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Adopting the most suitable optimization algorithm (optimizer) for a Neural 
Network Model is among the most important ventures in Deep Learning and 
all classes of Neural Networks. It’s a case of trial and error experimentation. 
In this paper, we will experiment with seven of the most popular optimization 
algorithms namely: sgd, rmsprop, adagrad, adadelta, adam, adamax and 
nadam on four unrelated datasets discretely, to conclude which one dispenses 
the best accuracy, efficiency and performance to our deep neural network. This 
work will provide insightful analysis to a data scientist in choosing the best 
optimizer while modelling their deep neural network.

1. Introduction
As we advance in the field of Deep Learning and devise diverse models, we realize how important 

the role optimizers have to play in the learning process. The scope of experimentation arises when we 
come across choosing the best optimizer for our task. We perceived a necessity to determine which 
optimizer bestows the best results. Optimizers or Optimization algorithms are used in training a model. 
They are one of the two parameters required compulsorily to compile a model (the other being loss 
function i.e., the way of measuring the validity of our predictions). They update the weight parame-
ters to minimize the error function E(x). During training optimizers shape and adapt our model into 
its most efficient and usable form by playing and futzing with the weights. The error function is a 
mathematical function relying on the model’s internal learnable parameters used to compute the target 
values/ dependent variable (y) from the set of predictors/ matrix of features (x) present in the model. 
Those internal parameters play a very significant role in efficiently and effectively training a model 
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and processing accurate results. Therefore, we use multiple optimization approaches and algorithms 
to estimate optimum values of the model’s parameters which influence its learning process and output.

Keeping in mind our objective i.e. finding the optimum model prediction accuracy, we incorporate 
optimizers beginning with Stochastic Gradient Descent (SGD). Followed by Root Mean Square Prop-
agation (RMSprop), Adaptive Gradient Algorithm (Adagrad), Adadelta, Adaptive Moment Estimation 
(Adam): known to be the most suitable for almost all types of neural network models, Adamax and 
Nesterov-accelerated Adaptive Moment Estimation (Nadam). Without going much into their theoreti-
cal aspects and formulations, we will be using the aforesaid in our experimental work to ascertain the 
best Optimizer with respect to its training and validation accuracies.

In this paper, we will be using four Deep Neural Network (DNN) Models. First: I developed for 
the classification of various Indian rivers based on their elemental toxicity. Second: a survey model 
of students willing to attend a workshop. Third: a self-made dataset of undergraduate students of an 
Institution who pursued Masters from the same University. Finally, the famous Titanic dataset for 
standardization of our results. The root DNN model is capable of classifying almost any type of data 
with a little adjustment of parameters. We will experiment the effect of various optimizers on these 
four models and deduce which one provides maximum training and validation accuracy. Lastly, we 
compare the performance of all the concerned optimizers by plotting graphs of analysis for all the four 
datasets under study.

2. State of the Art
Most of the previous works on Deep Neural Networks have incorporated SGD, RMSprop and 

Adam particularly in their respective models for prediction or classification. In order to equitably de-
termine which one provides the best performance and how, we wish to compare the working of other 
popular optimizers as well namely: Adagrad, Adadelta, Adamax and Nadam. Much of the prevalent 
research has been performed in the way to optimize the already available optimization algorithms but 
not enough emphasis is laid on why we prefer one over the other by integrating them actually in a mod-
el. Although similar works have been performed both for Convolutional and Deep Neural Networks 
but no such work involving comparison of optimizers by using their accuracy matrices was observed.

My work gained inspiration from the latest and most related paper by authors Dami Choi et al. 
(2020). The authors experimentally demonstrated that the hyperparameter search space may be the 
single most important factor explaining the rankings obtained by recent empirical comparisons in the 
literature. They found the accepted adaptive gradient algorithms never underperform momentum or 
gradient. Our work will eventually prove to be consistent with the claims of this paper.

3. Why Optimizers?
Optimization Algorithms or Optimizers constitute to be a key ingredient in enhancing the perfor-

mance of a neural network. They tune the hyperparameters of a model according to their design in 
a conventional manner. Hyperparameters which influence the conduct of an optimizer like learning 
rate controls its update rule, which in turn defines the optimizer itself. Any two optimizers can be 
distinguished by the combination of their hyperparameters and update rule. Particularly for the case 
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of Deep Learning models, we supply a loss function (can be assumed as the objective function to be 
targeted for our problem of optimization) to our model during training, which along with the optimi-
zation algorithm, is the mandatory parameter for our model’s compilation. The role of an optimizer is 
to play with the weights and learning rate of the nodes of our model under the training process, such 
that it successfully minimizes the loss function. Summarizing, the fundamental goal of an optimizer is 
to reduce the training error. Now we shall briefly discuss (regarding) the Optimizers we are going to 
employ in our experimentation.

A. Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent or SGD is a variant of the most basic optimization Algorithm known 

as Gradient (or slope of a function) Descent. The latter being too simple to be used in Deep Learning, 
has major applications in Linear Regression, Classification, Backpropagation, etc. with the advantage 
of ease in computability and implementation. Beginning from an initial value, it aims to reach the 
lowest amount of the cost function using down stepping or iterations. It can be used with almost all 
learning algorithms. Stochastic (means random) Gradient Descent, on the other hand selects a few 
random samples rather than the entire dataset for every single iteration, thus largely improving the 
speed of estimation. It uses only one static learning rate for the course of the complete training phase 
for all parameters.

Contemplate a differentiable loss function: 𝜕, of a neural network over an entire dataset as, 
𝜕:ℝ𝑑→ℝ having ∇𝜕(𝛼) as its first partial derivative. The gradient on mini-batch 𝛼0𝜖 ℝ𝑑, initializes 
our algorithm with its hyperparameter being a learning rate schedule 𝛽:ℕ→(0,∞) ; H

i
=history; 

𝜕=loss function.

B. Root Mean Square Propagation (RMSprop)
The Root Mean Square Propagation or RMSprop has a very interesting fact associated with it, i.e. 

although it being so popular, it’s an optimizer that was never published. Geoff Hinton, the father of 
backpropagation proposed it in his online course on Neural Networks for machine learning. RMSprop 
and Adadelta both came into the picture simultaneously but independently with the objective to cope 
with the vanishing learning rates of Adagrad. RMSprop is a gradient based optimizer which instead of 
considering the learning rate as a hyperparameter, utilizes an adaptive learning rate that changes over 
time.

m,u ∈ moving averages ; γ ∈ [0,∞] = a momentum parameter; ε is a smoothing term to prevent 
division by zero.
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C. Adaptive Gradient Algorithm (Adagrad)
Adaptive Gradient Algorithm (Adagrad) is very similar to stochastic gradient descent algorithm 

but unlikely uses adaptive gradients to improve robustness as shown by Dean et al. One of the main 
advantages of Adagrad is to obliterate the manually tuning of its learning rate, while its most signifi-
cant flaw being the aggregation of squared gradients in the denominator. During training, with every 
added term being positive, the aggregate sum builds up, causing the learning rate to decline gradually 
becoming imperceptible, and thus our algorithm loses its ability to obtain more knowledge. Adadelta 
aims to win over this shortcoming.

G
i
 is a diagonal matrix of which each element is the sum of the squares of gradient up to time step 

i, ⊙= Matrix Multiplication between G
i
 and ∇𝜕(𝛼

i
).

D. AdaDelta
AdaDelta is another member of the family set of stochastic gradient descent algorithms and is more 

like a modified successor to Adagrad. Here we have the default learning rate completely eliminated 
from the update rule, hence there is no need to set its default value. Also, it dispenses adaptive tech-
niques for hyperparameter tuning and is also visibly sturdy to noisy gradient details. It imposes limits 
on the aggregate past gradients by setting a fixed size.

E. Adaptive Moment Estimation (Adam)
Adaptive Moment Estimation or Adam is the most popular of all the optimizers. It’s closely related 

to RMSprop and Adagrad. Known for its high efficiency, versatility and faster convergence adam uses 
the L2 norm or Euclidean norm for optimization. Like RMSprop, it involves the squared gradients 
for scaling the learning rate while it taking the benefit of momentum using gradient’s moving average 
instead of the gradient itself like Stochastic Gradient Descent with momentum. The name Adam is 
derived from adaptive moment estimation, indicating that it computes individual learning rates for 
different parameters, it uses estimations of first and second moments of gradient to adapt the learning 
rate for each weight of the network.

https://adcaij.usal.es


83

Noor Fatima 
Enhancing Performance of a Deep Neural Network:  
A Comparative Analysis of Optimization Algorithms

ADCAIJ: Advances in Distributed Computing  
and Artificial Intelligence Journal  

Regular Issue, Vol. 9 N. 2 (2020), 79-90
eISSN: 2255-2863 - https://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by-nc-nd

F. Adamax
Adamax was introduced along with adam in the same paper. It may be called as a variant of Adam 

optimizer that uses infinity or max norm for optimization. Data which is traditionally noisy in terms of 
gradient updates (ex: dataset having multiple outliers) will make Adamax outdo Adam.

G. Nesterov-accelerated Adaptive Moment Estimation (Nadam)
Nadam is a combination of Adam and NAG (Nesterov Accelerated Gradient). It uses Nesterov to 

update the gradient one step ahead, so it gets its name Nesterov- accelerated Adaptive Moment Esti-
mation. Its mostly used for noisy or high curvature gradients. The learning process is accelerated by 
summing up the exponential fall of the moving averages for the previous and present gradient.

4. Training and Validation Accuracy
The dataset used to train a model is known as the training set, whereas which is said to evaluate the 

model’s performance is known as the validation set. I have used 70% of the dataset for training and the 
remaining 30% for validation in my work. Accuracy is one of the metrics to measure the performance 
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of our model. It is the percentage estimate of the correct classifications or predictions on the test data. 
When we apply our model on the training set, how accurately it’s able to ascertain, predict or classify 
the output according to the complication defines the training accuracy of the model. Similarly, valida-
tion accuracy is the accuracy of the model on its validation dataset.

5. Learning Curves in Model Performance Evaluation
A learning curve of a model can be defined as a plot of a model’s learning performance over time or 

understanding. Learning curves of model performance on the train and validation datasets can be used 
to evaluate whether it is an over, under or a well-fit model. It can be used to assess whether the train or 
validation datasets stand as a representative of the problem dominion or not. Thus, they can be used to 
measure the relative performance of different models to ascertain the best one graphically.

6. Datasets
For conducting a fair comparative analysis, four datasets were chosen. The first three: Toxicity, 

Workshop, Masters, was created of 200, 400 and 600 instances, respectively. The fourth one being the 
famous Titanic dataset having data of 800 passengers. The first dataset Toxicity, was devised based on 
the data available in “Status of Trace & Toxic Metals in Indian Rivers”, Ministry of Jal Shakti Dept. of 
Water Resources released in August 2019. I employed the concentrations of Arsenic (As), Cadmium 
(Cd), Nickel (Ni), Iron (Fe), Lead (Pb) and Zinc (Zn) corresponding to 200 Indian Rivers as my matrix 
of features, while keeping Toxicity as the dependent variable, judging a river to be lowly (Low or 0) or 
highly (High or 1) toxic. Out of the whole dataset we specify 140 as training and 60 as testing/valida-
tion dataset by keeping the validation split attribute to be 0.3. The second dataset Workshop, included 
the data of 400 students of Department of Computer Science, Aligarh Muslim University, selected at 
random. I used it in discerning the probability of a student attending the recently held IoT Workshop. 
The parameters of assessment included age, gender, semester, enrolment to any club and hostler/ day 
scholar. The third is the Masters dataset, which contains data of 600 undergraduate students to under-
stand their post-graduation pursuance trend from the same University by considering their residential 
details, gender, age, etc. The fourth and last being the standard Titanic dataset which assesses the as-
pects of passengers who boarded the deck and managed to survive or not. Out of the total 888 people 
on the list, 800 were chosen as per our requirement. The datasets will be addressed directly by these 
names throughout the course of this paper.

7. Optimizing the DNN Model
We build a simple Sequential Deep Neural Network with about six fully connected layers to clas-

sify our data. We fixed the following parameters, such as the loss function as ‘binary crossentropy’, 
activation of first five deep layers as ‘relu’ and ‘sigmoid’ as the activation of the output layer. Also, we 
randomly initialize the weights to numbers close to zero uniformly. Further, we train all the models 
for a thousand epochs with a batch size 8 for each optimization algorithm: SGD, RMSprop, Adagrad, 
Adadelta, Adam, Adamax and Nadam, taken one at a time. Finally, we analyze graphically, which one 
provides best training and validation accuracy for our all four datasets.
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8. Experimentation and Analysis

A. Stochastic Gradient Descent (SGD)
The first optimizer we chose is Stochastic Gradient Descent (SGD). The accuracy plots exhibit the 

following trends: during the entire training period, both the training and validation accuracies remain 
almost unchanged that are: 83.57% and 80% for toxicity, 71.43% and 61.67% for workshop, 59.52% 
and 62.78% for masters, 59.46% and 65% for titanic, respectively as shown in fig. 1.

Fig. 1. Training and Validation Accuracies corresponding to SGD Algorithm.

B. Root Mean Square Propagation (RMSprop)
Now, we take Root Mean Square Propagation (RMSprop). The trends (refer to fig. 2) change rap-

idly across the entire training period roughly for all four datasets with particular emphasis on toxicity, 
where the training accuracy reaches from 81% to 92.14%. In contrast, validation goes from 80% to 
85% in 1000 epochs. The remaining three go like, 71.43% and 61.67% for workshop, 89.05% and 
80.56% for masters, 88.04% and 79.58% for titanic. We infer receiving a relatively good accuracy 
percentage for the models using this optimizer.

Fig. 2. Training and Validation Accuracies corresponding to RMSprop Algorithm.

C. Adaptive Gradient Algorithm (Adagrad)
Next, we take the Adaptive Gradient Algorithm (Adagrad) as shown in fig.3. Training accuracy is 

the only updating attribute that goes from 77% to 83.57%, while the validation accuracy 80% stands 
invariable in the first dataset toxicity. The workshop dataset shows deviation all along the training 
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process and finally settles at 87.50% and 83.33% accuracies. Masters has stagnant values of 59.52% 
and 62.78%. Finally, titanic shows an interesting trend movement resulting in 81.25% and 84.58%.

Fig. 3. Training and Validation Accuracies corresponding to Adagrad Algorithm.

D. Adadelta
We now test Adadelta, the successor of Adagrad also known for slower though better local mini-

ma. For toxicity, we find only the training accuracy growing and that just from 82% to 83.57% during 
the complete expanse of training. The validation accuracy remains 80% throughout. The same trend 
continues for the rest three datasets of, 71.43% and 61.67% for workshop, 59.52% and 62.78% for 
masters, 59.46% and 65% for titanic as shown in fig. 4.

Fig. 4. Training and Validation Accuracies corresponding to Adadelta Algorithm.

E. Adaptive Moment Estimation (Adam)
Adaptive Moment Estimation (Adam) showed the most engrossing and fluctuating trends. Elabo-

rating toxicity, the training accuracy started from 78% increased to a local minimum 92%, retreated to 
80s, repeated this behavior in a zigzag fashion, finally at the end of 1000 epochs we obtained 92.86% 
training and 85% validation accuracies. Rest we have, 99.98% and 88.33% for workshop, 89.76% and 
74.44% for masters, 89.11% and 78.75% for titanic. We observe in fig. 5 Adam provides higher accu-
racies than the previous optimum obtained from RMSprop in all the models.
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Fig. 5. Training and Validation Accuracies corresponding to Adam Algorithm.

F. Adamax
Adamax (refer to fig.6) concluded with both the training and validation accuracies remaining fixed 

at 83.57% and 80% respectively in toxicity, 71.42% and 61.67% in workshop, 59.46 and 65% in ti-
tanic. However, it demonstrated variability in masters with accuracies finally settling at 87.38% and 
76.11%.

Fig. 6. Training and Validation Accuracies corresponding to Adamax Algorithm.

G. Nesterov-accelerated Adaptive Moment Estimation (Nadam)
Lastly, we use Nesterov-accelerated Adaptive Moment Estimation (Nadam). We obtain 83.57% 

and 80% for toxicity, 71.43% and 61.67% for workshop, 88.1% and 80% for masters, 87.14% and 
81.67% for titanic, respectively as in fig.7.

Fig. 7. Training and Validation Accuracies corresponding to Nadam Algorithm.
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9. Results and Discussion
We discovered various trends in the above experimentation, and thus analyzed that Adam and RM-

Sprop Algorithms provide optimum training and validation accuracy. From the first dataset Toxicity, 
adam stands as the best optimizer with 92.86% training and 85% validation accuracy, followed by 
rmsprop, even on a dataset comprising of as low as 200 real-life data samples. Nevertheless, rest of the 
optimizers settled on 83.57% training and 80% validation accuracy unanimously. For the second data-
set Workshop, comprising of 400 instances, we observe sgd, rmsprop, nadam performing way poorly 
than expected. In contrast, adagrad performs unpredictably better, with adam being the foremost again. 
The dataset Masters showed rmsprop closely competing with adam and even performing better on the 
validation dataset followed by adamax. Finally, in dataset Titanic we discover, our four out of the seven 
optimizers trying to outshine the other by giving excellent outcomes, which is reasonable as the dataset 
has grown to 800 data instances.

Here Adam succeeds accompanied by the fair playing rmsprop, nadam, adagrad algorithms. The 
following fig. 8 contains a graphical comparison of all the optimization algorithms employed in each 
dataset based on the aforementioned parameters.

Fig. 8. Accuracy Analysis Plots: Graphical comparison of all the Optimization Algorithms employed, 
on the basis of their Training and Validation Accuracies.
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10. Conclusion
Studying the graphs and analyzing the trends we conclude, ‘Adam’ Optimization Algorithm works 

best with all the four Deep Neural Network Models, under all circumstances and is thus practically 
able to work with any classification model resulting in the best accuracy. While RMSprop was found 
to be a fine choice in three out of the four datasets, it proved to be the second winner. Also from our 
experimentation, we noticed Optimizers, SGD and Adadelta, fail to provide satisfactory results in any 
of the four models. Hence, they are the least recommended optimization algorithms for a supervised 
deep learning model.

Ultimately, we conclude that our work stands in-line with the state of the art findings. Also we were 
able to reckon the finest and the least economical optimizers from our work.
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