrophosphate substrate to the active centre of the enzyme. 

Subsequent substrate dephosphorylation or protonation step, leads to the carbocation that 

triggers the formation of new carbon-carbon bonds producing cyclic (TCs), linear (PTs) 

or hybrid terpenes (aromatic PTs). Cyclization reactions are carried out by high-affinity 

terpene cyclase enzymes, which generate a single product, or by promiscuous enzymes 
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that can generate terpenoid blends containing up to 52 different products (Christianson, 

2008). 

 

TSs and PTs proteins are usually classified based on the mechanism triggering the 

carbocation (Class I, Class II or ABBA), which derives from differences in protein 

sequence and structure, but they are also classified based on their substrate specificity , 

which rely on the length of the prenyl pyrophosphate they accept (monoTS, sesquiTS, 

diTS, triTS, tetraTS, ecc) (Pérez-Gil et al., 2019). 

All the TSs and PTs proteins share one of the three structural TS-folds (Class I, Class II 

or ABBA), each one associated to a specific Mg2+-binding conserved motif. In this 

context, these enzymes share clear structural homology, but scarce sequence similarity 

regardless the metal-binding motifs. It has been suggested that the lack of sequence 

homology is due to these enzymes have evolved rapidly, and it has been proven that 

mutations in the active-site residues confer enormous plasticity to these enzymes, 

resulting in an exquisite diversity of reactions and a wide variety of products (Shaw et al., 

2015). 

The TS-fold of Class I enzymes are characterized by an α-helical bound that forms an 

hydrophobic active-site cavity flanked by two highly conserved aspartate-rich motifs, the 

D[D/E]xx[D/E] and the [N/D]Dxx[S/T]xx[K/R)][D/E] (NSD/DTE triad), that cooperate 

to bind the prenylated pyrophosphate via Mg2+ (Schmidt-Dannert, 2014). Substrate 

dephosphorylation generates a carbocation, which either reacts with a double C-C bond, 

triggering the cyclization of the substrate (TCs), or forms a new C-C bond with the prenyl 

chain (PTs). The NSD/DTE sequence determines whether one or various products will be 

synthesized in the same reaction, as shown for aristolochene synthase of Penicillium 

roqueforti and A. terreus (Quin et al., 2014). IPSs, PTs, monoTSs, sesquiTSs, sesterTSs, 

and tetraTSs belong to this class. 

In contrast, the TS-fold of Class II enzymes shares a double α-helical barrel bound that 

also leaves an hydrophobic cavity, in which carbocation formation is initiated by the 

addition of a proton from the aspartate-rich motif to a double C-C (aspartate-rich motif 

DxDD), or to an epoxide-ring (aspartate-rich motif DCTAE) via Mg2+ (Schmidt-Dannert, 

2014). Carbocation formation via protonation triggers the cyclization cascade in triTSs 

and diTSs. In turn, triTSs such as oxidosqualene cyclase can be identified by the presence 
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of the QW repeats, though to be responsible of the stabilization of the protein structure, 

enchaining the outer helices of the barrels (Racolta et al., 2012). 

Bifunctional and chimeric enzymes, as well as aromatic PTs, constitute an example where 

evolution of TSs reaches its maximum, promoting the appearance of combinations that 

give rise to an enormous wealth of products. Bifunctional Class II diTSs are constituted 

by both Class I C-terminal and Class II N-terminal domains, performing Class II 

cyclization and a subsequent Class I cyclization of GPP (e.g. copalyl diphosphate/ent-

kaurene synthase). In addition, the so far little studied sesterTSs are chimeric bifunctional 

enzymes, probably originated from a gene fusion event (Matsuda et al., 2015; Quin et al., 

2014), that display both Class I cyclase and PT domains, being able to synthetize their 

own polyprenyl chain (GFPP) as substrate for the subsequent cyclization. A particular 

case of gene fusion is that of tetraTS PT phytoene synthase and Class I lycopene cyclase, 

which are translated from a unique gene as a single polypeptide containing both proteins, 

that undergoes subsequent cleavage releasing two independent enzymes (Breitenbach et 

al., 2012). Evolution of Ubi-A and IPPS PTs is enigmatic. Both share the Class I fold but 

unlike IPPSs, which contain the typical D[D/E]xx[D/E], Ubi-A PTs does not (Schmidt-

Dannert, 2014). Integral membrane domains of Ubi-A PTs enable these enzymes to 

embed prenyl chains into the membrane, and it is hypothesized that they could be the 

ancestor of all the Class I proteins, or instead, they could be the result of a convergent 

evolution (Shmidt-Dannert, 2014). Stranger and striking is the case of ABBA PTs, which 

have a completely different fold (ABBA fold) showing αββα-secondary structure and no 

aspartate-rich motifs involved in the Mg2+ binding of the prenyl diphosphate substrates 

(Saleh et al., 2009). 

Based on the knowledge of these conserved structures, it is possible to find out putative 

TS-encoding genes in fungal genomes. In silico prediction of TSs sequences has boosted 

the identification of TS proteins functionally characterized in filamentous fungi (Table 

1). 
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1.3 Trichoderma: a genus with great SMs diversity 

1.3.1 A widespread fungus, a wide range of lifestyles 

Trichoderma is a genus of ubiquitous filamentous fungi belonging to the ascomycetous 

Hypocreaceae family, described for the first time by Persoon (1794). They are frequently 

found in soil or decaying wood as well as in many other substrates, demonstrating a high 

opportunistic potential and adaptability to the changing ecological conditions (Druzhinina 

et al., 2011). The genus comprises species showing a broad spectrum of lifestyles, 

including mycoparasites, saprotrophs, opportunistic human pathogens and plant 

symbionts, with members able to act as Biocontrol Agents (BCAs) against crop-plant 

pathogens, as well as to promote plant growth and/or to elicit the plant defence responses 

(Harman et al., 2004; Rai et al., 2019).  

Mycoparasitism, wherein a fungus takes nutrients from another fungus, has been revealed 

as the ancestral lifestyle of Trichoderma (Kubicek et al., 2011). It has been speculated 

that ancestors of Trichoderma were mycoparasites on wood-degrading fungi, and evolved 

saprotrophic features to chase their prey in their substrate (Rossman et al., 2013). 

Trichoderma spp. secrete hydrolytic enzymes (i.e. chitinases, glucanases, proteases) that 

digest fungal (and oomycete) cell walls (Howell 2003). Other species of this genus (i.e. 

T. reesei) developed important arsenals of cellulose and xylan degrading enzymes that 

enabled them to evolve a strong biomass-degrading activity, becoming important 

saprotrophs with high value in industry (Druzhinina et al., 2011). The ability to produce 

enzymes, combined with the release of antimicrobial molecules, makes these fungi 

efficient competitors for space and nutrients, able to rapidly colonize ecological niches as 

it is the case of plant roots (Lorito et al., 1996; Howell et al., 2006; Lorito et al., 2010; 

Hermosa et al., 2012; Saravanakumar et al., 2016). Many Trichoderma spp. established 

themselves in the rhizosphere, where the plant-root exudates, mycorrhizae and 

phytopathogenic fungi constitute a great feeding-resource (Druzhinina et al., 2011). This 

probably boosted the development of beneficial interactions with plants and the ability of 

Trichoderma to colonize endophytically the external layers of the root tissues (Druzhinina 

et al., 2011). In contrast, few species, such as some strains of T. longibrachiatum and T. 

citrinoviride, have been proven to opportunistically infect immune-compromised human 

patients (Kuhls et al., 1999). 
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1.3.2 Biological roles of SMs in Trichoderma 

Trichoderma produces a wide variety of SMs in a strain-dependent manner (Yu and 

Keller, 2005) being peptaibols, polyketides and terpenes the most relevant (Reino et al., 

2008). 

The biological roles associated to SMs of Trichoderma has been extensively reviewed, 

and their central role as chemical communicators involved in the interactions with plants, 

insects, animals and microorganisms has been highlighted (Hermosa et al., 2014; 

Contreras-Cornejo et al., 2016, 2018; Patil et al., 2016; Salwan et al., 2019; Rai et al., 

2019). In the rhizosphere, SMs released by Trichoderma act as effector molecules 

triggering significant morphological and physiological changes in the host plant 

(Ramírez-Valdespino et al., 2019), affecting plant growth and nutrition and enhancing 

tolerance against biotic and abiotic stresses (Contreras-Cornejo et al., 2016). IAA is a 

phytohormone produced by Trichoderma, that not only promotes plant growth and 

development (Contreras-Cornejo et al., 2009), but also confers saline stress adaptation in 

host plants (Waqas et al., 2012). In addition, Trichoderma siderophores enhance iron 

sequestration facilitating its uptake by plants and by Trichoderma itself, demonstrating a 

key role in competition for this metal in the rhizosphere (Anke et al., 1991; Kubicek et 

al., 2011). Harzianolide, 6-pentyl-pyrone (6-PP), harzianic acid and aspinolides are only 

few examples of SMs from Trichoderma that elicit the plant-defence responses, providing 

them protection against phytopathogens such as B. cinerea, Leptosphaeria maculans and 

R. solani (Vinale et al., 2008; Malmierca et al., 2015; Manganiello et al., 2018). 

Interestingly, Harzianic acid is a siderophore involved in iron-chelation also showing 

antifungal activity (Vinale et al., 2013). In the same way, it has been reported that T. 

atroviride associated with maize-roots infected with the lepidopteran Spodoptera 

frugiperda in leaves, releases 6-PP with an attracting effect towards female wasps of 

Campoletis sonorensis, the natural enemy of S. frugiperda (Contreras-Cornejo et al., 

2018). These are examples illustrating that a single metabolite can trigger multiple effects 

both on the producer organisms and in the species interacting with them. Nevertheless, 

SMs from Trichoderma are well known for their antimicrobial effects, which directly 

inhibit or supress the growth of competitors, enabling Trichoderma to protect itself and 

its resources (Vey et al., 2001). For example, a recent study showed that volatile SMs of 

Trichoderma inhibit the growth, germination of macroconidia and perithecial 

development in Fusarium graminearum (El-Hasan et al., 2017). Recently, metabolites 
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from 19 Trichoderma spp. and its biological properties have been recently reviewed (Li 

et al., 2019). 

In addition to siderophores, peptaibols constitute the most representative NRPs of 

Trichoderma, showing a strong antimicrobial activity against a wide range of organisms, 

as well as the ability to induce the plant defence responses (Rai et al., 2019). Some of 

these peptides form voltage-dependent ion channels in lipidic membranes, modifying the 

membrane permeability and inducing cell death (Molle et al., 1987). Another relevant 

group within NRPs are epipolythiodioxopiperazines (ETPs), which can inactivate 

proteins by binding thiol groups and by generating ROS (Gardiner et al., 2005). Among 

these small peptides, gliotoxin – the first SM isolated in Trichoderma (Brian and 

Hemming, 1945) – has attracted great attention, since it showed potent antifungal effects 

against R. solani (Howell et al., 1993). 

Polyketides produced by Trichoderma display toxic effects against plant pathogens such 

as F. oxysporum and Rhizoctonia solani, Phytophthora cinnamomi and Phytium 

middletonii (Patil et al., 2016), and are responsible of the characteristic green/yellow 

pigmentation (Baker et al., 2012). In addition, some polyketides are involved in defence, 

mechanical stability and stress resistance in Trichoderma (Atanasova et al., 2013). 

Examples of Trichoderma polyketides are trichoharzins, trichodimerols and koningins 

(Kobayashi et al., 1993; Zhang et al., 2014; Almassi et al., 1991; Ghisalberti et al., 1993). 

These last have been shown to act also as plant growth regulators (Cutler et al., 1989; 

Cardoza et al., 2005). Nevertheless, the best-known polyketide from Trichoderma is 6-

PP, which was the first volatile antifungal compound isolated from these fungi, also 

responsible of the “coconut aroma” associated to these fungi (Bisby et al., 1939). 

  

1.3.2.1 Relevance of terpenoids in Trichoderma 

Trichoderma spp. are reported to produce all types of terpenoids, including volatile 

compounds (Pachauri et al., 2019). These metabolites have shown to play important roles 

in the physiology of Trichoderma and in its interactions with other organisms, acting as 

mycotoxins, chemical messengers, structural components in membranes, regulators of 

genes related to stress and inducers of plant defence responses (Zeilinger et al., 2016; 

Pachauri et al., 2019). 
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Although Trichoderma spp. were thought to not produce monoterpenes, some have been 

recently detected in the volatilome of T. virens (Inayati et al., 2019). For example, β-

myrcene regulates the expression of Trichoderma genes related to biotic and abiotic 

stresses, while cis- and trans-β-ocimene are able to induce the JA-dependent defence 

response in Arabidopsis thaliana (Pachauri et al., 2019). 

Harziandione is claimed to be the first diterpene isolated in Trichoderma (Ghisalberti et 

al., 1993). It was firstly detected in T. harzianum and although it lacks on antifungal 

activity, a compound with identical structure showing antifungal potential was isolated 

from T. viride (Sivasithamparam and Ghisalberti, 1998). 

A number of triterpenoid compounds have been reported in Trichoderma. In addition to 

ergosterol, which is essential to stabilize cell membranes, other triterpenes showing 

antifungal properties have been isolated (Hermosa et al., 2014). Ergokonins A and B are 

steroid antibiotics, which also inhibit the growth of A. fumigatus by suppressing the 1,3-

β-D-glucano synthase activity (Onishi et al., 2000; Vicente et al., 2001). T. virens 

produces the fungistatic steroid viridin, which also shows plant-growth inhibitory effects 

(Howell et al., 1993), and whose reduced form viridiol has herbicidal properties (Jones 

and Hancock, 1987). 

Trichoderma sesquiterpenoids have shown both antibacterial and antifungal activities, as 

in the case of the 3,4-dihidroxicarotene isolated from T. virens and T. viride and lignoren 

isolated from T. viride (Berg et al., 2004). A number of volatile sesquiterpenes have been 

also reported in T. atroviride, including β-bisabolene and α-bergamotene (Stoppacher et 

al., 2010). A comparison of the metabolic profiles and the ability to enhance the plant 

growth of nine Trichoderma spp., suggested a positive correlation between the emission 

of volatile terpenes and the bio-stimulation ability of these strains (Lee et al., 2016). Some 

sesquiterpenes are involved in regulating developmental stage switches, as it has shown 

the carot-4-en9,10-diol, which has a stress-related conidiation-inducing role in T. virens 

(Wang et al., 2013). Nevertheless, sesquiterpenoid compounds that have attracted more 

attention due to their ecological importance are trichothecenes, whose production has 

been reported in T. arundinaceum and T. brevicompactum. Trichodermin produced by T. 

brevicompatum is a mycotoxin with antifungal and phytotoxic effects (Tijerino et al., 

2011b), as it inhibits protein synthesis in eukaryotic cells (Gilly et al., 1985). In contrast, 

Harzianum A (HA) produced by T. arundinaceum promotes plant defence responses and 

inhibits the growth of phytopathogenic fungi (Malmierca et al., 2013). Volatile 



Introduction 

 

20 
 

sesquiterpene trichodiene, which is the product of the first enzymatic step in the 

biosynthesis of trichothecenes, have been shown to elicit the tomato defence responses 

and the activation of virulence genes in B. cinerea (Malmierca et al., 2015).  

 

1.3.2.2 TSs in Trichoderma 

Although many terpenes have been isolated from Trichoderma species, there is no 

extensive information about the TS-encoding genes involved in their biosynthesis, and 

only few members of the TS family have been experimentally characterized (Bansal and 

Mukherjee, 2016). Functional characterization of TS genes in Trichoderma has been 

mainly focused on the trichodiene synthase (TRI5)-encoding gene, which catalyses the 

first committed step in the biosynthesis of trichothecenes in T. arundinaceum and T. 

brevicompactum. Overexpression of tri5 enhances trichodermin production and 

antifungal activity in T. brevicompactum (Tijerino et al., 2011a). Disruption of tri5 in T. 

arundinaceum alters the expression of other genes involved in terpenoid biosynthesis and 

reduces the antagonistic activity against R. solani (Malmierca et al., 2013). In addition, 

Δtri5 mutants of T. arundinaceum unable to produce HA synthesize, the polyketides 

aspinolides, which are able to inhibit the growth of B. cinerea and induce the plant 

defence responses (Malmierca et al., 2015). Interestingly, heterologous expression of tri5 

in T. harzianum led to trichodiene production, which induced defence genes and promotes 

lateral root growth in tomato (Malmierca et a., 2015). Furthermore, trichodiene induces 

an upregulation of BOT genes (involved in botrydial biosynthesis) in B. cinerea, thus 

suggesting a signalling role of this volatile organic compound (VOC) in the interactions 

of Trichoderma with both plants and microorganisms. Outside from the trichothecene 

biosynthesis pathway, TS genes experimentally characterized in Trichoderma are erg-20 

and vir4. Overexpression of the farnesyl pyrophosphate synthase (erg-20) in T. reesei 

affects the activities of enzymes of the dolichol and sterol biosynthetic pathways, 

modifying the ergosterol levels (Pilsyk et al., 2013). On the other hand, disruption of vir4 

gene showed this terpene cyclase is required for the biosynthesis of mono- and 

sesquiterpenes in T. virens (Crutcher et al., 2013). 
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1.4 Genome mining for discovering SMs-related genes in Trichoderma 

1.4.1 General aspects of genome mining  

Recent advances in genome sequencing technologies over the past decade, combined with 

the development of efficient bioinformatic tools, have boosted the discovery of the 

genetic potential of a growing number of fungal species (Palazzotto and Weber, 2018). 

Genome mining has been established as a powerful tool to estimate the metabolic 

potential of a given strain by scanning the genome of interest and identifying secondary 

metabolite BGCs (Ziemert et al., 2016). Despite the great diversity of SMs, the core 

enzymes involved in their biosynthesis show highly conserved domains, which enabled 

the development of a plethora of software to mine them from genomic data (Ziemert et 

al., 2016; Chavali and Rhee, 2017).  

Since genes involved in SMs biosynthesis are organized in clusters, mining of 

neighbouring genes encoding tailoring enzymes, transporters and TFs enables the 

identification of the complete structure of a given BGC. Identification of BGCs involves 

the assumption of pre-defined rules regarding cluster size and cluster composition, which 

will determine the accuracy and fidelity of the prediction (Chavali and Rhee, 2017). This 

often constitutes a limitation, since these rules are based on the knowledge derived from 

experimentally characterized BGCs and, therefore, the approach is supported on sequence 

databases of homologous enzymes or clusters, frequently leading to the miss-prediction 

of unknown BGCs (Ziemert et al., 2016). 

Another interesting strategy is based on comparative phylogenomic analysis, which 

couple genomics and phylogenetics to predict the function of a given gene (Hautbergue 

et al., 2018). If the target protein clades with proteins of known function, this function 

could be hypothesized for such target protein. Inversely, if the target protein does not 

clade with known proteins, it suggests novel or unknown functions.   

 

1.4.2 Advances on SMs-gene detection driven by genome mining in Trichoderma  

The growing availability of the complete genome sequences of Trichoderma spp. and the 

development of genomic tools has revealed a vast repertoire of genes putatively involved 

in SMs biosynthesis in these fungi. Mukherjee et al. (2011) compared the gene content of 

NRPSs, PKSs and TSs in the mycoparasites T. atroviride, T. virens and in the biomass-
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degrading T. reesei. Results showed that mycoparasitic species have an expansion on PKS 

and NRPS genes (18 PKSs, 16 and 26 NRPSs, respectively) comparing to T. reesei (11 

PKSs and 10 NRPSs). Another study carried out on these three species, showed that T. 

virens is enriched in NRPS-PKS hybrids (4) comparing to T. atroviride (1) and T. reesei 

(2) (Kubicek et al., 2011). A full phylogeny of NRPS-encoding genes suggested that 

expansion on these genes in T. virens is due to recent duplications of genes encoding 

cyclodipeptide synthases, cyclosporin/enniatin synthases and NRPS-hybrid proteins. In 

addition, they found that the three genomes share the ferricrocin BGC, and two NRPSs 

responsible of the biosynthesis of short- (7 modules) and long- (18-20 modules) chain 

peptaibols. Later, 14-module peptaibol synthases were identified in the genomes of these 

three species (Degenkolb et al., 2012). In silico analysis of their active residues and 

conserved domains revealed the structural diversity of these enzymes and enabled to 

predict their putative derived products. In addition, module skipping was proposed as the 

mechanism by which a single NRPS gene can lead to different peptaibolic products. 

Based on a similar approach, Marik et al., (2019) mined the peptaibol synthases present 

in the genomes of species belonging to the clade Longibrachiatum, and some of the genes 

located in their respective BGCs. 

Similarly, phylogenomic analysis of PKS genes showed that most of them occurred as 

orthologous in all the three species mentioned, and PKS genes putatively involved in 

pigment biosynthesis were also identified (Baker et al., 2012). In addition of the PKS 

gene clusters involved in conidial pigment, 20 new putative PKS gene clusters have been 

identified in these species (Bansal and Mukherjee, 2016). These authors also indicated 

that 6 TS proteins are encoded in the genome of T. reesei, 7 in T. atroviride and 11 in T. 

virens. 

More recently, Guzmán-Guzmán et al. (2019), mined the genome of T. atroviride for the 

detection of genes putatively involved in phytohormone biosynthesis. These authors 

found candidate genes for the biosynthesis of salicylic acid (SA), JA, ethylene (ET), 

gibberellins (GAs) and cytokinins (CKs), suggesting the fungus have the potential to 

produce these compounds. In any case, the production of SA by T. parareesei and GAs 

by T. asperellum and Trichoderma sp. has been respectively described by Pérez et al. 

(2015), Zhao and Zhang (2015) and Jaroszuk-Sciseł et al. (2019). 
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In T. viride, a combination of genome mining, heterologous expression and metabolomic 

approaches enabled the detection of a novel sesquiterpene synthase and its associated 

products (Sun et al., 2019). 

 

1.5 An overview of Trichoderma gamsii  

T. gamsii has a relatively recent history in applied biosciences comparing to other species 

of the genus. The biological and ecological behaviour of this fungus have enabled de 

development of commercial biopesticides. Remedier® is a preventive biopesticide whose 

bioactive ingredients comprise the isolate ICC080 of T. gamsii together with the isolate 

ICC012 of T. asperellum. This product is used to control different plant pathogenic fungi, 

mostly soil-borne, such as Verticillium spp., Sclerotinia spp., Rhizoctonia spp., 

Sclerotium spp., Phytophthora spp. and Phytium spp. On the other hand, different isolates 

of T. gamsii have shown the ability to endophytically colonize plant roots. An endophytic 

isolate of T. gamsii is a promising BCA against F. oxysporum f. sp cubense, the causal 

agent of Fusarium wilt of banana (Taribuka et al., 2017). Furthermore, T. gamsii NFCCI 

2177, isolated from lentil roots, produces diffusible and volatile compounds with 

inhibitory effects against a wide range of phytopathogenic fungi (Rinu et al., 2014).  

T. gamsii is also being applied for bioremediation purposes. The isolate FCR16 is 

effective in removing hexavalent chromium ions from acidic electroplating effluent 

contaminated with high levels of this and other metals (Kavita and Keharia, 2012). 

Noteworthy, the application of T. gamsii is not restricted to the agricultural sciences. In 

addition, T. gamsii could be applied in clinical microbiology. T. gamsii IPT853, isolated 

from a sugar cane plantation soil, has shown the biogenic capacity of producing silver 

nanoparticles, which are active against Streptococcus aureus, Escherichia coli and 

Pseudomonas aeruginosa (Ottoni et al., 2017). 

 

1.5.1 Trichoderma gamsii T6085 

T. gamsii T6085 has been isolated from uncultivated soil in Crimea (Ukraine). During the 

last ten years, it attracted our attention due to its ability to antagonize F. graminearum, 

one of the most aggressive causal agents of Fusarium Head Blight (FHB) on wheat (Parry 

et al., 1995), although around 20 Fusarium spp. contribute to this disease (Aoki et al., 

2014). FHB is a destructive disease that causes enormous economic losses worldwide. In 
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FHB, yield loss derives from sterility of infected florets, while grain quality reduction is 

mainly due to the accumulation of trichothecenes, highly toxic for humans and their 

livestock. During the disease cycle, crop residues and spikes at anthesis are considered as 

the most critical points: crop debris are used by pathogens to overwinter and to produce 

ascospores that will become the initial inoculum at anthesis, which represents the most 

susceptible phase for fungal infection. To the date, different strategies may be effective 

in controlling FHB, but none of these is effective alone. These practices include adequate 

crop rotations and usage of a combination of fungicides and tillage practices aimed to 

manage crop residues (Wegulo et al., 2011). In this scenario, integrated pest management 

involving the use of BCAs, such as T. gamsii T6085, during these two critical steps is a 

promising approach to reduce the disease incidence and prevent the risk of mycotoxin 

accumulation.  

 

T. gamsii T6085 is able to reduce the growth of the pathogen, as well as the production 

of DON, the major mycotoxin produced by Fusarium spp. (Sarrocco et al., 2013a). In 

addition, T. gamsii T6085 is able to tolerate high DON concentration (50 ppm, while the 

limit of DON accumulation on durum wheat in Europe is 1.75 ppm) in in vitro conditions, 

a quite not widespread character within the Trichoderma genus. When grown in presence 

of DON, T6085 does not modify mycotoxin concentration, and no DON derivates have 

been found in the culture substrate (Matarese et al., 2012). An involvement of ABC 

transporters with specificity to DON in T6085 was hypothesized (Sarrocco et al., 2013b), 

but further analyses are needed to support this. T. gamsii T6085 is able to antagonize F. 

graminearum not only by reducing its growth, by also by parasitizing its hyphae by 

forming short loops and coilings. T. gamsii T6085 has been successfully applied in field 

on wheat crops at anthesis during two following seasons. This resulted in a reduction of 

the incidence and the severity of FHB, with the corresponding reduction of the risk of 

mycotoxin accumulation in kernels (Matarese et al., 2010, 2012; Sarrocco et al., 2013b). 

T6085 is able to compete with F. graminearum for substrate possession, such as wheat 

and rice kernels, where a reduction of trichothecenes production has been registered 

(Sarrocco et al., 2019). The application of T. gamsii T6085 on wheat straw reduces the 

ability of F. graminearum to develop perithecia on crop residues, thus reducing the 

primary inoculum of the pathogen (Sarrocco et al., 2020). Furthermore, T. gamsii T6085 

is also able to colonize the rhizosphere, behaving as an endophyte within wheat roots 

(Fig. 2) and inducing the plant defence responses (Sarrocco et al., 2020).  
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The importance of T. gamsii as a promising BCA against FHB and its biological traits 

make this fungus an interesting target for the study of SMs potential and its implications 

in different ecologic scenarios. The complete genome sequence of T. gamsii T6085 has 

been publicly released, consisting of 38 Mbp and 10,944 predicted protein-coding genes 

(Baroncelli et al., 2016), which significantly facilitates to get an overview of the SMs 

potential of this fungus by genome mining strategies. 

 

 

Colonization of T. gamsii T6085 in wheat root seven days after inoculation: A) close up of T. gamsii T6085 

hyphae inhabiting epidermal cells of wheat root; B) Transversal section of wheat root showing internal 

colonization of T. gamsii T6085 in epidermal and cortical layers near to vascular system; C) arrows indicate 

intracellular (dashed line) and intercellular (continuous line) colonization by T. gamsii T6085 hyphae. Fungal 

cells were detected with WGA-Alexa Fluor 488 (green channel): the plant cell wall was detected with FM4-64 

dye (red channel). Sarrocco et al. (2020). 

Fig. 2. Endophytic colonization of T. gamsii T6085 on wheat roots 
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OBJECTIVES 

 

1. Mining genes and BGCs involved in SMs biosynthesis within the genomes of 21 

isolates belonging to 17 Trichoderma spp. and comparative genomic study aimed to 

provide an overview of the SMs potential in the genus Trichoderma. 

2. Genomic characterization of genes involved in terpenoid biosynthesis (TSs) in the 

selected Trichoderma spp. in order to assess the diversity within the gene family and 

provide an overview of the terpenoid inventory in the genus. 

3. Assessment of expression patterns of TS genes in T. gamsii T6085 as to provide a 

preliminary picture of the regulation of these genes in different environmental 

contexts. 
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2.1 Computational analyses 

2.1.1 Genomic platform 

Genomes including gene annotation, available  in public databases (National Center for 

Biotechnology Information – NCBI-, www.ncbi.nlm.nih.gov; Joint Genome Institute-

JGI-, www.mycocosm.jgi.doe.gov/mycocosm/home) and comprising 21 isolates 

belonging to 17 Trichoderma species, were used for computational analyses.   Model 

organism Beauveria bassiana was used as outgroup due to its close phylogenetic relation 

with Trichoderma spp. Fungal strains, genomes, accession numbers and information 

concerning each isolate are shown in Table 2.  

 

2.1.2 Evaluation of the SMs potential in Trichoderma spp. 

2.1.2.1 Multi-locus sequence analysis and phylogenetic relations of Trichoderma spp. 

Full nucleotide sequences from the actin (act), calmoduline (cal) and transcription-

elongation factor 1 (tef-1) genes were extracted from Trichoderma genomes and aligned 

by MAFFT v7.450 (Rozewicki et al., 2019). Multi-locus alignment was used as input for 

phylogenetic analysis, using the FasTree v2.1.11 of Geneious 10.0.9 

(www.geneious.com). 

 

2.1.2.2 Prediction of total SMs backbone genes  

InterPro (IPR) Scan v5.44-79.0 (Jones et al., 2014) was used to identify genes encoding 

enzymes that constitute the signature proteins in SMs biosynthetic pathways in 

Trichoderma and B. bassiana proteomes, based on the following IPR terms associated to 

their conserved domains: 

- Non-Ribosomal Peptide Synthases (NRPSs; AMP-binding domain: IPR000873, PP-

binding domain: IPR009081, Condensation domain: IPR001242; NRPS-like: AMP-

binding domain: IPR000873, PP-binding domain: IPR009081, NAD-binding domain: 

IPR013120); 

- Polyketide Synthases (PKSs; β-ketoacyl synthase N-terminal domain: IPR014030, β-

ketoacyl synthase C-terminal domain: IPR014031); 

http://www.ncbi.nlm.nih.gov/
http://www.mycocosm.jgi.doe.gov/mycocosm/home
http://www.geneious.com/
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- Dimethylallyl Transferases (DMATSs; Aromatic prenyl transferase domain: 

IPR017795);  

- Ribosomally synthesized and post-translationally modified peptide-encoding genes 

(Fungal RiPPs: IPR021765); 

- Terpene Synthases (TSs; Isoprenoid synthase domain: IPR008949, terpene 

cyclase/prenyl transferase domain: IPR008930). 

 

2.1.2.3 Prediction of SMs BGCs 

 SMs backbone genes embedded in gene clusters in Trichoderma spp. and B. bassiana 

genomes were predicted by antiSMASH 5.0 (Blin et al., 2019). Briefly, the software 

searches for profile Hidden Markov Models (pHMM) within the amino acid sequence 

translations of all protein-encoding genes, based on multiple sequence alignments of 

experimentally characterized signature proteins or protein-conserved domains. Based on 

available information of the minimal components of each gene cluster type taken from 

the scientific literature, gene clusters are defined by locating signature gene pHMM hits 

spaced within <10 kb mutual distance. To include flanking accessory genes, gene clusters 

are extended by 5 to 20 kb on each side of the last signature gene pHMM hit, depending 

on the type of gene cluster detected. The software refers to “hybrid clusters” when two 

separated gene clusters are spaced very closely each other or, instead, when a single gene 

cluster combines two or more signature genes and produces a hybrid compound. 

Recorded hits are then compared to the MiBiG repository, a database of experimentally 

characterized BGCs which enables to assign a putative function to the predicted clusters. 

According to this methodology, the software predicts backbone genes including PKSs, 

NRPSs, RiPPs-encoding genes, DMATSs and TSs, either belonging to single gene 

clusters or hybrid gene clusters.   

 

2.1.3 Phylogenetic characterization of TSs in Trichoderma spp. 

Algorithms included in the IPR interface, such as Pfam, PIRSF, Prosite and Panther, were 

used to identify motifs relatives to sites, superfamily membership, variants of prenyl 

transferase domains, and trans-membrane (TM) regions associated to TS proteins.   



Materials and Methods 

32 
 

In order to characterize TS enzymes in Trichoderma spp. and B. bassiana we used a 

combination of different approaches: 1) Prenyl transferases (PTs) were identified based 

on Pfam and Panther motifs, which in turn enabled differentially identification of Terpene 

Cyclases (TCs) proteins; 2) Conserved aspartate-rich metal-binding motifs associated to 

Class I (D[D/E)xx[D/E]) and Class II (DxDD) TS-folds  (Gao et al., 2012) of mono- and 

bifunctional enzymes were identified searching for pHMM in the amino-acidic 

sequences; 3) Substrate-specificity and putative functions were assigned by phylogenetic 

analysis. Firstly, Trichoderma spp. and B. bassiana TS proteins were aligned by MAFFT 

v7.450 (Katoh et al., 2013) along with TS proteins of known functions characterized and 

described in literature (Table 1). Phylogenetic tree was built with: MrBayes (Ronquist & 

Huelsenbeck, 2003), FasTree v2.1.11 (Price et al., 2010) and PhyML v3.3.2 (Guindon et 

al., 2010). The best substitution model was obtained using ProtTest (Abascal et al., 2005). 

Phylogenetic tree was reconstructed using the WAG + I evolutionary model (Whelan and 

Goldman 2001). The posterior probabilities and bootstrap values threshold were 50%. 

Phylogenetic trees were visually checked and topology conservation evaluated. 

Sequences used for alignments and corresponding to each phylogenetic cluster identified 

were individually screened for conserved domains through InterProScan as described 

above.  

 

2.2. Biologic assays  

2.2.1 Substrates 

Substrates used throughout the work are listed below:  

 

▪ Potato Dextrose Agar (PDA): 24 g/L  

▪ Potato Dextrose Broth (PDB): 24 g/L  

▪ ½ PDB: 12 g/L 

▪ FRIES: 9 g/L sucrose (321.3 g/mol), 1 g/L NH4NO3 (80.04 g/mol), 5 g/L C4H12N2O6 

(184.15 g/mol), 1 g/L K2HPO4 (174.18 g/mol), 0.5 g/L MgSO4, 0.13 g/L CaCl2 (111 

g/mol), 0.1 g/L NaCl (58.44 g/mol), 0.0183 g/L FeSO4 (278.02 g/mol), 0.0035 g/L 

ZnSO4 (161.47 g/mol), 0.002 g/L MnCl2 (197.91 g/mol) 

▪ ½ FRIES: 4.5 g/L sucrose (321.3 g/mol), 0.5 g/L NH4NO3 (80.04 g/mol), 2.5 g/L 

C4H12N2O6 (184.15 g/mol), 0.5 g/L K2HPO4 (174.18 g/mol), 0.25 g/L MgSO4, 0.065 



Materials and Methods 

33 
 

g/L CaCl2 (111 g/mol), 0.05 g/L NaCl (58.44 g/mol), 0.00915 g/L FeSO4 (278.02 

g/mol), 0.00175 g/L ZnSO4 (161.47 g/mol), 0.001 g/L MnCl2 (197.91 g/mol) 

▪ FRIESM: FRIES without sucrose 

▪ FRIESM H2O2: FRIESM with 0.5 mM H2O2  

▪ FRIESM N: FRIESM with a hundred times less concentration of NH4NO3 (0.01 g/L) 

and g/L C4H12N2O6 (0.05 g/L) 

▪ FRIESM 200 salt: FRIESM with 200 mM of NaCl 

▪ Malt Extract Agar (MEA): 20 g/L D-glucose (198.17 g/mol), 1 g/L mycological 

peptone, 20 g/L malt extract, 15 g/L agar, pH 5.6 

▪ Malt Extract Broth (ME): 20g/L D-glucose (198.17 g/mol), 1g/L mycological peptone, 

20 g/L malt extract, pH 5.6 

▪ ½ ME: 10 g/L D-glucose, 0.5 g/L mycological peptone, 10 g/L malt extract, pH 5.6 

Commercial suppliers of media and media components were Sigma-Aldrich, Panreac, 

Carlo Erba, J.T. Baker, Riedel-de Haën and Difco. 

 

2.2.2 Fungal isolates and wheat plants. 

Trichoderma gamsii T6085 (Tgam) was isolated from soil in Ukraine and Fusarium 

graminearum ITEM 124 (Fgra), isolated from rice harvested in Italy, were maintained 

on PDA under mineral oil at 4℃. When actively growing, or sporulated, colonies were 

needed, fungi were grown on PDA plates at 25℃, 12h/12h light/darkness. Seeds from 

Triticum aestivum cv. Apogee (wheat) were sown in pots with commercial peat-based 

potting mix (Esselunga) and perlite (2:1) and incubated in a growth chamber with 

photoperiod 16h light/8 h dark, at 20°-22℃. Before all experiments, wheat seeds were 

surface sterilized with a solution of NaClO (0.6% active chlorine), for 3 minutes on 

shaking, followed by three washing steps of 10 minutes each with sterile distilled water. 

Seeds were stored in sterile distilled water at 4℃ for 3 days for vernalization. 

 

2.2.3  Liquid cultures of Tgam on different stress conditions 

Mycelium of Tgam was obtained following a two-step liquid culture procedure. The first 

step consisted in a pre-culture of the fungus in order to generate actively growing 

mycelium. Spores of Tgam were collected from 1-week-old PDA plates with 7 mL of 

sterile distilled water and inoculated in 50 mL flasks containing 25 mL FRIES, at a final 



Materials and Methods 

34 
 

concentration of 106 spores mL-1. Flasks were incubated at 28℃ on a rotatory shaker at 

180 rpm for 60 h. Pre-cultures were collected by centrifugation at 10000 rpm for 10 

minutes and supernatants were discarded. Pellets were resuspended in sterile distilled 

water and centrifugated at 10000 rpm for 10 minutes in order to wash it. For the second 

culture step, 25 mL of different liquid substrates were inoculated in 50 mL flasks 

containing pellets from washed pre-cultures. These substrates consisted in FRIES, 

FRIESM, and FRIESM modified by adding different stressors, such as 0.5 mM H2O2, 

only 0.01% N, and 200 mM NaCl. FRIESM was used as reference control. Flasks were 

incubated at 28℃ on a rotatory shaker at 180 rpm for 4 days. Mycelium was collected by 

filtration using Miracloth (475855-1R, Millipore), frozen in liquid N2, and stored at -80℃ 

until RNA extraction. Three independent biological replicates were included for each 

condition.  

 

2.2.4 Tgam interactions in FHB scenario 

Tests with wheat plants included four conditions: control (uninoculated) wheat, wheat 

inoculated with Tgam alone, wheat inoculated with Fgra alone, and wheat inoculated 

with Tgam and Fgra.  

Wheat seeds were sown in potting mix and incubated in a growth chamber with 

photoperiod 16 h light/8 h dark, at 20°-22℃ respectively, until plants reached the anthesis 

stage (5 weeks). Three biological replicates of three plants each were included per each 

condition. For Tgam inoculation, spores were collected by washing 1-week-old PDA 

plates with 20 mL of sterile 0.01% Tween-80 solution. The spore suspension, at a final 

concentration of 107 spores mL-1, was sprayed on spikes of Tgam alone and Tgam + Fgra 

plants, while 0.01% Tween-80 solution was sprayed in control plants. Plants were 

covered with a white bag, previously moistened inside with sterile 0.01% Tween-80 

solution to maintain humidity, and with a black bag to facilitate penetration by the fungus 

(Dufresne M., personal communication). Plants were incubated in a growth chamber for 

48 h in the same conditions as described above. For inoculation of the pathogen, Fgra 

conidia were collected by washing 2-week-old PDA plates with 20 mL of sterile 0.01% 

Tween-80 solution, and the suspension, at a final concentration of 105 spores mL-1, was 

sprayed on spikes of Fgra alone and Tgam+Fgra plants. Plants were covered again with 

a white bag, previously moistened inside with 0.01% Tween-80 solution, and a black bag 
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was also placed above to facilitate the infection by the pathogen. Plants were incubated 

in a growth chamber in the same conditions described above for 24 h. Bags were removed 

and after 1h, the white bags were placed back for 24 h. Six days after Fgra inoculation, 

reduction of FHB symptoms was evaluated by calculating the percentage of healthy and 

symptomatic spikelets in Fgra alone and Tgam + Fgra plants, on ten spikes per condition. 

Spikes were collected, frozen liquid N2 and stored at -80℃ until RNA extraction. 

 

2.2.5 Tgam - wheat roots interaction 

Four wheat seeds were placed on each PDA plate at 1.5 cm of distance from the centre of 

the petri dish (Fig. 3). Plates were closed with tape and protected from light with an 

aluminium sheet, then incubated for 24 h in a growth chamber with photoperiod 16 h 

light/8 h dark, at 20°-22℃ respectively.  

 

Fig. 3. Interaction Tgam-wheat roots.  

Experimental set up A) Inoculation of agar plug colonized by Tgam in PDA plates containing germinated wheat seeds 

and in PDA plates without plants as control, 24 h after seed sowing. B) Plates 72 h after inoculation of Tgam. 
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After 24 h, an agar plug of 1 cm2 colonized by 1-week-old culture of Tgam was placed at 

the centre of the plates containing wheat seedlings, as well as in PDA plates without plants 

as controls. Plates were closed with tape and protected from light with aluminium sheet 

and incubated for 3 days in a growth chamber according to the conditions described 

above. Mycelium from Tgam control plates and wheat roots colonized by Tgam were 

collected, frozen in liquid N2, and stored at -80℃ until RNA extraction. Three biological 

replicates were included per each condition. 

 

2.2.6 Gene expression analyses 

2.2.6.1 Primer design and efficiency 

Primers used for analysis of expression of TS genes in Tgam are listed in Table 3.  Primer 

properties, such as melting temperature, dimmers and hairpins, were analyzed in silico by 

NetPrimer (www.premierbiosoft.com/NetPrimer/AnalyzePrimer.jsp) and IDT-

Oligoanalyzer (www.idtdna.com/pages/tools/oligoanalyzer). Primers were tested by PCR 

and agarose electrophoresis, and qPCR using gDNA of Tgam, while DNA of Fgra and 

wheat were used as templates in order to validate the presence/absence of amplification 

products, according to the methodology described in section 2.2.6.3. and 2.2.6.4. Full 

gene sequences, including primer location, are listed as supplementary material. 

The 2–∆∆Ct method for calculating relative gene expression assumes that the amplification 

efficiency of the target gene and the endogenous reference gene is optimal (100%) and 

identical. In order to validate this, a standard curve (Amplification Efficiency Curve) was 

constructed for each couple of primers using serial dilutions of gDNA of Tgam using 100 

ng, 10 ng, 1 ng, 0.1 ng and 0.01 ng per reaction, respectively. Efficiency was calculated 

using the following formulas:  

𝑦 = 𝑚𝑥 + 𝑏      ;       𝐸 = 10[−
1
𝑚

]
 

y = dependent variable 

m = slope 

x = independent variable 

b = intersection 

http://www.premierbiosoft.com/NetPrimer/AnalyzePrimer.jsp
http://www.idtdna.com/pages/tools/oligoanalyzer
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E = efficiency 

 

The amplification efficiency ranges from 0 to 1, being 1 the 100% of the efficiency, which 

means that the amount of qPCR product duplicates on each cycle of amplification. To 

achieve this, the slope value must be between -3.2 and -3.5 being the optimal m = -3.32, 

which means 95-100% of amplification efficiency. Primers were also checked for dimmer 

formation and non-specific amplification, by checking the Melting Curves of each primer 

pair.  

 

Table 3. Primer sequences used for gene expression analysis (5’to 3’) 
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2.2.6.2 RNA extraction and cDNA synthesis 

2.2.6.2.1 RNA extraction from Tgam - roots interaction and liquid cultures 

Fungal biomass from liquid cultures, wheat roots and fungal mycelium from the Tgam - 

roots interaction were ground in liquid N2 using pre-chilled mortar and pestle. One 

hundred mg of powder were used for total RNA extraction using the RNeasy® Plant Mini 

Kit (Qiagen), followed by DNase I treatment (DNase I Amplification Grade, AMPD1 

Sigma-Aldrich), according to the manufacturer’s instructions.  

 

2.2.6.2.2 RNA extraction from Tgam interactions in FHB scenario 

Wheat spikes were ground in liquid N using pre-chilled mortar and pestle. Three hundred 

mg of powder were used for total RNA extraction according to the method described by 

Logemann (1987), adapted for RNA extraction from tissues with high polysaccharide 

content. The powder was placed in a pre-chilled mortar and re-grinded with 800 µL of 

Extraction Buffer (8 M guanidine-HCl, 20 mM MES, 20 mM EDTA, 50 mM β-

mercaptoethanol). Half volume of Tris-saturated Phenol and half volume of Tris-

saturated 24:1 Chloroform/IA were added to the mixture and used to re-grind the tissues. 

The mixture was centrifugated 15 min at 10000 rpm and 4°C. The upper phase was 

recovered and 1 volume of 1:1 buffer (Phenol: Chloroform/IA) was added. The upper 

phase was recovered after 15 min of centrifugation at 10000 rpm and 4°C. A volume of 

0.7 of 100% ethanol and a volume of 0.2 of 1M acetic acid were added, and the mixture 

was incubated at -80°C for 1 h for RNA precipitation. After 30 min of centrifugation at 

12000 rpm and 4°C supernatant was discarded, and the pellet was washed twice with 3M 

sodium acetate and 70% ethanol by centrifuging 5 min at 12000 rpm and 4°C. The pellet 

was dried at 37°C for few minutes, then resuspended in 50 µL of DEPC-H2O. RNA 

solubilization was aided by heating the tube 10 min at 65°C, following by incubation in 

ice for 2 h. RNA was centrifugated for 2 min at 12000 rpm and 4°C, in order to eliminate 

polysaccharide residues. Supernatant containing RNA was recovered and stored at -80°C. 

 

2.2.6.2.3 RNA integrity check and cDNA synthesis 

RNA integrity (3 µL of each sample) was checked by agarose electrophoresis in TBE 

0.5X (1% agarose; 90 V: 400 mA). RNA samples were quantified and quality checked 
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by Qubit™ fluorometer (#K1642, Thermo Fisher Scientific) and NanoDrop™ (Thermo 

Fisher Scientific). Four hundred ng of RNA were used for cDNA synthesis using Maxima 

First Strand cDNA synthesis kit (K1642 Applied biosystems) according to the 

manufacturer’s instructions. cDNA samples were stored at -80°C. 

 

 

2.2.6.3 PCR setting 

The reaction was set up with 1 µL of gDNA (10 ng), 6.25 µL of GoTaq® (Promega), 1 

µL of primers forward and reverse (0.5 µM) and Nuclease-Free water up to 12.5 µL of 

final volume. Nuclease-Free water was used as Non-Template Control and β-tubulin as 

endogenous gene. All PCR reactions were performed using a Q-Cycler 24 (HAIN-

Lifescince) thermocycler under the following conditions: initial heat activation, 95°C, 2 

min; 35 cycles of denaturation at 95°C for 30 sec, annealing at 60°C for 30 sec and 

extension 72°C for 30 seconds; final extension at 72°C for 5 min. Amplicon size or 

absence of amplicons was checked by running PCR products on agarose electrophoresis 

using TBE 0.5X as running buffer (1% agarose; 90 V: 400 mA) and loading 3 µL of 

sample.  

 

2.2.6.4 Quantitative Real-time-PCR (qPCR) setting 

The reaction was set up with 1 µL of cDNA (20 ng), 10 µL of QuantiNova SYBER® 

Green PCR Master Mix 2X (Qiagen), 1.4 µL of primers forward and reverse (0.7 µM) 

and Nuclease-Free water up to 20 µL of final volume. Nuclease-Free water was used as 

NTC, and Threshold Cycles (Ct) were calculated using β-tubulin gene as endogenous 

control. All qPCR reactions were performed in triplicate using Rotor-Gene Q cycler 

(Qiagen) under the following conditions: initial heat activation, 95°C, 2 min; 40 cycles of 

denaturation, 95°C for 5 sec and combined annealing/extension, 60°C, 10 sec. Relative 

gene expression was obtained using the 2–∆∆Ct method (Livak and Schmittgen 2001), 

which expresses the differences between Ct values of the sample and those of the control 

as shown below:  

 

               ΔCT =2– (∆Ct sample - ∆Ct control) 
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2.2.7 Metabolic profiles of Tgam on different substrates 

 

2.2.7.1 Metabolites produced on 21-day static cultures  

Spores of Tgam were collected from 2-week-old PDA plates with 7 mL of sterile distilled 

water and inoculated in 50 mL flasks containing 25 mL of PDB, ½ PDB, ME, ½ ME, 

FRIES or ½. FRIES substrates. Flasks were incubated statically at 28℃ for 21 day on 

dark. Mycelium was recovered by filtration using Miracloth (475855-1R, Millipore). 

Fermentation broth was filtered through 0.22 µm (VWR International) filter, frozen in 

liquid N2 and stored at -80℃. 

LC-MS method for detection of fungal metabolites was developed using an HPLC 1260 

Infinity Series (Agilent Technologies) coupled to a Q-TOF mass spectrometer model 

G6540B (Agilent Technologies) with a Dual Electrospray Ionization (ESI) source and 

equipped with a DAD system (Agilent Technologies). An Ascentis® Express C18 column 

(2.7 μm, 50 mm x 3.0 mm i.d., Supelco©) was used for separations.  Flow rate was set at 

0.500 mL min-1. Elution was done at constant temperature of 40°C, using a linear gradient 

composed by A: 0.1% (v/v) formic acid (FA) in water and B: 0.1% (v/v) FA in acetonitrile 

(ACN).  The gradient was as follows: starting condition 5% B, ramping to 95% B in 6 

min, holding at 100% B for 2 min, lowering to 5% B in 2 min and equilibration at 5% B 

for 2 min. UV spectra were collected by DAD every 0.4 sec from 190 to 750 nm with a 

resolution of 2 nm. MS parameters were set with Agilent MassHunter Data Acquisition 

Software, rev. B.05.01. The instrument operated in both positive and negative mode; MS  

spectra were recorded in centroid mode, with an m/z 50-1700 mass range and with a speed 

of 3.3 spectra sec-1. Capillary voltage was set at 2000 V, fragmentor  at  180 V, cone 1 

(skimmer 1) at 45 V, Oct RFV at 750 V. Drying gas flow was set at 11L min-1 at a 

temperature of 350°C, and the nebulizer was set at 45 psig. The injected sample volume 

was 7 μL.   

In order to perform real-time lock mass correction, an Isocratic pump (1260 Infinity 

Series, Agilent Technologies) was used to infuse a standard solution consisting of two 

reference mass compounds:  purine (C5H4N4, m/z 121.050873, 10 μmol/L) and hexakis 

(1H,1H,3H-tetrafluoropentoxy)-phosphazene (C18H18O6N3P3F24 , m/z  922.009798, 2 

μmol L-1). Flow rate was set at 0.06 mL min-1 while the detection window and the 
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minimum height were set at 1000 ppm and 10000 counts, respectively, for reference mass 

correction.   

Solvents were LC-MS grade, and all other chemicals were analytical grade. All were from 

Sigma-Aldrich unless otherwise stated. ESI-TOF tune mix was purchased from Agilent 

Technologies.  

The chromatograms were analyzed by Mass Hunter software (Agilent Technologies) 

matching their mass data with known compounds registered in an in-house database 

including over 4000 fungal SMs. 

 

2.2.7.2 Metabolites produced in 12-day and 15-day cultures: major fractions 

For induction of SM production on liquid culture, spores of Tgam were collected from 2-

week-old PDA plates with 10 mL of sterile distilled water and inoculated in 14 flasks of 

1L containing 300 mL of PDB, at a final concentration of 106 spores mL-1. Flasks were 

incubated at 28°C on a rotatory shaker for 12 days. Fungal biomass was recovered by 

filtration and fermented broth was filtered through 0.22 µm (VWR® Bottle Top Filtration) 

filter under sterile conditions. Fermentation was stopped adding 500 mL of HPLC-ethyl 

acetate (Fisher) per each liter of filtrate, to reach 6 L of mixture. The mixture was filtered 

again and saturated with NaCl, then was extracted twice with 500 mL of ethyl acetate and 

washed twice with 250 mL of water. 

For induction of SM production on solid cultures, 60 plates of MEA were inoculated with 

two mycelium plugs (1 cm2) made from PDA colonized by Tgam and incubated at 28℃ 

for 15 days. Then, both mycelium and solid agar MEA medium were extracted with ethyl 

acetate (2 x 500 mL) using an ultrasonic bath.  

Purification by semipreparative and analytical HPLC was performed with a 

Hitachi/Merck L-7100 apparatus equipped with a differential refractometer detector (RI-

5450). Two LiChrospher 60 (5 µm) and LiChrospher 60 (10 µm) columns were used in 

isolation experiments. Silica gel (Merck) was used for column chromatography. Thin 

layer chromatography (TLC) was performed on Merck Kiesegel 60 F254 (thickness, 0.2 

mm). Optical rotation was determined with a digital polarimeter. Infrared spectra were 

recorded on a Fourier transform infrared spectroscopy (FTIR) spectrophotometer and 

reported as wave number (cm−1). 1H-NMR and 13C-NMR measurements were recorded 

on Agilent NMR 400 and Agilent 500 NMR spectrometers. HRMS was recorded with a 
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double-focusing magnetic sector mass spectrometer in positive ion mode or with a 

quadrupole time of flight (Q-TOF) mass spectrometer in positive ion electrospray mode 

at 20 V cone voltage. High resolution electrospray ionisation mass/ mass spectrometry 

(HRESIMS/MS) experiments were performed with a Q-TOF mass spectrometer at 20 V 

cone voltage and 10 eV collision energy. Chemicals were by Aldrich or PanReac. All 

solvents were freshly distilled. Organic extracts from both liquid and solid cultures were 

dried over Na2SO4. Evaporation of solvent was made under reduced pressure afforded 

dense brown oil (517 mg, and 915 mg, respectively) that was separated by column 

chromatography on silica gel eluted with mixtures containing increasing percentages of 

ethyl acetate/hexane (10 -100%) as solvent, and finally the column was washed with 

methanol. Final purification of selected fractions was carried out by HPLC. Isolated 

metabolites were characterized by extensive spectrometric and spectroscopic analysis by 

HRMS, 1H-NMR and 13C-NMR. 

 

2.3. Statistical analysis 

Differences in PKSs, NRPSs, TSs, RiPPs-encoding genes, PKS-NRPS synthases and 

DMATSs family-size between phylogenetic clades of Trichoderma were statistically 

analyzed by Wilcoxon Test. P value (P) < 0.05 was used as confidence interval. Results 

were expressed as the average of gene content of each family in each clade. 

For gene expression, statistical analysis was carried out using SYSTAT©v.13.2. Analysis 

of variance (ANOVA) was performed on 2–∆∆Ct values obtained from the Tgam-roots 

interaction (section 2.2.5) and Tgam in FHB (section 2.2.4). 2–∆∆Ct data obtained from 

liquid cultures of Tgam (section 2.2.3) was analyzed by ANOVA and Tukey test. Disease 

Severity values of FHB on wheat spikes treated or not with Tgam were analyzed by 

ANOVA after angular transformation. P value (P) < 0.05 was used as confidence interval 

Data from metabolic profiles obtained by LC-MS (section 2.2.7.2.), was statistically 

analysed using the Mass Profiler Professional Software 13.0 (G3835AA, Agilent 

Technologies. Significant statistical differences among treatments (P < 0.05) were 

assessed by one-way ANOVA and principal component analysis (PCA). 
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Chapter 1: 

Insights into the diversity of Secondary Metabolites of Trichoderma spp. 

using a combined genomic approach 
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During the last decade, the study of Trichoderma genomes has shed some light towards 

the understanding of the biology of these fungi. Several studies have provided important 

findings, elucidating mycoparasitism as the ancestral lifestyle of Trichoderma and how it 

evolved leading to more complex interactions with other organisms, such as animals and 

plants (Kubicek et al., 2011; Druzhinina et al., 2011, 2013). They have highlighted the 

most relevant gene families, mainly involved in the primary metabolism of Trichoderma, 

and those that have undergone expansions or contractions, contributing to lifestyle 

diversification (Druzhinina et al., 2016; Druzhinina and Kubicek 2016; Kubicek et al., 

2019). In addition, they have proposed Horizontal Gene Transference (HGT) events from 

Trichoderma’s hosts and prays as key processes in the evolution of these fungi 

(Druzhinina et al., 2018).   

Trichoderma spp. are prolific producers of SMs (Pachauri et al., 2019), and understanding 

the gene arsenal involved in their biosynthesis is crucial for assessing their harmless 

effects as well as their role in Trichoderma peculiar lifestyles. Furthermore, 

understanding the genetic basis of SMs biosynthesis would enable a money-saving 

approach for selection of isolates to be used as BCAs, prior to their metabolic screening. 

However, there are not many reports addressing the study of the diversity within the gene 

families involved in SMs biosynthesis in Trichoderma, and in those cases, the diversity 

of the genus has been mainly limited to three species – T. virens, T. atroviride and T. 

reesei– or has been focused on few gene families (Kubicek et al., 2011; Mukherjee et al., 

2012, 2013; Baker et al., 2012; Degenkolb et al., 2012; Bansal and Mukherjee 2016; 

Zeilinger et al., 2016; Guzmán-Guzmán et al., 2019; Marik et al., 2019). According to the 

taxonomy described by Druzhinina et al. (2018) and Kubicek et al. (2019), Trichoderma 

spp. used in the present work fall into five different clades (Fig. 4). This diversity enabled 

to discuss the impact of the phylogenetic distribution of the species on their SMs potential. 

The present study was carried out using the complete genomes of 21 isolates belonging 

to 17 Trichoderma spp., and B. bassiana ARSEF2860 as outgroup. Multi-locus 

phylogenetic analysis of the act, cal and tef-1 genes concatenated alignment showed the 

evolutionary relationships of Trichoderma spp. here analysed (Fig. 4).  

 

 

Results and Discussion 
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3.1. Mining the SMs backbone genes in Trichoderma genomes 

Prediction of total SMs backbone genes showed that Trichoderma spp. have the potential 

to produce a wide repertory of SMs (Fig. 5). Species within the same clade tend to have 

similar SMs arsenals, as it has been also observed in other Hypocreales fungi such as 

Fusarium (Stępień et al., 2019). One exception is T. atrobrunneum, which shows a 

smaller number of genes (55 genes) comparing to its related species of the Harzianum 

clade (85-100). This clearly demonstrates that most of the genomic repertory-size for SMs 

biosynthesis in Trichoderma is affected by the phylogenetic distribution of the species. 

T. harzianum and T. brevicompactum constitute the species with the highest SMs 

potential (100-110 genes), whereas the smaller gene inventory was found in T. 

longibrachiatum (55 genes). Still, intraspecific variability can be observed as well, 

indicating the SMs potential is, at least partially, affected by the niches occupied by each 

Phylogenetic tree showing evolutionary relationships between 21 isolates belonging to 17 Trichoderma spp. and B. 

bassiana was constructed using MAFFT v7.450  and FasTree v2.1.11, using concatenated alignment of act, cal and 

tef-1 genes. Phylogenetic clades, according to Druzhinina et al. (2018) and Kubicek et al. (2019) are highlighted in 

different colours.  

Fig. 4. Phylogenetic relationships among Trichoderma spp. 
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isolate.  Differences found within the clades reflect the specificity of the SMs arsenal, 

which are mainly due to discordances in the abundance of RiPPs and NRPS genes. 

According to this, bioactive peptide biosynthesis, either ribosomally (RiPPs) and non-

ribosomally (NRPs), would significantly contributes in generating species/isolates-

specific SMs arsenals in phylogenetically close Trichoderma species. Although the 

ecological roles of RiPPs have not been described so far in Trichoderma, non-ribosomal 

peptides, such as peptaibols, are indispensable for successfully competition and constitute 

the SMs weaponry hallmark of these fungi against other microorganisms (Mukherjee et 

al., 2013). In this sense, the need of rapidly evolve their SMs inventories to overcome 

different ecological challenges probably places RiPPs and NRPS-encoding genes under 

a strong environmental pressure, which ultimately leads to new gene variants and specific 

products. 

Furthermore, the divergence found between taxonomic clades enables including 

Trichoderma spp. in different categories according to their SMs biosynthetic potential. 

Species belonging to Harzianum and Brevicompactum are potential super-producers of 

SMs within the genus as characterized by a wide arsenal of SMs backbone genes (85-110 

and 86-100 genes, respectively), followed by those species belonging to the Virens clade 

(94 genes). Species belonging to Viride can be considered as moderates (58-76 genes), 

while those from Longibrachiatum have the smaller SMs gene-repertory (51-63 genes), 

therefore constituting limited producers among Trichoderma spp.  These differences 

could be the result of the gene loss reported in species of the clade Longibrachiatum and 

the gene expansion that took place in the other clades during the evolutionary process 

(Kubicek et al., 2019). Nevertheless, the diversity of lifestyles found on these species 

could explain, at least partially, quantitative differences in their SMs repertories as well, 

as suggested by Mukherjee et al. (2013). These authors hypothesized that the differences 

found on the SMs arsenal of T. reesei compared to those of T. virens and T. atroviride 

could be related to different demands for attacking or interacting with other organisms. 

Species belonging to the clade Longibrachiatum are, in general, not-opportunistic and 

strong biomass-degrading fungi, including opportunistic human pathogens, such as some 

strains of T. citrinoviride and T. longibrachiatum (Kubicek et al., 2019). In contrast, 

species belonging to clades Virens, Harzianum, Viride and Brevicompactum are known 

for their ability to stablish complex interactions with microorganisms and plants, which  
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in most cases, and with the exception of phytotoxic T. brevicompactum (Tijerino et al., 

2011b), has enabled their use as BCAs of crop plant diseases (Kubicek et al., 2019).  In 

this context, a more complex lifestyle, in terms of inter-organism communication, could 

require a more extensive and flexible SMs repertoire. 

PKSs (429 genes) and NRPSs (401 genes) are the most represented SMs gene-families in 

Trichoderma, followed by TSs (387 genes) and RiPPs (289 genes), while NRPS-PKS 

hybrids (73 genes) and DMATSs (5 genes) are less abundant. Comparison of gene-family 

size between the clades revealed statistical differences in the composition of their 

respective SMs inventories.  

PKS-family size varies significantly depending on the clade: species of Brevicompactum 

have the higher number of PKSs (average= 30; P= 0.029), followed by Harzianum species 

(average= 24.86; P= 0.015), while species of Longibrachiatum have the smaller PKS 

arsenal (average= 13; P= 0.002) and those of Viride did not show differences (average= 

18.33; P= 0.27). According to this, polyketide biosynthesis would significantly contribute 

in generating species-specific SMs arsenals in phylogenetically distant Trichoderma 

species, leading to different clade-specific polyketide catalogues. On the other hand, 

NRPS-family size is homogenic among the clades (Viride average= 18.67; P= 0.84 – 

Brevicompactum average= 22; P= 0.47 – Harzianum average= 21.29; P= 0.05), with the 

exception of species belonging to Longibrachiatum which NRPSs content is significantly 

lower (average= 12.6; P= 0.011). Trichoderma spp. are able to produce more than 1000 

different SMs compounds (Hermosa et al., 2014), and results show that PKSs and NRPSs 

have a great contribution to its production. Most polyketides have antifungal properties 

(Cardoza et al., 2005), facilitate competition for substrates and communication (Khosla 

2009), and PKS are the most likely genes being responsible of the green-yellow 

pigmentation of Trichoderma conidia (Baker et al., 2012). On the other hand, non-

ribosomal peptides are indispensable for successfully competition, being peptaibols and 

siderophores among the most remarkably SMs traits of Trichoderma (Mukherjee et al., 

2013). 

Ribosomal peptides, which are encoded by structural genes, are synthesized as part of a 

larger precursor peptide, which is post-translationally modified and subsequently 

proteolytically released (Luo and Dong, 2019). Usually, the precursor peptide consists of 

a N-terminal conserved leader sequence and a hypervariable core sequence, but many 

precursor peptides have a C-terminal recognition sequence that is important for excision 



Results and Discussion 

51 
 

and cyclization (Arnison et al., 2013). RiPPs-family size is very heterogenous in species 

within the same clade, but no statistically differences were found between phylogenetic 

clades (Viride average= 9.33; P= 0.07 – Brevicompactum average= 14.50; P= 0.30 – 

Harzianum average= 18.86; P= 0.14 – Longibrachiatum average= 11; P= 0.64). It is 

worth to mention the high number of these genes found in both isolates of T. harzianum 

(37 genes), comparing to the lower numbers (5-21 genes) found in the other genomes 

here analysed. Since this gene family contributes significantly to the biosynthesis of 

species/isolate-specific SMs in Trichoderma, it is necessary to broaden the isolation of 

these metabolites and characterize of the RiPPs genomic arsenal. Fungal RiPPs have a 

very recent history, the first family was described only in 2007 (Hallen et al., 2007). To 

date, only four families of fungal RiPPs have been discovered (Umemura et al., 2014; 

Johnson et al., 2015; Nagano et al., 2016; Ding et al., 2016; Van der Velden et al., 2017), 

and the genes responsible of their biosynthesis have been little described (Vogt et al., 

2019).  This evidence the need to provide genomic tools that enable the identification of 

structurally differences in the hypervariable peptide sequences in RiPPs-encoding genes, 

aimed to correlate them to their final biosynthetic products. 

Previous works have reported the presence of genes encoding NRPS-PKS hybrids in 

Trichoderma genomes (Mukherjee et al., 2013), providing evidences that some of them 

are involved in Trichoderma-plant roots interaction (Mukherjee et al., 2012). These 

enzymes are more abundant in species of Harzianum (average= 4.50; P= 0.01), while no 

statistical differences were found in the gene-content among the other clades (Viride 

average=3.50; P= 0.14 – Brevicompactum average= 4.29; P= 0.26 – Longibrachiatum 

average= 1.8; P= 0.05). Thus, NRPS-PKS hybrids contribute in generating specific SMs 

in species of Harzianum. Interestingly, T. gamsii A5MH lacks 15 PKS and NRPS genes 

comparing with T. gamsii T6085, which led to hypothesize whether the presence of 12 

additional PKS-NRPS genes in A5MH could be the result of gene fusions between PKSs 

and NRPSs. 

Although the absence of genes involved in alkaloid biosynthesis has been previously 

reported in Trichoderma (Kubicek et al., 2019), the analysis performed in this work 

revealed the presence of several signature genes. DMATS-encoding genes were found in 

four phylogenetically distant Trichoderma spp.: T. virens, T. atrobrunneum and T. 

arundinaceum genomes contain 1 gene each, while the genome of T. brevicompactum 

have 2 of these genes. No DMATSs were found in species of clades Viride or 
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Longibrachiatum. Given that T. brevicompactum contains 2 DMATSs, differences were 

statistically significant in the gene family-size of Brevicompactum comparing to other 

clades (average= 1.5; P= 0.002). Comparison of the sequences of the encoded DMATS 

proteins with those of DMATSs from other fungi by BLASTp analyses showed the most 

similar hits corresponded to species of genus Monosporascus, Tolypocladium, and 

Scytalidium. It suggests that DMATSs arose in Trichoderma through different HGT 

events from phylogenetically distant Pezizomycotina species. This is in agreement with a 

recent study showing that HGT events to Trichoderma from its fungi-associated hosts are 

not uncommon (Druzhinina et al., 2018). Indeed, DMATS of T. arundinaceum and T. 

brevicompactum likely arose in their common ancestor from Monosporascus spp, and 

was then vertically transferred to both species. In T. atrobrunneum, it could have been 

acquired from Tolypocladium spp. On the other hand, the second DMATS found in T. 

brevicompactum could have been acquired from Scytalidium spp. either after the 

divergence between T. brevicompactum and T. arundinaceum, or before it, with a 

subsequent gene loss in T. arundinaceum. Furthermore, Scytalidium spp. seems to be the 

donors of DMATS to T. virens as well. According to these results, some Trichoderma 

spp. would have acquired the ability to synthesize alkaloids or their derivates under 

certain conditions that are still unknown. 

The striking number of TSs found in the genomes (387 genes) demonstrates that terpenoid 

biosynthesis significantly contributes to the SMs complexity in Trichoderma. Indeed, the 

TS-gene inventory found on these species (15-23 genes) clearly outnumbers those found 

in other fungi considered as rich productors of SMs, such as Aspergillus spp. (2-10 genes) 

(de Vries et al., 2017; Kubicek et al., 2019). This probably reflects the importance of TSs 

and terpenoids in the ecology of these fungi.  TS-family size is fairly uniform among the 

phylogenetically close species, and no statistical significances were found in the family-

size between clades (Viride average= 17.67; P= 0.38 – Brevicompactum average= 20.50; 

P= 0.25 – Longibrachiatum average= 16.60; P= 0.06 – Harzianum average= 19.43; P= 

0.08). This indicates that terpenoid biosynthetic potential is less correlated to lifestyle or 

evolutionary history in Trichoderma. Although Trichoderma spp. are rich in TSs, most 

of these genes have not been characterized (Kubicek et al., 2019) comparing to PKSs and 

NRPSs, and a more complete description of the variability within the TS family in 

Trichoderma is needed. Therefore, part of this work was focused on providing an 

overview of the terpene biosynthetic potential within Trichoderma genus (Section 3.3.). 
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3.2 Mining the SMs BGCs in Trichoderma genomes 

Analyses revealed that in almost all of the genomes, approximately half of the SM 

backbone genes are included in BGCs in Trichoderma, ranging from 42% in T. harzianum 

CBS 226.95 to 59% in T. hamatum; one exception is T. atrobrunneum that shows a higher 

number of clustered SMs genes (72%) (Fig. 6). This suggests that in Trichoderma, 

approximately half of the SMs genes are involved in specific biosynthetic pathways as 

they require co-expression with tailoring enzymes, whereas genes not included in clusters 

may participate as donors of SMs precursors in more than one metabolic pathway.  While 

the quality of genome most likely does not affect gene identification, cluster identification 

could be affected by fragmentation of the genome assemblies. Considering as example 

that the genome of T. atrobrunneum has been assembled into 804 scaffolds while T. reesei 

is a complete genome, the conserved percentage of gene clustering indicate that 

differences in fragmentation of the assembly did not affect prediction of total BGCs. 

While the abundance of clustered NRPSs and TSs is in agreement with the trend described 

above, the number of clusters associated with PKSs is significantly higher, ranging from 

48 % in T. arundinaceum to 92 % in T. gamsii A5MH. Results showed a high variability 

within taxonomic clades, suggesting that the number of clustered PKSs in Trichoderma 

is less affected by evolutionary distances. However, it’s important to consider that the 

numbers of hybrids PKS-NRPS BGCs exceed the total PKS-NRPS backbone genes 

predicted, as these clusters can harbour either hybrid PKS-NRPS-encoding genes or two 

or more genes with PKS or NRPS function. Most of PKS-encoding genes occurs as 

orthologs in Trichoderma spp., and the diversity of polyketides could rely on the diversity 

of tailoring enzymes accompanying PKSs (Baker et al., 2011). In this sense, the need to 

compensate the scarce variability of PKSs may generates a greater tendency of clustering 

these with a wide variety of accessory enzymes, leading to many genomic combinations 

and expanding the catalogue of Trichoderma polyketides. 

RiPPs clusters were only detected in T. harzianum CBS 226.95 and T. guizhouense. 

Considering the high number of total RiPPs-encoding genes found here across the 

species, using our approach their associated clusters have been probably underpredicted.  
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We should consider that RiPPs prediction by antiSMASH 5.0 is based on the ustiloxin B 

cluster from A. flavus, and that characterization of fungal RiPPs clusters is still in a state 

of flux, therefore more precise algorithms are required to correlate the mature RiPP with 

its corresponding BGC (Luo and Dong, 2019; Vignolle et al., 2020).  

As observed for total SMs backbone genes, closest phylogenetically species tend to 

harbour similar number of SMs clusters in Trichoderma. Number of clusters is uniform 

in species within the same clade, but not in clade Brevicompactum, in which T. 

arundinaceum lacks 14 SMs clusters comparing to T. brevicompactum, despite being 

related species. Species from clades Brevicompactum (42-58 clusters), Harzianum (40-

49 clusters) and Virens (48 clusters) have the highest number of SMs clusters, followed 

by species from Viride (31-40 clusters). Species from the clade Longibrachiatum contain 

the lowest number of clustered SMs genes (24-28 clusters).  

Trichoderma spp. have a great number of hybrid clusters (131), most of them of T1PKS-

NRPS type (102), while only 29 correspond to other hybrid types. More detailed 

information of other hybrid clusters is shown in Supplementary Table 1. The number of 

hybrid clusters is uniform between species belonging to the same clade, with species of 

clade Brevicompactum showing the highest hybrid cluster content. Interestingly, of 13 

PKS-NRPS backbone genes predicted in T. gamsii A5MH, only 2 are predicted to belong 

to BGCs. Probably those genes not included in clusters may encode proteins acting as 

substrate-donors in several biosynthetic pathways, and for this reason, are not included in 

specific clusters.  

The analysis revealed the 5 DMATSs found in Trichoderma genomes are included in 

alkaloid biosynthetic related clusters. In T. arundinaceum, T. brevicompactum, and T. 

atrobrunneum, DMATSs belong to hybrid NRPS-indole clusters harbouring all the 6 

genes belonging to the dihydrolysergic acid (DHLA) BGC of Claviceps africana. These 

clusters also contain some tailoring enzymes that are absent in the original DHLA BGC, 

suggesting they probably biosynthesize DHLA derivates. In T. virens, the hybrid cluster 

resembles the clapurines BGC, but the scarce similarity found (45%) suggests it is more 

likely to be involved in the biosynthesis of a different kind of alkaloid. The genome of T. 

brevicompactum contains another DMATS embedded in an indole BGC, which is absent 

in other Trichoderma genomes. Our results suggest that DMATSs included in DHLA-

like clusters would have been acquired by Trichoderma from distant Sordariomycetes 
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species, whereas Leotiomycetes species would constitute donors of DMATSs for the 

Brevicompactum and the T. virens clades. As mentioned, we propose independent HGT 

events from distant Pezizomycotina species as the processes responsible of the origin of 

DMATSs in Trichoderma. Diversification of alkaloid BGCs across Sordariomycetes 

likely occurred through separate HGT events from distant Pezizomycotina species; 

however, it’s not clear whether they originated by direct transference from 

Eurotiomycetes, or instead, Leotiomycetes could have acted as intermediaries (Marcet-

Houben et al., 2016). Fungal alkaloids can act as potent antimicrobials against other 

microorganisms (Mahmood et al., 2010), and also protect their associated host plants 

from grazers (Schardl et al., 2004; Wäli et al., 2013). In this sense, and since production 

of alkaloids has not been previously reported in Trichoderma, their biosynthesis would 

confer adaptive advantages to certain Trichoderma spp. under still unknown conditions.   

TS-containing clusters (178) constitutes the third more abundant family of total SMs 

clusters. As observed in total SMs backbone genes, the number of TSs clusters (7-11) is 

more uniform among the species analysed comparing to PKSs and NRPSs clusters (8-22 

and 6-16). The analysis enabled to assign putative functions to 268 clusters, of which 9 

were TS-containing or TS-hybrid clusters. Three clusters with 100% similarity to the 

sesquiterpene Harzianum B BGC were identified in T. guizhouense and in both isolates 

of T. asperellum. Two clusters with 100% similarity to diterpenes gibberellin BGC were 

identified in both isolates of T. asperellum. Clusters with lower percentages of similarity 

were predicted to contain only the signature gene or were partially conserved BGCs. For 

example, in T. pleuroticola and T. afroharzianum clusters with 32% similarity with the 

diterpene sordarin BGC were found. Similarly, two clusters with 33% and 8% similarity 

with the trichothecene biosynthetic pathway were found in T. gamsii T6085 and T. 

arundinaceum, respectively, both containing only the TRI5-encoding gene. 

 

3.3 Genomic characterization of TSs in Trichoderma 

The 387 TS proteins found in the genomes of Trichoderma spp. were characterized in-

silico following a three-level identification approach. Firstly, we identified PT and TC 

proteins according to their conserved domains. Subsequent detection of the metal-binding 

motifs enabled protein classification as Class I, Class II or Bifunctional enzymes.  Finally, 

clustering-based phylogenetic analysis using biologically characterized fungal TSs 

https://www.sciencedirect.com/science/article/pii/S1087184515300542#b0145
https://www.sciencedirect.com/science/article/pii/S1087184515300542#b0205
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enabled determining their substrate-specificity, as well as assigning putative functions of 

15 groups of TSs. TSs sharing conserved domains and metal-binding motifs clustered in 

the same phylogenetic group, each one highlighted in different colour (Fig. 7). More 

detailed information about TS-content per each specie showing specific portions of the 

TS inventory in Trichoderma is available in Supplementary Table 2. 

Although the TS-family size is very homogeneous within Trichoderma, we were able to 

identify clade-specific TSs, which reflect specific portions of the terpenoid inventory 

shared by phylogenetically close species. Thus, despite their similar terpenoid 

biosynthetic potential, the species of Trichoderma have adapted their terpene production 

according to different environmental demands.  Species of clade Viride constitute an 

example, as they lack some groups of TSs that are widely distributed in most of the clades, 

but have evolved specific TSs which are absent in these clades.  

 

Light blue colour represents the HAD-like proteins, containing two conserved domains: 

the HAD-like domain (Pfam 13419) is present in the N-terminal, while the C-terminal 

contain a TS domain (IPR008930).  

Dark-green colour represents proteins sharing a TRI5 domain (Pfam 06330), thus, were 

identified as sesquiTS of the TRI5 superfamily. An overlapping TRI5 motif (PIRSF 

001388) was also predicted for 7 proteins forming one subcluster. Phylogenomic analysis 

revealed that these 7 TSs corresponded to Trichodiene synthases (TRI5), while another 

subcluster of 15 proteins was identified as Longiborneol synthases. Other sesquiTSs of 

the TRI5 superfamily, which clustered in two independent groups, were named as 

“Uncharacterized group 1” and “2”, respectively, as they did not cluster with any 

known protein. The sister clade of the TRI5 superfamily (Light-green colour) includes 

proteins containing the Terpene synthase C domain (Pfam 03936), and it comprises 

mainly sesquiTSs. Presilphiperfolan-8β-ol synthases and Pentalenene synthases were 

identified within this group, in addition to two groups of proteins that did not cluster with 

any known protein, and were therefore named as “Uncharacterized group 3” and “4”, 

respectively.  

Orange colour represents proteins containing a Squalene synthase-phytoene synthase 

domain (Pfam 00494), in which a trans-membrane helix region was also predicted in the 

C-terminal. These proteins also contain overlapping Squalene synthase 
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(PTHR11626:SF2) and Farnesyl diphosphate-farnesyl transferase (PTHR11626) motifs, 

and phylogenetic analysis confirmed them as Squalene synthases (SQSs). Red colour 

proteins share the prenyl transferase domain (Pfam 00432), and also contain overlapping 

motifs that enabled to identify them as Type I Geranylgeranyl transferases 

(PTHR11774:SF4) (GGTases 1), Type II Geranylgeranyl transferases 

(PTHR11774:SF11) (GGTases 2) and Farnesyl transferases (PTHR11774:SF6) 

(FTases).  

Light-brown proteins share both N-terminal (Pfam 13249) and C-terminal (Pfam 13243) 

of the Squalene-hopene cyclase conserved domain, and phylogenetic analysis identified 

them as Oxidosqualene cyclases (OSCs). Dark-brown contains another group of 

proteins sharing a Squalene synthase-phytoene synthase domain (Pfam 00494), but no 

phylogenetic relation was found with SQSs, although both share the squalene synthase-

phytoene synthase conserved domain. In addition, they did not clustered either with the 

lycopene-phytoene synthases characterized from fungi included in the analysis, and they 

were therefore named as “Uncharacterized group 5”.  

Grey highlights bifunctional diTSs, some of them containing Kaurene-synthase (PIRSF 

036498) and Ent-copalyl diphosphate synthase (PTHR31739:SF4) domains. Dark-blue 

colour represents proteins sharing the polyprenyl synthase domain (Pfam 00348), while 

some of them also contain a N-terminal Terpene synthase C domain (Pfam 03936). 

Within this group, GGPP synthases (PTHR12001) and FPP synthases (PTHR11525) 

were identified. Phylogenetic analysis also revealed a set of highly conserved indole 

diTS. Finally, proteins containing both prenyltransferase and Teperne synthase C 

domain, or one of them, were named as Chimeric-like, as some of them clustered with 

known sesterTS. 

According to our results, Trichoderma spp. have a huge potential for sesquiterpene 

biosynthesis. We identified 8 groups of sesquiTSs, which constitute almost the third of 

the total number of TSs found in this work. Species of Viride are particularly rich in 

sesquiTS belonging to the TRI5-superfamily, and they also contain HAD-like TSs which 

are absent in species of other clades. Although HAD-like proteins did not cluster with 

known TSs from fungi, the presence of both Class I DDxxE and Class II DxDTT motifs 

indicates they are bifunctional enzymes. The DxDTT motif is a variant of the DxDD motif  
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found in Class II diTS (Nakano et al., 2005 and 2009). Shinohara et al. (2016), reported 

that some sesquiTS can contain HAD-like domains and DxDTT motifs, leading to FPP 

cyclization through a protonation step, instead of by an ionization step. We hypothesized 

Fig. 7. Phylogenomic characterization of TS proteins in Trichoderma spp.  

TS proteins sharing conserved domains are highlighted in different colours: HAD-like (light blue), TRI5 (dark green), 

Terpene synthase C (light green), Squalene synthase-phytoene synthase (orange), prenyl transferase (red), 

Squalene/Hopene cyclase (light and dark brown), Kaurene synthase and/or Ent-copalyl diphosphate synthase (grey), 

polyprenyl synthase and/or Terpene synthase C (dark blue). Putative functions of terpene cyclases (TCs) and prenyl 

transferases (PTs) were assigned based on phylogenetic analysis performed with TS proteins with known function from 

filamentous fungi (Table 1). Proteins which did not clustered with any known protein were designed as Uncharacterized 

TSs. Aspartate-rich motifs of Class I, Class II and Bifunctional enzymes were identified in the amino-acidic sequences 

of each group of proteins. Bootstrap values > 50 are shown in the correspondent branches of the tree. 
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that HAD-like TSs found in species of Viride might be particular bifunctional sesquiTS 

synthesizing specific metabolites of this clade. 

TRI5 are sesquiTSs that catalyze the cyclization of FPP to trichodiene, opening the 

trichothecene biosynthesis pathway (Desjardins et al., 1996). They all show a highly 

conserved Class I DDSRE motif at position 109-114, but that from T. guizhouense 

showing DDSIE, and a highly conserved NSD/DTE triad (NDLFSFYKE), 119-120 

residues downstream from the metal-binding motif. The analysis showed they are present 

in species from the clade Brevicompactum, T. gamsii, T. asperellum and also in T. 

guizhouense from the clade Harzianum. This phylogenetic distribution indicates that 

TRI5 is not a monophyletic trait in Trichoderma, opening questions about its origin in the 

genus. 

Previous studies have reported that some Trichoderma spp. have the potential to 

synthesize longiborneol (Bansal and Mukherjee 2016), an intermediate in the culmorin 

biosynthetic pathway (McCormick et al., 2010; Bansal and Mukherjee 2016). Species of 

clade Viride were the only lacking Longiborneol synthases, which were found highly 

conserved in among the other species. According to this, longiborneol biosynthesis is 

very widespread in Trichoderma, but is absent in species of clade Viride. Since culmorin 

production has not been reported in Trichoderma, longiborneol could be synthesized as a 

solely compound or as an intermediate participating in unknown biosynthetic pathways 

in these species. Most of these proteins show a conserved D(D/E)HFD motif, which is 

partially conserved (NDHFD) in proteins of T. arundinaceum and T. brevicompactum. 

Site-directed mutagenesis and crystallography studies on TSs have revealed that the first 

aspartate residue (D) of the metal-binding motif interacts directly with Mg2+ (Starks 

1997), and its replacement can lead to aberrantly metal-binding and anomalous 

cyclization products or a product mixture (Cane et al., 1996). According to this, 

Longiborneol synthases of Brevicompactum species could be actually enzymes involved 

in terpenoid blend formation, which can even contain new terpenoids.  

SesquiTSs included in “Uncharacterized group 1”, showing Class I DDxxX and 

NDV(L/I)SFYKE motifs, were only present in Viride and some species of the 

Longibrachiatum clade. In species of Viride, there are present two sesquiTS of 

“Uncharacterized group 2”, while T. arundinaceum and T. virens have only one. These 

contain Class I [D/E]xx[D/E] and NDILSFYKE motifs. These synthases are mainly 



Results and Discussion 

61 
 

present in Viride species, indicating they probably contributed to adapt their terpenoid 

arsenal to particular environmental demands. 

According to the results, most Trichoderma spp. can potentially produce 

presilphiperfolan-8β-ol. This compound is thought to play a central role in the 

biosynthesis of a wide range of polycyclic sesquiterpenes in fungi (Pinedo et al., 2008), 

thus, these synthases may contribute in generating a variety of structurally complex 

terpenoids in Trichoderma. Presilphiperfolan-8β-ol synthases are absent in Viride 

species, T. arundinaceum and T. atrobrunneum. They contain a conserved Class I 

DDQFD motif, DDPAA in both isolates of T. reesei, and a highly conserved 

ND(L/I)LSYKKE triad located 102-150 residues downstream from the metal-binding 

motif. 

Pentalenene synthases were found in all the Trichoderma isolates analysed. These 

enzymes cyclize FPP to form the sesquiterpenic compound pentalenene, the parent 

hydrocarbon of the pentalenolactone family of fungal antibiotics (Kim et al., 1998). A 

conserved Class I DD(M/V/L)FD motif was found in all the proteins, excepting in those 

from T. pleuroti (one of them), T. gamsii A5MH and  T. brevicompactum. These last two 

proteins show a DDxxD motif 18 residues upstream the NSD/DTE triad, that is also 

present in all the other proteins. The NSD/DTE triad is conserved as NDILSYRKE in all 

the proteins, but lacks in T. citrinoviride, T. parareesei, T. longibrachiatum, T. asperellum 

CBS433.97 and in T. pleuroti. Results derived from studies of plant sesquiTS reported 

that the presence of an additional DDxxD motif supplies the absence of the NSD/DTE 

triad, enabling the protein to be functional (Back and Chappell, 1996; Steele et al., 1998). 

This suggests that pentalenene synthases from these species could be functional, while 

presilphiperfolan-8β-ol synthases from both isolates of T. harzianum could be not.  

TSs of “Uncharacterized group 4” were found widely distributed across the species, but 

are particularly represented in T. virens and T. pleuroticola. They show Class I DDxxD 

motif and a N(D/E)xxSxxKE. Differently, proteins of “Uncharacterized group 3” seems 

to be exclusive of species belonging to the Harzianum clade, and their phylogenetic 

proximity to both groups of sesquiTS suggests it is also composed by this type of TSs. 

They show Class I DDIRE motif and a NDILSYNKE triad 18 residues downstream. 

Analyses revealed a large group of PTs, comprised by SQSs and enzymes involved in 

protein prenylation (Jeong et al., 2018), such as GGTases 1, GGTases 2 and FTases. SQSs 
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catalyse the condensation of two FPP to form squalene, the central precursor in the 

biosynthesis of all the triterpenic compounds (Quin et al., 2014). They show a Class I 

DDMTI motif (DDMTH in T. pleuroti), at position 82-86. In addition, they also present 

a C-terminal TM helix region of 23 residues, which is universally conserved in all the 

eukaryotic SQSs and is responsible to bind the protein to the endoplasmic reticulum 

(Linscott et al., 2016). SQSs are present as unique copy in all the Trichoderma genomes 

analysed here, indicating that single-copy SQS provide the squalene precursor required 

for triterpene biosynthesis in these fungi. However, T. pleuroti has two copies of these 

genes, suggesting that one of them might be involved in a specific triterpene biosynthetic 

pathway.  

TSs involved in protein prenylation GGTases 1, GGTases 2 and FTases are present in 

single-copy in the genomes of Trichoderma. These enzymes are responsible of 

transferring prenyl groups to target proteins containing CaaX motifs (Kamiya et al., 

1979). This process, called prenylation, enables proteins to become membrane-associated 

due to the hydrophobic nature of the prenyl group, enabling them being involved in 

cellular signalling functions (Jeong et al., 2018). GGTases 1 show Class I DExxV motif, 

DAxxV in proteins from T. arundinaceum and T. brevicompactum. In the same way, type 

GGTases 2 show a Class I DEWGE motif, while FTases show the Class I D[D/E]xx[D/E] 

motif, which is partially conserved in some cases.  

Similar to SQSs, OSCs were found in single copy in all the Trichoderma isolates 

analysed. These proteins are exclusive of eukaryotes and are responsible of the conversion 

of oxidosqualene to either lanosterol or protostadienol, precursors of triterpenes (Quin et 

al., 2014). A DCTSE aspartate-rich motif was found in 7 of these proteins, while DCISE 

was found in the other 14 proteins, both variants of the characteristic DCTAE motif 

associated to OSCs (Abe et al., 2001). Furthermore, these OSCs contain 5 conserved QW 

motifs, which are thought to be responsible of strengthening the structure of the enzyme 

and stabilize the carbocation intermediates (Kushiro et al., 2000). Proteins belonging to 

“Uncharacterized group 5” are also present in all the Trichoderma spp, analysed one per 

each isolate, showing a partially Class I conserved motif DxxxE. 

Copalyl-pyrophosphate/Ent-kaurene synthases (CPS/KS) were found in T. asperellum, 

known for its ability for gibberellin biosynthesis (Zhao and Zhang 2015).  Bifunctional 

enzymes clustering with CPS/KS were found in T. citrinoviride, T. parareesei, T. reesei 
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and species of clade Brevicompactum (PTHR31739:SF4), but their low sequence 

similarity with CPS/KS indicates these are diTS not involved in ent-kaurene biosynthesis. 

Harziandione was the first diterpene isolated from Trichoderma spp. (Ghisalberti et al., 

1992), and a number of these compounds have been recently reported in these species, 

mainly comprising endophyte and marine isolates (Miao et al., 2012; Adelin et al., 2014; 

Song et al., 2018; Chen et al., 2019; Zhao et al., 2019). Nevertheless, the low number of 

diTS found here suggests the ability of Trichoderma spp. for diterpene biosynthesis is 

scarce and not very widespread within the genus.  

IPSs, responsible of the biosynthesis of universal terpene precursors GGPP and FPP, were 

found in all the Trichoderma spp.  GGPP synthases show two Class I aspartate-rich motifs 

separated by 129 aa, DDVID and DDMLD. FPP synthases show two Class I DDxxD 

metal-binding motifs, excepting one in T. arundinaceum, which is shorter and contains 

only one motif. The presence of two conserved aspartate-rich motifs characterize GGPP 

and FPP synthases, in which the first motif is responsible of the accommodation of the 

allylic substrates and Mg binding, while the second motif triggers the chain extension 

with IPP units (Wend et al., 1998; Gao et al., 2012).  Some Harzianum and 

Brevicompactum species have 2/3 copies of these PTs class, suggesting that at least some 

of them could be actually pathway-specific. Additional GGPP and FPP synthases may act 

as donors of terpenoid precursors in specific biosynthetic pathways in these species. This 

probably reflects specific portions of the terpenoid inventory of these species, and 

guarantees an efficient distribution of terpenoid precursors between primary and 

secondary metabolism. 

Analysis also revealed a set of highly conserved indole diTS, of which some species have 

more than one. They have two Class I motifs, DDYLD and DDVQD, excepting that of T. 

longibrachiatum, which has no conserved motifs suggesting this protein might be not 

functional. Considering that production of indole diterpenes has not been reported in 

Trichoderma, our results reveal that these species have at least the potential to produce 

these compounds. Production of indole diterpenes has been reported in some 

Sordariomycetes being involved in protecting their reproductive structures from 

fungivores (Saikia et al., 2008). Furthermore, many of indole diterpene-producer fungi 

stablish symbiotic relationships with plants, thus, biosynthesis of these compounds may 

confer ecological advantages on Trichoderma-host associations as well (Parker and Scott 

2004). 
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The last group contains Class I TSs clustering with known chimeric TSs from fungi, 

which were absent in species of the Viride clade. Most of these proteins contain only 

polyprenyl synthase or terpene synthase C domains. Nevertheless, we found one protein 

in T. asperellum TR456 containing both domains and DDIED and DDIVD motifs, which 

is highly similar to ophiobolin F synthase from Aspergillus clavatus, suggesting this 

specie is able to produce sesterterpenes. Proteins showing only polyprenyl synthase 

domain and Class I motifs, DDLDE or DDIQD, were found in T. gamsii A5MH, T. 

pleuroti, T. afroharzianum and in both isolates of T. asperellum. Proteins showing only 

terpene cyclase domain and Class I DDEME motif, are present in T. virens, T. pleuroti, 

T. harzianum, T. guizhouense, T. atrobrunneum, T. afroharzianum, T. gamsii A5MH, and 

T. arundinaceum and in all the members of the clades Brevicompactum and 

Longibrachiatum. 

No monoTS were found among the genomes analysed in this work, although production 

of monoterpenes has been reported in T. virens (Crutcher et al., 2013; Inayati et al., 2019). 

No bona fide monoTS have been identified in fungi (Schmidt-Dannert, 2014), and the 

scarce availability of sequences of these enzymes probably leaded to miss-predict them. 

Biochemical studies have shown that fungal sesquiTS are able to cyclize GPP (Lopez-

Gallego et al., 2010), thus, we hypothesize that enzymes involved in monoterpene 

biosynthesis in Trichoderma could be actually included within “Uncharacterized group 

4”, since they are phylogenetically close to sesquiTS, and other uncharacterized proteins 

were found restricted to some clades not including T. virens or fell into the TRI5-

superfamily. 

 

3.4 Assessment of the genomic context of tri5 genes in Trichoderma 

Trichothecenes are a family of sesquiterpenes produced by some species from multiple 

fungal genera, including Fusarium, Isaria, Microcyclospora, Myrothecium, Peltaster, 

Spicellum, Stachybotrys, Trichoderma, and Trichothecium (Cole et al., 2003; Kikuchi et 

al., 2004; McCormick et al., 2011; Surup et al., 2014; Venkatasubbaiah et al., 1995). The 

first committed step in the biosynthesis of trichothecenes is catalysed by TRI5, which 

cyclize the precursor FPP to form trichodiene (Desjardins et al., 1996). Trichodiene 

undergoes subsequently chemical modifications by oxygenases, acetyltransferases, and 

some other tailoring enzymes, leading to different types of trichothecenes (Proctor et al., 
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2018). Genes encoding these enzymes are arranged in the trichothecene (TRI) BGC, 

whose gene-content varies depending on the final product (Proctor et al., 2018). In 

Trichoderma, the TRI cluster and the production of trichothecenes have only been 

reported in species of the clade Brevicompactum, T. arundinaceum and T. 

brevicompactum (Cardoza et al., 2011). 

Analysis of the TS-gene content in Trichoderma showed that tri5 is also present in T. 

guizhouense, and in both isolates of T. gamsii and T. asperellum. Pairwise alignments of 

each TRI5 protein with that of T. arundinaceum and T. brevicompactum showed 77% 

similarity in T. guizhouense, 80-82% identity in T. asperellum isolates and 87% similarity 

in T. gamsii. 

Assessment of the TS-associated clusters based on antiSMASH showed that unlike T. 

asperellum, T. guizhouense, and Brevicompactum species, tri5 is included in a BGC in T. 

gamsii.  The 21.3 Kb cluster found in T. gamsii, encloses 6 other genes, which were 

named as A, B, C, D, E and F (Fig. 8). Manual characterization based on conserved 

domains and similarity with characterized proteins in other systems enabled to identify 

four tailoring enzymes, one efflux transporter and one regulatory protein. The three genes 

located upstream of tri5 encode a Zn2-C6 transcription factor (TF) (A), oxygenase (B), 

and alpha-beta hydrolase (C), while the three located downstream were identified as 

oxygenase (D), Major Super-facilitator Family (MSF) transporter (E) and carbonic 

anhydrase (F).  The presence of a TF-encoding gene within the cluster suggests a 

pathway-specific regulation, as it has been observed in approximately half of the SM 

BGCs studied to date (Macheleidt et al., 2016). Furthermore, the presence of an MSF 

transporter suggests this cluster is involved in the biosynthesis of a sesquiterpenoid with 

extra-cellular functions. 

Comparison of the proteins found in T. gamsii with the TRI proteins described in the 

trichothecene-producer species showed no sequence neither function similarities, 

excepting on TRI5. Since tri5 is not included in the TRI cluster in T. arundinaceum and 

T. brevicompactum, as found in other fungal species (Proctor et al., 2018), a search of the  

TRI proteins was carried out in the genomes containing tri5 by BLASTp analysis, using 

the TRI protein sequences from both species of the clade Brevicompactum and those of 

F. graminearum, available in public databases.  
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Results showed that these species lack on the entire set of TRI proteins excepting TRI5, 

and a distantly related homolog of tri101 was found in the genome of T. gamsii, which 

has been already reported (Proctor et al., 2018). In the trichothecene biosynthetic 

pathway, the first two enzymatic steps, catalysed by genes tri5 and tri4 (trichodiene 

oxygenase), are conserved among the producer species and are strictly required for the 

formation of the 12,13-epoxytrichothec-9-ene ring (EPT) needed for trichothecene 

production (Alexander et al., 2009; Kimura et al., 2007; Izquierdo-Bueno et al., 2018; 

Proctor et al., 2018). Together with tri3 (C-15 acetyltransferase), they constitute the 

minimal tri-kit which is present in all the producer species. The absence of tri4 could be 

countervailed by the existence of another trichodiene oxygenase, as suggested to explain 

trichothecene production on Spicellum roseum, which lacks this gene (Proctor et al., 

2018). However, and unlike S. roseum, no other tri core genes were found in the genomes 

of Viride species, suggesting these fungi are unable to produce trichothecenes. In the other 

hand, the presence of a tri101 homolog in non-trichothecene producer fungi is not 

uncommon. It has been proposed that some tri101 homologs have a function(s) other than 

trichothecene biosynthesis, and paralogs of this gene evolved the tri101 C-3 

acetyltransferase function required for trichothecene production (Proctor et al., 2018). 

We used the protein sequences encoded in the cluster found in T. gamsii as queries in 

BLASTp analyses to search for homologous proteins in the Trichoderma genomes used 

here. Genes A, B and C were also found in all the other Trichoderma spp. belonging to 

the Viride clade, with conserved synteny ; preliminary BLAST analyses suggest that these 

genes may be originated by HGT from a donor belonging to the Eurotiomycetes; further 

analyses are needed in order to better understand the evolutionary origins of these genes. 

Instead, genes D and F are present in some of the genomes analysed in closely related 

species; while gene E seems to be specific to T. gamsii. Polymorphism in variable loci 

containing BGCs between phylogenetically close species have been observed, even 

between isolates of the same species, in which the synteny is conserved but the gene-

composition is variable (Zhang et al., 2012; Lind et al., 2017; Proctor et al., 2018). 

Differences observed in the tri5-associated cluster may stems to gene gain/loss and 

chromosomic rearrangements probably occurred in this genomic region during the 

evolution of Viride species and contributing to metabolic diversity and host adaptation, 

as suggested by Zhang et al. (2012) for genomic regions containing genes involved in SM 

biosynthesis. 
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These findings suggest the origin of a novel tri5-associated gene cluster in the genus 

Trichoderma. In addition of HGT events, gene gain/loss, relocations and/or duplications 

and posterior neofunctionalization of native genes have been proposed as mechanisms 

driving the birth of new BGCs (Rokas et al., 2018; Proctor et al., 2018; Ramdass et al., 

2019; Brown et al., 2019). Further analyses are needed to find evidences for processes 

that have contributed to the formation of this novel cluster. Since tri5 orthologues seems 

to be functionally associated to two different SM clusters in Trichoderma, it could be 

hypothesized that this gene is involved in different metabolic pathways within this genus. 

This novel tri5-associated cluster could lead to an uncharted trichodiene-derived 

sesquiterpenic biosynthetic pathway in T. gamsii, which could synthetize novel 

metabolites with agronomic interest. Thus, we propose the involvement of tri5 in other 

metabolic pathways different from the biosynthesis of trichothecenes. The availability of 

new complete genome sequences from other Trichoderma spp. will enable to check 

whether this cluster could be present in other species or instead, if it is specific of T. 

gamsii. Expression studies on these genes are required to decipher their expression 

patterns and whether they are co-regulated. In addition, functional analysis combined 

with metabolic profiles of the fungus will enable determining the metabolite/s produced 

by this BGC. Furthermore, analysis of tri5 from T. asperellum and T. guizhouense and 

metabolic profiles of these fungi will determine whether this gene cooperates in other 

metabolic pathways different from that of T. gamsii and species from Brevicompactum, 

or instead, it is only involved in the production of trichodiene. 
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Chapter 2: 

Expression studies on TS genes: Tgam in different ecologic contexts. 

Metabolic profiles of Tgam. 
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Relationships occurring between the many terpenes reported in Trichoderma and the 

genes responsible for their synthesis are still not well known, which outlines an intriguing 

area of research. The striking genomic potential for terpenoid production found in 

Trichoderma spp. in this work suggests that functional differentiation of gene family 

members is the driver for the high TS gene numbers of these species. Assessing changes 

in the relative expression of TS when the fungus grows under different environmental 

conditions, or when interacts with other organisms, enables individuating genes that could 

play a role in these frameworks.  

Tgam strain T6085 constitutes an interesting model for this purpose, due its versatile 

lifestyle. As reported in section 1.3.4.1, Tgam competes with F. graminearum for space 

and nutrients on wheat, reduces its growth and mycotoxin production, and the ability of 

the pathogen to develop reproductive structures (i.e. perithecia) on wheat straw, thus 

resulting in a reduction of incidence and severity of FHB. In addition, this fungus shows 

endophytic skills, being able to colonize the external layers of epidermis and cortex of 

wheat roots and induce the plant defence responses, indicating the existence of a 

symbiotic interaction between both partners.  

Computational analysis based on IPR terms enabled to identify 16 TS-encoding genes in 

the genome of Tgam (Table 4). Proteins identified with IPR008949 were named as TS 1, 

TS 3-11 and TRI5, while proteins identified with IPR008930 were named as TC 1-5. 

Phylogenetic analysis revealed these genes putatively correspond to unknown sesquiTS 

(TS3, TS4 and TS7), “uncharacterized group 4” (TS1), squalene synthase (TS6), 

pentalenene synthase (TS5), indole diTS (TS9), “uncharacterized group 5” (TS11), 

trichodiene synthase (TRI5), HAD-like (TC4), oxidosqualene cyclase (TC2), GGTase 1 

(TC3), GGTase 2 (TC5), FTase (TC1), GGPP synthase (TS8) and FPP synthase (TS10). 

 

Analysis of BGCs revealed 7 TS genes included in clusters in Tgam – tri5, ts1, ts3, ts4, 

ts5, ts6 and tc2–. In addition to the tri5-containing cluster, antiSMASH 5.0 founds similar 

hits when using the oxidosqualene cyclase (TC2)-containing cluster as query, which was 

predicted to encode a lanosterol synthase. 

 

For gene expression studies, we focused on 9 genes encoding TS belonging to Class I – 

TS1, TS3, TS4, TS5, TS6, TS7, TS9, TS11 and TRI5 – which represented a high diverse 

functional group according to our analyses. Thus, we excluded genes encoding Class II 
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proteins and those involved in the biosynthesis of terpene precursors and protein 

prenylation.  

 

In order to assess the environmental signals regulating the expression of TS genes selected 

in Tgam, the fungus was grown i) under different stress conditions and in 

presence/absence of C source, ii) in FHB scenario, and iii) in interaction with wheat roots. 

 

 

 

 

 

Table 4. TS proteins found in Tgam.  

JGI accession numbers of each protein are shown in the first column. Putative protein functions derived from 

phylogenomic analysis (section 3.3) are shown in the second column. Proteins belonging to BGCs are shown in the 

fourth column, highlighted in pink. Proteins included in gene expression analyses are shown in the third column, 

highlighted in blue.   
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4.1 Regulation of TS genes in Tgam in liquid substrates under different stress 

conditions 

 

Genome mining data available in literature indicate that the ability of fungi to produce 

SMs has been substantially underestimated. The discordance found between the high 

number of genes and clusters involved in SMs biosynthesis, in comparison with the 

amount of SMs detected in fungal metabolomes, suggests that many of these genes are 

silent under standard laboratory conditions (Hertweck 2009). Since the early days of the 

fermentation science, it has been known that the choice of cultivation parameters is 

critical for the number and the nature of the SMs produced by microorganisms. Thus, 

manipulating nutritional or environmental factors, as well as inducing stress conditions, 

can promote differential SMs biosynthesis (Scherlach and Hertweck, 2009). This 

facilitates determining the conditions triggering their production and enables to 

hypothesize about the processes they could be involved in. 

 

In this context, and since there is no extensive information about the regulation of TS 

genes in Trichoderma, changes in TSs expression were investigated in Tgam by growing 

the fungus in minimal medium (FRIESM), minimal medium amended with 0.9% sucrose 

(FRIES), or FRIESM supplemented with different stressors, such as 0.5 mM H2O2 

(FRIESM H2O2) (oxidative stress), low nitrogen concentration (FRIEM N) (N starvation), 

or 200 mM NaCl (FRIESM 200 salt) (saline stress), using FRIESM as reference control. 

 

Spores of Tgam were firstly incubated for 60 h in the minimal medium with sucrose 

(FRIES) as sole C source. This enabled the fungus to grow and develop a biomass in 

optimal conditions. Mycelium was transferred to fresh media of FRIES, FRIESM and 

FRIESM with different stressors. Since SM production usually begins late in the growth 

of the fungus, often upon the stationary phase (Bu’Lock 1961), second step-cultures of 

Tgam were incubated for 4 days, in agreement with previous experiments performed in 

this laboratory, in which growth curves of the fungus were determined by measuring its 

dry weight when growing in different liquid substrates (data not shown).  

Analysis of expression (Fig. 9) revealed the absence of tri5 transcripts in all the conditions 

tested. Addition of 0.9% of sucrose to the culture media did not induce tri5 expression in 

Tgam, differently from what observed in T. brevicompactum when grown in presence of 

1% or 2% sucrose (Tijerino et al., 2011a). Furthermore, these authors found the highest 
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tri5 expression levels in 3-day-old cultures of T. brevicompactum grown in minimal 

medium with 0.5 mM H2O2, and an increased expression of this gene by H2O2 has been 

also reported in F. graminearum (Ponts et al., 2007). In contrast, addition of 0.5 mM H2O2 

to the culture media did not induce tri5 expression in 4-day-old cultures of Tgam, 

suggesting different types of tri5 regulation in Tgam and T. brevicompactum. In T. 

brevicompactum and T. arundinaceum, tri5 is expressed by growing the fungi both in 

conventional rich and minimal substrates, leading to trichothecene accumulation 

(Cardoza et al., 2011; Malmierca et al., 2013). Anyway, it is conceivable that microbial  

cultures do not produce some metabolites under non-natural conditions, and specific 

environmental requirements of the organisms should be taken into account (Scherlach 

and Hertweck 2009).  

 

 

Experiment performed has a single time-point, so we cannot exclude that the activation 

of this gene takes place at earlier/later growth stages, or even that the environmental 

Total RNA was extracted from 4-day-old mycelium of Tgam grown on minimal medium without sucrose (FRIESM) 

(basal condition, 2-Ct = 1), or minimal medium with 0.9% sucrose (FRIES), 0.5 mM H2O2 (FRIESM H2O2), low N 

concentration (FRIESM N), or 200 mM NaCl (FRIESM 200salt). Colour bars represent relative expression values of 

TS genes on each condition. The β-tubulin gene was used as control for data normalization. Values are means of three 

independent biological replicates with the corresponding standard deviation. Fold change in sample relative to control 

is expressed as 2-Ct. Statistically significant values are indicated with asterisks (P  0.05 no significative; 0.05  P  

0.01 = *; 0.01 P  0.001 = **; P < 0.001 = ***). 

 

Fig. 9. Expression of TS genes of Tgam in different liquid substrates 
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signals that trigger its expression are different from those tested or they are more related 

to biotic interactions. As observed in tri5, ts5 and ts7 transcripts were not detected in any 

of the tested conditions.  

Availability and type of C sources affects SMs production and expression levels of the 

involved genes in a strain-dependent manner (Calvo et al., 2002; Jiao et al., 2008).   

Addition of 0.9% of sucrose to the culture medium had contrasting effects on the 

expression of TS genes in Tgam. While the transcript levels of ts6 and ts11 did not change 

significantly, a 0.1-fold down-regulation was found in ts3 (P = 0.000). On the other hand, 

0.9% sucrose up-regulated 2.8-fold ts1 (P = 0.000) and 2.6-fold ts9 (P = 0.000), but the 

highest effect was observed in ts4, which was 18.7-fold up-regulated (P = 0.000).  

Association of oxidative stress with SMs biosynthesis in filamentous fungi has been 

extensively demonstrated, and it has been suggested that it is induced to prevent ROS 

damage in fungi (Hong et al., 2013). As observed in cultures amended with 0.9% sucrose, 

addition of 0.5 mM H2O2 to the substrate induced opposite changes on TS expression in 

Tgam, indicating different regulation of TS genes in response to oxidative stress. A 0.3-

fold down-regulation was found in ts3 (P = 0.000), while ts6 was 0.6-fold down-regulated 

(P = 0.022). In contrast, 0.5 mM of H2O2 promoted a 2.7-fold up-regulation of ts9 (P = 

0.000). Since ts9 was predicted to encode an indole diTS, it suggests that production of 

indole-terpenes in Tgam might occur in response to oxidative stress, as it has been also 

observed in Aspergillus spp. (Fountain et al., 2016). No effects were observed in the 

expression levels of ts1 and ts11.  

Nitrogen availability has a considerable impact on secondary metabolism in fungi 

(Hautbergue et al., 2018). In Fusarium fujikuroi, it affected the expression of 35 out of 

40 BGCs, and 2 diTS and 1 sesquiTS, from a total of 10 TS-encoding genes (Wiemann 

et al., 2013). In our experiment, low N concentration tends to negatively regulate the 

expression of TS genes in Tgam, suggesting terpenoid biosynthesis does not confer 

particular advantages to the fungus to overcome this stress. N deficit down-regulated 0.4-

fold ts3 and ts11 (P = 0.001 and 0.013, respectively), and, although not statistically 

significant, a downward tendency was found in ts1, ts6 and ts9 expression.  

Some salt-stress tolerant Trichoderma isolates could be used as BCAs against 

phytopathogens, plant-growth promoters and inducers of salt-tolerance in crop plants 
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grown on saline environments, as recently demonstrated by Sánchez-Montesinos et al. 

(2019) and Daliakopoulos et al. (2019).  Saline stress can induce both quantitative and 

qualitative changes in SMs production, as it has been shown for VOCs produced by T. 

harzianum, with inhibitory effects against B. cinerea (Bualem et al., 2015). In order to 

induce a stress response, the growth of Tgam was evaluated on PDA with different salt 

concentrations (50, 100, 150 and 200 mM NaCl). No significant differences were detected 

in the diameter of the colony between 50, 100 and 150 mM NaCl and the control (data 

not shown), but the growth of the fungus was slightly reduced at 200 mM NaCl. Thus, 

this concentration was selected to test the expression of TS genes. Addition of 200 mM 

NaCl to the medium did not change the expression levels of ts1, but dramatically down-

regulated the other’s TS expression comparing with the effects observed in N starvation 

and oxidative stress. The highest repression was observed in ts3 (0.02-fold change, P = 

0.000), followed by ts11 (0.18-fold change, P = 0.002), ts6 (0.26-fold change, P = 0.001) 

and ts9 (0.33-fold change, P = 0.012). Thus, and similar to what observed in N starving 

conditions, this suggests that terpenoid biosynthesis does not have a particular role under 

saline stress conditions. 

 

4.2  Tgam – wheat – Fgra interaction 

Terpenoid production plays a crucial role in F. graminearum to successfully colonize and 

defend its niches, enabling infection on wheat spikes and suppressing the release of 

chitinases by mycoparasites (Venkatesh and Keller, 2019; Audenaert et al., 2013). In T. 

arundinaceum, tri gene expression is affected when grown in dual cultures with B. 

cinerea, while polyketides and HA produced by the first induce changes in some B. 

cinerea genes linked to its virulence (Malmierca et al., 2015). This is an example 

illustrating how a molecular crosstalk between SMs determines the outcome of the 

interactions between antagonistic organisms. In this context, and since Tgam is able to 

suppress Fgra on wheat spikes and to reduce DON production by the pathogen (Matarese 

et al., 2012; Sarrocco et al., 2013, 2019), a differential response of the TS genes in Tgam 

could occur when the beneficious fungus is in an FHB scenario.    

Three-player interactions involving Trichoderma, plant and fungal pathogen have 

received less attention comparing to the dual systems due to a higher difficulty in studying 

such a complex scenario, which usually require -omics approaches (Vinale et al., 2008). 
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For that reason, and in order to establish a starting point towards the study of the 

involvement of terpenoids in the biocontrol activity of Tgam against FHB, we screened 

changes in TSs expression when Tgam was inoculated on wheat spikes along with Fgra 

comparing when Tgam was alone.  

Wheat plants of Triticum aestivum cv. Apogee were used to reproduce FHB disease under 

controlled conditions. This cultivar is very useful for lab-scale experiments due its short 

propagation cycle comparing with other wheat varieties, enabling to optimize trial 

timings. FHB disease severity (DS) was evaluated in plants inoculated with Tgam + Fgra 

in comparison with those inoculated with Fgra alone, and spikelets were considered as 

diseased when glumes were slightly darkened and pinkish, characteristics of the early 

stages of FHB, or showed premature bleaching.  

 

Analysis of variance revealed a significant reduction of 25.4% of the DS of FHB (P = 

0.011) when plants were treated with Tgam 48 h before Fgra inoculation (Fig. 10). Plants 

inoculated with Fgra alone showed 88.3 ± 1.2% of diseased spikelets, while Tgam + Fgra 

plants showed 57.9 ± 4.7% of diseased spikelets.  

 

 

Fig. 10. Effect of spike inoculation with Tgam in the Disease Severity of FHB on wheat.   

Tgam was inoculated on wheat spikes at anthesis 48 h before inoculation of Fgra. Disease Severity (DS) was calculated 

6 days after inoculation of the pathogen on ten spikes as percentage of diseased spikelets. Bars represent the average 

and DS values out of three biological replicates with the corresponding standard deviation. Different letters represent 

statistically different values.  
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In addition, qualitative differences were observed between plants inoculated with Fgra 

alone and those inoculated with both Tgam and the pathogen (Fig. 11). Six days after 

inoculation of the pathogen, diseased spikelets from plants inoculated with Fgra alone 

showed to a greater extent the characteristic premature bleaching of FHB. 

Instead, when spikes were pre-treated with Tgam, most of the diseased spikelets showed 

brownish and pink spots at the base of the glumes, while only few of them were 

completely bleached.  

 

 

 

 

 

Fig. 11. Effect of spike inoculation with Tgam in FHB symptoms on wheat.   

Tgam was sprayed as spore suspension (107 spores mL-1) on wheat spikes at anthesis 48 h before inoculation of Fgra 

(105 spores mL-1). Reduction of FHB symptoms was evaluated 6 days after inoculation of the pathogen. The image 

shows qualitative differences between control spikes (left) and spikes inoculated with the pathogen (centre), and 

between these and spikes pre-treated with Tgam (right). 
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These results indicate that Tgam not only reduces the number of infected spikelets, but it 

is also able to delay the development of disease symptoms in infected spikelets. These 

results are in agreement with experiments performed in field, in which a reduction from 

23.1% to 7.4% of the Disease Severity, and from 65.7% to 30.3% of the Disease Index 

(% of infected spikes), was observed when Tgam was used as spike inoculant at anthesis 

(Sarrocco et al., 2020).  

 

The methodology employed to simulate FHB under laboratory conditions enabled us to 

reproduce results obtained in the field, thus demonstrating its utility for small-scale 

experiments. Reproducing FHB under controlled conditions, and the biocontrol effect 

exerted by Tgam against Fgra on wheat spikes, will be useful for assessing fungal growth, 

gene expression and many other physiological parameters, without introducing the 

external variations usually occurring in nature, such as changes in temperature, humidity 

or the interaction with natural (micro)organisms. 

 

4.2.1. TSs expression in Tgam on FHB scenario 

 

Aimed to shed light on whether a differential production of terpenes in Tgam could take 

place when the fungus interacts with Fgra on wheat spikes, relative expression of TS 

genes was evaluated in co-inoculated spikes (Tgam + Fgra), using spikes treated only 

with Tgam alone as Tgam control.  

 

Analysis of expression revealed 4 TS genes – ts1, ts6, ts9 and ts11 – active when Tgam 

was on spikes with or without Fgra (Fig. 12). No transcripts of tri5, ts3, ts4, ts5 and ts7 

were detected. No specific transcripts were found in either conditions. Expression of ts1, 

ts6 and ts9 did not change significantly between the two theses, suggesting these genes 

are not particularly involved in the triple interaction under the conditions tested.  

 

Instead, ts11 was slightly up-regulated (1.45-fold, P =0.011) when Tgam was on spikes 

with Fgra, suggesting the presence of Fgra directly induced changes in its expression or 

could mediate physiological changes in spikes that promoted changes on ts11 expression. 

Additional analyses are required to determine whether this gene could be involved in that 

reduction of the FHB symptoms by Tgam observed in wheat plants six days after 
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inoculation of the pathogen. Interestingly, neither the presence of the plant nor the 

pathogen triggered the activation of tri5 in the tested conditions. 

 

 

 

 

 

Overall results show that Tgam did not induce prominent changes in terpene biosynthesis 

when interacted with F. graminearum on wheat spikes in the tested conditions. Gene 

expression patterns are highly dynamic, and more extensive time-course experiments are 

needed to provide more information on whether a modulation of terpene biosynthesis in 

T. gamsii T6085 could play a role when the fungus interacts with F. graminearum on 

wheat spikes. 

 

 

Fig. 12. Expression of TS genes of Tgam in the presence of Fgra on wheat spikes. 

Total RNA was extracted from wheat spikes colonized by Tgam alone (basal condition, 2-Ct = 1) or by Tgam + Fgra, 

six days after inoculation of the pathogen. The β-tubulin gene was used as control for data normalization. Colour bars 

represent relative expression values of each TS gene. Values are means of three independent biological replicates with 

the corresponding standard deviation. Fold change in sample relative to control is expressed as 2-Ct. Statistically 

significant values are indicated with asterisks (P  0.05 no significative; 0.05  P  0.01 = *; 0.01 P  0.001 = **; P 

< 0.001 = ***). 
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4.3. Tgam – wheat roots interaction 

Root colonization by Trichoderma is an intimate relationship involving a tightly regulated 

exchange of molecular signals including SMs (Hidangmayum and Dwivedi, 2018). When 

Trichoderma colonizes the roots, it releases a wide variety of SMs that promote 

substantial changes in plant biochemistry, which in turn, cause a reprogramming of the 

fungal physiology (Contreras-Cornejo et al., 2018).  

 

As many other Trichoderma spp., Tgam is able to colonize the rhizosphere and establish 

a beneficial interaction with wheat roots, behaving as an endophyte and inducing the plant 

defence responses (Sarrocco et al., 2020). In order to assess whether a differential 

regulation on terpene biosynthesis occurs in these conditions, changes in TS gene 

expression were assessed in Tgam when interacting with wheat roots. For this purpose, 

Tgam was incubated for 3 days on PDA in presence of 1-day-old wheat seedlings, while 

Tgam grown alone on PDA under the same conditions was used as control. 

Root colonization affected TS expression in Tgam, which differentially regulated most of 

its TS genes, with the exception of ts7, whose transcripts were not detected in any 

condition, and ts1, which did not change its expression (Fig. 13). This clearly indicates a 

reprogramming in terpene biosynthesis in Tgam when colonizing the wheat roots. 

In particular, a modulation in sesquiterpene biosynthesis occurred in Tgam during root 

colonization. Whereas ts5 was slightly up-regulated (1.58-fold; (P = 0.045), the contact 

with the roots strongly repressed the expression of ts4 (0.03-fold; P= 0.000) and in a lesser 

extent, that of ts3 (0.59-fold; P= 0.021). Nevertheless, the most remarkably difference 

was found in the relative expression of tri5, which was 133.6-fold up-regulated (P = 

0.000) during root colonization. This strong overexpression suggests that signals from the 

roots are the responsible of triggering the expression of this gene in Tgam. Although 

activation of tri5 usually leads to the production of phytotoxic compounds, such as 

trichodermin in T. brevicompactum (Tijerino et al., 2011a), HA produced by T. 

arundinaceum lacks on phytotoxic activity, and has proven to have a crucial role in plant 

protection against B. cinerea (Malmierca et al., 2012). This example illustrates how 

different ecological demands led to an adjustment in a metabolic pathway governed by 

the same genes in species belonging to the same fungal genus (Mukherjee et al., 2013). 

In this context, and since Tgam establishes a beneficial interaction with the plant roots, 
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we can imagine the involvement of tri5 in the biosynthesis of a sesquiterpenic compound 

that could play a role in promoting this relationship. Further analyses involving both the 

monitoring of tri5 expression before contact with roots, at contact, and when the fungus 

penetrates the root tissues, as well as assessing the behaviour of a tri5 knock-out mutant 

in root colonization are required to infer a possible role in beneficial interaction with 

roots.  On the other hand, the differential response of the plant to the WT fungus and the 

tri5-deletion mutant will shed light into the role of tri5 in T. gamsii T6085 and its possible 

involvement in the establishment of a beneficial fungus-plant interaction. 

 

 

 

 

The role of fungal sesquiterpenes in plant root colonization is not well documented. 

Nevertheless, it has been shown that sesquiterpenes produced by ectomycorrhizal fungi 

re-programme root architecture by enhancing lateral root and root hair development, 

Fig. 13. Expression of TS genes of Tgam in interaction with wheat roots. 

Total RNA was extracted from mycelium of Tgam grown on PDA for 3 days (basal condition, 2-Ct = 1), and from 

wheat roots colonized by Tgam for 3 days. The β-tubulin gene was used as control for data normalization. Colour bars 

represent relative expression values of each TS gene. Values are means of three independent biological replicates with 

the corresponding standard deviation. Fold change in sample relative to control is expressed as 2-Ct. Statistically 

significant values are indicated with asterisks (P  0.05 no significative; 0.05  P  0.01 = *; 0.01 P  0.001 = **; P 

< 0.001 = ***). 
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which is thought to provide nutritional benefits to root-associated fungi and to enhance 

the probabilities of successful root colonization (Ditengou et al., 2015).  

In addition, an up-regulation of 1.52-fold and 2.58-fold was found on ts6 (P = 0.003) and 

ts11 (P = 0.000), respectively, when Tgam was interacting with wheat roots. Since ts6 

was predicted to encode a squalene synthase, results suggest that triterpene biosynthesis 

is modulated in Tgam in during root colonization. 

Interestingly, ts9 was found strongly down-regulated (0.28-fold change; P = 0.000) in 

Tgam colonizing wheat roots in comparison to Tgam alone in PDA, suggesting that root 

colonization induce a repression on indole-diterpene biosynthesis in the fungus.  

Results reveal that root colonization induces an overall modulation of TS gene expression 

in the fungus, suggesting that reprogramming of terpene biosynthesis has likely an impact 

in the outcome of this beneficial interaction, and led to hypothesize that some terpenoid 

may have a role on supporting it.  
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4.4 Metabolic profiles of Tgam in different substrates  

As mentioned throughout this work, the number of isolated metabolites compared with 

the genetic potential to produce them, found by mining fungal genomes, suggests that 

many of the SMs genes and BGCs are inactive under laboratory conditions. Therefore, 

cultivation-based techniques have been extensively used aimed to stimulate the activation 

of these “silent” pathways. The principles behind these techniques have been joined under 

the concept “one strain many compounds” (OSMAC) by Zeeck and co-workers (Bode et 

al., 2002), which explains how a single strain can produce different compounds when 

grown under different environmental conditions. In this context, we examined 

quantitative and qualitative differences on metabolite production by Tgam grown in 

different liquid substrates and in their ½ dilutions by LC-MS analysis. 

Principal Component Analysis (PCA) was used to determine the relationship between the 

SMs pattern composition and the liquid substrates used. As shown in Fig. 14, the first two 

components accounted for 73.63% of the total variance. Metabolites found in non-diluted 

substrates (FRIES, ME and PDB) clustered separately, and despite dilution by ½ of 

FRIES and ME did not affect significantly metabolite composition compared to the full-

strength media, qualitative differences were observed when diluting PDB compared with 

the non-diluted substrate, as shown in Fig. 15.  

Fig. 14. PCA of metabolite profiles obtained from Tgam grown in different liquid substrates 

for 21 days.  
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Nevertheless, the most remarkably differences were found between PDB half strength 

and the other substrates, both at quantitative and qualitative level. Although all the 

substrates yielded metabolites which are not present in the other media, PDB showed the 

bigger number of unique metabolites, followed by ME. For that reason, PDB and ME 

were selected to perform an analysis to preliminary identify SMs differentially produced, 

with particular attention to terpenes. Most of the reports regarding the production of SMs 

are focused on the use of liquid cultures; however, filamentous fungi seem to be more 

adapted to solid substrates (Shakeri and Foster, 2007; Viniegra-González, 2014). On this 

basis, metabolic profile was determined in solid ME (MEA) substrate, along with PDB. 

1H-NMR and 13C-NMR analysis of extracts obtained from 12-day-old PDB filtrates and 

15-day-old MEA cultures yielded 7 and 6 major compounds, respectively (Fig.  16). The 

most abundant metabolite found in both cultures was 6-pentyl-2H-pyrone (6-PP) – 

already detected in hug amount in the first analysis performed by LC-MS– 16.3 mg in 

PDB and 9.9 mg in MEA, which was not surprising due the high intense coconut aroma 

issued by Tgam comparing with other Trichoderma isolates (Collins et al., 1972). In 

addition, compounds derived from chemical modifications of 6-PP were the major 

constituents of the extracts obtained from MEA cultures: 6 (Pent-1-en-1-yl)-2H-pyran-2-

one (1.21mg); (S) 6 (1-hydroxypentyl)-2H-pyran-2-one (2.7 mg); (R) 6 (2-

hydroxypentyl)-2H-pyran-2-one (2.35 mg); viridenpyrenone (2.14 mg), this last was 

isolated for the first time in T. viride and shows antifungal properties (Cooney and Lauren, 

1999; Evidente et al., 2003). A broad range of pyrones have been isolated in Trichoderma 

spp., acting not only as biological weapons against other organisms, but also as molecules 

able to elicit the plant defense responses (Claydon et al., 1987; Parker et al., 1997; Keszler 

et al., 2000; Patil et al., 2016; Manganiello et al., 2018). The strong relationship found 

between the biosynthesis of these compounds and the biocontrol activity of Trichoderma 

(Scarselletti et al., 1994; Worasatit et al., 1994) suggest that the ability of Tgam to produce 

significative amounts of pyrones probably support the biocontrol activity observed 

against Fusarium spp. involved in FHB and the induction of the plant defense responses.   
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A 

B 

Fig. 16. Metabolites identified in the major fractions of solid and liquid cultures of Tgam.  

A) Metabolites obtained from 15-day-old solid cultures on MEA. B) Metabolites from 12-day-old liquid cultures in 

PDB. The organic extracts from both cultures were separated by column chromatography using ethyl acetate/hexane as 

solvent. Final purification was carried out by HPLC and the isolated metabolites were characterized by extensive 

spectrometric and spectroscopic analysis by HRMS, 1H-NMR and 13C-NMR. 
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Other compounds, such as furan-2,5-diyldimethanol (1.2 mg) and harziandione (2 mg) 

were identified in MEA cultures. As mentioned, harziandione is a diterpene without 

known antifungal activity, unlike its analog compounds (Sivasithamparam and 

Ghisalberti, 1998). Not many diterpenes have been reported in Trichoderma (Adelin et 

al., 2014), and their production is likely restricted to certain strains. The presence of 

harziandione in solid cultures of Tgam brings out the possibility that this fungus is also 

able to produce other diterpenes, as suggested for T. harzianum by Ghisalberti (2000), 

who hypothesized an elaborate biosynthetic pathway when observing the complexity of 

this compound. 

Regardless 6-PP, tyrosol was the most abundant compound found in PDB cultures (9.38 

mg) (Schneider et al., 1996). Tyrosol [2-(4-hydroxyphenyl) ethanol] is a phenolic 

antioxidant that seems to act as a quorum-sensing molecule able to inhibit competitors, 

with a role in decreasing the length of the lag phase of growth in fungi (Albuquerque and 

Casadevall 2012; Chang et al., 2019). Tyrosol has been detected in PDB cultures of T. 

parareesei, playing a role as allosteric modulator in the shikimate pathway (Pérez et al., 

2015). Interestingly, overexpression of tri5 in T. brevicompactum led to an increased 

production of trichodermin, tyrosol and its related metabolite hydroxytyrosol in PDB 

cultures, while a repression of tri5 was observed in cultures supplemented with tyrosol 

(Tijerino et al., 2011a). These results likely link the starting point of the sesquiterpene 

pathway with this major fungal regulator. 

Other compounds found in the major fractions of PDB cultures were melanoxazal (1.03 

mg), a melanin biosynthesis inhibitor (He et al., 2015), 4-anisaldehyde (1.54 mg), 

hydroxy-5 (4-hydroxybenzyl) dihydro -2 (3H)-furanone (1.05 mg). In addition, 

accumulation of modified intermediaries of the mevalonate pathway in the culture broth, 

such as mevalolactone (1.21 mg) (Sanghvi and Parikh, 1976), suggests a down-regulation 

in the biosynthesis of isoprenoids. Furthermore, analysis of filtrates from PDB revealed 

the absence of trichothecene production in Tgam in all the fractions, despite the culture 

conditions were very similar to those described for trichothecene accumulation in T. 

brevicompactum (Tijerino et al., 2011a), which is in agreement with the bioinformatic 

data reported in section 3.4, in which the inability of Tgam to produce these compounds 

has been discussed. This last information is of importance in view of using this isolate as 

bioactive ingredient of commercial products in the biocontrol of FHB on wheat. 
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In the first part of this work, we reported a comparative genomic study focused on the 

genes and BGCs involved in SMs biosynthesis of 21 isolates belonging to 17 

Trichoderma species, which represents the most extensive work carried out on this topic 

and provides an overview of the SMs diversity and potential within the genus. 

The phylogenetic and ecologic diversity of the species selected for the analyses enabled 

to evaluate the impact of these two factors on the genes responsible for SMs and on the 

BGCs content in Trichoderma genus. The ability of Trichoderma spp. to produce SMs is 

strongly dependent on their evolutive history, and species establishing complex 

interactions with their environment have likely expanded their SMs inventories. 

Around half of the SMs genes potentially cooperate in different metabolic pathways in 

Trichoderma. This brings out the complexity of the SMs biosynthetic machinery of these 

species and the great ability to shape their SMs repertory. 

Although Trichoderma genomes are rich in SMs synthases, PKSs determine the 

variability in the SMs inventories among the clades, while production of species/isolate-

specific metabolic skills seems to rely in the biosynthesis of bioactive peptides. Given the 

scarce availability of information about the diversity of RiPPs in Trichoderma, future 

research should be focused on the isolation and characterization of these metabolites and 

their related biosynthetic genes.  

The presence of DMATSs in some genomes indicates that Trichoderma spp. have at least 

the potential to synthesize alkaloids or their derivates under certain conditions, which 

must be taken into account in case of using these isolates for industrial purposes or as 

BCAs. This opens an interesting pathway for future research aimed to determine the 

environmental signals regulating these genes, the products they synthesize, and their 

impact in the ecology of Trichoderma. Thus, screening the factors triggering their 

activation, combined with metabolic profiles of these fungi and functional gene analysis 

should be further addressed. 

Although polyketides and NRPs are the compounds which likely contribute the most to 

SMs production in Trichoderma, the impressive number of TS-encoding genes we found 

in the genomes analysed demonstrates that terpenoid biosynthesis has a great impact in 

the diversity and complexity of SMs in Trichoderma.  
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The limited information available about the diversity within the TS-gene family in 

Trichoderma aimed us to provide a more detailed vision of the TS inventory within this 

genus.  For this purpose, we developed an in silico approach that enabled the 

identification of 15 groups of prenyl transferases, terpene cyclases and chimeric proteins, 

thus generating the first overview of the terpenoid inventory and the diversity of these 

enzymes within the genus, and paving the way for future functional analyses on TS genes.  

Trichoderma spp. share similar terpenoid potential, but the diversity found within their 

TSs inventories reflect the evolution of specific terpenoid biosynthetic abilities to adapt 

better to different physiological and environmental demands.  In this context, it would be 

interesting addressing the study of those TSs that are specific of certain species, such as 

the HAD-like proteins, or the proteins belonging to uncharacterized groups which are 

mainly distributed among the Harzianum and Viride species. Similarly, and since the 

potential for indole diterpene biosynthesis was found widely distributed across the 

species, further studies must be focused on providing information about these TSs and 

the roles of these metabolites in the ecology of Trichoderma.  

Trichoderma spp. have a huge potential for sesquiterpenoid biosynthesis, and a variety of 

sesquiTSs contribute in generating clade-specific TSs inventories. Diterpenoid 

biosynthesis is scarce and not very widespread within the genus, but some species have 

at least the potential to produce sesterterpenes. 

The presence of trichodiene synthase-encoding genes (tri5) in non-trichothecene 

producer species lacking on the TRI genes required for the biosynthesis of these 

compounds, leaves open some questions about the role of tri5 in beneficious Trichoderma 

spp. Given that in T. gamsii,  tri5 is included in a BGC completely different to the clusters 

found in the genomes of trichothecene-producer fungi, we hypothesize that tri5 might be 

involved, in this species, in the biosynthesis of sesquiterpene/s other than trichothecenes, 

and that the presence of a new tri5-containing cluster in T. gamsii could imply that tri5 

participates in different metabolic pathways in Trichoderma. Why not working in concert 

with tyrosol as a co-regulator of quorum sensing and primary metabolism, as described 

in other species of Trichoderma? This finding underlines the importance of assessing the 

genomic context of a given gene across the species, in order to shed light on its possible 

metabolic role. 
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The striking genomic potential for terpenoid production of Trichoderma spp. found in 

this work suggests that functional differentiation of gene family members is the driver for 

the high TS gene numbers of these species. Here, we provide a picture showing that 

different terpene synthase genes are differentially regulated, a strong indication of 

different biological functions.  

The imposed stress conditions – saline and oxidative stresses, N starvation– negatively 

regulated TS genes, indicating terpenoid production does not participate in overcoming 

these stresses. However, production of indole-diterpenes could be enhanced in response 

to oxidative stress.  

On spikes, the presence of the pathogen did not induce prominent changes in TS 

expression in Tgam, although ts11, encoding a protein with unknown function, was found 

slightly upregulated. Evaluation of gene expression at different stages of the interaction 

will provide more information about the implication of terpenoids when Tgam interacts 

with Fgra on wheat spikes.  

Root colonization induced a significative reprogramming in terpene biosynthesis in 

Tgam. Repression in indole diterpene biosynthesis seems to occur during root 

colonization. In addition, the contrasting effects observed in the expression of sesquiTS, 

as well as the up-regulation of the squalene synthase, suggest that root colonization induce 

a modulation on sesquiterpene and triterpene biosynthesis in the fungus through FPP as 

central node.  

Expression studies on tri5 suggest a different regulation of tri5 in Tgam compared to T. 

brevicompactum. The lack of tri5 expression in the substrates tested suggests that 

induction of tri5 in Tgam occurs under a more restricted range of conditions than in T. 

brevicompactum.  In fact, the strong up-regulation of tri5 found when Tgam colonizes the 

roots suggests that signals from the plant elicit its expression. This could indicate a 

possible role in the beneficial interaction the fungus establishes with the wheat roots, a 

question that must be further addressed. Further research will be directed to obtain tri5-

disruption mutants of Tgam and to assess their behaviour during root colonization, their 

ability to endophytically colonize the roots, as well as determining the impact on plant 

defence responses activation, in order to infer a possible role of tri5 in supporting this 

beneficial partnership. The lack of tri5 expression observed in response to wheat spikes 

was very interesting, as it could suggest that signals from the roots are the responsible of 
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activating this gene in Tgam. Gene expression is usually modulated over time, and further 

time-course experiments aimed to assess tri5 expression at earlier stages of the Tgam-

spike interaction, as well as in minimal media with plant cell-wall components, must be 

evaluated before hypothesizing a possible specific response of tri5 to the plant roots.  

Recent transcriptomic data obtained in our laboratory resulting from the interaction 

between Tgam and Fgra at pre-contact (5 mm distance) revealed that the presence of the 

pathogen down-regulates the expression of tri5 in Tgam, compared when Tgam is in self-

interaction (Zapparata et al., 2020, manuscript in preparation). It is necessary to study tri5 

expression in other stages of the interaction with Fgra, such as at contact or after the 

contact of both fungi, both in culture media and on wheat spikes, as well as the behaviour 

of a tri5-deletion mutant in this interaction, in order to determine the relevance of this 

gene in the relation with the pathogen. Isolation of the metabolite derived from the 

activation of tri5 is required to determine the relevance of this gene in the biology of 

Tgam, as well as assessing whether the rest of the genes enclosed in the putative cluster 

are co-regulated, which would mean the production of a trichodiene-derived compound. 

Furthermore, similar studies on tri5 of T. asperellum and T. guizhouense will help to shed 

light on determining the role of this gene in beneficial Trichoderma spp., or if it 

participates in different metabolic pathways. In order to deepen into the role of tri5 in T. 

gamsii, a plasmid for tri5 silencing in Tgam has been constructed and fungal 

transformation is ongoing.  

Metabolic extracts of Tgam are abundant in pyrones, which probably contribute to 

support its biocontrol activity against FHB agents and the induction of the defence 

responses observed in wheat plants. The presence of harziandione in MEA extracts 

suggests the possibility that Tgam is able to produce other diterpenes. Although culture 

conditions were similar to those used to induce the accumulation of trichothecenes in T. 

brevicompactum and T. arundinaceum described in other works, the absence of these 

compounds in the fractions extracted from Tgam indicates this fungus is unable to 

produce them, which is in agreement with our genomic data. 

In conclusion, we adopted an integrated approach of computational and molecular 

biology that provides: i) the most complete view of the SMs potential of Trichoderma, ii) 

the diversity of the TS-gene family within the genus, iii) a picture of the regulation of TS 

genes in different aspects of the ecology of Tgam, iv) a step forward to deciphering the 

regulation of tri5 in Tgam and its relevance in the relation with the plant, and v) open 
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interesting questions about the biological significance of tri5 in beneficious Trichoderma 

spp.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and Perspectives 

96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and Perspectives 

97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary 



Conclusions and Perspectives 

98 
 

Nucleotide sequences of Tgam genes  

 

TGAM01_v205548: β-tubulin  
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TGAM01_v203716: ts1 
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TGAM01_v205612: ts3 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and Perspectives 

101 
 

TGAM01_v207465: ts4 
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TGAM01_v202085: ts5 
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TGAM01_v202927: ts6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TGAM01_v202761: ts7 
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TGAM01_v202761: ts7 
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TGAM01_v2JGI9898: ts9 
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TGAM01_v208552: ts11 
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TGAM01_v209595: tri5 
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