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A B S T R A C T

This thesis presents a comprehensive theoretical study of the process
of high-order harmonic generation (HHG) induced by intense few-
cycle infrared laser pulses in two different types of low dimensional
carbon allotropes: 2D single layer graphene (SLG) and 1D single-
wall carbon nanotubes (SWNTs). Our results show the emergence
of a non-perturbative spectral plateau at large intensities but, unlike
other more common systems, such as atoms, molecules or bulk solids,
there is no simple law governing the scaling of the cut-off frequency.
Interpreting this particular behavior allows to unveil the fundamen-
tal mechanism for HHG in those low dimensional carbon allotropic
structures. Using a model for the emission dipole based on the saddle-
point approximation, we show that the first step for HHG in these
carbon compounds is radically different from the tunneling ioniza-
tion/excitation process found in gas systems and finite gap solids,
and that is closely related to the singular geometry of their band
structure. In this sense, we demonstrate the crucial role that Dirac
points in graphene and van Hove singularities in SWNTs play in the
creation of electron-hole pairs. We also show that the high-order har-
monic response in SLG is highly anisotropic, making it possible to
emit elliptically polarized harmonics from linear-polarized drivers,
and linearly polarized harmonics from elliptically-polarized pulses.

R E S U M E N

Esta tesis presenta un estudio teórico exhaustivo del proceso de gen-
eración de armónicos de orden alto (HHG) inducidos por pulsos láser
infrarrojos, ultracortos e intensos, en dos tipos diferentes de alótro-
pos de carbono de baja dimensión: grafeno monocapa 2D (SLG) y
nanotubos de carbono de pared simple 1D (SWNTs). Los resultados
obtenidos muestran la aparición de una meseta espectral no pertur-
bativa cuando la intensidad del láser es lo suficientemente elevada,
aunque a diferencia de otros sistemas más conocidos, como átomos,
moléculas o sólidos semiconductores, no parece existir una ley sim-
ple que gobierne el escalado de la frecuencia de corte espectral con la
intensidad del pulso. La interpretación de este comportamiento par-
ticular nos permite revelar el mecanismo fundamental para la HHG
en esas estructuras alotrópicas. Usando un modelo para la emisión
dipolar basado en la aproximación del punto de silla, mostramos que
el primer paso para la HHG en estos materiales es radicalmente difer-
ente del proceso de ionización/excitación por efecto túnel que se ob-
serva en sistemas gaseosos y en sólidos semiconductores, y que está
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estrechamente relacionado con la geometría singular de su estruc-
tura de bandas. En este sentido, demostramos el papel crucial que
los puntos de Dirac en el grafeno y las singularidades de van Hove
en los SWNTs juegan en la creación de pares electrón-hueco. Tam-
bién mostramos que la respuesta armónica de orden alto en SLG es
altamente anisotrópica, lo que hace posible la emisión de armónicos
polarizados elípticamente a partir de pulsos láser con polarización
lineal, y de armónicos polarizados linealmente a partir de pulsos po-
larizados elípticamente.
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“Science, my lad, is made up
of mistakes, but they are mistakes which it is

useful to make, because they lead little by little to the truth."

— Jules Verne, A journey to the center of the Earth.
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took different paths from the first moment, we were both always-
present witnesses of the successes that the other was achieving, and
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“La ciencia, muchacho,
está hecha de errores, pero de errores

útiles de cometer, pues poco a poco, conducen a la verdad."

— Julio Verne, Viaje al centro de la Tierra.
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I N T R O D U C T I O N

The science of carbon-based materials has rapidly evolved during
the last 30 years boosted by the discovery of new low-dimensional
allotropic forms, which exhibit remarkable chemical and physical
properties. As shown in Fig. 1.1, carbon nanomaterials show a rich
polymorphism in all possible effective dimensions: C60 Buckminster-
fullerene (0D), nanotubes (1D), graphene (2D) or nano-diamonds (3D)
are selected examples of such nanostructures [1]. The theoretical un-
derstanding of graphene is doubtless the cornerstone of the scientific
and technological developments on this field [2]. Monolayer graphite,
single layer graphene (SLG) or simply, graphene, are the names given
to an infinite one-atom-thick planar arrangement of sp2-bonded car-
bon atoms packed in a honeycomb lattice. Though in 1962 graphene
was already observed on metal surfaces through electron microscopy
[3], it was presumed not to exist as a stand-alone structure, since
it was considered to be unstable towards the formation of curved al-
lotropes, such as fullerenes or nanotubes. Nevertheless, graphene was
isolated and characterized in 2004 by Geim and Novoselov [4], who
were awarded in 2010 with the Nobel prize in Physics. The mate-
rial was proved to be easily isolated either by mechanical exfoliation
(known as the “scotch-tape” method) [4, 5] or by epitaxial growth
through thermal decomposition of SiC [6]. These capabilities renewed
the interest of the scientific community in graphene, which has been
the subject of numerous theoretical and experimental studies since
then.

Graphene displays remarkable electronic properties arising from
its structural symmetries and the confinement of electrons in two
dimensions. SLG is a zero-gap semiconductor with the valence and
conduction bands contacting at the Dirac points in the first Brillouin
zone (BZ), where the band dispersion is almost linear. As a result,
electrons and holes propagate in the vicinity of the Dirac points as
massless fermions with group velocity ∼ 106 m/s, holding a new de-
gree of freedom, called pseudospin, which appears as a consequence
of the inherent symmetries. Equally, graphene shows large charge
mobility at room temperature ∼ 105 cm2·V−1·s−1 and a minimum
zero-point conductivity close to 4e2/h [7]. In addition, graphene is
demonstrated to exhibit anomalous half-integer quantum Hall effect
[8], as a consequence of the coupling between pseudospin and orbital
motion, which gives rise to a geometrical phase (Berry’s phase) of π
accumulated along cyclotron trajectories around the Dirac points [7].

1
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1.3 Computing high-order harmonic generation within the SFA+

driven by a 5.8 cycles FWHM, 800 nm laser pulse, which corresponds to the same case

as shown in Fig. 1.6. Again, the agreement between the classical trajectories –for the

exact cut-off law (1.34), with F (Ip/Up) = 1.28– and the TFA is excellent.

Figure 1.12: Time-frequency analysis for the HHG spectrum showed in b driven by the

laser pulse of panel a, 800 nm in wavelength, 5.8 cycles FWHM (15.5 fs FWHM) and of

peak intensity 1.57× 1014 W/cm2. We consider a gaussian spectral window whose FWHM

is 3ω0 (see blue dashed line in b). In the time-frequency analysis, c, the black dots represent

the classical trajectories given by (1.34), with F (Ip/Up) = 1.28.
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Introduction

The discovery of C60 Buckminsterfullerene, a beautiful
cage-like carbon molecule of 7 Å in diameter (Fig. 1a)
[1], stimulated the creativity and imagination of scien-
tists and paved the way to a whole new chemistry and
physics of nanocarbons (Fig. 1) [2—4]. Soon after, carbon
nanostructures related papers started to increase in num-
ber almost exponentially. However, it is important to note
that 5 years earlier (1980), Sumio Iijima first reported
electron microscope images of nested carbon nanocages
(also known as graphitic onions) when studying amor-
phous carbon films prepared by thermal vacuum deposition.
In 1988, Kroto and McKay proposed that such graphitic
onions observed by Iijima consisted of nested icosahedral
Fullerenes (C60@C240@C540@C960.) containing only pentago-
nal and hexagonal carbon rings (Fig. 1b) [5]. In 1992, Daniel
Ugarte observed the reconstruction of polyhedral graphitic
particles (nested giant fullerenes) into almost spherical
carbon onions [6], due to high-energy electron irradiation
inside a high-resolution transmission electron microscope
(HRTEM). Similarly, Chuvilin et al. have recently observed
the creation of defects on graphene and the eventual for-
mation of C60 upon electron irradiation in a HRTEM [7].

Regarding tubular graphene (rolled graphene sheets
known as nanotubes), Endo, and coworkers appear to be the

first to report the existence of thin single and multi-walled
graphitic nanotubes (SWCNTs and MWCNTs) (Fig. 1c) using
HRTEM. These nanotubes were produced using a modified
chemical vapor deposition (CVD) method used to produce
carbon fibers [8], but this 1976 paper did not have a broad
impact at that time. The study of carbon nanotubes (CNTs)
started in earnest when Sumio Iijima confirmed in 1991 [9],
using electron diffraction, that the structure of MWCNTs con-
sisted of nested graphene tubules exhibiting fullerene-like
caps [10]. He termed these structures ‘‘graphite micro-
tubules’’. They were produced via an arc-discharge between
graphite electrodes in an inert atmosphere (no metal cata-
lyst was used); the same method for producing fullerenes
[9]. The synthesis of SWCNTs was reported a couple of
years later, in 1993, by Iijima’s group [11] and Bethune’s
group [12] using a carbon arc in conjunction with metal
catalysts. Soon after, other graphitic nanostructures were
successfully produced, including: nanocones (Fig. 1d) [13],
peapods [14], nanohorns (Fig. 1d) [15], carbon rings or
toroids (Fig. 1e) [16]. More recently, the two-dimensional
crystalline allotrope of carbon, called graphene (Fig. 1f),
was isolated using the so-called ‘‘scotch-tape method’’,
where an ingenious method for its observation under an
optical microscope was described [17]. As in the case of
CNTs, previous works reporting graphene from the reduc-
tion of graphene oxide [18] and torn from graphite with an

Figure 1 Molecular models of different types of sp2-like hybridized carbon nanostructures exhibiting different dimensionalities,
0D, 1D, 2D and 3D: (a) C60: Buckminsterfullerene; (b) nested giant fullerenes or graphitic onions; (c) carbon nanotube; (d) nanocones
or nanohorns; (e) nanotoroids; (f) graphene surface; (g) 3D graphite crystal; (h) Haeckelite surface; (i) graphene nanoribbons; (j)
graphene clusters; (k) helicoidal carbon nanotube; (l) short carbon chains; (m) 3D Schwarzite crystals; (n) carbon nanofoams
(interconnected graphene surfaces with channels); (o) 3D nanotube networks, and (p) nanoribbons 2D networks.
Figure 1.1: Examples of carbon nanostructures exhibiting different dimen-

sionalities, 0D, 1D, 2D and 3D: (a) C60: Buckminsterfullerene; (b)
nested giant fullerenes or graphitic onions; (c) carbon nanotube;
(d) nanocones or nanohorns; (e) nanotoroids; (f) graphene sur-
face; (g) 3D graphite crystal; (h) Haeckelite surface; (i) graphene
nanoribbons; (j) graphene clusters; (k) helicoidal carbon nan-
otube; (l) short carbon chains; (m) 3D Schwarzite crystals; (n)
carbon nanofoams (interconnected graphene surfaces with chan-
nels); (o) 3D nanotube networks, and (p) nanoribbons 2D net-
works. Figure extracted from Terrones et al. [1].

The gapless band structure of SLG allows also for optical resonant
excitations at all frequencies, up to the vacuum ultraviolet. This broad
resonance endorses graphene with particular optical properties, as a
strong broadband linear response with a comparatively large opti-
cal absorption of visible light (> 2%) [9], and a strong non-linear
response for THz radiation [10, 11]. While the generation of the sec-
ond harmonic is forbidden in the dipole approximation, due to the
centrosymmetric structure of ideal SLG, it can be observed in stacked
samples [12]. Third-order nonlinearities are found to be also remark-
ably strong in SLG, with nonlinear susceptibilities several orders of
magnitude higher than those of transparent materials, and of the
same order as in other resonant materials, such as metal nanoparti-
cles. The third harmonic has been observed in few-layer graphene for
transitions occurring near the K and M points of the Brillouin zone
[13–15]. High-order harmonic generation (HHG) in gapless graphene
has not been reported until recently [16, 17], with the observation of
up to the ninth harmonic of a mid-infrared driving laser. These pio-
neering studies demonstrate the experimental feasibility of producing
HHG in monolayer graphene.
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Besides these outstanding electronic and optical properties, graph-
ene displays also other remarkable physical properties. The thermal
conductivity of suspended graphene has been measured to be approx-
imately 5000 W·m−1·K−1 [18], ten times larger than that of copper
and more than double than in pyrolytic graphite. Graphene is very
light (0.77 mg/cm2) and, at the same time, an extremely hard and
stiff material. Indeed, it is the strongest material ever tested, with a
Young’s modulus close to 1 TPa and a tensile strenght of 130 GPa,
which corresponds to a breaking strength of 42 N/m [19, 20], 100
times higher than that of the strongest steel. The 2010 Nobel Prize an-
nouncement highlighted these properties by stating that it should be
possible to make a nearly invisible 1 m2 hammock out of graphene
that could hold a 4 kg cat without breaking, weighing less than 1 mg,
just as much as one of the cat’s whiskers. These discoveries paved
the way to a number of technological applications in great variety of
fields, including solar cells, touch screens and bondable electronics
for smartphones, capacitors and batteries, solid-state gas sensors for
single molecules, DNA sequencing or fabrication of composite ma-
terials such as paints, coatings and lubricants. In summary, the out-
standing properties of graphene make it a very appealing material,
suitable for a wide range of technological applications and also, for
bringing further insight into the underlying physics behind them.

Carbon nanotubes (CNTs) are another enthralling example of car-
bon based nanostructures. CNTs are allotropic forms of carbon featur-
ing a hollow cylinder with a length-to-diameter ratio that may reach
up to 108 [21], notably larger than other one-dimensional materials.
The cylinder walls are formed by one-atom-thick sheets of carbon
rolled up at specific chiral angles. The interest for the study of CNTs
rocketed after the work by Ijima in 1991 [22], although some works
had already reported the observation of such structures before [23–
25]. Using high-resolution transmission electron microscopy, Ijima
characterized "graphite microtubules", made of concentric shells of
carbon atoms with diameters ranging from a few to several hundred
nanometers, which constitute what we now call multi-wall carbon
nanotubes (MWNTs). A couple of years later, carbon nanotubes made
of a single graphene layer rolled into a hollow cylinder were synthe-
sized by arc discharge methods with transition metal catalysts [26, 27].
These structures, called single wall carbon nanotubes (SWNTs), had
diameters about one nanometer and an extraordinarily perfect crys-
talline structure. SWNTs may behave as metals or semiconductors
depending on their geometry [28]. Metallic nanotubes can hold an
axial current density of 4× 109 A/cm2, more than 1000 times greater
than cooper [29]. There is experimental evidence that the high order
harmonic emission spectra of SWNTs can be controlled either by tun-
ing their electronic structure, or by carrier injection using electrolyte
gating approaches, with up to the 11th harmonic being observed in
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semiconductor tubes of relative large band gap ∼ 1.26 eV [30]. All
nanotubes are very good thermal conductors along the axial direction,
with measured conductivity of about 3500W·m−1·K−1 [31], but good
thermal insulators in the radial direction, showing thermal conductiv-
ity values at room-temperature as low as soil (1.52 W·m−1·K−1) [32].
As a consequence of the covalent sp2 bonds between carbon atoms,
CNTs are very strong and stiff under stretching forces in the axial di-
rection (their tensile strength may reach up to 100 GPa [33]), but are
not as strong under compression, tending to undergo buckling when
subjected to compressive, torsional or bending stress because of their
hollow structure and high aspect ratio [34]. On the other hand, they
are rather soft in the radial direction, showing Young’s modulus of
the order of several GPa [35], with experimental evidences suggesting
that even van der Waals forces can deform two adjacent nanotubes
[36]. All these properties are extremely valuable for technological ap-
plications in nanotechnology, electronics, mechanics, optics and other
fields of materials science, such us composite materials [37].

The remarkable optical properties of graphene and carbon nan-
otubes have attracted our interest to further study their non-linear
response after irradiation by strong laser fields. Despite the consider-
able theoretical advances made in this field, we observe that certain
fundamental aspects have not been completely addressed in the cur-
rent models that describe such non-linear dynamics. This is the leit-
motiv of the present work, which is dedicated to investigate the pro-
cess of high-order harmonic generation in the aforementioned low-
dimensional systems.

HHG is an extreme non-linear process in which a target irradi-
ated by an intense laser pulse emits radiation in the form of high-
frequency harmonics of the driving beam, see Fig. 1.2. This remark-
able process has paved the way to extend coherent radiation to the
extreme regions of the electromagnetic spectrum, which is one of the
major challenges since the invention of the laser in 1960 [38]. The non-
perturbative character of HHG has a distinguishable signature in the
harmonic spectrum: the emergence of a plateau structure followed by
an abrupt cut-off [39]. The plateau is characterized by a dependence
of the spectral intensity with the harmonic order q much less pro-
nounced than that predicted by the perturbation theory (q-th power).
Furthermore, the plateau structure may extend the harmonic emis-
sion up to thousands of harmonic orders, leading to a wide range of
applications, from imaging and spectroscopy with sub-femtosecond
resolution, to sources of coherent radiation in the extreme ultraviolet
(XUV) or even, in the X-ray regime [40, 41]. The first experimental
evidence of harmonic generation was demonstrated by Franken et al.
in 1961 [42], who observed the second harmonic of a ruby laser with
wavelength 694 nm in a quartz crystal. Nevertheless, it was not until
the late 1980s when the availability of laser sources of high intensity
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made it possible to observe non-perturbative harmonics [43, 44]. The
most relevant aspects of HHG were established during the 1990s, fol-
lowing intense theoretical and experimental activity which boosted
the development of the field. In 1993, L’Huillier and Balcou observed
up to the 135th harmonic in Ne using pulses 1 ps long and intensities
as large as 1015 W/cm2 [45], and Mackling et al. reported the obser-
vation of harmonics greater than the 109th for incident wavelengths
in the near infrared range using the same target [46]. Also in 1993,
Schafer et al. presented the renowned three step model to explain HHG
on a semiclassical basis [47] and almost simultaneously, Corkum pub-
lished his work with similar ideas [48]. Shortly after (1994), Lewen-
stein et al. presented a fully quantum theory that revealed the physics
underlying HHG and produced quantitative predictions [49]. Since
then, different groups have reported the observation of harmonics of
progressive higher order in gas systems [50, 51].
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harmonic generation experiments, which produces 30-mJ
1-ps pulses at a repetition rate of 1 shot every 10 s. The
detection system is new and has been designed for these
harmonic generation experiments. The interaction cham-
ber is schematized in Fig. 1. The laser is focused by a f= 300 mm piano-convex lens just below the nozzle of a
pulsed gas jet (the confocal parameter b is equal to about
3 mm). The light is analyzed on axis by a monochroma-
tor consisting of a toroidal mirror and a grating (Jobin
Yvon) both coated with gold. The mirror, placed at 1 m
rom the laser focal spot to minimize the risks of damag-
ing the optics with the incident laser light, refocuses the
radiation onto a 100-p,m output slit. The laser light re-
jected by the grating is trapped before being focused too
much in order to avoid plasma generation on the walls of
the chamber (see Fig. 1). The photons are detected by an
electron multiplier. The spectral range covered by this
system is approximately 7—60 nm. There is no entrance
slit and no diaphragms, so that this spectrometer has a
good detection efficiency.
Figure 2(a) shows a spectrum obtained in neon at an

intensity of about 10~s W/cm2. Each point is an average
of about three to Ave laser shots, with a strict selection in
pulse energy and duration. The positions of the harmon-
ics are indicated by the straight lines at the top of the
figure. The width of the harmonics is constant, equal to
the resolution of the monochromator (0.5 A). Below 13
nm, the harmonics start overlapping, which results in an
increase of the background level. The reHectance of gold,
with which both the mirror and the grating are coated,
decreases by more than 1 order of magnitude from 10 to
7 nm for the 11-deg incidence angle on the mirror and
grating. Figure 2(b) shows the region from 12 to 8 nm
where we have divided the signal by the monochroma-
tor's response [11] and taken into account our detector's
gain. There is no apparent cutoff, merely a steady slight
decrease. The harmonics can be resolved until about the
135th harmonic (the highest order reported to date). In
order to make sure that the observed light from 9 to 7
nm was coherent and due to harmonic generation, we
checked carefully that the well resolved high harmonics
(e.g. , the 97th) and the signal in this 9—7 nm region had
the same dependences both with pressure and with the
1aser intensity (i.e. , same appearance and saturation in-
tensities).
In Fig. 3, we compare the results obtained in xenon )

argon, neon, and helium at an intensity at best focus
equal to 1.5 x 10~s W/cm2. In xenon, the intensity of
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FI&. ~G. 2. Experimental spectrum obtained in neon at 40
Torr, 1.5 x10 W/cm . (a) Raw data; (b) data corrected
from the spectrometer's response over 12—8 nm.

1
01o

10'

o 10

c 10

E 10'

10

I I I

50 75 125
Harmonic Order

FIG. 3. Number of photons obtained per laser pulse in
xenon, argon, neon, and helium as a function of the harmonic
order.
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the harmonics is constant from the 5th harmonic [12]
to the 23rd and then falls off abruptly over 4 orders of
magnitude. In argon, there seem to be two successive
plateaus, one up to the 27th harmonic, and the other
from the 39th to the 49th harmonic [13]. In neon and he-
lium, we see very long and quite similar plateaus, whose
limits are experimental. Krause, Schafer, and Kulander
[1] find that the energy W„reached at the end of the

775

Figure 1.2: Experimental data of the high-harmonic yield from Xe, Ar, Ne
and He driven by a 1 ps, 1053 nm, Nd-laser pulse at 1015 W/cm2

peak intensity. Figure extracted from L’Huillier and Balcou (1993)
[45].

Currently, targets for high order harmonic emission include not
only atomic or molecular systems, but also solids and plasmas. In par-
ticular, HHG from solid targets has burgeoned a great interest, mainly
motivated by the quadratic scaling of the harmonic conversion effi-
ciency with the density of the target, as a result of the coherent nature
of the process [52–59]. In the case of plasmas, HHG is based on the
response of the system to relativistic field strengths [60]. For atomic
or molecular gases and semiconductor solids, high-order harmonics
appear below the relativistic limit. In all these systems, HHG shares
some basic principles [59]. In particular, harmonics are generated by
electrons that are initially bound and promote to slightly bonded (or
unbound) states by tunneling. Once promoted, the electrons are ac-
celerated by the electric field until they release the acquired kinetic
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energy in the form of high-frequency radiation. Despite these simi-
larities, the first experiment on HHG in solid state systems revealed
substantial differences in the laws governing the spectral plateau and
cut-off frequency compared to the case of atomic or molecular sys-
tems [52]. In the latter, the cut-off frequency scales with the product
of the laser intensity times the square of the wavelength. In contrast,
it is known that for semiconductors the cut-off frequency scales lin-
early with the amplitude of the field [52]. This behavior could remind
the HHG process of two-level systems, where the cut-off frequency is
associated with the maximum Stark effect [61, 62]. However, the be-
havior of two-level systems is not sufficient to explain the complex
dynamics introduced by intraband contributions. Several theoretical
models have been used to explain this non-linear response [63–68].
Since the tunnel effect is known to play a fundamental role as the
first step of the HHG process in systems that exhibit an energy gap,
the singular structure of the energy bands of graphene and carbon
nanotubes opens a new scenario.

Objectives and outline of the work

The main purpose of this PhD thesis report is to deepen into the study
of the non-linear optical response of the low-dimensional carbon al-
lotropes described above, upon irradiation by intense laser fields. In
particular, our interest is focused on studying the process of HHG.
Although some experimental work has been already done [16, 17, 30],
to the best of our knowledge there is not much literature in relation
to the particular mechanism that causes the generation of high-order
harmonics. Given the unique geometrical features of the electronic
structure of these materials, it is reasonable to think that there may
be substantial differences with respect to other crystalline solids. In
this context, we have focused in the following objectives:

• To establish the equations that rule the electron dynamics in
the periodic potential of graphene during the interaction with
intense electromagnetic fields. The strategy for integrating such
equations must be carefully addressed in order to tackle the
subtle physical processes arising from the unsual geometry of
the graphene band structure. Once accomplished, this objective
will allow to compute the optical emission dipole and thus, the
high-order harmonic spectra.

• To develop a simulation tool that includes the most relevant as-
pects of HHG in graphene as identified in the previous objective.
The results obtained with the tool must be confronted with the
literature in order to correctly fulfill the forthcoming objectives.

• To investigate the modification of high-order harmonic spectra
under varying conditions of the field, by tuning the wavelength,
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or modifying the intensity and polarization of the driver. Spe-
cial attention must be paid to the scaling of the cut-off frequency
with the intensity, as it is well-know that this parameter gives in-
sight into the HHG mechanism for atoms, molecules and finite
gap solids. Possible ultrafast polarization changes in the spectra
must be also taken into account.

• To draw conclusions on the mechanism for high-order harmonic
generation in graphene and compare it with that of other phys-
ical systems.

• To extend the above referred methodology to carbon nanotubes
of different sizes and chirality, in order to study the spectral
yield and draw conclusions on the HHG mechanism in these
1D structures.

For such purposes, this report is organized as follows. In chapter 2

we introduce the fundamental concepts. This chapter includes a full
description of the electronic properties of graphene and carbon nan-
otubes, and the derivation of the hamiltonian that accounts for the
interaction between light and matter. The most relevant aspects of
high-order harmonic generation in gases and finite gas solids are also
addressed. Chapter 3 explores HHG in graphene. We first derive and
integrate the equations that account for the population dynamics in
the conduction and valence bands during the interaction with intense
laser pulses. Then, we calculate the emission dipole and compute the
spectral yield for varying parameters of the driver pulse. Specific fea-
tures of the high-order harmonic spectra, like the harmonic plateau,
cut-off scaling, harmonic ellipticity and some subtle ultrafast changes
are also studied in detail. Using a saddle-point analysis, we develop a
model for HHG in graphene, which gives new insight into the mech-
anism for high-order harmonic emission in this 2D material, putting
at the foreground the unique geometric features of its electronic band
structure. Next, chapter 4 is devoted to the study of HHG in carbon
nanotubes. Based on the methods previously developed for graphene,
we study the spectral yield from these 1D structures, demonstrating
that HHG is strongly dependent on the geometry of the electronic
bands and thus, that it can be tuned by the proper control of their
structural parameters. Finally, chapter 5 summarizes the main find-
ings and prospects for future work in this field.
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introducción

La ciencia de los materiales en base al carbono ha evolucionado rápi-
damente durante los últimos 30 años impulsada por el descubrimien-
to de formas alotrópicas de baja dimensión, que exhiben propiedades
químicas y físicas notables. Como se muestra en la Fig. 1.1, los nano-
materiales de carbono muestran un rico polimorfismo en todas las
posibles dimensiones efectivas: el buckminsterfullereno C60 (0D), los
nanotubos (1D), el grafeno (2D) o los nano-diamantes (3D) son al-
gunos ejemplos de tales nanoestructuras [1]. La comprensión teórica
del grafeno es sin duda la piedra angular de los avances científicos
y tecnológicos que se han ido sucediendo en este campo [2]. Grafito
monocapa, grafeno monocapa (SLG) o simplemente grafeno, son los
nombres por los que se conoce a una estrucutura plana e infinita
de átomos de carbono unidos mediante enlaces covalentes, que se
generan a partir de la superposición de orbitales híbridos sp2 empa-
quetados con disposición hexagonal. Aunque en 1962 ya se observó
grafeno en superficies metálicas mediante microscopía electrónica [3],
se suponía que éste no podía existir como estructura independiente,
ya que se consideraba inestable frente a la formación de alótropos
curvos, tales como los fullerenos o los nanotubos. Sin embargo, el
grafeno fue aislado y caracterizado en 2004 por Geim y Novoselov [4],
quienes fueron galardonados en 2010 con el premio Nobel de Física.
Se demostró entonces que el material se podía aislar fácilmente me-
diante exfoliación mecánica (método conocido como de "cinta adhesi-
va") [4, 5] o mediante crecimiento epitaxial a través de la descomposi-
ción térmica del SiC [6]. Estas capacidades renovaron el interés de la
comunidad científica por el grafeno, que ha sido objeto de numerosos
estudios teóricos y experimentales desde entonces.

El grafeno muestra notables propiedades electrónicas como conse-
cuencia de sus simetrías estructurales y del confinamiento de los elec-
trones en dos dimensiones. SLG es un semimetal, con las bandas de
valencia y conducción degeneradas en los puntos de Dirac, donde la
dispersión es casi lineal. Como resultado, los electrones y los huecos
se propagan en la vecindad de los puntos de Dirac como fermiones
sin masa con velocidad de grupo ∼ 106 m/s, y con un nuevo grado de
libertad, llamado pseudopin, que aparece como consecuencia de las
simetrías inherentes. Además, el grafeno muestra una gran movilidad
de carga a temperatura ambiente ∼ 105 cm2·V−1·s−1 y una conduc-
tividad mínima cercana a 4e2/h [7]. También se ha demostrado que el
grafeno exhibe efecto Hall cuántico fraccionario [8], como consecuen-
cia del acoplamiento entre el pseudoespín y el movimiento orbital, lo
que a su vez da lugar a una fase geométrica (fase de Berry) igual a
π acumulada a lo largo de trayectorias de ciclotrón alrededor de los
puntos de Dirac [7].
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La estructura de bandas degeneradas del SLG permite excitaciones
ópticas resonantes en cualquier frecuencia hasta el ultravioleta de
vacío. Esta amplia resonancia dota al grafeno de propiedades ópticas
particulares, tales como una intensa respuesta lineal de banda ancha,
con una absorción óptica de la luz visible comparativamente grande
(> 2%) [9], y una intensa respuesta no lineal para la radiación en el
rango del THz [10, 11]. Si bien la generación del segundo armónico
está prohibida en la aproximación dipolar, debido a la estructura cen-
trosimétrica del SLG, puede observarse en muestras apiladas [12]. Las
no linealidades de tercer orden también son notablemente fuertes en
SLG, con susceptibilidades no lineales varios órdenes de magnitud
superiores a las de los materiales transparentes, y del mismo orden
que en otros materiales resonantes, como las nanopartículas metáli-
cas. El tercer armónico se ha observado en grafeno de pocas capas
para transiciones en el entorno de los puntos K y M de la zona de
Brillouin [13–15]. Sin embargo, la generación de armónicos de orden
elevado (HHG) en grafeno no se había reportado hasta tiempos re-
cientes [16, 17], con la observación de hasta el noveno armónico de
un láser incidente de longitud de onda en el infrarrojo medio. Estos
estudios pioneros demuestran la viabilidad experimental de producir
HHG en grafeno monocapa.

Además de estas excepcionales propiedades electrónicas y ópticas,
el grafeno muestra otras propiedades físicas notables. Se ha calculado
que la conductividad térmica del grafeno en suspensión es aproxi-
madamente de 5000 W·m−1·K−1 [18], diez veces mayor que la del
cobre, y más del doble que la del grafito pirolítico. El grafeno es muy
ligero (0, 77 mg/cm2) y, al mismo tiempo, se trata de un material ex-
tremadamente duro y rígido. De hecho, es el material más resistente
jamás ensayado, con un módulo de Young cercano a 1 TPa y una
resistencia a la tracción de 130 GPa, correspondiente a una resisten-
cia a la rotura de 42 N/m [19, 20], 100 veces mayor que la del acero
más resistente. El anuncio del Premio Nobel de 2010 destacó estas
propiedades afirmando que sería posible hacer una hamaca casi in-
visible de grafeno de 1 m2 capaz de sostener el peso de un gato de 4
kg sin romperse, cuya masa sería de menos de 1 mg, tanto como uno
de los bigotes del gato. Estos descubrimientos allanaron el camino
para el desarrollo de aplicaciones tecnológicas en una gran variedad
de campos, incluyendo células solares, pantallas táctiles y electrónica
flexible para teléfonos inteligentes, condensadores y baterías, sen-
sores de gas de estado sólido para moléculas individuales, secuen-
ciación de ADN o fabricación de materiales compuestos como como
pinturas, revestimientos y lubricantes. Todas estas propiedades hacen
del grafeno un material extraordinariamente atractivo, no sólo por ser
adecuado para una amplia gama de aplicaciones tecnológicas, si no
también porque su estudio teórico permite aportar mayor compren-
sión sobre los fenómenos físicos subyacentes tras de ellas.
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Los nanotubos de carbono (CNTs) son otro fascinante ejemplo de
nanoestructuras basadas en el carbono. Los CNTs son formas alotrópi-
cas en forma de cilindro hueco con una relación de longitud–diámetro
que puede alcanzar hasta 108 [21], notablemente superior a la de
otros materiales unidimensionales. Las paredes del cilindro están for-
madas por láminas de un átomo de espesor enrolladas según ángulos
quirales específicos. El interés por el estudio de los CNTs se disparó
a partir del trabajo de Ijima en 1991 [22], aunque algunos autores
ya habían reportado la observación de tales estructuras con anterio-
ridad [23–25]. Utilizando microscopía electrónica de transmisión de
alta resolución, Ijima caracterizó los "microtúbulos de grafito", hechos
de capas concéntricas de átomos de carbono con diámetros que iban
desde unos pocos a varios cientos de nanómetros, y que constituyen
lo que ahora llamamos nanotubos de pared múltiple (MWNTs). Un
par de años más tarde, nanotubos formados por una sola capa de
grafeno enrollada se sintetizaron mediante métodos de descarga de
arco con catalizadores de metales de transición [26, 27]. Estas estruc-
turas, llamadas nanotubos de pared simple (SWNTs), tienen diáme-
tros del orden del nanómetro y una estructura cristalina extraordi-
nariamente perfecta. Los SWNTs puede comportarse como metales
o semiconductores dependiendo de su geometría [28]. Los nanotu-
bos metálicos pueden contener una densidad de corriente axial de
4× 109 A/cm2, más de 1000 veces mayor que la de cobre [29]. Existe
evidencia experimental de que los espectros de emisión de armóni-
cos de orden elevado de los SWNTs pueden controlarse ajustando
su estructura electrónica o mediante métodos de inyección de por-
tadores a través de compuertas electrolíticas, habiéndose observado
hasta el decimoprimer armónico en tubos semiconductores de gap
relativamente grande (∼ 1.26 eV) [30]. Todos los nanotubos son muy
buenos conductores térmicos en la dirección axial, con una conduc-
tividad de aproximadamente 3500 W·m−1·K−1 [31], pero buenos ais-
lantes térmicos en la dirección radial, con valores de conductividad
térmica a temperatura ambiente tan bajos como la de la tierra (1.52
W·m−1·K−1) [32]. Como consecuencia de los enlaces covalentes sp2

entre los átomos de carbono, los CNTs son muy duros y rígidos bajo
fuerzas de estiramiento en la dirección axial (su resistencia a la trac-
ción puede alcanzar hasta 100 GPa [33]), pero no son tan rigidos bajo
compresión, y tienden a sufrir pandeo cuando se someten a esfuer-
zos de compresión, torsión o flexión debido a su estructura hueca
y elevada relación de aspecto [34]. Por otro lado, son poco rígidos
en la dirección radial, mostrando un módulo de Young del orden de
varios GPa [35], existiendo evidencias experimentales que sugieren
que incluso las fuerzas de van der Waals pueden deformar dos nano-
tubos adyacentes [36]. Todas estas propiedades son extremadamente
valiosas para aplicaciones tecnológicas en nanotecnología, electrónica,
mecánica, óptica y otros campos de la ciencia de los materiales [37].
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Las notables propiedades ópticas del grafeno y de los nanotubos
de carbono que se citan en los párrafos precedentes motivaron nues-
tro interés para profundizar en el estudio de su respuesta no lineal
durante la irradiación con campos láser intensos. A pesar de los con-
siderables avances teóricos realizados en este campo, observamos que
ciertos aspectos fundamentales no han sido completamente aborda-
dos en los modelos actuales que describen esta dinámica no lineal.
Este es el leitmotiv del presente trabajo, que se centra en la investi-
gación del proceso de generación de armónicos de orden elevado en
los sistemas de baja dimensión antes mencionados.

La HHG es un proceso no lineal extremo en el que un blanco irra-
diado por un pulso láser intenso emite radiación en forma de armóni-
cos de alta frecuencia del haz incidente, ver Fig. 1.2. El descubrimien-
to de este notable proceso ha allanado el camino para extender la
radiación coherente a las regiones extremas del espectro electromag-
nético, que es uno de los mayores desafíos desde la invención del láser
en 1960 [38]. El carácter no perturbativo de HHG tiene una firma dis-
tinguible en el espectro de armónicos: la aparición de una estructura
de meseta o plateau seguida de un corte abrupto [39]. El plateau se
caracteriza por una dependencia de la intensidad espectral con el or-
den armónico q mucho menos pronunciada que la predicha por la
teoría de perturbaciones (q-ésima potencia). Además, la estructura de
plateau puede extender la emisión armónica hasta miles de órdenes
armónicos, lo que lleva a una amplia gama de aplicaciones, desde
generación de imágenes y espectroscopía con resolución de subfem-
tosegundos, hasta fuentes de radiación coherente en el ultravioleta ex-
tremo (XUV) o incluso, en el régimen de los rayos X [40, 41]. Aunque
la primera evidencia experimental de generación armónica fue de-
mostrada por Franken et al. en 1961 [42], quien observó el segundo
armónico en un cristal de cuarzo, no fue hasta finales de la década
de 1980 cuando la disponibilidad de fuentes láser de alta intensidad
permitió observar armónicos no perturbativos [43, 44]. Los aspectos
más relevantes de la HHG se establecieron durante la década de 1990,
tras una intensa actividad teórica y experimental que impulsó el de-
sarrollo de este campo de investigación. En 1993, L’Huillier y Balcou
observaron hasta el 135-ésimo armónico en Ne usando pulsos de 1 ps
de duración e intensidades del orden de 1015W/cm2 [45], y Mackling
et al. reportaron la observación de armónicos superiores al 109-ésimo
para longitudes de onda incidentes en el rango del infrarrojo cercano
usando el mismo blanco [46]. También en 1993, Schafer et al. presen-
taron el famoso modelo de tres pasos para explicar la HHG sobre una
base semiclásica [47] y casi simultáneamente, Corkum publicó un tra-
bajo con ideas similares [48]. Poco después (1994), Lewenstein et al.
presentaron una teoría completamente cuántica que reveló la física
subyacente a la HHG y permitió realizar predicciones cuantitativas
[49]. Desde entonces, diferentes grupos han reportado la observación
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de armónicos de orden cada vez más elevado en sistemas gaseosos
[50, 51].

Actualmente, los blancos que se utilizan para la generación de
armónicos de orden elevado incluyen no sólo sistemas atómicos o
moleculares, sino también sólidos y plasmas. En particular, la HHG
de blancos sólidos ha despertado un gran interés, motivado princi-
palmente por el escalado cuadrático de la eficiencia de conversión
armónica con la densidad del blanco, como consecuencia de la natu-
raleza coherente del proceso [52–59]. En el caso de los plasmas, la
HHG se basa en la respuesta del sistema a intensidades de campo
relativistas [60]. Para gases atómicos o moleculares y sólidos semi-
conductores, los armónicos de orden elevado aparecen por debajo
del límite relativista. En todos estos sistemas, la HHG comparte al-
gunos principios básicos [59]. En particular, los armónicos son genera-
dos por electrones que inicialmente están ligados y que se promocio-
nan a estados excitados, débilmente ligados (o no ligados), por efecto
túnel. El campo eléctrico acelera entonces los electrones promociona-
dos hasta que éstos liberan la energía cinética adquirida en forma de
radiación de alta frecuencia. A pesar de estas similitudes, el primer
experimento de HHG en sistemas de estado sólido reveló diferen-
cias sustanciales en las leyes que gobiernan el plateau espectral y la
frecuencia de corte en comparación con los sistemas atómicos o mo-
leculares [52]. En este último caso, la frecuencia de corte escala con el
producto de la intensidad del láser por el cuadrado de la longitud de
onda, mientras que en los materiales semiconductores, la frecuencia
de corte escala linealmente con la amplitud del campo [52]. Este com-
portamiento podría recordar el proceso de HHG en sistemas de dos
niveles, donde la frecuencia de corte está asociada con el efecto Stark
máximo [61, 62]. Sin embargo, el comportamiento de los sistemas de
dos niveles no es suficiente para explicar la compleja dinámica in-
troducida por las contribuciones intrabanda. Varios modelos teóricos
has sido propuestos para explicar esta respuesta no lineal [63–68]. Sin
embargo y dado que se sabe que el efecto túnel juega un papel fun-
damental como primera etapa del proceso de HHG en sistemas que
exhiben gap finito, la estructura singular de las bandas de energía del
grafeno y de los nanotubos de carbono abre un nuevo escenario.

Objetivos y estructura del trabajo

El objetivo principal de esta tesis doctoral es profundizar en el estudio
de la respuesta óptica no lineal de los alótropos de carbono de baja
dimensión descritos anteriormente frente a la irradiación por campos
láser intensos. En particular, nuestro interés se focaliza en estudiar
el proceso de HHG. Aunque hay algunos trabajos experimentales en
este campo [16, 17, 30], por lo que sabemos, no existe mucha literatura
en relación con el mecanismo particular que causa la generación de
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armónicos de orden elevado. Dadas las características geométricas
únicas de la estructura electrónica de estos materiales, es razonable
pensar que puede haber diferencias sustanciales con respecto a otros
sólidos cristalinos. En este contexto, nos hemos centrado en alcanzar
los siguientes objetivos:

• Establecer las ecuaciones que rigen la dinámica de los electrones
en el potencial periódico del grafeno durante la interacción con
campos electromagnéticos intensos. La estrategia para integrar
tales ecuaciones debe abordarse con cuidado a fin de considerar
los sutiles procesos físicos que surgen de la inusual geometría
de la estructura de bandas del grafeno. Una vez cumplido, este
objetivo permitirá calcular el dipolo de emisión óptica y los es-
pectros de armónicos de orden elevado.

• Desarrollar una herramienta de simulación que incluya los as-
pectos más relevantes de la HHG en el grafeno identificados
en el objetivo anterior. Los resultados obtenidos con esta herra-
mienta deben validarse con la literatura para abordar correcta-
mente con los siguientes objetivos.

• Investigar los cambios en los espectros de armónicos de orden
elevado bajo condiciones variables del campo, ajustando la lon-
gitud de onda o modificando la intensidad y polarización del
haz incidente. Se debe prestar especial atención al escalado de
la frecuencia de corte con la intensidad, ya que es bien sabido
que este parámetro da idea del mecanismo de HHG para áto-
mos, moléculas y sólidos de gap finito. También deben tenerse
en cuenta los posibles cambios ultrarrápidos de la polarización
de los armónicos.

• Establecer conclusiones sobre el mecanismo de generación de
armónicos de orden elevado en el grafeno y compararlo con el
de otros sistemas físicos.

• Ampliar la metodología mencionada anteriormente a nanotu-
bos de carbono de diferente tamaño y quiralidad, con el fin de
estudiar el rendimiento espectral y sacar conclusiones sobre el
mecanismo de HHG en estas estructuras 1D.

Para tales efectos, este informe se organiza de la siguiente mane-
ra. En el capítulo 2 presentamos los conceptos fundamentales. Este
capítulo incluye una descripción completa de las propiedades elec-
trónicas del grafeno y de los nanotubos de carbono, y la derivación
del hamiltoniano que describe la interacción entre la luz y la materia.
También se abordan los aspectos más relevantes de la generación de
armónicos de orden elevado en gases y sólidos de gap finito. El capí-
tulo 3 explora la HHG en el grafeno. Primero derivamos e integramos
las ecuaciones que rigen la dinámica de la población en las bandas
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de conducción y valencia durante la interacción con pulsos láser in-
tensos. Después calculamos el dipolo de emisión y el rendimiento
espectral para diversos parámetros del pulso incidente. Además, es-
tudiamos detalladamemte las características específicas de los espec-
tros, tales como el plateau de armónicos, el escalado de la frecuencia
de corte, la elipticidad de los armónicos y algunos cambios ultrarrápi-
dos de su estado de polarización. Mediante un análisis de punto de
silla, desarrollamos un modelo para la HHG en el grafeno, que brinda
una nueva perspectiva para el mecanismo de emisión de armónicos
de orden elevado en este material 2D, poniendo en primer plano las
características geométricas únicas de su estructura electrónica de ban-
das. A continuación, el capítulo 4 está dedicado al estudio de la HHG
en nanotubos de carbono. Basándonos en los métodos desarrollados
previamente para el grafeno, estudiamos el rendimiento espectral de
estas estructuras 1D, demostrando que la HHG depende en gran me-
dida de la geometría de las bandas electrónicas y que, por tanto,
puede ajustarse mediante el control de sus parámetros estructurales.
Finalmente, el capítulo 5 resume los principales hallazgos y perspec-
tivas de trabajo futuro en este campo de investigación.



2
F U N D A M E N TA L S

This chapter is aimed to provide a thorough description of the fun-
damentals of the present work. As we discussed earlier in chapter 1,
high order harmonic generation is a non-linear process resulting from
the interaction of intense electromagnetic fields with matter. The opti-
cal response of any physical system depends strongly on its electronic
band structure. Therefore, the accurate characterization of such band
structure is of paramount importance to any further development.
For this reason, we first devote sections 2.1 and 2.2 to describe the
remarkable electronic structure of graphene and carbon nanotubes,
respectively. Using the well-known tight-binding approximation, we
derive the unperturbed Hamiltonian that governs the dynamics of
the Bloch electrons in such low dimensional carbon allotropes. Next,
in section 2.3, we derive the Hamiltonian that accounts for the inter-
action of matter with intense laser fields. Finally, in section 2.4 we
include some introductory material on HHG in gases and finite gap
solids, needed as a benchmark for the results of our study. These con-
tents, although presented in brief and general fashion, are required
foundations to understand the achievements of this PhD thesis.

2.1 electronic properties of graphene

Carbon is one of the most abundant elements in the universe and is
present in all known forms of life. Its extraordinary hability to cre-
ate compounds with a wide variety of atoms, using different types
of bonds, makes it a very appealing subject of scientific and techno-
logical study. Carbon can present itself in form of allotropes whose
physical properties vary widely, depending on the geometrical ar-
rangement of the atoms and the type of bonds amongst them. For
example, while graphite is opaque and soft enough as to be used in
pencils, diamond is highly transparent and the hardest mineral ever
found in Nature.

The electronic configuration of the carbon atom in its ground state
is 1s22s22p2. It has two core electrons 1s, which are not available for
chemical bonding, and four valence electrons 2s and 2p. Although
carbon should normally form two bonds in its ground state from
the two unpaired 2p electrons, it tends to maximize the number of
bonds through a process called hybridization, since chemical bonding
induces an effective decrease of the system energy. Thus, a 2s electron
partially occupies an empty 2p orbital, leading to the formation of
hybrid orbitals which are able to form up to four bonds.

15
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One possible hybridization scheme consists in mixing the four va-
lence orbitals, creating four sp3 orbitals, each filled with one elec-
tron, as in diamond or methane (CH4), see Fig. 2.1(a). These four
hybrid orbitals optimize their position in space, minimizing repul-
sion, with a tetrahedral arrangement of σ bonds at angles of 109.5◦.
In another possible hybridization scheme, three valence orbitals are
mixed (one 2s orbital + two 2p orbitals), forming three sp2 orbitals.
The sp2 hybrid orbitals will then arrange themselves, creating a trig-
onal planar geometry of σ bonds separated by angles of 120◦. The
remaining p-type orbital will not mix and will remain perpendicular
to this plane, creating π bonds with the neighboring carbon atoms.
Ethylene (C2H4), shown in Fig. 2.1(b), as well as aromatic molecules
like benzene (C6H6), or three-dimensional crystals like graphite are
typical examples of sp2 hybridization. Yet there is another possible hy-
bridization scheme, that consists in mixing two atomic orbitals among
the four (one 2s orbital + one 2p orbital), leading to the formation of
two sp hybrid orbitals. The geometry which results is linear with an
angle between the sp orbitals of 180◦, as for example in acetylene, see
Fig. 2.1(c). The two remaining p-type orbitals which are not mixed
are perpendicular to each other. In such a configuration, the two sp
hybrid orbitals will form σ bonds with the two nearest neighbors and
the overlap of the two unmixed pure p orbitals will form π bonds be-
tween the carbon atoms, accounting for a carbon–carbon triple bond.

Figure 2.1: Carbon hybridization schemes. (a) The four σ bonds of methane
(CH4), generated from sp3 hybrid orbitals. (b) Molecule of ethy-
lene (C2H4), as an example of sp2 hybridization with a carbon–
carbon double bond, formed by one σ and one π hybrid orbitals.
(c) Acethetylene (H–C≡C–H), as an example of molecule within
the sp hybridization scheme. It displays two σ bonds and one
carbon–carbon triple bond, which are generated from one σ and
two π orbitals.

Single layer graphene, commonly known as graphene or monolayer
graphite in the early works, is also a member of the family of carbon
allotropes with sp2 hybridization. It is composed of carbon atoms pe-
riodically arranged in an infinite 2D honeycomb lattice, shown in Fig.
2.2. As discussed above, the atomic structure is defined by two types
of bonds. If z is the direction perpendicular to the graphene sheet,
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the three in-plane C orbitals 2s, 2px and 2py combine to form σ (bond-
ing) and σ∗ (antibonding) orbitals which are even under reflections
in the graphene plane. These hybrid orbitals form strong covalent
bonds with the neighboring atoms. The out of plane 2pz orbitals are
odd with respect to the planar symmetry and decoupled from the σ
states, which allows to treat them independently. They overlap with
neighboring 2pz states producing π and π∗ bands. The gap energy
between the σ and σ∗ bands is large (∼ 12 eV), so their contribution to
the electronic properties is usually neglected [69]. The two remaining
π and π∗ orbitals form the valence and conduction bands.

Figure 2.2: Scheme of the graphene arrangement and the hybrid orbitals:
three in-plane σ orbitals and one π orbital, perpendicular to the
graphene sheet.

2.1.1 Structure and symmetries of the graphene lattice

Figure 2.3 shows the triangular Bravais lattice of graphene with two
atoms per unit cell, denoted as A (red circles) and B (blue circles)
respectively, and constant a = 2.46Å. The primitive vectors are a1 =

a(
√
3/2, 1/2) and a2 = a(

√
3/2,−1/2). Note that the nearest neigh-

bors to atom A (B) belong to sublattice B (A) and thus, the distance
between any atom and its nearest neighbors is the carbon–carbon dis-
tance acc = a/

√
3.

Besides the translation symmetry stemming from the infinite pe-
riodic arrangement of carbon atoms, the graphene’s 2D honeycomb
lattice has twelve point symmetry operations, namely, six rotations
by angles of 2π/n, where n = 1, ..., 6, and six reflections, including
three mirror planes bisecting the opposite sides of any hexagon and
three mirror planes connecting opposite vertices. Therefore, graphene
has a perpendicular six-fold rotational axis plus six in-plane two-fold
axes and, in addition, it has a mirror plane. These symmetry elements
form the point group of graphene, which is the dihedral group D6h.
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Figure 2.3: Hexagonal network of graphene with basis vectors a1 and a2.
The grey-filled area in the background shows the primitive cell.
Vectors Rj ( j = 1, 2, 3) pointing to the location between nearest
neighbors are also shown.

The point symmetry operations along with the translational symme-
try form the space group of graphene, which is denoted as P6/mmm
in Hermann-Mauguin notation [70].

The reciprocal lattice associated to the graphene’s Bravais lattice is
a hexagonal lattice rotated 90◦ with respect to the direct lattice, as
shown in Figure 2.4. Therefore, the symmetry elements of the direct
and reciprocal lattice are identical. The reciprocal basis vectors are
b1 = b(1/2,

√
3/2) and b2 = b(1/2,−

√
3/2), where b = 4π/

√
3a. The

first Brillouin zone is a hexagon and the six vertices can be grouped in
two sets of inequivalent points (K and K’), since they are not related
by any reciprocal lattice vector.

In general, any operation of the point group of graphene on the
Brillouin zone other than the identity transforms a certain wave vec-
tor k into a distinct one. However, for certain values of k, some of
the operations of the symmetry group will leave k invariant. These
particular operations form the group of the wave vector, which is a
subgroup of the full symmetry group of the lattice. Lines in the BZ
for which the group of k contains elements other than the identity are
called symmetry lines. Besides, at certain points of the BZ the group of
the wave vector may be larger than that of the symmetry lines. These
points are called symmetry points.

The symmetry points in graphene are the BZ center Γ , points K and
K’, and points M, located at the middle of the hexagon’s edges. The
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Figure 2.4: Reciprocal lattice of the graphene’s Bravais lattice with basis vec-
tors b1 and b2. The grey-filled area is the first Brillouin zone. The
high symmetry points Γ (zone center), M and the two inequiva-
lent corners K and K’ are also shown.

symmetry lines are Γ–K, Γ–M and K–M. The symmetry points can be
written as:

Γ = (0, 0); M =
2π√
3a

(1, 0);

K =
4π

3a

(√
3

2
,
1

2

)
; K’ =

4π

3a

(√
3

2
,−
1

2

)
. (2.1)

Note that any wave vector k of the Brillouin zone transforms under
the symmetry operations according to the irreducible representation
of the group at a given symmetry point. Such transformations are
called the small group of k at the symmetry point. For example, the
small group of k at point Γ is D6h, but it becomes D3h at points K
and K’, or C2v at lines Γ–K. The electronic states of graphene at a
given symmetry point can be therefore classified according to the
corresponding representation of the group of the wave vector at that
point. As k moves away from the symmetry point, the group of k
becomes smaller and some of the degeneracies split. A detailed study
on the symmetry classification of the electronic states of graphene
from the point of view of the group theory can be found in [70–73].

2.1.2 Tight-binding description of graphene

Once we have described the atomic structure and symmetries of the
graphene lattice, in this section we proceed to the calculation of the
π-bands of graphene using the tight binding approximation, as first
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done by Wallace in his seminal paper (1947) to describe the band the-
ory of graphite [2]. Provided that the interaction between neighboring
2pz electrons is weak, the orbitals can be regarded as atomic orbitals
slightly modified by the periodic potential of graphene. Therefore, we
can assume that the electrons are tightly bound to the atoms of the lat-
tice. This tight-binding description allows to find an analytic solution
for the energy of the π bands with a small number of parameters, in
good agreement with the results of ab initio calculations [74]. Within
this model, the Hamiltonian of the full lattice is given by:

H0 =
∑

rn

[
Hat(r − rn) +∆U(r − rn)

]
, (2.2)

where the sum is extended to the whole set of atomic sites rn, and ∆U
includes small corrections to the atomic Hamiltonian Hat due to the
interaction with neighboring ions and electrons. Taking into account
that the overlap amongst the 2pz orbitals and the rest of valence or-
bitals in each atom is zero, the A (or B) atom is uniquely defined by
one orbital per atom site ϕz(r− rA), or ϕz(r− rB), that represents the
carbon’s 2pz orbital in the periodic structure of graphene and there-
fore, is the eigenstate of the perturbed atomic Halmitonian Hat +∆U.

According to the Bloch’s theorem [75], the eigenfunctions evaluated
at two points Ri and Rj of the graphene’s Bravais lattice only differ
in a phase factor exp

[
i k · (Ri − Rj)

]
. Consequently, the eigenstates ofBloch’s theorem: The

eigenstates of the
one-electron periodic

Hamiltonian in a
Bravais lattice can

be chosen to have the
form of a plane wave

times a function
with the periodicity

of the Bravais lattice.

the Bloch electrons belonging to lattices A and B are given by:

φA(k, r) =
1√
N

∑
RA

ei k·RAϕz(r − RA) = ei k·r uk
A(r), (2.3)

φB(k, r) =
1√
N

∑
RB

ei k·RBϕz(r − RB) = ei k·r uk
B(r), (2.4)

where uk
A(r) and uk

B(r) are periodic functions in the sublattices A
and B, respectively, N is the number of unit cells in the graphene
sheet, and RA (RB) are lattice vectors connecting atomic sites of sub-
lattice A (B). The sums in Eqs. (2.3) and (2.4) run over all the possible
lattice vectors, i. e. all the atoms in sublattices A and B, respectively.
Therefore, the eigenstates |ψk〉 of the full Hamiltonian H0 are linear
combinations of the Bloch states of each sublattice:

|ψk〉 = cA(k) |φA〉+ cB(k) |φB〉 . (2.5)

For the sake of simplicity, in the following we only specify the depen-
dence of the kets |φA/B〉 and the coefficients cA/B on k when deemed
necessary. Otherwise such dependence is implicitly understood.

To derive the electronic structure of the π-bands we have to solve
the Schrödinger equation:

H0 |ψk〉 = E(k) |ψk〉 , (2.6)
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where E(k) are the eigenvalues at a given k which constitute the elec-
tronic bands. Note that H0 has the whole symmetry of the graphene
lattice and thus, the group of the Schrödinger equation (2.6) is the
full space group of graphene. While in atoms or molecules the eigen-
values of the Schrödinger equation are well separated, for condensed
matter systems such as graphene they form a continuous manifold
whose topology is isomorphic to the representation of the full space
group [76].

Multiplying both sides of Eq. (2.6) by 〈φA| and substituting |Ψk〉 by
the linear combination of Bloch states in Eq. (2.5), we obtain:

cA 〈φA|H0 |φA〉+ cB 〈φA|H0 |φB〉 =
cAE 〈φA|φA〉+ cBE 〈φA|φB〉 . (2.7)

A similar condition is obtained multiplying by 〈φB|:

cA 〈φB|H0 |φA〉+ cB 〈φB|H0 |φB〉 =
cAE 〈φB|φA〉+ cBE 〈φB|φB〉 . (2.8)

Conditions (2.7) and (2.8) include both interaction Hij ≡ 〈φi|H0|φj〉
and overlapping integrals Sij ≡ 〈φi|φj〉, with i, j = A,B. They can be
expressed in matrix form as:(

HAA HAB
HBA HBB

)(
cA
cB

)
= E

(
SAA SAB
SBA SBB

)(
cA
cB

)
, (2.9)

or, in the more compact form:

H0 Ψ = E SΨ. (2.10)

This equation has non trivial solutions if:

|H0 − E S | = 0, (2.11)

which is the general form of the well-known secular equation of the
π-orbitals of graphene [2]. Note that Eq. (2.11) is general in the sense
that it has been obtained without making any further approximation
to the tight-binding model. After some manipulation, we obtain:

E± =
1

2E3

{
2E0 − E1 ±

[
(E1 − 2E0)2 − 4E2E3

]1/2}
, (2.12)

where:

E0 = HAASAA E1 = HABS∗AB + H∗ABSAB
E2 = H2AA − HABH∗AB E3 = S2AA − SABS∗AB

(2.13)

and E± represents the eigenvalues of the conduction and valence
bands, respectively.
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2.1.3 Electronic π and π∗ bands

To calculate the interaction Hij and overlapping Sij integrals (i, j =

A,B), we make use of the nearest neighbors approximation. Note that
this approximation can be refined by including more neighbors to the
calculations, but its simplest form gives reasonably good results at
the vicinity of the high symmetry points K and K’ [74]. Let us then
consider integrals of the form:

HAA =
1

N

∑
R ′A

∑
RA

ei k·(RA−R ′A) 〈ϕz(r − R ′A)|H0 |ϕz(r − RA)〉 . (2.14)

Since the three neighboring atoms to any atom in sublattice A be-
long to sublattice B, see Fig. 2.3, the sum over R ′A has only one non-
vanishing term at R ′A = RA, so that:

HAA =
1

N

∑
RA

〈ϕz(r − RA)|H0 |ϕz(r − RA)〉 =

〈ϕz(r − RA)|H0 |ϕz(r − RA)〉 . (2.15)

This term represents the average energy of the orbital 2pz in the pe-
riodic potential of the graphene lattice and is independent of the
wavevector k. Its value ε2p = 0.28 eV can be computed from the
Hamiltonian and the atomic orbitals, or fitted by comparing the band
structure to experimental or ab-initio results [74]. On the other hand,
as atoms A and B are chemically identical, we have HBB = ε2p.

Let us now calculate the integrals:

HAB(k) =
1

N

∑
RA

∑
RB

ei k·(RB−RA) 〈ϕz(r − RA)|H0 |ϕz(r − RB)〉 =

3∑
j=1

e
i k·(RBj−RA) 〈ϕz(r − RA)|H0 |ϕz(r − RBj)〉 =

3∑
j=1

ei k·Rj 〈ϕz(r − RA)|H0 |ϕz(r − RBj)〉 , (2.16)

where Rj = RBj −RA, being Bj the nearest neighbors to atom A. Note
that the atomic orbitals ϕz are radially symmetric on the graphene
plane and the integrals only depend on the distances |Rj|, that are the
same for the three nearest neighbors, see Fig. 2.3. This allows us to
introduce the parameter:Tight-binding

integral
γ0 = 〈ϕz(r − RA)|H0 |ϕz(r − RB)〉 , (2.17)

which represents the average interaction energy between two neigh-
boring carbon atoms (−2.97 eV) and is often known as the tight-
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binding integral of graphene [74]. Thus, defining the complex form
factor:

f (k) = e−
i
3k·(a1+a2)

(
e i k·a1 + e i k·a2 + 1

)
= e−i a kx/

√
3

[
1+ 2ei

√
3a kx/2 cos

(
a ky

2

)]
, (2.18)

and taking into account that:

R1 =
1

3
(2a1 − a2), R2 =

1

3
(−a1 + 2a2),

R3 =
1

3
(−a1 − a2); (2.19)

we can write:

HAB(k) = γ0 f (k). (2.20)

Similarly, it is easily found that HBA = H∗AB.
The integrals 〈φi|φj〉 i, j = A,B can be calculated likewise assuming

that the overlap between neighboring atoms belonging to the same
lattice is zero and they are normalized, i. e. 〈ϕz(r − RA)|ϕz(r − RB)〉 =
δAB. Therefore, we have:

SAA ≡ 〈φA|φA〉 =
1

N

∑
R ′A

∑
RA

ei k·(RA−R ′A) 〈ϕz(r − R ′A)|ϕz(r − RA)〉 = 1 (2.21)

and accordingly, SBB = 1. As for the other integral, we have:

SAB(k) ≡ 〈φA|φB〉 =
1

N

∑
RA

∑
RB

ei k·(RB−RA) 〈ϕz(r − RA)|ϕz(r − RB)〉 =

3∑
j=1

ei k·Rj 〈ϕz(r − RA)|H0 |ϕz(r − RBj)〉 , (2.22)

which only depends on the distances |Rj|. Introducing the overlapping
integral, that represents the coupling between nearest neighboring or-
bitals: Overlapping

integral
s0 = 〈ϕz(r − RA)|ϕz(r − RB)〉 , (2.23)

we obtain:

SAB(k) = s0 f (k), (2.24)

and then, SBA(k) = s0 f ∗(k). Therefore, we can write:

S(k) =

(
1 s0 f (k)

s0 f ∗(k) 1

)
(2.25)
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andTight-binding
Hamiltonian of SLG

H0(k) =

(
ε2p γ0 f (k)

γ0 f ∗(k) ε2p

)
, (2.26)

which is the well-known tight-binding Hamiltonian of SLG within
the nearest neighbors approximation. As we shall see later, this 2× 2
matrix can be written in terms of Pauli matrices thus emphasizing
the analogy with a spin Hamiltonian [69].

Constraining the parameters (2.13) to the nearest neighbors approx-
imation, we obtain:

E0 = ε2p E1(k) = 2γ0s0 | f (k)|2

E2(k) = ε22p − γ
2
0 | f (k)|

2 E3(k) = 1− s20 | f (k)|
2

(2.27)

where:

| f (k)| =

√
1+ 4 cos

√
3akx

2
cos

aky

2
+ 4 cos2

aky

2
, (2.28)

being kx and ky the coordinates of k in the reciprocal space. Therefore,
we have:

E±(k) =
ε2p ∓ γ0 | f (k)|
1∓ s0 | f (k)|

. (2.29)

Since the overlap between wave functions centered in different atoms
is small (s0 = 0.073) [74], we can further approximate s0 ' 0 and thus:Dispersion law

E±(k) = ε2p ∓ γ0 | f (k)|, (2.30)

which is the solution found by Wallace [2]. At the symmetry points
K and K’ of the Brillouin zone, see Fig. 2.4, f (K) = f (K’) = 0 and
accordingly, the electronic bands are locally degenerated with energy
ε2p. Furthermore, as the 2pz orbital is occupied by a single electron,
the (−) band in equation (2.30) is fully ocuppied, while the (+) branch
is empty. Thus, the Fermi level EF = ε2p and the Fermi surface is
composed by the discrete set of K and K’ points, i. e. it has dimension
zero. For this reason, graphene is usually referred as semi-metal or
zero-gap semiconductor [69]. Choosing the Fermi level as the energy
reference, the dispersion law (2.30) reads:

E±(k) = ∓γ0 | f (k)|, (2.31)

which allows to write the tight-binding Hamiltonian (2.26) in the sim-
pler form:

H0(k) =

(
0 γ0 f (k)

γ0 f ∗(k) 0

)
. (2.32)
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The eigenstates of H0 expressed in the basis {uk
A, uk

B} are: Eigenstates of the
π-orbitals

|Φ±k 〉 =
ei k·r
√
2

(
∓1
e−iϕk

)
, (2.33)

where ϕk is the phase of the complex function f (k). Note that Φ−
k

stands for the symmetric (bonding) combination of Bloch functions
(valence band, π) andΦ+

k denotes the anti-symmetric or anti-bonding
combination of Bloch states (conduction band, π∗).

Therefore, the wave function of the Bloch electron in Eq. (2.5) can
be written in terms of the eigenstates (2.33) as:

|ψk〉 = C−(k) |Φ−
k 〉+C+(k) |Φ+

k 〉 , (2.34)

where the coefficients C± are normalized. The nearest-neighbor tight-
biding description of graphene thereby leads to π and π∗ energy
bands which are symmetric with respect to the Fermi level. The en-
ergy E− of the bonding π estates is negative, while the anti-bonding
(π∗) states show positive values E+. Figure 2.5 shows the dispersion
law (2.31) along two different paths in the first Brillouin zone. Al-
though the overall shape of the graphene band structure is quite
satisfactorily described by the tight-binding model, the quantitative
agreement with ab initio calculations is poor at the center of the Bril-
louin zone, see Fig. 2.6. Remarkably, values resulting from Eq. (2.31)
at the vicinity of K and K’ are in good quantitative agreement with
the ab initio results. Note that the optical properties of graphene, as
well as the excitation mechanism for high-order harmonic generation
is dominated by these regions near the valleys 1.

The dependence of H0 with the number of neighbors included in
the calculation has been systematically studied by Reich et al. by in-
cluding additional interaction energies γ1 and γ2 for the second and
third nearest neighbors [77]. The method to construct the Hamilto-
nian is analogous to the one shown in this section, with new terms
contributing to the calculation of the interaction integrals 〈φi|H0|φj〉.
Although the inclusion of new interaction terms with more distant
neighbors qualitatively improves the tight-binding picture in the en-
tire Brillouin zone, it does not substantially improve the first neigh-
bors model at the vicinity of the K and K’ points.

Figure 2.7 depicts the 2D energy manifold at the first Brillouin zone
of graphene stemming from the tight-binding model in the nearest-
neighbors approximation, as given by Eq. (2.31). The figure is cen-
tered at the symmetry point Γ to highlight the isomorphism between
the topology of the energy manifold and that of the 2D representa-
tion of the full space group of graphene, as discussed above in sec-
tion 2.1.2. For any wave vector k at the BZ, the energy manifold has

1 Symmetry points K and K’ are often referred to as valleys in the literature because of
the singular valley-like energy dispersion at their vicinity.
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Figure 2.5: Nearest-neighbor tight-binding band structure of single layer
graphene according to Eq. (2.31) along two different paths in the
first Brillouin Zone: (a) M−K−Γ−K’−M and (b) K−Γ−M−K, see
the insets in both panels. The solid blue (red) line is the π∗ (π)
band. In both panels s0 and EF are set to zero, and γ0 = −2.97 eV.
The light-blue circles in the background highlight the dispersion
at the valleys, where the bands are degenerated.

two branches, corresponding to the valence and conduction bands.
Within each branch, E(k) = E(k ′) if k and k ′ are related by any of the
elements of the dihedral group D6h. Finally, as a consequence of the
translation symmetry, the pattern of the Brillouin zone is periodically
repeated in the rest of the reciprocal space.

2.1.4 Low energy excitations

In this section we shall consider the properties of the graphene’s band
structure at the vicinity of the valleys. To keep a compact notation in
what follows, we assume that k = (kx, ky) defines the location of the
points in the reciprocal space relative to the corresponding valley, K
or K’. Expanding f (k) in Eq. (2.18) to the first order in k, we obtain a
linear approximation of the dispersion law close to those points [69]:Linear dispersion

law near points K
and K’ E±(k) ' ± hvF |k|, (2.35)

where vF is the electronic group velocity:

vF =
|γ0|
 h

a
√
3

2
. (2.36)

Therefore, the dispersion is linear at the vicinity of the valleys with
group velocity vF ' c/300 and only depends on the k-shift. The con-
stant energy contours at the valleys are thereby circumferences of
radius |k| and the band structure is cone-shaped, as illustrated in Fig.
2.7. This low-energy band structure extends over an energy range & 1
eV [78].
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bors are B11 , B12 , and B13 , all of which belong to the other
graphene sublattice; thus for nearest-neighbor interaction

HAA!
1
N !

RA
!
RA!

eik(RA!"RA)"#A$r"RA%!H!#A$r"RA!%&

!
1
N !

RA
"#A$r"RA%!H!#A$r"RA%&!'2p , $4%

where N is the number of unit cells in the crystal, RA and RA!
are the positions of atom A and A!, respectively, and #A
denote the pz atomic wave functions forming the basis for
the crystal Bloch functions. The overlap matrix element
SAA!1, since we assume the atomic wave functions to be
normalized ("#A(r"RA)!#A(r"RA)&!1). To find HAB
within the nearest-neighbor approximation, we simply sum
over the three nearest neighbors shown in Fig. 1:

HAB!
1
N !

RA
!
RB

eik(RB"RA)"#A$r"RA%!H!#B$r"RB%&

!*0$eikR11#eikR12#eikR13%

with

*0!"#A$r"RA%!H!#B$r"RA"R1i%& $ i!1,2,3 %,

the same treatment yields the overlap matrix element

SAB!s0$eikR11#eikR12#eikR13%

with

s0!"#A$r"RA%!#B$r"RA"R1i%& $ i!1,2,3 %,

where R1i is the vector pointing from atom A0 to atoms B1i
in Fig. 1. Now we insert the Hamiltonian and overlap matrix
elements into Eqs. $3% and $2%. We define the function

f $k%!3#u$k%

!3#2 cosk•a1#2 cos k•a2#2 cos k•$a1"a2%

!3#2 cos 2+ak1#2 cos 2+ak2#2 cos 2+a$k1"k2%,

$5%

where ki!k•ai/2+ are the components of a wave vector k in
units of the reciprocal graphene lattice vectors k1 and k2, and
obtain the well-known result4

E$$k%!
'2p%*0!f $k%
1%s0!f $k%

. $6%

The three parameters '2p , *0, and s0 are found by fitting
experimental or first-principles data. The most common prac-
tice is to adjust the tight-binding dispersion to a correct de-
scription of the + bands at the K point. This yields '2p
!0 eV, *0 between "2.5 and "3 eV, and s0 below 0.1.
Since s0 is small, it is usually neglected. The nearest-
neighbor Hamiltonian is able to produce bands which are not
symmetric with respect to the Fermi level, but only if the
overlap s0 is nonzero.

The nearest-neighbor tight-binding description of
graphene was originally developed to study the low-energy
properties of graphite, i.e., the focus was not on the in-plane
dispersion, but rather on the coupling between the graphene
sheets. As the interest rose in nanotubes, Eq. $6% $with s0
!0) was adopted for the electronic band structure through-
out the entire Brillouin zone. In Fig. 2$a% we show an ab
initio calculation of the graphene + and +* bands $full lines%
and the tight-binding dispersion (Eq. $6%), neglecting the
overlap matrix $dashed lines% and in Fig. 2$b% the difference
between the two calculations. An interaction parameter *0
!"2.7 eV was used, a typical value which best reproduced
the slopes of the valence and conduction bands at the K point
from the first-principles calculations. Our ab initio calcula-
tions were performed with the SIESTA code11,12 using
pseudopotentials13 and the Perdew-Zunger parametrization14
of the local-density approximation. An energy cutoff of 270
Ry was taken for real space integrations and a 40&40&1
Monkhorst-Pack grid15 in reciprocal space. The valence elec-
trons were expanded in a basis of numerical pseudoatomic
orbitals.16,17 The converged band structure in Fig. 2 was ob-
tained with a double-, , singly polarized basis set. The exten-
sion of the s orbitals was 5.12 a.u.!2.71 Å and of the p and
d orbitals 6.25 a.u.!3.31 Å.16 A further increase of the cutoff
radii affected the electronic energies by less than 5 meV. We
obtained a graphene lattice constant 2.468 Å; the binding
energy and elastic constants agreed well with plane wave
calculations and experiment.18 For comparison we calculated
the band structure of graphite and found good agreement
with plane-wave pseudopotential calculations.19,20
In general the agreement between first-principles and the

tight-binding band structure is rather poor; good agreement
is only obtained very close to the K point of Brillouin zone,
i.e., for the wave vectors used to determine *0. Even in the
range of the visible transitions the electronic energies deviate
by some 100 meV.
The benefit of the SIESTA method for the present discus-

sion is that the self-consistent Hamiltonian is of a tight-
binding type.11,12 We can thus directly compare the level of

FIG. 2. Ab initio and nearest-neighbor tight-binding dispersions
of graphene. $a% The converged ab initio calculation of the graphene
+ and +* electronic bands is shown by the full lines. The dashed
lines represent the tight-binding dispersion of Eq. $6% with s0!0
and *0!"2.7 eV. $b% Difference -E between the ab initio and
tight-binding band structures.

S. REICH, J. MAULTZSCH, C. THOMSEN, AND P. ORDEJON PHYSICAL REVIEW B 66, 035412 $2002%

035412-2

Figure 2.6: Ab initio and nearest-neighbor tight-binding dispersion of
graphene. (a) The converged ab initio calculation π and π∗ of
graphene bands is shown by the full lines. The dashed lines rep-
resent the tight-binding dispersion of Eq. (2.31) with γ0 = −2.7
eV. (b) Difference ∆E between the ab initio and tight-binding band
structures (extracted from Reich et al. [77]).

Note that near K’ the Halmitonian H0 can be written as:

H0,K ′ =  hvF

(
0 kx − i ky

kx + i ky 0

)
, (2.37)

or in the more compact form [79]:

H0,K ′ = vF(σ̂xpx + σ̂ypy) = vF σ̂σσ · p, (2.38)

where p =  hk is the crystal momentum and σ̂σσ = (σ̂x, σ̂y, σ̂z) are the
Pauli matrices:

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i

i 0

)
, σ̂z =

(
1 0

0 −1

)
. (2.39)

Likewise, it can be easily seen that at the inequivalent point K we
obtain the transposed Halmitonian H0,K = Ht

0,K ′ . Therefore, there is
an extra degree of freedom related to the valleys, as for the point K
the Halmitonian is proportional to σ̂σσt and involves left handed Pauli
matrices, in contrast to the right-handed Pauli matrices operating at
K’. This degree of freedom, known as chirality, is a reminiscence of
the two underlying sublattices which conform the graphene’s Bravais
lattice, and is often referred in the literature as pseudospin, to highlight
both the parallelism and differences with the spin.

Let us introduce the helicity (or chirality) operator as:

ĥ = σ̂σσ · p
|p|

, (2.40)
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Figure 2.7: Scheme of the graphene’s band structure within the nearest
neighbors tight-binding approximation. The Fermi level is set
to zero. The conduction and valence bands correspond to posi-
tive and negative values of the energy, respectively. Dirac points
K and K’ are degenerated at the Fermi level. At the vicinity of
those Dirac points the energy disperses linearly, configuring the
Dirac cones shown in the right.

which represents the projection of the pseudospin operator σ̂σσ on the
crystal momentum direction. Note that ĥ commutes with the Hamil-
tonian and the helicity is thereby a well defined quantity with eigen-
values +1 at K’ and −1 at K. As a consequence, electrons do not
backscatter when crossing through the valleys [69, 80], since a change
from p to −p would lead to a pseudospin reversion. Backscattering
does not occur unless the Hamiltonian is perturbed by a term that
flips pseudospin.

To take into account pseudospin, we can rewrite the Halmitonian
at the valleys as the result of the direct product of both subspacesThe Dirac-Weyl

Halmintonian [78]:

H0 =

(
vF σ̂σσ

t · p 0

0 vF σ̂σσ · p

)
(2.41)

where H0 acts now over the four-component spinor:

|Ψ 〉 =
(
|ψK〉
|ψK’〉

)
(2.42)

being |ψK〉 and |ψK’〉 the wave function of the Bloch electron at the
vicinity of K and K’, respectively. In condensed matter physics the
valleys are referred as Weyl points and the associated two-component
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spinor, as the Weyl spinor. Formally, the term Dirac point should rather
be used for the four-component spinor, thereby encompassing two
Weyl points of opposite chirality at different locations in the recipro-
cal space [78]. Nevertheless, in the literature, the crossing points of 2D
linearly dispersing bands are commonly referred to as Dirac points
since the early works on graphene. For this reason, we shall main-
tain the common usage. The Hamiltonian in Eq. (2.41) is equivalent
to the Dirac-Weyl Hamiltonian, which follows from the Dirac equa-
tion after setting the rest mass of the particle to zero. Therefore, the
low-energy excitations in graphene emulate those of massless Dirac
particles of spin 1/2 and are usually known as massless Dirac fermions
[69, 77], though the group velocity of these quasiparticles is much
smaller and the spin refers to the pseudospin.

Equation (2.38) makes explicit two outstanding discrete symmetries
of the tight-binding Hamiltonian of graphene that are not directly re-
lated to the space group of the lattice. In particular, taking into ac-
count the 2D representation of the time-reversal operator T = i σ̂yK,
being K the complex conjugate operator, it is straightforward to show
that [T , H0] = 0 and therefore, the tight-binding Hamiltonian is time-
reversal invariant. On the other hand, a Hamiltonian is said to have
electron-hole symmetry if there is a unitary transformation U such
that UH0U† = −H0 in such a way that the energy spectrum is sym-
metric with respect to E = 0. Then, choosing U = σ̂z, is easily seen
that H0 fulfills the electron-hole symmetry condition, which implies
that for any eigenstate with positive energy E (electron) there is an
eigenstate with energy −E (hole). Note that this is not a symmetry of
real graphene as it appears as a consequence of the nearest-neighbors
tight-binding model, see Fig. 2.6.

The band degeneracy of graphene at the Dirac points is direct con-
sequence of the inversion symmetry of the full space group of the lat-
tice and hence, of the underlying sublattice symmetry, i. e. the possi-
bility to divide the full lattice into two equivalent sublattices, as illus-
trated in Fig. 2.3. Therefore, the degeneracy at the Dirac points is pro-
tected if the sublattice symmetry is preserved. Mathematically, this
constraint can be written as the anticommutation relation {H0, σ̂z} = 0,
which forbids the appearance of terms depending on σ̂z in H0. These
terms are usually referred in the literature as mass terms since they
produce a gap in the energy spectrum twice the rest mass of the
quasiparticle. The σ̂z mass term can be induced in graphene by in-
teraction with certain substrate, or by making the two sublattices oc-
cupied by different atoms, as in the family of 2D transition metal
dichalcogenides (TMDs), like MoS2 or WSe2 [81]. Note that, although
the electron-hole and time reversal symmetries of H0 remain unal-
tered, the strong inversion symmetry breaking leads to a large mass
term of the order of 1 eV [78]. Another means to break the inversion
symmetry while preserving time reversal is by introducing the spin-
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orbit coupling (SOCs) effect in the Hamiltonian H0 [82]. Meanwhile
SOC in TMDs can be sizable, with strength of the order of 0.01 ∼ 0.1
eV, the intrinsic SOC term in graphene is negligibly small, due to
a very weak atomic SOC strength for carbon and the planar struc-
ture, which effectively uncouples the π and σ electronic bands, as
discussed above.

Notwithstanding, the tight-binding Hamiltonian developed in sec-
tion 2.1.3 fully accounts for the remarkable properties of the low-
energy excitations at the Dirac points, which, as we see, can be inde-
pendently addressed using the Dirac formalism. In this sense, we can
say that the Schrödinger equation is equivalent to massless Dirac’s
close to the Dirac points. Note that the tight-binding model accounts
for the whole first Brillouin zone of the reciprocal space, thus encom-
passing the two inequivalent Dirac points. Therefore there is no need
to work with the 4× 4 Hamiltonian in Eq. 2.41, so the 2× 2 matrix in
Eq. (2.32) will be used instead.

2.2 electronic properties of carbon nanotubes

Single-wall carbon nanotubes, or carbon nanotubes in short, are car-
bon allotropic forms made from a single graphene layer, rolled up
like a hollow cylinder. They have an impressively perfect crystalline
structure and diameters up to few nanometers. Since there are infinite
ways to roll a sheet as a cylinder, SWNTs display a wide variety of mi-
croscopic patterns that determine their electronic band structure and
thus, their metallic or semiconducting character. These almost one-
dimensional fairly complex configurations, with tens to hundreds of
atoms in the unit cell, have well defined symmetries which simplify
the understanding of their physical properties.

In this section we address the structural characteristics of SWNTs,
paying special attention to their symmetries, which have a strong in-
fluence on the geometry of the electronic bands. We then compute the
electronic band structure using the zone folding approach, and derive
the time-independent Hamiltonian, that will be used in chapter 4 to
study the interaction of these nanostructures with intense laser fields.

2.2.1 Structural properties of carbon nanotubes

The physical structure of single wall nanotubes can be understood
as a rolled graphene strip [69, 74], see Fig. 2.8. The chiral vector
Ch = n1a1 + n2a2, being a1, a2 the graphene’s lattice vectors and
n1, n2 ∈ Z, connects two equivalent sites on the graphene sheet and
it is used to uniquely label the atomic structure of a given SWNT.
The chiral indices (n1, n2) define the diameter dt = |Ch|/π, the chiral
angle θ = arctan

√
3n2/(2n1 + n2), and the translational period along

the tube axis a0. The chiral angle is the angle between Ch and a1 and
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lies in the range 0◦ 6 |θ| 6 30◦ as a consequence of the hexagonal
symmetry of the graphene lattice. The translational period is given
by the smallest graphene lattice vector T perpendicular to Ch, such

that a0 =
√
3a
√

n21 + n1n2 + n22/NR, where NR is the greatest com-

mon divisor of (2n1 + n2, 2n2 + n1) and a = 2.46Å is the graphene’s
lattice constant. The nanotube unit cell is thus a cylindrical surface
with height a0 and diameter dt.

bors are B11 , B12 , and B13 , all of which belong to the other
graphene sublattice; thus for nearest-neighbor interaction

HAA!
1
N !

RA
!
RA!

eik(RA!"RA)"#A$r"RA%!H!#A$r"RA!%&

!
1
N !

RA
"#A$r"RA%!H!#A$r"RA%&!'2p , $4%

where N is the number of unit cells in the crystal, RA and RA!
are the positions of atom A and A!, respectively, and #A
denote the pz atomic wave functions forming the basis for
the crystal Bloch functions. The overlap matrix element
SAA!1, since we assume the atomic wave functions to be
normalized ("#A(r"RA)!#A(r"RA)&!1). To find HAB
within the nearest-neighbor approximation, we simply sum
over the three nearest neighbors shown in Fig. 1:

HAB!
1
N !

RA
!
RB

eik(RB"RA)"#A$r"RA%!H!#B$r"RB%&

!*0$eikR11#eikR12#eikR13%

with

*0!"#A$r"RA%!H!#B$r"RA"R1i%& $ i!1,2,3 %,

the same treatment yields the overlap matrix element

SAB!s0$eikR11#eikR12#eikR13%

with

s0!"#A$r"RA%!#B$r"RA"R1i%& $ i!1,2,3 %,

where R1i is the vector pointing from atom A0 to atoms B1i
in Fig. 1. Now we insert the Hamiltonian and overlap matrix
elements into Eqs. $3% and $2%. We define the function

f $k%!3#u$k%

!3#2 cosk•a1#2 cos k•a2#2 cos k•$a1"a2%

!3#2 cos 2+ak1#2 cos 2+ak2#2 cos 2+a$k1"k2%,

$5%

where ki!k•ai/2+ are the components of a wave vector k in
units of the reciprocal graphene lattice vectors k1 and k2, and
obtain the well-known result4

E$$k%!
'2p%*0!f $k%
1%s0!f $k%

. $6%

The three parameters '2p , *0, and s0 are found by fitting
experimental or first-principles data. The most common prac-
tice is to adjust the tight-binding dispersion to a correct de-
scription of the + bands at the K point. This yields '2p
!0 eV, *0 between "2.5 and "3 eV, and s0 below 0.1.
Since s0 is small, it is usually neglected. The nearest-
neighbor Hamiltonian is able to produce bands which are not
symmetric with respect to the Fermi level, but only if the
overlap s0 is nonzero.

The nearest-neighbor tight-binding description of
graphene was originally developed to study the low-energy
properties of graphite, i.e., the focus was not on the in-plane
dispersion, but rather on the coupling between the graphene
sheets. As the interest rose in nanotubes, Eq. $6% $with s0
!0) was adopted for the electronic band structure through-
out the entire Brillouin zone. In Fig. 2$a% we show an ab
initio calculation of the graphene + and +* bands $full lines%
and the tight-binding dispersion (Eq. $6%), neglecting the
overlap matrix $dashed lines% and in Fig. 2$b% the difference
between the two calculations. An interaction parameter *0
!"2.7 eV was used, a typical value which best reproduced
the slopes of the valence and conduction bands at the K point
from the first-principles calculations. Our ab initio calcula-
tions were performed with the SIESTA code11,12 using
pseudopotentials13 and the Perdew-Zunger parametrization14
of the local-density approximation. An energy cutoff of 270
Ry was taken for real space integrations and a 40&40&1
Monkhorst-Pack grid15 in reciprocal space. The valence elec-
trons were expanded in a basis of numerical pseudoatomic
orbitals.16,17 The converged band structure in Fig. 2 was ob-
tained with a double-, , singly polarized basis set. The exten-
sion of the s orbitals was 5.12 a.u.!2.71 Å and of the p and
d orbitals 6.25 a.u.!3.31 Å.16 A further increase of the cutoff
radii affected the electronic energies by less than 5 meV. We
obtained a graphene lattice constant 2.468 Å; the binding
energy and elastic constants agreed well with plane wave
calculations and experiment.18 For comparison we calculated
the band structure of graphite and found good agreement
with plane-wave pseudopotential calculations.19,20
In general the agreement between first-principles and the

tight-binding band structure is rather poor; good agreement
is only obtained very close to the K point of Brillouin zone,
i.e., for the wave vectors used to determine *0. Even in the
range of the visible transitions the electronic energies deviate
by some 100 meV.
The benefit of the SIESTA method for the present discus-

sion is that the self-consistent Hamiltonian is of a tight-
binding type.11,12 We can thus directly compare the level of

FIG. 2. Ab initio and nearest-neighbor tight-binding dispersions
of graphene. $a% The converged ab initio calculation of the graphene
+ and +* electronic bands is shown by the full lines. The dashed
lines represent the tight-binding dispersion of Eq. $6% with s0!0
and *0!"2.7 eV. $b% Difference -E between the ab initio and
tight-binding band structures.
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Figure 2.22 The graphene network. The lattice vectors are indicated by a1 and a2. In this example
the chiral vector is Ch = 6a1 + 3a2. The direction perpendicular to Ch is the tube axis (dashed
lines) where the translational vector T is indicated. The angle between Ch and the a1 “zigzag”
direction of the graphene lattice defines the chiral angle θ . The resulting (6, 3) nanotube is
shown on the right. The unit cell for this nanotube is a rectangle bounded by Ch and T.

As shown in Fig. 2.22, the structure of single-wall carbon nanotubes is that of a rolled
graphene strip (Saito, Dresselhaus & Dresselhaus, 1998). Their structure can be speci-
fied by the chiral vector (Ch) that connects two equivalent sites (A and A′ in Fig. 2.22)
on a graphene sheet. Therefore, the chiral vector can be specified by two integer num-
bers (n and m), Ch = na1 +ma2, and represents the relative position of the pair of atoms
on the graphene network which form a tube when rolled. The (n, m) pair uniquely labels
SWNTs.

Since the chiral vector Ch defines the circumference of the tube, its diameter can be
estimated as dt = |Ch|/π = a

π

√
n2 + nm + m2, where a is the lattice constant of the

honeycomb network (a =
√

3×acc and acc $ 1.42 Å , the C–C bond length). The chiral
vector Ch uniquely defines a particular (n, m) tube, as well as its chiral angle θ which is
the angle between Ch and a1 (“zigzag” direction of the graphene sheet, see Fig. 2.22).

The chiral angle θ can be calculated from

cos θ = Ch · a1
|Ch||a1|

= (2n + m)/(2
√

n2 + nm + m2), (2.44)

and lies in the range 0 ≤ | θ | ≤ 30◦, because of the hexagonal symmetry of the
graphene lattice. Nanotubes of the type (n, 0) (θ = 0◦) are called zigzag tubes, because
they exhibit a zigzag pattern along the circumference. Such tubes display carbon–carbon
bonds parallel to the nanotube axis. On the other hand, nanotubes of the type (n, n)

(θ = 30◦) are called armchair tubes, because they exhibit an armchair pattern along the
circumference. Such tubes display carbon–carbon bonds perpendicular to the nanotube
axis. Both zigzag and armchair nanotubes are achiral tubes, in contrast with general
(n, m '= n '= 0) chiral tubes (compare for example the structure of the tubes shown in
Fig. 2.23(a)).

Figure 2.8: Example of SWNT in the graphene network. The lattice vectors
are indicated by a1 and a2. In this example the chiral vector is
Ch = 6a1+3a2. The direction perpendicular to Ch is the tube axis
(dashed lines), where the translational vector T is indicated. The
angle between Ch and the a1 zigzag direction of the graphene
lattice defines the chiral angle θ. The resulting (6, 3) nanotube is
shown on the right (extracted from Foa et al. [69]).

Nanotubes of the type (n, n) have a chiral angle θ = 30◦ and display
C–C bonds perpendicular to the nanotube axis, showing an armchair
pattern along the circumference (armchair or A -tubes). SWNTs of the
type (n, 0), θ = 0◦, are called zigzag (Z ) tubes, as they exhibit a zigzag
pattern along the circumference, displaying C–C bonds parallel to the
nanotube axis. Both armchair and zigzag tubes are achiral species, in
contrast with (n1, n2 6= n1 6= 0) chiral (C ) tubes. Figure 2.9 shows three
examples of the different types of SWNTs. Although the diameters of
the nanotubes shown in Fig. 2.9 are almost the same (∼ 1.1 nm), their
atomic structure is completely different due to the variation in both
the chiral angle and the translational period. In the examples shown,
tubes (8, 8) and (14, 0) present achiral symmetry, meanwhile (12, 3) is
chiral. The unit cell of (8, 8) consist of 32 carbon atoms, while (14, 0)
has 56 atoms in the unit cell and the number increase up to 84 in
(12, 3). Chiral nanotubes often have a large number of atoms per unit
cell.
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Figure 2.9: (a) Axial view of the atomic structure of (8, 8) armchair, (14, 0)
zigzag and (12, 3) chiral nanotubes. Magenta and green cir-
cles represent the atoms in the two sublattices of the unrolled
graphene sheet. (b) Zenith view of the three species. The chiral
structure of (12, 3) contrast with the achiral (8, 8) and (14, 0).

Figure 2.10 shows the essential symmetry elements of (9,9) arm-
chair. Symmetries of SWNTs are directly related to chirality. All species
show a0-period translational symmetry along the tube axis (z axis, by
convention) and have a screw axis of pure rotational symmetries. Fur-
thermore, both chiral and achiral tubes have π-rotational symmetry
around the U-axis. In addition, Z and A tubes present mirror reflec-
tion symmetries on the horizontal xy-plane (σh) and on the vertical
yz-plane (σv), which are not present in C tubes.

Line groups are the full space groups of one-dimensional systems
which include translations in addition to the point-group operations
(rotations and reflections). Thus, all the symmetries of SWNTs are
gathered in line groups LC and LZ A given by the product of the di-
hedral point groups, Dn and Dnh (for chiral and achiral tubes, respec-
tively), and the helical group [83, 84]:

LC = T r
q Dn, (2.43)

LZ A = T12n Dnh, (2.44)

where q = 2N, being N the number of C-atoms in the unit cell; n is
the greatest common divisor of the chiral indexes (n1, n2), and r is the
helicity parameter for the screw axis transformations [74]. Note that
for achiral tubes q = 2n and r = 1. The elements of the groups are:

l(t, s, u, w) = (Cr
q|a0n/q)tCs

nUuσw
v , (2.45)
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Figure 2.10: Symmetry elements of (9, 9) armchair. The full line group of
this nanotube is T118D9h, whose generators are (C118|a0/2) trans-
formations, C9 pure rotations, and the mirror reflections under
σh and σv.

where (Cr
q|a0n/q)t, t = 0,±1,±2, ... are the elements of helical group Elements of the

SWNTs line groupsTr
q; Cs

n, with s = 0, 1, ..., n − 1 are the rotations around the z-axis and
form the subgroup Cn; Uu, u = 0, 1 are the π rotations around the
U-axis for C tubes and the mirror σh reflections for achiral SWNTs;
and finally, σw

v are the vertical mirror reflections for achiral tubes, so
w = 0 for C tubes and w = 0, 1 for A and Z tubes [85]. Each SWNT is
a line group in the sense that the relation between the carbon atoms
and the symmetry operations of the tube is an isomorphism: starting
with a single carbon atom and successively applying the elements of
the group given by Eq. (2.45), the whole tube is constructed. In phys-
ical processes with translational symmetry there is no need to work
with the full line groups LC or LZ A , as the isogonal point groups are
enough to describe the related phenomena. The point groups isogo-
nal to the SWNTs line groups are Dq for C -tubes and D2nh for achiral
tubes.

2.2.2 Description of the band structure within the zone folding approach

Noether’s theorem: If
a system has a
continuous
symmetry property,
then there are
corresponding
quantities whose
values are conserved
in time.

According to Noether’s theorem, each symmetry of a given system
always implies the conservation law for a related physical magnitude.
Therefore, group symmetry provides a set of quantum numbers with
full physical meaning. The translational periodicity of the tube im-
plies the conservation of the quasi-momentum k. Besides, rotational
symmetry around the z-axis implies the conservation of m, the projec-
tion of the orbital angular momentum along the tube axis. The mirror
reflection planes and the π-rotational symmetry around the U-axis
impose additional conservation laws to the parities of the electronic
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states, so that the parity with respect to σv is denoted by A for even
states and B for odd ones, and the parity under U or σh transforma-
tions is denoted by ± for even and odd states, respectively. Therefore,
the state of the electron | k, m,A/B,±〉 corresponds to a particular ir-
reducible representation of the line group and thus, its wave function
transforms under the symmetry operations in the same way than the
basis of the corresponding representation.

Provided that SWNTs are essentially one-dimensional structures, it
is convenient to reduce their first Brillouin zone to 1D using the zone-
folding approach. Therefore, we consider the nanotube as a graphene
layer with periodic boundary conditions along the circumferential
direction:Periodic boundary

conditions for
SWNTs Ψk(r + Ch) = e

i k·ChΨk(r) = Ψk(r), (2.46)

being Ψk(r) the wave function of the electron in graphene as given
by Eq. (2.34). This approach neglects curvature effects, but results
a good approximation for tubes of radii large enough (dt > 1 nm)
[86, 87]. The condition expressed by Eq. (2.46) implies the quantiza-
tion of the allowed wave vectors along the circumferential direction
k · Ch = 2πm, where m ∈ Z is the z-component of the orbital angu-
lar momentum. Since no condition is imposed to the wave vectors
along the nanotube axis, they remain continuous. Strictly speaking,
this choice is valid only for tubes of infinite length, but it is also
found as a good approximation provided that the length-to-diameter
ratio of the SWNTs is > 103. Thus, the BZ of the nanotube consists of
a set of lines with length 2π/a0 parallel to the tube axis, as shown in
Fig. 2.11 for the (8, 8) armchair case. The number of lines corresponds
to the order of the isogonal point group q = 2(n21 + n1n2 + n22)/nR ,
where R = 3 or R = 1 depending on whether (n1 − n2)/3n is integer
or not [85]. Each line is labelled by the index m, which takes integer
values in (−q/2, q/2]. According to the boundary condition Eq. (2.46),
the q lines are separated by constant distances 2/dt.

The Hamiltonian describing the electron dynamics in the periodic
potential of the nanotube is then given by the SLG Hamiltonian H0(k)
in Eq. (2.32) with k fulfilling Eq. (2.46). The dispersion for each al-
lowed wave vector in the circumferential direction of a given (n1, n2)
nanotube is obtained by cutting the 2D band structure of graphene
along q lines of length 2π/a0 separated by 2/dt and parallel to the
tube axis. The collection of these lines gives the electronic structureZone folding

approach of the nanotube. By using the zone-folding approximation to describe
the band structure, we assume that the wave function of graphene re-
mains unaltered when rolling the tube. Therefore, within the nearest-
neighbors tight-binding approximation, the dispersion is given by
E±m (k) = ∓γ0 | fm(k)|, where γ0 is the tight-binding integral of graphene,
see Sec. 2.1.3, and fm(k) is the complex function defined by Eq. (2.18)
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Figure 2.11: Allowed k vectors in the first Brillouin zone of (8, 8) armchair
tube (green lines). This nanotube contains 32 C atoms in its unit
cell, q = 16, m = 0,±1,±2, ...,±7, 8 and dt = 10.9 Å. The red
hexagon shows the boundary of the graphene’s BZ along with
the high symmetry points K and Γ . Note that for A -type tubes,
the translational period a0 = a.

restricted to the 1D manifold correspondent to the nanotube’s first
Brillouin zone:

fm(k) = e−i akm
1/
√
3

(
1+ 2ei

√
3akm

1/2 cos
akm
2

2

)
, (2.47)

where:

km
1 = km

⊥ cos θ ′ − k sin θ ′ (2.48)

km
2 = km

⊥ sin θ ′ + k cos θ ′ (2.49)

being θ ′ = π/6− θ, and km
⊥ = 2m/dt the set of allowed wave vectors

along the circumferential direction
As discussed in Sec. 2.1.3, the Dirac points K and K’ are degen-

erated at the Fermi level. Accordingly, if K (K’) is an allowed wave
vector for the SWNT, the corresponding bands are degenerated at
the Fermi level and the nanotube is metallic, as it is the case of the
(8,8) armchair tube shown in Fig. 2.11. Otherwise, the nanotube is a
small-gap semiconductor. Based on this fact, Eq. (2.46) leads to the
following general rule for the prediction of the metallicity: a given
(n1, n2) SWNT is metallic if (n1 − n2) ≡ 0 (mod 3) and small-gap
semiconductor if (n1 − n2) ≡ 1, 2 (mod 3). The tight-binding model
in the nearest neighbors approximation predicts that the gap at the
Fermi level for semiconducting nanotubes decreases as 1/dt [88]. The
metallicity rule is illustrated in the three examples of zigzag tubes
shown in Figure 2.12.
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Figure 2.12: First Brillouin zone of (12, 0), (13, 0) and (14, 0) zigzag tubes.
The diameters of these tubes are dt = 0.94, 1.02 and 1.10 nm,
respectively. Panel (a) shows the (12, 0) metallic tube n ≡ 0 (mod
3) intersecting the K point at m = −8 and 8. In panels (b) and
(c) we show the (13, 0) n ≡ 1 (mod 3) and (14, 0) n ≡ 2 (mod 3)
semiconducting tubes.

In addition to the possible degeneracy of the valence and conduc-
tion bands at the Fermi level, symmetry imposes extra degeneracies
to the electronic bands. The parities invoked by the U-axis, and the
mirror planes for achiral tubes, combine the electronic states in degen-
erate multiplets, related to irreducible representations of the group
(A or B for singlets, E for doublets, and G for quadruplets) [85]. Note
that the degeneracy of k and −k is shared by both chiral and achiral
tubes. For this reason, the domain sufficient to characterize the entire
band is [0,π/a0]. Fig. 2.13 shows the band structure of (a) (8,8) arm-
chair and (b) (14,0) zigzag tubes. In Fig. 2.13 singlets at m = 0 (n)
are emphasized with solid (dashed) black lines for k ∈ [0,π/a0]. The
rest of bands correspond to double degenerated states consequence
of the σv symmetry. The bands have specific symmetry with respect
to k = 0 and k = π/a0. For (n, n) armchair tubes, the conduction
and valence bands with m = 0 and n have opposite σv parity, while
in Z -type tubes these states have always even parity. At k = 0 the
singlets of the valence and conduction bands have sharp ± parity,
which is always even for A -tubes, while is reversed for Z -tubes. Note
that at k = 0 all the bands are zero-sloped, which results in strong
van Hove singularities in the density of states (DOS) shown as a
shaded area in the background of Fig. 2.13. The DOS is defined by
D(E) = (Na0/2π)|dk/dE|, being N the number of unit cells in the nan-
otube [89]. The DOS is negligible at k = 2π/3a0 for armchair tubes,
where the valence and conduction bands cross at the Fermi level, al-
though these type of tubes present additional van Hove singularities
in the interval k ∈ (2π/3a0,π/a0) [85].



2.3 the interaction hamiltonian 37

-� -� � �

-�

-�

�

�

m = -7 -5 -2 -1 1 2 5 6 7 80

!´

!

!

!´!´
k = − π /a0

k = + π /a0

-6

k(1/Å)

k⊥(1/Å)

-4 43-3

"

!

E
/γ 0

-�

-�

-�

�

�

�

�

++
+
+
+
+
+
++

++
+
+
+
+
+
++

A+
8

B+
8

B+
0

A+
0

k
π/a02π/3a00

-�

-�

-�

�

�

�

�

+
+
+
+
+

+

+
-
-
-+

+

A+
0

A−0

A−14

A+
14

k
π/a00

(a) (b)
--
-
-
-

-

-

-

-+
+
++

-

(8,8) (14,0)

Figure 2.13: Band structure of (a) (8,8) armchair tube (metallic) and (b)
(14,0) zigzag tube (semiconductor). The energy is given times
the tight-binding integral γ0. The solid (dashed) black lines in
(a) emphasizes the m = 0 (m = 8) singlets of the valence and con-
duction bands labelled according to their irreducible represen-
tations. In (b) we represent the m = 0 (m = 14) singlet by solid
(dashed) black lines labelled by the corresponding irreducible
representations. In both panels, parities under σh reflections at
k = 0 are denoted by ±. The pink filled area in the background
shows the density of states in arbitrary units.

2.3 the interaction hamiltonian

Once we have derived the field-free Hamiltonian H0, we shall devote
this section to present the fundamentals of the description of the inter-
action between intense laser fields and matter. For this purpose, let
us consider the electron subjected simultaneously to the crystal po-
tential VC(r) and to an electromagnetic field described by the vector
potential A(r, t).

According to quantum electrodynamics, the Hamiltonian of the
electromagnetic field HEM can be written in terms of the creation and
annihilation operators â†k,µ and âk,λ as an expansion of normal modes
k with frequency ωk = c|k| confined in a volume V [90]:

HEM =
∑
k,λ

 hωk

(
â
†
k,λâk,λ +

1

2

)
, (2.50)
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where λ = ±1 stands for the two possible polarization directions
(spin) of the photons. We can thereby write the total Hamiltonian of
the system as:

H =
1

2me

(
p̂ − qeÂ

)2
+ VC(r) + HEM, (2.51)

being me the electron mass, qe < 0 the elementary charge, and p̂ the
momentum operator, −i  h∇r. Since Â in general depends on r, Â and
p̂ do not commute. Therefore, the Hamiltonian (2.51) is expanded to:

H =
p̂2

2me
−

qe

2me

(
p̂ · Â + Â · p̂

)
+

qe
2

2me
Â2 + VC(r) + HEM. (2.52)

The operator Â related to HEM in a medium of volume V and di-
electric permittivity ε can be written in terms of â†k,λ and âk,λ as:

Â(t) =
∑
k,λ

ek,λ

√
 h

2εVωk

(
â
†
k,λe

iωkte−i k·r + âk,λe
−iωktei k·r), (2.53)

being ek,λ the polarization vectors. In the infrared regime k ∼ 107 m−1

and, since | r | ∼ 10−10 m, we can assume k · r� and ei k·r ∼ 1. This is
the so called dipole approximation, where the plane wave expansion is
considered only to the zeroth order. Implicitly to this approximation,
the electron wave packet is assumed to remain in a neighborhood
� λ of its parent atom during the whole field cycle, therefore oscillat-
ing non-relativistically. This condition is not necessarily fullfilled for
short wavelength radiation, such as X-rays, where additional terms
of the plane wave expansion need to be considered, but the dipole
approximation is extremely good for the mid-IR driving fields consid-
ered in this work. Therefore, in the dipole approximation

[
p̂, Â

]
= 0,

and thus:

H =
p̂2

2me
−

qe

me
Â · p̂ +

qe
2

2me
Â2 + VC(r) + HEM. (2.54)

The field of the single mode driving laser is described by the coher-
ent state |α〉. This minimum uncertainty wave packet results from the
linear superposition of the Fock states |n〉 [91]:

|α〉 = e− 1
2 |α|

2
∞∑

n=0

αn
√

n!
|n〉 , (2.55)

being α = |α|e−iφ a complex number. Note that the square value
of the expansion coefficients in Eq. (2.55) is the Poisson distribution.
It can be readily shown that |α〉 is an eigenstate of the annihilation
operator â and that the average number of photons in the coherent
state is 〈n〉α = |α|2. Thus, the average energy is  hω0

(
1
2 + |α|2

)
, where

ω0 is the frequency of the driving field.
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Let us now consider the expression of a single mode electric field
operator F̂ in terms of â†λ and âλ in the dipole approximation:

F̂(t) = i

√
 hω0

2εV

∑
λ

eλ
(
âλe

−iω0t − â†λe
iω0t), (2.56)

where we assume that the field is contained in a volume V with di-
electric permittivity ε. The average of F̂ in the coherent state |α〉 is:

〈α | F̂ |α〉 =
√
2 hω0|α|2

Vε

∑
λ

eλ sin(ω0t +φ), (2.57)

and the variance of F̂ in |α〉:

〈α | F̂2 |α〉 = 2 hω0|α|
2

Vε
sin2(ω0t +φ) +

 hω0

2Vε
. (2.58)

Consequently, the mean square deviation of F̂ in the coherent state is:

〈
(
F̂ − 〈F̂〉α

)2〉
α
= 〈F̂2〉α − 〈F̂〉2α =

 hω0

2Vε
. (2.59)

Therefore, any measurement of the electric field will be subject to an
uncertainty

∆F =

√
 hω0

2Vε
. (2.60)

Similarly, the uncertainty of the magnetic field is:

∆B =

√
 hω0µ

2V
, (2.61)

being µ the magnetic permeability of the medium. Therefore, the
residual noise energy of the electromagnetic field in the coherent state
is given by:

∆E =
1

2
ε(∆F)2V +

1

2µ
(∆B)2V =

 hω0

2
, (2.62)

equivalent to the energy of the vacuum state mode. Note that in the
classical limit (large |α|) the relative weight of this residual energy
is zero. Consequently, for large |α| we can consider the driving field
unaffected by the interaction with the target, and use the effective
Halmitonian:

H ∼ 〈α |H |α〉 = p̂2

2me
−

qe

me
〈α | Â |α〉 · p̂ +

qe
2

2me
〈α | Â2 |α〉

+VC(r) +  hω0

(
1

2
+ |α|2

)
. (2.63)
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By making the gauge transformation

Ψ(r, t)→ Ψ(r, t)e−i qe2
2 hme

∫
〈Â2(τ)〉αdτ−iω0( 12+|α|2) (2.64)

it is readily seen that the terms proportional to Â2 and ω0 can be
removed from the Schröndinger equation and then, the Hamiltonian
in Eq. (2.63) can be written as:

H =
p̂2

2me
+ VC(r) −

qe

me
A · p̂, (2.65)

being A = 〈Â〉α. The first two terms of H correspond to the unper-
turbed Hamiltonian H0 and the last term, involving A · p̂, is the inter-
action responsible for transitions between the eigenstates of H0. Note
that this later term can be expressed in the length gauge by perform-
ing the gauge transformation

Ψ(r, t)→ Ψ(r, t)ei qe
 hA·r̂ (2.66)

so that

H =
p̂2

2me
+ VC(r) + Vint, (2.67)

whereThe interaction
Hamiltonian

Vint = −qe F · r̂, (2.68)

which is the expression of the interaction Hamiltonian that we shall
use throughout the rest of this work.

2.4 high-order harmonic generation

The interaction of matter with sufficiently intense electromagnetic
fields gives rise to a rich variety of physical processes, which are
commonly known as nonlinear phenomena. One remarkable exam-
ple is the emission of radiation at integer multiples of the driving
field frequency, known as harmonic generation. Although nonlinear op-
tical effects were predicted before the construction of the first laser in
1960 [38], the pioneer discoveries are considered to be two-photon
absortion [92] and second-harmonic generation [42], that were first
reported in 1961. Two and third order nonlinear phenomena include,
among others, optical parametric oscillation, third-order harmonic
generation, intensity-dependent refractive index, saturable absorption
or stimulated Raman scattering [93–98]. High-order harmonic gener-
ation is an example of an extreme nonlinear optical process whereby
a target (gas, plasma or solid) illuminated nonperturbatively by an in-
tense laser beam emits harmonics of the laser frequency up to some
cut-off order, most of them with comparable efficiency. HHG funda-
mentals will be later discussed in detail. First, we shall outline some
introductory concepts of nonlinear phenomena.
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2.4.1 Remarks on nonlinear optical phenomena

In general terms, when light interacts with matter, the time-dependent
rearrangement of the atomic charge distribution causes the genera-
tion or modification of the electric multipole moments. Macroscop-
ically, this implies the appearance of a polarization density P(t) in
the material, induced by the electric field F(t), resulting from the su-
perposition of the atomic dipole moments, which are the largest con-
tributions to the atomic multipole expansion. Most nonlinear optical
phenomena are described by expanding the polarization density as a
power series in the applied electric field amplitude2:

P (t) = ε0
[
χ(1)F(t) + χ(2)F2(t) + χ(3)F3(t) + . . .

]
(2.69)

where χ(1) is the linear susceptibility. The quantities χ(2), χ(3), . . .
are known as the second- and third-order non-linear optical suscepti-
bilities, and so on. In general, the qth nonlinear susceptibility χ(q) is
a (q + 1)-rank tensor and depends on the frequencies of the applied
field. The role of matter polarization in nonlinear optical phenomena
is explicit in the wave equation [98]:

∇2F −
n2

c2
∂2F
∂t2

=
1

ε0c2
∂2PNL

∂t2
(2.70)

where n is the (linear) refractive index and PNL is the nonlinear part
of P. Therefore, a time-dependent polarization acts as the source of
new components of the electromagnetic field.

A simple estimate of the order of magnitude of these quantities in
condensed matter, where χ(1) ∼ 1, leads to χ(2) ∼ 2 × 10−12 m/V
and χ(3) ∼ 4× 10−24 m2/V2 [98]. Then, a nonlinear optical process is
said to be perturbative or a χ(q) process if the efficiency of the optical
response rapidly decreases with the harmonic order, as it happens
in the weak-field regime. On the other hand, if the intensity of the
field is strong enough as to maintain comparable the efficiency of the
consecutive harmonic orders up to a certain cut-off, the process is
understood as non perturbative, as it happens in HHG.

2.4.2 High order harmonic generation

High-order harmonic generation is a remarkable process resulting
from the interaction of physical systems with intense electromag-
netic radiation. In contrast to most of the conventional photon up-
conversion mechanisms, HHG is not based in the multiphoton ex-
citation of atomic bound-state transitions, but on the dynamics of
the unbound electrons. The spectrum generated by this nonlinear op-
tical process has certain distinguishable features that were already

2 For the sake of simplicity, we assume P(t) and F(t) in Eq. (2.69) as scalar quantities.
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observed in the earliest experimental and theoretical works in gases
[39, 43, 44, 99, 100]. An scheme of the typical spectrum emitted by
an atom upon irradiation with an electric field of frequency ω0 is
shown in Fig. 2.14. It consists of a few low-order harmonics whose in-
tensities decrease exponentially according to the perturbative scaling,
followed by a plateau-like structure of harmonics with similar intensi-
ties, which ends up sharply at a cut-off frequency given by the law:

Cutt-off scaling law
for atoms

 hωmax = Ip + 3.17Up, (2.71)

where Ip is the atomic ionization potential, and Up the ponderomotive
energy, i. e. the mean kinetic energy of a free electron in the electro-
magnetic field, which is given by Up = qe

2F0
2/4meω

2
0 , being qe and

me the charge and mass of the electron, respectively, and F0 the field
amplitude. The plateau is characterized by a scaling of the efficiency
of the qth-harmonic with the intensity I of the form Iq ′ , with q ′ < q,
i. e. much weaker that the qth-power predicted by the perturbation
theory. Therefore, HHG is not a χ(q) process. The plateau can extend
the harmonic emission up to thousands of harmonic orders, therefore
conveying the possibility of generating coherent extreme ultraviolet
(XUV) or even soft X-ray radiation [40, 41]. Beyond the cut-off fre-
quency, the intensity of the harmonics decreases again exponentially,
so that the highest-order harmonics are hardly visible.

1.1 Fundamentals of High-Order Harmonic Generation

frequencies are obtained in the limit of intense fields and low frequencies, therefore in

the tunneling ionization regime.

The spectrum has certain peculiar features which have been observed in the earliest

experiments [13, 14, 37] and also in the first theoretical simulations [38]. A typical

spectrum is composed of a few low order harmonics whose intensities decrease expo-

nentially, in accordance with the perturbative scaling, followed by a wide region of

harmonics with similar intensities (plateau). The plateau ends sharply at a cut-off

frequency given by the law

!ωmax = Ip + 3.17Up. (1.5)

where Up is the ponderomotive energy. The appearance of a plateau is a remarkable

property, since conveys the efficient emission of shorter wavelengths. Beyond the cut-

off frequency, the intensity of the harmonics decreases again quickly and higher order

harmonics are hardly visible. In Fig. 1.3 we represent a scheme of the typical HHG

spectrum. The scaling of the harmonic q with the intensity is Iq′
, with q′ < q at the

plateau and cut-off regions, revealing their non-perturbative origin [39]. In contrast,

the low-order harmonics scale with the perturbative power law Iq.

Figure 1.3: Scheme of the HHG spectrum in the tunneling ionization regime, composed

by peaks with frequencies an odd multiple of that of the fundamental field (harmonics).

The spectrum consists of a few low order harmonics whose intensities decrease exponen-

tially, following the perturbative scaling, followed by a wide region of harmonics with

similar intensities (plateau). The plateau ends sharply at a cut-off frequency. (Intensity is

represented here in logarithmic scale).
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Figure 1.4: Classical schematic of HHG, by the three-step model. The electric field of an

intense laser extracts an electron from an atom by tunnel ionization through the potential

barrier formed by the Coulomb potential. The laser field then accelerates the electron,

which is driven back to the ground state of the parent atom, liberating its excess energy

as a high-energy photon. Figure courtesy of T. Popmintchev [9].

Let us now study in detail the dynamics represented by Eqs. (1.6)-(1.8). In Fig.

1.5a we have depicted some electron trajectories for different ionization times. The

grey-dashed line represents the electric field in arbitrary units units (arb. u.) whereas

the green line represents the nucleus position, at the coordinate origin. In figure 1.5b

we have plotted the recollision kinetic energy of the particles as a function of the

recollision (green points) and ionization time (red points). The maximum recollision

energy takes the well-known value, TM = 3.17Up, for the trajectory represented in

blue, with an excursion time of approximately 0.63 times the period of the laser pulse.

Further recollisions do not raise this maximum energy. Noticeably, in every half cycle of

the laser pulse, there are two possible electron trajectories leading to the same kinetic

energy at recollision, and therefore two possible paths for the generation of the same

harmonic (each named accordingly to the excursion time as short and long trajectory).

We have represented in Fig. 1.5a three pairs of short and long trajectories with energies

at recollision of 3.0Up, 2.5Up and 1.5Up. In Fig. 1.5b we can observe that for the short

trajectory contributions, the less energetic harmonics are emitted earlier than the more

energetic, thus imprinting a positive chirp in the harmonic radiation. This behavior is
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Figure 2.14: Scheme of the typical HHG spectrum emitted by an atom in the
tunneling ionization regime. The spectrum consists of peaks at
frequencies odd multiples of that of the driving field, ω0.

The basic properties of the harmonic spectra generated by intense
fields are well understood. The particular scaling law of the cut-off fre-
quency with the intensity of the driver  hωmax ∝ λ2I reflects the phys-
ical underlying mechanism. HHG can be explained in classical terms
by the simpleman’s model. This model, also known as the three-step
model, was first proposed by van Linden and Muller [101], and Gal-
lagher [102], to study above-threshold ionization, and later used by
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Kulander and Schafer [47], and Corkum [48], to explain the plateau
extension in the harmonic spectrum.

The simpleman’s model is based on three assumptions. First of all, the
ionization probability depends on the instantaneous value of the elec-
tromagnetic field. Secondly, it is assumed that the electron is located
right after ionization at the coordinate origin with zero velocity. These
are reasonable assumptions in the tunneling ionization regime since
zero is the mean value of the velocity and the origin can be assumed
as the coordinate of the bound state previous to ionization. The third
assumption consists in considering the dynamics subsequent to ion-
ization as that of a classical free electron in the electromagnetic field,
thus neglecting the influence of the Coulomb potential.

Let us consider a classical electron which is ionized at the coordi-
nate origin at time t0 with zero velocity, evolving under the interac-
tion with a monochromatic external field F(t) = F0 sinωt in the x
direction. The classical equations of motion are:

ẍ(t) =
qeF0

me
sinωt (2.72)

ẋ(t) = −
qeF0

meω
[cosωt − cosωt0] (2.73)

x(t) = −
qeF0

meω2
[sinωt − sinωt0 −ω(t − t0) cosωt0] (2.74)

Note that the velocity includes two different terms, a drift term, vdrift =

(qeF0/meω) cosωt0, and a quiver term, vp = −(qeF0/meω) cosωt, which
describes the oscillation in the external field. The drift term makes the
trajectory to depend strongly on the initial phase of the electric field,
ωt0.

According to the simpleman’s model, the generation of the most ener-
getic harmonics can be understood as depicted in Fig. 2.15. In a first
step, the atomic electron appears in the continuum after tunneling
through the Coulomb barrier. After the release, in a second step, the The simpleman’s

model for HHG in
gas systems

electron follows an oscillatory trajectory that returns to the atomic
nucleus. Finally, the high frequency radiation is emitted in a last step,
in which the electron recombines to the ground state of the parent
ion. During this later step, the electron emits a photon whose energy
equals the electron’s total energy: kinetic plus ionization potential.

In order to determine the maximum photon energy that can be
generated, we have to look at the maximum kinetic energy of the
electron at re-scattering. It is readily found from Eqs. (2.73) and (2.74)
that this maximum energy is Tmax = 3.17Up, which straightforwardly
yields the cut-off law in Eq. (2.71). As the largest tunnel probability
occurs at the field maxima, the electron will be ionized twice every
laser period. Consequently, the emitted radiation will consist of a se-
quence of bursts separated by half the optical period of the fundamen-
tal laser field. These pulses are mutually coherent, thus the spectrum
of the emitted radiation corresponds to a comb of peaks separated
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1.1 Fundamentals of High-Order Harmonic Generation

frequencies are obtained in the limit of intense fields and low frequencies, therefore in

the tunneling ionization regime.

The spectrum has certain peculiar features which have been observed in the earliest

experiments [13, 14, 37] and also in the first theoretical simulations [38]. A typical

spectrum is composed of a few low order harmonics whose intensities decrease expo-

nentially, in accordance with the perturbative scaling, followed by a wide region of

harmonics with similar intensities (plateau). The plateau ends sharply at a cut-off

frequency given by the law

!ωmax = Ip + 3.17Up. (1.5)

where Up is the ponderomotive energy. The appearance of a plateau is a remarkable

property, since conveys the efficient emission of shorter wavelengths. Beyond the cut-

off frequency, the intensity of the harmonics decreases again quickly and higher order

harmonics are hardly visible. In Fig. 1.3 we represent a scheme of the typical HHG

spectrum. The scaling of the harmonic q with the intensity is Iq′
, with q′ < q at the

plateau and cut-off regions, revealing their non-perturbative origin [39]. In contrast,

the low-order harmonics scale with the perturbative power law Iq.

Figure 1.3: Scheme of the HHG spectrum in the tunneling ionization regime, composed

by peaks with frequencies an odd multiple of that of the fundamental field (harmonics).

The spectrum consists of a few low order harmonics whose intensities decrease exponen-

tially, following the perturbative scaling, followed by a wide region of harmonics with

similar intensities (plateau). The plateau ends sharply at a cut-off frequency. (Intensity is

represented here in logarithmic scale).
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Figure 1.4: Classical schematic of HHG, by the three-step model. The electric field of an

intense laser extracts an electron from an atom by tunnel ionization through the potential

barrier formed by the Coulomb potential. The laser field then accelerates the electron,

which is driven back to the ground state of the parent atom, liberating its excess energy

as a high-energy photon. Figure courtesy of T. Popmintchev [9].

Let us now study in detail the dynamics represented by Eqs. (1.6)-(1.8). In Fig.

1.5a we have depicted some electron trajectories for different ionization times. The

grey-dashed line represents the electric field in arbitrary units units (arb. u.) whereas

the green line represents the nucleus position, at the coordinate origin. In figure 1.5b

we have plotted the recollision kinetic energy of the particles as a function of the

recollision (green points) and ionization time (red points). The maximum recollision

energy takes the well-known value, TM = 3.17Up, for the trajectory represented in

blue, with an excursion time of approximately 0.63 times the period of the laser pulse.

Further recollisions do not raise this maximum energy. Noticeably, in every half cycle of

the laser pulse, there are two possible electron trajectories leading to the same kinetic

energy at recollision, and therefore two possible paths for the generation of the same

harmonic (each named accordingly to the excursion time as short and long trajectory).

We have represented in Fig. 1.5a three pairs of short and long trajectories with energies

at recollision of 3.0Up, 2.5Up and 1.5Up. In Fig. 1.5b we can observe that for the short

trajectory contributions, the less energetic harmonics are emitted earlier than the more

energetic, thus imprinting a positive chirp in the harmonic radiation. This behavior is
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Figure 2.15: Classical scheme of HHG as described by the simpleman’s model.
The electric field of an intense laser extracts the electron from
the atom by tunnel ionization through the Coulomb potential
barrier. The laser field then accelerates the electron, which is
driven back to the parent atom, liberating its excess energy as a
high-energy photon when it recombines. Figure extracted from
Popmintchev et al. [103].

by twice the laser frequency. Only odd harmonics will be emitted, in
consistency with the general symmetry properties of centrosymmet-
ric material media [98].

Fig. 2.16 depicts three pairs of electron trajectories corresponding to
different re-collision energies and the kinetic energy of the particles as
a function of the ionization and re-scattering times. The maximum re-
collision energy takes the well-known value Tmax = 3.17Up for the tra-
jectory represented in blue, with an excursion time of approximately
0.63 times the period of the driving laser. Note that the other trajecto-
ries do not achieve this maximum kinetic energy. Remarkably, for har-
monic frequencies below the cut-off, there are two possible electron
trajectories at every half cycle of the laser pulse leading to the same
kinetic energy at re-collision, which are known as short and long tra-
jectories, according to the excursion time. Note also that for the short
trajectory contributions, the less energetic harmonics are emitted ear-
lier than the more energetic, thus imprinting a positive chirp in the
harmonic radiation. This behavior is reversed for the long trajectories,
that imprint a negative chirp.

The results of the interpretation of HHG in terms of semiclassi-
cal trajectories can be confirmed from the time-frequency analysis
(TFA) of the harmonic signal, as calculated from the Schröndinger
equation. The TFA consists in filtering the harmonic spectrum with a
set of displaced Gaussian masks and computing the inverse Fourier
transform of the masked spectra. It is thereby possible to resolve the
time in which the different harmonics are emitted. As an example, in
Fig. 2.17(c) we show the TFA for the HHG spectrum from hydrogen.
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1.1 Fundamentals of High-Order Harmonic Generation

frequencies are obtained in the limit of intense fields and low frequencies, therefore in

the tunneling ionization regime.

The spectrum has certain peculiar features which have been observed in the earliest

experiments [13, 14, 37] and also in the first theoretical simulations [38]. A typical
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nentially, in accordance with the perturbative scaling, followed by a wide region of
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where Up is the ponderomotive energy. The appearance of a plateau is a remarkable

property, since conveys the efficient emission of shorter wavelengths. Beyond the cut-

off frequency, the intensity of the harmonics decreases again quickly and higher order

harmonics are hardly visible. In Fig. 1.3 we represent a scheme of the typical HHG

spectrum. The scaling of the harmonic q with the intensity is Iq′
, with q′ < q at the

plateau and cut-off regions, revealing their non-perturbative origin [39]. In contrast,

the low-order harmonics scale with the perturbative power law Iq.

Figure 1.3: Scheme of the HHG spectrum in the tunneling ionization regime, composed

by peaks with frequencies an odd multiple of that of the fundamental field (harmonics).

The spectrum consists of a few low order harmonics whose intensities decrease exponen-

tially, following the perturbative scaling, followed by a wide region of harmonics with

similar intensities (plateau). The plateau ends sharply at a cut-off frequency. (Intensity is

represented here in logarithmic scale).
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Figure 1.4: Classical schematic of HHG, by the three-step model. The electric field of an

intense laser extracts an electron from an atom by tunnel ionization through the potential

barrier formed by the Coulomb potential. The laser field then accelerates the electron,

which is driven back to the ground state of the parent atom, liberating its excess energy

as a high-energy photon. Figure courtesy of T. Popmintchev [9].

Let us now study in detail the dynamics represented by Eqs. (1.6)-(1.8). In Fig.

1.5a we have depicted some electron trajectories for different ionization times. The

grey-dashed line represents the electric field in arbitrary units units (arb. u.) whereas

the green line represents the nucleus position, at the coordinate origin. In figure 1.5b

we have plotted the recollision kinetic energy of the particles as a function of the

recollision (green points) and ionization time (red points). The maximum recollision

energy takes the well-known value, TM = 3.17Up, for the trajectory represented in

blue, with an excursion time of approximately 0.63 times the period of the laser pulse.

Further recollisions do not raise this maximum energy. Noticeably, in every half cycle of

the laser pulse, there are two possible electron trajectories leading to the same kinetic

energy at recollision, and therefore two possible paths for the generation of the same

harmonic (each named accordingly to the excursion time as short and long trajectory).

We have represented in Fig. 1.5a three pairs of short and long trajectories with energies

at recollision of 3.0Up, 2.5Up and 1.5Up. In Fig. 1.5b we can observe that for the short

trajectory contributions, the less energetic harmonics are emitted earlier than the more

energetic, thus imprinting a positive chirp in the harmonic radiation. This behavior is
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1.1 Fundamentals of High-Order Harmonic Generation

Figure 1.5: a Sample of electronic trajectories in a monochromatic laser field of λ0 = 800

nm and peak intensity 1.57 × 1014 W/cm2. The grey-dashed line represents the electric

field in arbitrary units, whereas the green line, the nucleus position. Three pairs of short

and long trajectories are represented for energies at recollision of 3.0Up (purple), 2.5Up

(dark pink) and 1.5Up (light pink), whereas the most energetic trajectory, raising 3.17Up

at recollision, is represented in blue. The vertical axis represents the distance from the

nucleus. b Returning kinetic energy of the particles at the instant of the first recollision in

a. The green points represent the recollision time, whereas the red points the ionization

time. The blue arrow shows the excursion time for the most energetic trajectory, 0.63T ,

where T is the laser period. In c we present a pair of short and long trajectories, of energy

1.5Up. The grey-shaded regions represent the integration of the electric field over time,

i.e., the velocity of the electron.
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Figure 2.16: (a) Sample of electronic trajectories in a monochromatic laser
field. The grey-dashed line represents the electric field in arbi-
trary units, and the green line, the nucleus position at the coor-
dinate origin. Three pairs of short and long trajectories are rep-
resented for re-collision energies of 3.0Up (purple), 2.5Up (dark
pink) and 1.5Up (light pink), whereas the most energetic trajec-
tory, 3.17Up at re-collision, is represented in blue. The vertical
axis represents the distance from the nucleus. (b) Returning ki-
netic energy of the particles at the instant of the first re-collision
with the parent ion. The green points represent the re-collision
time, and the red points, the ionization time. The blue arrow
shows the excursion time for the most energetic trajectory, 0.63T,
where T is the laser period. Figure courtesy of C. Hernández-
García [104].

Remarkably, the slopes of the TFA allows to identify the harmonics
generated by the short (positive slope) and long trajectories (negative
slope). Note that the efficiency of the harmonics generated by the
short trajectories is greater, as a consequence of the limited spread-
ing of the wave function of the recoiling electron, which is greater
for long trajectories [105]. The re-collision energies of the semiclassi-
cal electron computed from Eq. 2.74 are also plotted in Fig. 2.17(c)
as black dots. It can be observed that the results from TFA are in
excellent agreement with the classical predictions.

For the case of solid targets, HHG is subjected to damage thresh-
old, which is the main factor that limits the maximum intensity of
the driving field. Due to this constraint, HHG is restricted to the pro-
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1.3 Computing high-order harmonic generation within the SFA+

driven by a 5.8 cycles FWHM, 800 nm laser pulse, which corresponds to the same case

as shown in Fig. 1.6. Again, the agreement between the classical trajectories –for the

exact cut-off law (1.34), with F (Ip/Up) = 1.28– and the TFA is excellent.

Figure 1.12: Time-frequency analysis for the HHG spectrum showed in b driven by the

laser pulse of panel a, 800 nm in wavelength, 5.8 cycles FWHM (15.5 fs FWHM) and of

peak intensity 1.57× 1014 W/cm2. We consider a gaussian spectral window whose FWHM

is 3ω0 (see blue dashed line in b). In the time-frequency analysis, c, the black dots represent

the classical trajectories given by (1.34), with F (Ip/Up) = 1.28.

33

Figure 2.17: Time-frequency analysis for the HHG spectral yield showed
in (b), which corresponds to an hydrogen atom irradiated by
the laser pulse of panel (a), 800 nm wavelength, 5.8 cycles Full
width at half maximum (FWHM) (15.5 fs) at 1.57× 1014 W/cm2

peak intensity. The gaussian spectral window is 3ω0, see blue
dashed line in (b). The black dots in (c) represent the short
and long classical electron trajectories. Figure courtesy of C.
Hernández-García [104].

duction of only several harmonics. This is shown in Fig. 2.18(a), that
includes the spectra measured from ZnO by Ghimire at al. [52]. HHG
in solids has been studied mainly in semiconductor materials, with
energy gaps larger than mid-IR frequencies, in which the non-linear
response is governed by tunneling excitation. In contrast to the atomic
case, the first experiments of HHG in crystalline solids showed a lin-
ear cut-off frequency scaling with the driving field amplitude, see Fig.
2.18(b) [52]. Several theoretical models have been used to explain this
linear response attending to the intraband dynamics of the quasi-free
states, such as semiclassical models for intraband currents [63], semi-
conductor optical Bloch equations [64–67], or Bloch equations using
Wannier localised functions [68].

Although the different scalings of the cut-off frequency imply that
HHG in finite gap solids and gas targets has notable differences,
these systems share some basic principles: harmonics are generated
by electrons that are initially bound and promote to slightly bonded
or unbound states through tunneling; once promoted, the electrons
are accelerated by the field until they release the acquired kinetic en-
ergy in the form of high-frequency radiation. Nevertheless, in the case
of solids, the first step leads to the creation of an electron-hole pair
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harmonic generation experiments, which produces 30-mJ
1-ps pulses at a repetition rate of 1 shot every 10 s. The
detection system is new and has been designed for these
harmonic generation experiments. The interaction cham-
ber is schematized in Fig. 1. The laser is focused by a f= 300 mm piano-convex lens just below the nozzle of a
pulsed gas jet (the confocal parameter b is equal to about
3 mm). The light is analyzed on axis by a monochroma-
tor consisting of a toroidal mirror and a grating (Jobin
Yvon) both coated with gold. The mirror, placed at 1 m
rom the laser focal spot to minimize the risks of damag-
ing the optics with the incident laser light, refocuses the
radiation onto a 100-p,m output slit. The laser light re-
jected by the grating is trapped before being focused too
much in order to avoid plasma generation on the walls of
the chamber (see Fig. 1). The photons are detected by an
electron multiplier. The spectral range covered by this
system is approximately 7—60 nm. There is no entrance
slit and no diaphragms, so that this spectrometer has a
good detection efficiency.
Figure 2(a) shows a spectrum obtained in neon at an

intensity of about 10~s W/cm2. Each point is an average
of about three to Ave laser shots, with a strict selection in
pulse energy and duration. The positions of the harmon-
ics are indicated by the straight lines at the top of the
figure. The width of the harmonics is constant, equal to
the resolution of the monochromator (0.5 A). Below 13
nm, the harmonics start overlapping, which results in an
increase of the background level. The reHectance of gold,
with which both the mirror and the grating are coated,
decreases by more than 1 order of magnitude from 10 to
7 nm for the 11-deg incidence angle on the mirror and
grating. Figure 2(b) shows the region from 12 to 8 nm
where we have divided the signal by the monochroma-
tor's response [11] and taken into account our detector's
gain. There is no apparent cutoff, merely a steady slight
decrease. The harmonics can be resolved until about the
135th harmonic (the highest order reported to date). In
order to make sure that the observed light from 9 to 7
nm was coherent and due to harmonic generation, we
checked carefully that the well resolved high harmonics
(e.g. , the 97th) and the signal in this 9—7 nm region had
the same dependences both with pressure and with the
1aser intensity (i.e. , same appearance and saturation in-
tensities).
In Fig. 3, we compare the results obtained in xenon )

argon, neon, and helium at an intensity at best focus
equal to 1.5 x 10~s W/cm2. In xenon, the intensity of
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FI&. ~G. 2. Experimental spectrum obtained in neon at 40
Torr, 1.5 x10 W/cm . (a) Raw data; (b) data corrected
from the spectrometer's response over 12—8 nm.
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FIG. 3. Number of photons obtained per laser pulse in
xenon, argon, neon, and helium as a function of the harmonic
order.
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the harmonics is constant from the 5th harmonic [12]
to the 23rd and then falls off abruptly over 4 orders of
magnitude. In argon, there seem to be two successive
plateaus, one up to the 27th harmonic, and the other
from the 39th to the 49th harmonic [13]. In neon and he-
lium, we see very long and quite similar plateaus, whose
limits are experimental. Krause, Schafer, and Kulander
[1] find that the energy W„reached at the end of the
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This is, in a nutshell, atomic HHG. The classical concepts
introduced in this section are sufficient to extend the
recollision model to solids, a task that is performed in the
next section.

2.2. From atoms to solids

To introduce a model of HHG in solids, it is convenient to
translate the atomic model, presented as electrons moving in
real space, in momentum/energy space. This is the natural
framework in which solids are described. How to understand
the interaction of the atom with the strong laser field in this
framework?

2.2.1. Atomic HHG in momentum space. The energy
diagram of atoms in strong laser fields is shown to the left
of figure 3. In the following, only one electron-hole pair is
considered, which emits high harmonics at the energy
determined by its time of creation. The electron is initially
in the ground state of the atom with energy -Ip. Upon
tunnelling (blue arrow labelled ‘1’), the electron is freed in the
vacuum with approximately zero initial velocity. Because the
energy of a free electron is =T k 22 , it occupies the lowest-
energy state in this continuum function of momentum

(a parabolic band, black solid line in the middle of
figure 3). As the electron accelerates, it gains the
momentum described by equation (1), which can be
rewritten in terms of the vector potential of the laser field

( )A t ( = -¶ ¶( )F t A t):

= - ¢( ) ( ) ( ) ( )k t A t A t . 5

In doing so, the electron gains the energy ( )k t 22 : it climbs
up the parabolic band (blue arrow labelled ‘2’). The hole,
created in the ground state upon ionization, also gains the
same momentum as the electron4, but its energy is constant.
At the time of recollision tr, the electron recombines with the
hole (undergoing a vertical transition back to the ground state,
marked by the blue arrow labelled ‘3’) at the momentum

= - ¢( ) ( ) ( )k t A t A tr r and a photon of energy equal to
+( )k t I2r p

2 is emitted.

2.2.2. The model for solids. In crystalline solids, contrary to
atoms, the electron is initially in a continuum of states, the
valence band. The valence band is separated from higher
energetic states by an energy gap, or minimum band gap
(equivalent to the atomʼs ionization potential). In the
following, only dielectric or semiconducting materials will
be considered, so that the minimum band gap is non zero. The
excited states, the conduction bands, also form several
continua. The formation of bands reflects the quantum-

Figure 3. Energy diagrams of atoms and solids. In an atom (left), the ground state is a localized energy state, separated by the ionization
potential Ip from the continuum states (band) of vacuum (the dashed square). In momentum space, the latter is a parabola (black line in the
middle). In a solid (right), both ground and excited states form bands (valence and conduction, respectively), separated by the minimum
energy gap Eg. They are more complicated functions of momentum (red lines in the middle). Here, the valence and first conduction band of a
ZnO crystal are shown. They are calculated with density functional theory (implemented by the ABINIT code [22]). High harmonic
generation proceeds through creation of an electron-hole pair (labelled ‘1’, blue colours for the atomic case, red for the solid), acceleration of
the pair to high momentum (labelled ‘2’), and recombination of the electron with the hole (labelled ‘3’). Although in the atomic case the pair
is created with zero initial momentum ( =k 0), in a solid this is not necessarily the case.

4 Electrons and holes move together in momentum space. To describe the
hole, in fact, the prescription of solid state physics says that both the charge
and the mass of the electron must change sign. Since µ ( )k e mA t , the
momentum is the same for electrons and holes.
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Figure 1 |Measured high-order harmonic spectra and field dependence of the cutoff. a, Spectra from a 500-µm-thick ZnO crystal where the optic axis is
perpendicular to the surface. The wavelength of the driving field is centred at 3.25 µm. The spectra represented by the green and blue curves are for driving
pulse energies of 0.52 µJ and 2.63 µJ, corresponding to an estimated vacuum field strength of 0.27VÅ−1 and 0.6VÅ−1, respectively. The inset shows the
expanded view at and near the cutoff of the 2.63 µJ spectrum on a linear scale. The dotted vertical line marks the approximate band edge of the crystal as
indicated by the residual fluorescence signal. b, The high-energy cutoff scales linearly with drive-laser field.
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Figure 2 |Dependence of the strength of the individual harmonics on
laser intensity/field. The harmonics data for a 500-µm-thick ZnO crystal
where the optic axis is perpendicular to the surface. The wavelength of the
driving field is centred at 3.25 µm. The harmonic orders (HO 9–21) are
indicated on the right. The dashed (I15) line is a power law to guide the eye.

energies. The lower-pulse-energy (0.52 µJ) spectrum extends up to
the 17th order, whereas the higher-pulse-energy (2.63 µJ) spectrum
extends further to the 25th order. We note that the higher pulse
energy is the limit where the crystal can be repeatedly driven at
1 kHz without imposing physical damage. This corresponds to a
peak intensity of ∼5 TWcm−2 (field strength of ∼0.6VÅ−1). The
peak intensity is the vacuum intensity estimated by measuring
the photoelectron energy spectrum in gas-phase experiments24
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Figure 3 |High-order harmonic spectra as a function of crystallographic
orientation. Spectra for HHG in a 500-µm-thick ZnO crystal with the optic
axis parallel to the surface. The crystal is rotated about its normal to vary
the angle between the incident laser polarization and the optic axis. The
field strength is 0.6VÅ−1, and the wavelength of the driving field is centred
at 3.25 µm. The odd and even harmonics appear every 90◦ and 180◦

respectively whereas the fluorescence signal remains isotropic. The
intensity is shown in false colour on a natural-log scale in otherwise
arbitrary units. The grating angle is set such that both below- and
above-gap harmonics are observed.

using the same focusing geometry. Figure 1b shows the measured
high-energy cutoff as a function of the drive-laser field. We find
that the cutoff scales linearly with the field. This is a striking
difference from the atomic case where the scaling is quadratic in
the field11,25. Finally, we note that for moderate pulse energies, the
spectra are only weakly dependent on the position of the focus;

NATURE PHYSICS | VOL 7 | FEBRUARY 2011 | www.nature.com/naturephysics 139

Figure 2.18: (a) Experimental spectra from a 500 µm-thick ZnO crystal
driven by a laser field with 3.25 µm wavelength. The spectra
represented by the green and blue curves correspond to an es-
timated vacuum field strength of 0.27 VÅ−1 and 0.6 VÅ−1, re-
spectively. The inset shows the expanded view at and near the
cutoff of the 0.6 VÅ−1 spectrum on a linear scale. The dotted
vertical line marks the approximate band edge of the crystal
as indicated by the residual fluorescence signal. (b) The high-
energy cut-off scales linearly with the driving laser field. Figure
extracted from Ghimire et al. [52].

which quivers in the reciprocal space, therefore following real space
trajectories that depend on the band structure. Thus, while in atoms
the electron trajectories are universally defined, in solids this univer-
sality is lost, see Fig. 2.19. Also, re-collision can occur away from the
origin, with the subsequent emission of a high-frequency photon res-
onant with the band gap at the recombination time [59].

As we shall see in the following chapters, HHG in graphene and
carbon nanotubes obeys to a different mechanism, as the first step is
not related to the tunneling ionization/excitation process found in the
above referred systems, but rather to the particular geometry of the
electronic band structure of these low dimensional carbon allotropes.
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harmonic generation experiments, which produces 30-mJ
1-ps pulses at a repetition rate of 1 shot every 10 s. The
detection system is new and has been designed for these
harmonic generation experiments. The interaction cham-
ber is schematized in Fig. 1. The laser is focused by a f= 300 mm piano-convex lens just below the nozzle of a
pulsed gas jet (the confocal parameter b is equal to about
3 mm). The light is analyzed on axis by a monochroma-
tor consisting of a toroidal mirror and a grating (Jobin
Yvon) both coated with gold. The mirror, placed at 1 m
rom the laser focal spot to minimize the risks of damag-
ing the optics with the incident laser light, refocuses the
radiation onto a 100-p,m output slit. The laser light re-
jected by the grating is trapped before being focused too
much in order to avoid plasma generation on the walls of
the chamber (see Fig. 1). The photons are detected by an
electron multiplier. The spectral range covered by this
system is approximately 7—60 nm. There is no entrance
slit and no diaphragms, so that this spectrometer has a
good detection efficiency.
Figure 2(a) shows a spectrum obtained in neon at an

intensity of about 10~s W/cm2. Each point is an average
of about three to Ave laser shots, with a strict selection in
pulse energy and duration. The positions of the harmon-
ics are indicated by the straight lines at the top of the
figure. The width of the harmonics is constant, equal to
the resolution of the monochromator (0.5 A). Below 13
nm, the harmonics start overlapping, which results in an
increase of the background level. The reHectance of gold,
with which both the mirror and the grating are coated,
decreases by more than 1 order of magnitude from 10 to
7 nm for the 11-deg incidence angle on the mirror and
grating. Figure 2(b) shows the region from 12 to 8 nm
where we have divided the signal by the monochroma-
tor's response [11] and taken into account our detector's
gain. There is no apparent cutoff, merely a steady slight
decrease. The harmonics can be resolved until about the
135th harmonic (the highest order reported to date). In
order to make sure that the observed light from 9 to 7
nm was coherent and due to harmonic generation, we
checked carefully that the well resolved high harmonics
(e.g. , the 97th) and the signal in this 9—7 nm region had
the same dependences both with pressure and with the
1aser intensity (i.e. , same appearance and saturation in-
tensities).
In Fig. 3, we compare the results obtained in xenon )

argon, neon, and helium at an intensity at best focus
equal to 1.5 x 10~s W/cm2. In xenon, the intensity of
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FI&. ~G. 2. Experimental spectrum obtained in neon at 40
Torr, 1.5 x10 W/cm . (a) Raw data; (b) data corrected
from the spectrometer's response over 12—8 nm.
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FIG. 3. Number of photons obtained per laser pulse in
xenon, argon, neon, and helium as a function of the harmonic
order.
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the harmonics is constant from the 5th harmonic [12]
to the 23rd and then falls off abruptly over 4 orders of
magnitude. In argon, there seem to be two successive
plateaus, one up to the 27th harmonic, and the other
from the 39th to the 49th harmonic [13]. In neon and he-
lium, we see very long and quite similar plateaus, whose
limits are experimental. Krause, Schafer, and Kulander
[1] find that the energy W„reached at the end of the
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This is, in a nutshell, atomic HHG. The classical concepts
introduced in this section are sufficient to extend the
recollision model to solids, a task that is performed in the
next section.

2.2. From atoms to solids

To introduce a model of HHG in solids, it is convenient to
translate the atomic model, presented as electrons moving in
real space, in momentum/energy space. This is the natural
framework in which solids are described. How to understand
the interaction of the atom with the strong laser field in this
framework?

2.2.1. Atomic HHG in momentum space. The energy
diagram of atoms in strong laser fields is shown to the left
of figure 3. In the following, only one electron-hole pair is
considered, which emits high harmonics at the energy
determined by its time of creation. The electron is initially
in the ground state of the atom with energy -Ip. Upon
tunnelling (blue arrow labelled ‘1’), the electron is freed in the
vacuum with approximately zero initial velocity. Because the
energy of a free electron is =T k 22 , it occupies the lowest-
energy state in this continuum function of momentum

(a parabolic band, black solid line in the middle of
figure 3). As the electron accelerates, it gains the
momentum described by equation (1), which can be
rewritten in terms of the vector potential of the laser field

( )A t ( = -¶ ¶( )F t A t):

= - ¢( ) ( ) ( ) ( )k t A t A t . 5

In doing so, the electron gains the energy ( )k t 22 : it climbs
up the parabolic band (blue arrow labelled ‘2’). The hole,
created in the ground state upon ionization, also gains the
same momentum as the electron4, but its energy is constant.
At the time of recollision tr, the electron recombines with the
hole (undergoing a vertical transition back to the ground state,
marked by the blue arrow labelled ‘3’) at the momentum

= - ¢( ) ( ) ( )k t A t A tr r and a photon of energy equal to
+( )k t I2r p

2 is emitted.

2.2.2. The model for solids. In crystalline solids, contrary to
atoms, the electron is initially in a continuum of states, the
valence band. The valence band is separated from higher
energetic states by an energy gap, or minimum band gap
(equivalent to the atomʼs ionization potential). In the
following, only dielectric or semiconducting materials will
be considered, so that the minimum band gap is non zero. The
excited states, the conduction bands, also form several
continua. The formation of bands reflects the quantum-

Figure 3. Energy diagrams of atoms and solids. In an atom (left), the ground state is a localized energy state, separated by the ionization
potential Ip from the continuum states (band) of vacuum (the dashed square). In momentum space, the latter is a parabola (black line in the
middle). In a solid (right), both ground and excited states form bands (valence and conduction, respectively), separated by the minimum
energy gap Eg. They are more complicated functions of momentum (red lines in the middle). Here, the valence and first conduction band of a
ZnO crystal are shown. They are calculated with density functional theory (implemented by the ABINIT code [22]). High harmonic
generation proceeds through creation of an electron-hole pair (labelled ‘1’, blue colours for the atomic case, red for the solid), acceleration of
the pair to high momentum (labelled ‘2’), and recombination of the electron with the hole (labelled ‘3’). Although in the atomic case the pair
is created with zero initial momentum ( =k 0), in a solid this is not necessarily the case.

4 Electrons and holes move together in momentum space. To describe the
hole, in fact, the prescription of solid state physics says that both the charge
and the mass of the electron must change sign. Since µ ( )k e mA t , the
momentum is the same for electrons and holes.
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Figure 2.19: Energy diagrams of atoms and solids. In an atom (left), the
ground state is a localized energy state, separated by the ioniza-
tion potential Ip from the continuum states of vacuum (dashed
square). In momentum space, the latter is a parabola (black line
in the middle). In a solid (right), both ground and excited states
form bands (valence and conduction, respectively), separated
by the minimum energy gap Eg. They are more complicated
functions of momentum (red lines in the middle). High har-
monic generation proceeds through creation of an electron-hole
pair, labelled (1), blue colors for the atomic case and red for the
solid, acceleration of the pair to high momentum (2), and re-
combination of the electron with the hole (3). Figure extracted
from Vampa and Brabec [59].
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H I G H - O R D E R H A R M O N I C G E N E R AT I O N I N
G A P L E S S G R A P H E N E

In this chapter we present our findings on the high-order harmonic
response of graphene. Starting with the tight-binding hamiltonian of
SLG, discussed in chapter 2, we derive in section 3.1 the dynamical
equations of the interaction with an electromagnetic field. We also
develop an integration approach that overcomes the numerical insta-
bilities associated with the singular dipole matrix elements near the
Dirac points, and discuss the dynamics of the Bloch electrons induced
by the interaction. In section 3.2 we compute the emission dipole and
the harmonic spectra. Sections 3.3 and 3.4 are devoted to study the
spectral yield of graphene irradiated by mid-IR intense laser pulses
linearly and elliptically polarized, respectively. Finally, we present in
section 3.5 a semiclassical model to describe the mechanism for HHG
in graphene.

The results and conclusions obtained in this comprehensive study
were published in Refs. [106, 107]. These two articles are included as
additional information at the end of the chapter in section 3.6.

3.1 the dynamical equations

Following the framework presented in chapter 2, the dynamics of the
Bloch electrons in graphene interacting with an external electromag-
netic field can be described by the time-dependent hamiltonian:

H(t) = H0 + Vint(t), (3.1)

where H0 is the tight-binding hamiltonian in the nearest neighbors
approximation as given by Eq. (2.32), and Vint(t) describes the elec-
tric field coupling in the dipole approximation, Eq. (2.68). During the
interaction, the electronic wave function can be expressed as a time-
dependent superposition of the Bloch wave functions in Eq. (2.34):

|Ψ(t)〉 =

∫
|ψk(t)〉dk

=

∫ [
C+(k, t) |Φ+

k 〉+C−(k, t) |Φ−
k 〉
]
dk. (3.2)

The integral is extended over the first Brillouin zone and thus fully
includes the specific features of the low energy regions near the Dirac
cones discussed in section 2.1.4.

When the duration of the laser pulse is less than the characteris-
tic electron scattering time, which is of the order of several tens of
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femtoseconds [108–110], the electron dynamics in the external field
is coherent and can be described by the time-dependent Schrödinger
equation (TDSE). Otherwise the density matrix formalism should be
used instead [98, 111]. Therefore, in our case, the time evolution of
the electronic wave function (3.2) is addressed by:

i  h
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 . (3.3)

Projecting Eq. (3.3) on the basis of Bloch vectors, we have on the left
hand-side:

i  h 〈Φ±k |
∂

∂t
|Ψ(t)〉 = i  h

∂

∂t
C±(k, t), (3.4)

and, for the right-hand side,

〈Φ±k |H(t)|Ψ(t)〉 = 〈Φ±k |H0|Ψ(t)〉− qe F(t) 〈Φ±k | r̂ |Ψ(t)〉 . (3.5)

The first term of Eq. (3.5) is the eigenvalue E±(k) times the coefficient
C±(k, t). The second integral involves a more elaborated calculation,
but it is also straightforward. Indeed, using Eq. (3.2), we have:

〈Φ±k | r̂ |Ψ(t)〉 =∫
C+(k ′, t) 〈Φ±k | r̂ |Φ+

k ′〉dk ′ +
∫
C−(k ′, t) 〈Φ±k | r̂ |Φ−

k ′〉dk ′. (3.6)

Let us then calculate the first matrix element 〈Φ+
k | r̂ |Φ+

k ′〉. Using Eq.
(2.33):

〈Φ+
k | r̂ |Φ+

k ′〉 =
1

2

[
1+ e i (ϕk−ϕk ′)

] ∫
e−i (k−k ′)·r r · dr

=
1

2i

[
1+ e i (ϕk−ϕk ′)

]
∇k ′δ(k − k ′). (3.7)

Therefore, the first integral in Eq. (3.6) reads as:∫
C+(k ′, t) 〈Φ+

k | r̂ |Φ+
k ′〉dk ′ =

1

2i
∇k ′

{∫
C+(k ′, t)

[
1+ e i (ϕk−ϕk ′)

]
δ(k − k ′)dk ′

}
−
1

2i

∫
∇k ′
{
C+(k ′, t)

[
1+ e i (ϕk−ϕk ′)

]}
δ(k − k ′)dk ′

= i∇kC+(k, t) +
1

2
C+(k, t)∇kϕk . (3.8)

Similarly, we have:∫
C+(k ′, t) 〈Φ−

k | r̂ |Φ+
k ′〉dk ′ =

1

2i
∇k ′

{∫
C+(k ′, t)

[
−1+ e i (ϕk−ϕk ′)

]
δ(k − k ′)dk ′

}
−
1

2i

∫
∇k ′
{
C+(k ′, t)

[
−1+ e i (ϕk−ϕk ′)

]}
δ(k − k ′)dk ′

=
1

2
C+(k, t)∇kϕk . (3.9)



3.1 the dynamical equations 51

In addition, note that the matrix elements of the second integral in
Eq. (3.6) are calculated in the same way, leading to:∫
C−(k ′, t) 〈Φ−

k | r̂ |Φ−
k ′〉dk ′ = i∇kC−(k, t)+

1

2
C−(k, t)∇kϕk (3.10)

and∫
C−(k ′, t) 〈Φ+

k | r̂ |Φ−
k ′〉dk ′ =

1

2
C+(k, t)∇kϕk. (3.11)

Grouping and rearranging terms, Eq. (3.4) corresponds to the follow-
ing set of coupled two-level equations:

i  h
∂

∂t
C+(k, t) = [E+(k) − F(t) ·D(k)]C+(k, t)

−i qe F(t) · ∇kC+(k, t) − F(t) ·D(k)C−(k, t), (3.12)

i  h
∂

∂t
C−(k, t) = [E−(k) − F(t) ·D(k)]C−(k, t)

−i qe F(t) · ∇kC−(k, t) − F(t) ·D(k)C+(k, t), (3.13)

where Transition matrix
element

D(k) = 〈Φ+
k | qe r̂ |Φ−

k 〉 =
qe

2
∇kϕk. (3.14)

is the transition matrix element between the conduction and valence
band states with wave vector k [112, 113].

The last term in the right hand side of both Eqs. (3.12) and (3.13)
couples the conduction and valence bands and hence, leads to inter-
band transitions, whilst the other terms in the equations are intraband.
Therefore, the electric field F(t) of the optical pulse introduces both in-
traband and interband dynamics in the electron evolution. Physically,
the interband dynamics couples states with the same wave vector k
and results in the redistribution of the electronic population between
the valence and conduction bands, whereas the intraband dynamics
induced by the electric field quivers the electrons inside the bands
according to the acceleration theorem, which describes the motion of
Bloch electrons in external electomagnetic fields [114]:

 h
dk
dt

= qe F(t). (3.15)

Note that the acceleration theorem is universal and does not depend
on the actual shape of the bands. Consequently, the intraband oscil-
lations are the same for the conduction and valence bands [112]. The
acceleration theorem can be used to simplify Eqs. (3.12) and (3.13) by
re-expressing the wave functions in terms of the time-dependent ba-
sis of Houston states. Thus, a Bloch electron with initial quasimomen-
tum k is described by the time-dependent wave vector κκκt, the kinetic
quasimomentum, which is given by the solution of Eq. (3.15) [115]:

κκκt = k +
qe
 h

∫ t

−∞ F(τ) dτ. (3.16)
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Therefore, the Bloch states can be rewritten as Houston states |Φ(H)
±,k(t)〉

[115]:

|Φ
(H)
±,k(t)〉 = e−

i
 h

∫t
−∞ E±(κκκτ)dτ |Φ±κκκt

〉 , (3.17)

which allows to express the general solution of the TDSE as:

|ψk(t)〉 = C+(κκκt, t) |Φ+
κκκt
〉+C−(κκκt, t) |Φ−

κκκt
〉 . (3.18)

Inserting Eq. (3.18) in Eq. (3.3), and projecting onto 〈Φ(H)
± | leads to

the following system of differential equations:The dynamical
equations

i  h
d
dt
C+(κκκt, t) = [E+(κκκt) − F(t) ·D(κκκt)]C+(κκκt, t)

−F(t) ·D(κκκt)C−(κκκt, t), (3.19)

i  h
d
dt
C−(κκκt, t) = [E−(κκκt) − F(t) ·D(κκκt)]C−(κκκt, t)

−F(t) ·D(κκκt)C+(κκκt, t), (3.20)

which correspond to a driven parametric oscillator with a pumping
operating through the periodic variation of the energy and the tran-
sition matrix elements. Note that, using the Houston transformation,
the gradients ∇k in Eqs. (3.12) and (3.13) are not present in Eqs. (3.19)
and (3.20), which greatly simplifies the integration. The Houston ap-
proach is equivalent to the Volkov transformation for Bloch states
[116], as we highlighted in [106].

The components of interband coupling D(k) are given by [112, 113]:

Dx(k) = −
a qe

2
√
3

1+ cos
(

a ky
2

) [
cos
(√3a kx

2

)
− 2 cos

(
a ky
2

)]
1+ 4 cos

(
a ky
2

) [
cos
(√3a kx

2

)
+ cos

(
a ky
2

)] (3.21)

and

Dy(k) = −
a qe

2

sin
(

a ky
2

)
sin
(√3a kx

2

)
1+ 4 cos

(
a ky
2

) [
cos
(√3a kx

2

)
+ cos

(
a ky
2

)] . (3.22)

The dependence of Dx with the wave vector k is shown in Fig. 3.1.
The components of the matrix element are singular near the Dirac
points K and K’ and take small values away from them, being zero
at the center of the first Brillouin zone (point Γ ). Therefore, there is a
strong interband coupling near the Dirac points.

The numerical integration of the dynamical equations (3.19) and
(3.20) is of difficult convergence due to the singular values of D(k)
near the Dirac points. Nevertheless, it is possible to recast these equa-Off-diagonal

transformation tions avoiding the explicit divergences of D(κκκt) using the transforma-
tion introduced in Ref. [106], which effectively undoes the diagonal-
ization of H0:

CM(κκκt, t) = C+(κκκt, t) −C−(κκκt, t), (3.23)

CP(κκκt, t) = e−iϕκκκt [C+(κκκt, t) +C−(κκκt, t)] , (3.24)



3.1 the dynamical equations 53

K

K

K′

K′

K

K′
Dx (qeÅ)

kx (1/Å) ky (1/Å)

Dy (qeÅ)

kx (1/Å) ky (1/Å)

K

K

K′

K′

K

K′

Figure 3.1: Interband transition matrix element Dx along graphene’s first
Brillouin zone. The red lines show the boundary of the BZ. The
dipole matrix element is singular near the Dirac points.

where ϕκκκt is the phase of f (κκκt). With this transformation, Eqs. (3.19)
and (3.20) can be recast into the following set of differential equations:

Integration scheme
for the dynamical
equationsi  h

d
dt
CM(κκκt, t) =

E+(κκκt) + E−(κκκt)

2
CM(κκκt, t)

+
E+(κκκt) − E−(κκκt)

2
e iϕκκκtCP(κκκt, t) (3.25)

i  h
d
dt
CP(κκκt, t) =

E+(κκκt) + E−(κκκt)

2
CP(κκκt, t)

+
E+(κκκt) − E−(κκκt)

2
e−iϕκκκtCM(κκκt, t). (3.26)

Note that this set of equations circumvent the numerical instabili-
ties of Eqs. (3.19) and (3.20), since all the terms containing D(k) are
removed. However, the interband coupling is still completely retained
in the phase ϕκκκt .

An example of the complex electron dynamics arising upon the in-
teraction of graphene with an intense ultrashort laser pulse is shown
in Fig. 3.2, where the occupation density N CB = |C+(k, t)|2 in the
conduction band is depicted at different times during the interaction.
The laser pulse is modeled using an 8-cycle (full width) sin2 temporal
envelope, 2.9 cycles FWHM, linearly polarized along the x axis. The
total field is then defined as:

F(t) = F0 sin2(πt/8T) sin(ω0t), (3.27)

for 0 6 t 6 8T and 0 elsewhere, being F0 the field amplitude, T
the period, and ω0 = 2π/T the field frequency. As for Fig. 3.2 we
have chosen a near infrared pulse 21.6 fs long, with λ = 800 nm and
F0 = 2.0 V/Å, corresponding to a peak intensity of 5.5× 1013 W/cm2.
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Figure 3.2: (a)-(f) Conduction band population N CB as a function of the
wave vector at different moments of the interaction between the
graphene sheet and an ultrashort intense laser pulse linearly po-
larized along the x direction, shown in panel (g). Only the first
Brillouin zone of the reciprocal space is shown. Different colors
correspond to different values of the conduction band popula-
tion.

According to the discussion above, the electrons are accelerated by
the field along its polarization direction, as given by Eq. (3.16), quiv-
ering in the reciprocal space with amplitude −qeA(t)/ hc. Eventually,
the electrons in the valence band that reach the vicinity of the Dirac
points are kicked to the conduction band by the singularity of the in-
terband matrix element D(k) near these points. During the first two
cycles of the pulse – panel (a) – when the field amplitude is not too
large, this dynamics is clearly observed with areas of high electron
population near the Dirac points and interference fringes generated
as the electrons quiver back and forth. Additional electrons are pro-
moted as the pulse evolves and the field amplitude increases, see pan-
els (b) and (c) corresponding to three and four field cycles, causing the
dispersion of the high populated areas. Panels (d) to (f) correspond to
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the last half of the pulse, when the field has reached its maximum am-
plitude and the high-population areas are spread over the whole first
Brillouin zone. After the sixth cycle – panel (e) – the excitation satu-
rates the probability distribution, becoming completely symmetric at
the end of the pulse (21.6 fs), see panel (f). The remaining population
at the conduction band after the pulse ends is modulated by inter-
ference fringes and it is relatively long lived, decaying by electron
collisions in times of the order of tens of femtoseconds [113].

As a final remark to this section, we may point out that it is consid-
ered that the derivation of the dynamical equations (3.19) and (3.20),
which are independent of the intraband gradients, and the approach
to their integration by means of the transformation (3.23) and (3.24),
are fundamental original achievements of this predoctoral work and
were published in Ref. [106], see section 3.6.1.

3.2 the emission dipole of graphene

As shown in section 3.1, the wave function Ψ(r, t) of the electron in
the periodic potential of graphene during the interaction with an ex-
ternal electric field is given by Eq. (3.2) upon resolution of the dynam-
ical equations (3.19) and (3.20) for the probability coefficients C+(k, t)
and C−(k, t) at every point in the first Brillouin zone. The electron is
accelerated back and forth under the combination of the Coulomb
interaction with the graphene network and the force exerted by the
driving field. As a consequence, the electron emits radiation in the
form of electromagnetic waves. In the dipole approximation and in
the non-relativistic regime, the power radiated P(t) is given by the
Larmor’s semiclassical formula [117]:

P(t) =
2

3c3
|a(t)|2 (3.28)

where a(t) is the acceleration of the electric dipole, i. e. the second
time derivative of the expectation value

d(t) = 〈Ψ(t)| qe r̂ |Ψ(t)〉 . (3.29)

The emission spectra is then given in terms of the Fourier transform
of the dipole acceleration by [118]:

P(ω) =
4

3c3
|a(ω)|2. (3.30)
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Let us calculate the expectation value of d(t) as given by Eq. (3.29):

d(t) =
∫
C∗+(k, t)C+(k ′, t) 〈Φ+

k | qe r̂ |Φ+
k ′〉dkdk ′

+

∫
C∗+(k, t)C−(k ′, t) 〈Φ+

k | qe r̂ |Φ−
k ′〉dkdk ′

+

∫
C∗−(k, t)C+(k ′, t) 〈Φ−

k | qe r̂ |Φ+
k ′〉dkdk ′

+

∫
C∗−(k, t)C−(k ′, t) 〈Φ−

k | qe r̂ |Φ−
k ′〉dkdk ′. (3.31)

The integrals in dk ′ have been already calculated above, see Eqs. (3.8)
and (3.9), so that we can write:

d(t) = i qe

∫ [
C∗+(k, t)∇kC+(k, t) +C∗−(k, t)∇kC−(k, t)

]
dk

+

∫
D(k)

[
C∗+(k, t)C+(k, t) +C∗−(k, t)C−(k, t)

]
dk

+

∫
D(k)

[
C+(k, t)C∗−(k, t) +C∗+(k, t)C−(k, t)

]
dk. (3.32)

The first term of Eq. (3.32), which does not depend on D(k), can be
interpreted as the intraband component of the emission dipole. On
the other hand, note that the second term is independent of time as a
consequence of the normalization condition |C+(k, t)|2+ |C−(k, t)|2 =
1, therefore it does not contribute to the dipole acceleration. Finally,
the third term is associated to interband transitions. We can write
d(t) in a more compact form in terms of the kinetic quasimomentum
κκκt and the off-diagonal coefficients CM and CP. Thus, substituting
k→ κκκt and introducing Eqs. (3.23) and (3.24) in Eq. (3.32), we obtain
after some manipulation:Emission dipole

d(t) = i
qe

2

∫ [
CM∗(κκκt, t)∇κκκtC

M(κκκt, t) +CP∗(κκκt, t)∇κκκtC
P(κκκt, t)

]
dk.

(3.33)

The intraband contribution to the total acceleration a↔ can be com-
puted as:Intraband

component

a↔(t) =
qe
2

 h2
F(t)
∫ [

|C+(κκκt, t)|2
∂2E+(κκκt)

∂κκκ2t
+ |C−(κκκt, t)|2

∂2E−(κκκt)

∂κκκ2t

]
dk.

(3.34)

3.3 high-order harmonic spectra of graphene

The red-filled area in Fig. 3.3(a) shows a typical high-order harmonic
spectrum from graphene, calculated after integration of Eqs. (3.25),
(3.26) and (3.33), considering a driving field of 3 µm wavelength at
5.1× 1012 W/cm2 peak intensity, linearly polarized along the y direc-
tion. The laser pulse is modeled as given by Eq. (3.27), with F0 = 0.6
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V/Å. The spectrum shows the characteristic non-perturbative fea-
tures of HHG, with a clear emergence of the spectral plateau extend-
ing, in this case, up to a maximum (cut-off) frequency ∼ 41ω0, being
ω0 the driving laser’s fundamental frequency. Note that the spectral

Figure 3.3: (a) HHG spectrum from SLG driven by a 3 µm wavelength, 28

fs (2.9 cycles) FWHM pulse at 5.1× 1012 W/cm2 peak intensity
and linearly polarized along the y direction (red-filled area). The
intraband component of the total yield is represented as a blue
line. The inset shows the amplitude of the electric field of the
pulse as a function of time. (b)–(d) Conduction band population
N CB as a function of the wave vector at different moments of the
interaction between graphene and the ultrashort laser pulse.

content in Fig. 3.3(a) is quite rich, as a result of different electron-hole
pair’s trajectories leading to the same harmonic, as we shall discuss
in section 3.5, and also due to the interference of the intraband and
interband contributions to the emission dipole. The intraband com-
ponent (blue line) has a strong influence in the lower-order harmonic
response, but becomes negligible with respect to the interband contri-
bution in the region of the spectral plateau, where it exhibits a typical
perturbative behaviour. This result is consistent with the findings of
previous studies on finite gap crystals, which show that the intraband
contribution dominates the harmonic emission of low order harmon-
ics, while the interband dominates for the higher frequency spectrum
[17, 65, 66].

Panels (b)–(d) of Fig. 3.3 show the occupation density N CB in the
conduction band at different times during the interaction. Consistent
to the case presented in Fig. 3.2, electrons are accelerated by the field
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along the polarization direction. During the first two cycles of the
pulse, when the field amplitude is not too large, the electrons pop-
ulate the conduction band close to the Dirac points and generate in-
terference fringes along the y direction, see panel (b). As the pulse
evolves and the intensity increases, more electrons are promoted to
the conduction band, see panels (c) and (d). The high-population ar-
eas and the interference fringes disperse up to almost reach the center
of the Brillouin zone, where the energy gap is maximum. Note that
the distribution becomes symmetric at the end of the pulse, as it hap-
pens in Fig. 3.2(f).

The time-frequency analysis of the spectrum gives us further in-
sight into the HHG process. As can be seen in Fig. 3.4, during the
first three cycles the harmonics are emitted at every half-cycle of the
field. As the intensity increases, high-order harmonics are being emit-
ted over the whole cycle. Note that the lower harmonics are clearly
observed every half-cycle during the whole pulse, but the higher or-
ders only appear at the central part of the pulse, once the popula-
tion of electrons in the conduction band is spread over the Brillouin
zone. Noticeably, the time-frequency chart obtained from graphene is
much more complex and less structured than that obtained from gas
systems, as shown in Fig. 2.17. The spectral efficiency in the former
shows no particular trend as a function of the generation time, as it
is the case of the latter. This evidence suggests that the underlying
physics behind HHG in graphene is different from that of these other
well-studied systems. This topic will be later discussed in section 3.5.
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Figure 3.4: Time-frequency analysis for the spectral yield shown in Fig.
3.3(a), calculated with a 3ω0 gaussian spectral window.

As discussed in [119], the power scaling pq of HHG in graphene is
lower than the harmonic order (pq < q) and almost constant for all the
harmonics in the plateau region (pq = q), a behaviour also found in
gases, which reflects the non-perturbative nature of the process [120–
123].



3.3 high-order harmonic spectra of graphene 59

We show in Figs. 3.5, 3.6 and 3.7 the high-harmonic spectra at differ-
ent peak intensities of the driving field for laser wavelengths 800 nm,
1.6 µm and 3.0 µm, respectively. In the near infrared regime (Fig. 3.5),
the HHG spectrum shows the typical perturbative behavior for the
lowest intensity: a monotonous decrease of efficiency with increasing
harmonic order, see panel (a). This behaviour changes drastically in
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Figure 3.5: High-order harmonic yield from single layer graphene driven by
an 800 nm, 8 fs FWHM pulse at different peak intensities. The col-
ored background of panels (c) and (d) indicates intensities above
the threshold damage of graphene. For 800 nm, therefore, the sat-
urated cut-off frequency ∼ 11ω0 is reached above the threshold
damage.

panels (b)–(d) for driving fields at higher intensities, where the emer-
gence of the non-perturbative plateau is clearly observed. Notwith-
standing, this characteristic feature of the HHG spectra appears, even
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at lower laser intensities, if the wavelength of the driving field is in-
creased to the mid-infrared regime, as shown in Figs. 3.6 and 3.7.
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Figure 3.6: HHG spectra from single layer graphene driven by a 1600 nm,
16 fs FWHM pulse at different peak intensities. The saturated
cut-off is this case ∼ 23ω0. The colored background of panel (d)
indicates that the intensity is above the threshold damage.

Fig. 3.8 depicts the scaling of the cut-off frequency with the driving
field intensity for pulses with 3.0 µm wavelength.1 Note that the cut-
off frequency saturates at the largest intensities, the saturated cut-off
corresponding to a photon energy of ' 17.8 eV, which coincides with
the maximum gap in the BZ (point Γ ). This saturation has also been

1 The cut-off scalings with intensity for all pulses discussed in this section are shown
in Fig. 3 of Ref. [106], which is one of the papers produced in this research. The full
text is included at the end of this chapter in section 3.6.1.
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described in gap semiconductors [59] and, unlike the gaseous systems
discussed in section 2.4.2, there is no simple law (linear or quadratic)
describing the dependence of the scaling of the cut-off frequency with
the field intensity. This is another clear indication that the mechanism
for HHG in solids is different to that reported for simpler systems.
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Figure 3.7: Harmonic yield from single layer graphene for λ = 3µm. In this
case, the pulse is the same as that used for Fig. 3.3. The cut-off is
reached at ∼ 41ω0. Only panel (d) is above the threshold damage.

Note however that the use of arbitrary large intensities is precluded
by the damage of the sample. We indicate with a colored background
of Figs. 3.5 to 3.8 the intensities for which the material is expected to
be damaged, assuming a damage fluence-threshold of 150 mJ/cm2

[124]. Observe that in the mid-infrared regime it is possible to reach
the saturated cut-off at intensities below the damage threshold. How-
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ever, as the laser period increases, the decoherence due to carrier col-
lisions, typically of several tens of fs [125], becomes a limitation. This
trade-off indicates that the HHG production is more favorable at mid-
IR wavelengths in the short-cycle regime.

In summary, three main conclusions can be already drawn from our
study of HHG in graphene: (i) the emergence of a spectral plateau at
large intensities, (ii) a nontrivial cut-off dependence with the intensity,
and (iii) a saturation of the photon energy with the intensity, close to
the maximum energy gap of the material. As we shall see in section
3.5, the interpretation of these conclusions will guide us to unveil the
fundamental mechanism for HHG in graphene.
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Figure 3.8: Cut-off scaling with intensity in graphene irradiated by an 8-
cycle mid-IR pulse with 3µm wavelength. The blue diamonds
are the result of the numerical integration of the TDSE. The red
circles are given by the semiclassical SPAM considering that the
electron-hole pair is created at the Dirac points. The green filled
area corresponds to intensities above damage threshold. The in-
set shows the gap energy during the e-h excursion. The maxi-
mum excursion at intensity points A, B and C in the main panel
is represented by red arrows in the inset.

3.4 polarization control of high-order harmonics

High harmonic generation in atomic or molecular targets also pro-
vides a robust mechanism to produce coherent ultrashort pulses with
controllable polarization in the extreme-ultraviolet. Although for a
long time HHG was thought to be restricted to produce linearly polar-
ized harmonics, several techniques have recently succeeded in gener-
ating elliptically and circularly polarized harmonics in atomic gases,
using rather sophisticated configurations [126, 127]. It has been re-
ported that HHG in solids is sensitive to the orientation of the elec-
tric field relative to the crystal axis [128]. Recent reports revealed also
that HHG in graphene is enhanced by elliptically polarized excita-
tions [16], and that circular-polarized harmonics can be obtained from
circular-polarized drivers [130]. In this context, we have carried on
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a detailed theoretical study of the polarization characteristics of the
harmonics induced by few-cycle infrared laser pulses, as a function of
the driver polarization parameters. We have analyzed the ellipticity,
tilt angle and intensity of the harmonics when driven by laser pulses
with different polarizations and orientations. The calculations have
been performed considering a 3 µm wavelength, 8-cycle (full width)
driving pulse with sin2 temporal envelope, modeled as:

F(t) = sin2(πt/8T)
[
Fx sin(ω0t)ux + Fy sin(ω0t +∆φ)uy

]
(3.35)

where Fx and Fy are the cartesian components of the field amplitude,
T is the period, ω0 = 2π/T the field frequency, and ∆φ the relative
phase between the field components. The pulse duration is 28 fs (2.9
cycles) FWHM, smaller than the decoherence time due to carrier col-
lisions [108–110]. We have considered a peak intensity of 5 × 1010
W/cm2, well below the threshold damage [124].

We first have focused in the dependence of the non-linear response
of SLG to a linearly-polarized field, i. e.∆φ = 0 in Eq. (3.35), with
different tilts. Figure 3.9(a) shows the calculated spectra for different
values of the tilt angle θ = arctan(Fx/Fy), obtained by the addition
of the spectral components Ix(θ,ω) and Iy(θ,ω). The response shows
the typical non-perturbative behaviour up to the seventh harmonic or-
der, followed by a cut-off. These results are in good agreement with
the experimental observations reported in [16], where HHG was ob-
served up to the ninth harmonic. The fact that the spectra shown in
Fig. 3.9(a) are not identical demonstrates the anisotropic nature of the
optical response of SLG under intense laser fields.

Figure 3.9(b) shows the dependence of the harmonic ellipticity εq

with respect to the driver’s linear polarization direction. The ellip-
ticity of the q-th harmonic is derived from the Stokes parameters
{S

q
0,Sq

1,Sq
2,Sq

3}, computed from the intensity of the different polar-
ization components, integrated over a spectral window of width ω0

around each harmonic frequency. The ellipticity is defined by:

εq = tan

1
2

arctan

 S
q
3√

S
q
1

2
+ S

q
2

2

 . (3.36)

Inspection of Fig. 3.9(b) reveals that all harmonic orders are linearly
polarized when the driving field is aligned with a symmetry axis of
the SLG lattice (θ = 0, 30◦, etc.), and elliptically polarized elsewhere.
As a consequence of the symmetry of the graphene lattice, the optical
response with respect to the driver’s polarization follows a periodic
pattern with period ∆θ = 60◦. The harmonic ellipticity for tilt an-
gles θ < 30◦ and > 30◦ are related by mirror symmetry. We find a
remarkable difference between the lower and higher-order harmon-
ics: for angles θ < 30◦ the third, fifth and seventh harmonics present
left-handed elliptical polarization, whilst the ninth and the eleventh
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are right handed. These results demonstrate that the ellipticity of the
high-order harmonics generated in SLG can be tuned by changing the
tilt angle of the linearly polarized driver, without the need of complex
driving configurations.

Figure 3.9: (a) Total harmonic yield from SLG for different angles of linear
polarization of the driving laser, measured from the vertical axis,
as shown in the inset. (b) Ellipticity of the harmonic yield as a
function of θ. (c) Harmonic yield from SLG for three different
values of the ellipticity of the input beam. (d) Ellipticity of the
harmonic yield from SLG as a function of the driver’s ellipticity
εIR.

We have also investigated the variation of the HHG response of
SLG to changes in the ellipticity of the driving pulse. We consider
a right-handed elliptically polarized driving pulse, as described by
Eq. (3.35) with ∆φ = π/2. The ellipticity of the driver is, therefore,
εIR = Fx/Fy. The rest of the driving field’s parameters are defined as
in the linear case, so that εIR = 0 corresponds to a vertical linearly
polarized driver. Fig. 3.9(c) shows the calculated harmonic yield for
different values of εIR. The spectra also show the non-perturbative
characteristics (plateau and cut-off) observed for linear polarization.
A main observation from Fig. 3.9(c) is the drop in the efficiency of
the HHG for circularly polarized drivings (green line, εIR = 1). This
is also observed in atoms, where the number of re-scattering trajecto-
ries drops drastically with the ellipticity of the driver [129]. Comple-
mentary, Fig. 3.9(d) shows the dependence of the ellipticity of each
harmonic field as a function of the driver’s ellipticity. Remarkably,
for circularly polarized input signal the fifth and seventh harmonics
are nearly circularly polarized [130], and with opposite handeness,
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also as found in atomic HHG driven by counter-rotating fields [127,
131–133]. Note that for smaller values of εIR the polarization is right-
handed (as it is the input beam), whilst it turns to left-handed for
higher ellipticities.

As a further observation, Fig. 3.9(c) also shows that the harmonic
intensity does not decrease monotonically with the driver’s ellipticity,
as can be noticed by comparing the red (εIR = 0) and blue (εIR = 0.3)
curves. To further explore this phenomena, we plot in Fig. 3.10(a) the
normalized harmonic intensity as a function of the driver’s elliptic-
ity, for different harmonics. The harmonic response is split into two
components: Iy(εIR,ω), parallel to the major axis of the driver’s polar-
ization ellipse (dotted lines), and Ix(εIR,ω), parallel to the minor axis
(solid lines), see the inset of Fig. 3.9(c). All the intensities are normal-
ized by Iy at εIR = 0. Note that, while Iy decreases with the ellipticity
for all the harmonic orders, Ix shows a pronounced increase with
a maximum for the driver’s ellipticity in the interval 0.3 < εIR < 0.4.
As shown in Fig. 3.10(b), these results are in good agreement with the
experimental data presented in [16], where it was demonstrated that
the efficiency of the harmonic response parallel to the major axis of
the polarization ellipse, which corresponds to Ix in 3.10(b), decreases
gradually as the ellipticity of the laser increases, while the perpendic-
ular component Iy is greatly enhanced with elliptically polarized ex-
citations and reaches a maximum value at a finite ellipticity εIR ∼ 0.3.
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but it cannot explain the experimental data (fig.
S5) (29).
Themechanism of theHHG should depend on

the ratio between the Rabi frequency and the
bandgap. Because graphene is a gapless material
(Eg = 0), the condition of the semimetal regime
(Eg/2ℏ ≤ WR0) can be achieved even with a weak
field excitation. As a control study, we performed
an HHG experiment and theoretical calculation
on monolayer MoS2 (fig. S6) (29), which is an
atomically thin material with honeycomb lattice
structure like graphene but with a finite bandgap
(exciton resonance ~1.85 eV). We set the excita-
tion photon energy and intensity to be the same
as those used in the experiments and calcula-
tions for graphene. The intensity of the seventh-
harmonic radiationmonotonically decreaseswith
increasing ellipticity of the laser, and the perpen-
dicular component to the major axis (Iy) is small
(Fig. 4D). The calculated curves in Fig. 4E for

Eg = 1.85 eV, which corresponds to Eg/2ℏ > WR0,
reproduce the experimental data for monolayer
MoS2. This indicates that at the current excita-
tion strength, the mechanism of HHG in mono-
layer MoS2 is not in the semimetal regime. The
calculation for monolayer MoS2 assumes the
band structure with a bandgap of 1.85 eV and
parabolic dispersions of the valence and conduc-
tion bands with the same form factor as graphene
(29). The comparative study ofHHG inmonolayer
graphene and monolayer MoS2 reveals that the
mechanism of HHG in solids depends on the
bandgap of the material. In the limit of a small
bandgap or large Rabi frequency, themechanism
is in the semimetal regime, and the unique el-
lipticity dependence of HHG appears. We also
showed the universality of the ellipticity depen-
dence of HHG for different order harmonics.
The HH spectra in Fig. 2 show that not only the
seventh but also the ninth harmonic is enhanced

with elliptically polarized excitation. The ellip-
ticity dependence for the fifth harmonic is shown
in fig. S7 (29). It should be noted that not the
linear energy dispersion but the zero-gap prop-
erty of graphene plays an important role inHHG,
because we found that the unique ellipticity
dependence appears in the calculation evenwhen
a parabolic band structure is assumed. The sim-
ilarnature is expected toappear innarrowbandgap
semiconductors such as InSb. Our experimen-
tal findings and good agreement with the theo-
retical calculation strongly suggest that the fully
quantummechanical model that we have devel-
oped provides an appropriate model of HHG in
solids.
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Fig. 4. Ellipticity dependence of HH radiation from graphene and monolayer MoS2. (A) Illustration
of polarization configuration of the pump beam and HH radiation. (B) Normalized intensities of
the seventh-harmonic radiation from graphene as a function of laser ellipticity. (C) Theoretical
results reproducing the experimental data in (B). (D and E) The same data set as (B) and (C) for
monolayer MoS2.
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but it cannot explain the experimental data (fig.
S5) (29).
Themechanism of theHHG should depend on

the ratio between the Rabi frequency and the
bandgap. Because graphene is a gapless material
(Eg = 0), the condition of the semimetal regime
(Eg/2ℏ ≤ WR0) can be achieved even with a weak
field excitation. As a control study, we performed
an HHG experiment and theoretical calculation
on monolayer MoS2 (fig. S6) (29), which is an
atomically thin material with honeycomb lattice
structure like graphene but with a finite bandgap
(exciton resonance ~1.85 eV). We set the excita-
tion photon energy and intensity to be the same
as those used in the experiments and calcula-
tions for graphene. The intensity of the seventh-
harmonic radiationmonotonically decreaseswith
increasing ellipticity of the laser, and the perpen-
dicular component to the major axis (Iy) is small
(Fig. 4D). The calculated curves in Fig. 4E for

Eg = 1.85 eV, which corresponds to Eg/2ℏ > WR0,
reproduce the experimental data for monolayer
MoS2. This indicates that at the current excita-
tion strength, the mechanism of HHG in mono-
layer MoS2 is not in the semimetal regime. The
calculation for monolayer MoS2 assumes the
band structure with a bandgap of 1.85 eV and
parabolic dispersions of the valence and conduc-
tion bands with the same form factor as graphene
(29). The comparative study ofHHG inmonolayer
graphene and monolayer MoS2 reveals that the
mechanism of HHG in solids depends on the
bandgap of the material. In the limit of a small
bandgap or large Rabi frequency, themechanism
is in the semimetal regime, and the unique el-
lipticity dependence of HHG appears. We also
showed the universality of the ellipticity depen-
dence of HHG for different order harmonics.
The HH spectra in Fig. 2 show that not only the
seventh but also the ninth harmonic is enhanced

with elliptically polarized excitation. The ellip-
ticity dependence for the fifth harmonic is shown
in fig. S7 (29). It should be noted that not the
linear energy dispersion but the zero-gap prop-
erty of graphene plays an important role inHHG,
because we found that the unique ellipticity
dependence appears in the calculation evenwhen
a parabolic band structure is assumed. The sim-
ilarnature is expected toappear innarrowbandgap
semiconductors such as InSb. Our experimen-
tal findings and good agreement with the theo-
retical calculation strongly suggest that the fully
quantummechanical model that we have devel-
oped provides an appropriate model of HHG in
solids.

REFERENCES AND NOTES

1. F. Krauzs, M. Ivanov, Rev. Mod. Phys. 81, 163–234
(2009).

2. P. B. Corkum, F. Krausz, Nat. Phys. 3, 381–387 (2007).
3. S. Ghimire et al., Nat. Phys. 7, 138–141 (2011).
4. O. Schubert et al., Nat. Photonics 8, 119–123 (2014).
5. T. T. Luu et al., Nature 521, 498–502 (2015).
6. G. Vampa et al., Nature 522, 462–464 (2015).
7. M. Hohenleutner et al., Nature 523, 572–575 (2015).
8. G. Ndabashimiye et al., Nature 534, 520–523 (2016).
9. F. Langer et al., Nature 533, 225–229 (2016).
10. Y. S. You, D. A. Reis, S. Ghimire, Nat. Phys. 13, 345–349

(2016).
11. H. Liu et al., Nat. Phys. 13, 262–265 (2016).
12. T. Tamaya, A. Ishikawa, T. Ogawa, K. Tanaka, Phys. Rev. Lett.

116, 016601 (2016).
13. T. Higuchi, M. I. Stockman, P. Hommelhoff, Phys. Rev. Lett. 113,

213901 (2014).
14. M. Wu, S. Ghimire, D. A. Reis, K. J. Schafer, M. B. Gaarde,

Phys. Rev. A 91, 043839 (2015).
15. K. S. Novoselov et al., Nature 438, 197–200 (2005).
16. Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 438,

201–204 (2005).
17. T. Ando, Y. Zheng, H. Suzuura, J. Phys. Soc. Jpn. 71, 1318–1324

(2002).
18. N. M. R. Peres, F. Guinea, A. H. Castro Neto, Phys. Rev. B 73,

125411 (2006).
19. R. R. Nair et al., Science 320, 1308 (2008).
20. S. A. Mikhailov, K. Ziegler, J. Phys. Condens. Matter 20, 384204

(2008).
21. K. Ishikawa, Phys. Rev. B 82, 201402 (2010).
22. P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser,

M. Woerner, Phys. Rev. B 89, 041408 (2014).
23. I. Al-Naib, J. E. Sipe, M. M. Dignam, Phys. Rev. B 90, 245423

(2014).
24. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf,

Phys. Rev. Lett. 95, 187403 (2005).
25. P. A. George et al., Nano Lett. 8, 4248–4251 (2008).
26. J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana,

M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008).
27. S. Tani, F. Blanchard, K. Tanaka, Phys. Rev. Lett. 109, 166603

(2012).
28. M. J. Paul et al., New J. Phys. 15, 085019 (2013).
29. Supplementary materials are available online.
30. P. Dietrich, N. H. Burnett, M. Ivanov, P. B. Corkum, Phys. Rev. A

50, R3585(R) (1994).
31. T. Tamaya, A. Ishikawa, T. Ogawa, K. Tanaka, Phys. Rev. B 94,

241107(R) (2016).

ACKNOWLEDGMENTS

This work was supported by a Grant-in-Aid for Scientific Research
(A) (grant 26247052). N.Y. was supported by a Japan Society
for the Promotion of Science fellowship (grant 16J10537).

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/356/6339/736/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S7
References (32–34)

10 February 2017; accepted 25 April 2017
10.1126/science.aam8861

Yoshikawa et al., Science 356, 736–738 (2017) 19 May 2017 3 of 3

  

Fig. 4. Ellipticity dependence of HH radiation from graphene and monolayer MoS2. (A) Illustration
of polarization configuration of the pump beam and HH radiation. (B) Normalized intensities of
the seventh-harmonic radiation from graphene as a function of laser ellipticity. (C) Theoretical
results reproducing the experimental data in (B). (D and E) The same data set as (B) and (C) for
monolayer MoS2.
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(b)

Iy – H11

Ix – H9

Ix – H11
Iy – H9

Iy – H7
Ix – H7
Iy – H5
Ix – H5

Figure 3.10: (a) Normalized intensities for the harmonic yield as a func-
tion of the laser ellipticity. (b) Experimental data for the normal-
ized intensities of the seventh-harmonic radiation from SLG as a
function of laser ellipticity (extracted from Yoshikawa et al. [16]).

The results of our simulations demonstrate that graphene exhibits
an extraordinarily complex photon-spin conversion, leading to a rich
scenario for harmonic polarization control. Although depolarization
in the response to circularly polarized drivers has been observed in
atomic systems [126, 134], we observe that this phenomenon is even
stronger for SLG. In addition, our results also reveal that the har-
monic pulses are produced with femtosecond time-varying ellipticity,
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thus showing the ultrafast change of the harmonic polarization state.
This work is another original contribution to this PhD thesis and was
published in Ref. [107]. The full article is included in section 3.6.2.

3.5 physical mechanism for high-order harmonic gen-
eration in graphene

In this section we develop in detail a model (SPAM), based on the
saddle point approximation, that provides a simple description of
HHG in single layer graphene and was published in Ref. [106]. As we
shall see, the SPAM allows to identify the fundamental mechanism
and predicts the spectral cut-off energies, in excellent agreement with
the numerical calculations showed in section 3.3. The following dis-
cussion applies to driving pulses linearly polarized. For simplicity,
we shall assume that the pulse is polarized along the y axis, so that
F(t) = F(t)uy, though the conclusions are also applicable to any po-
larization direction parallel to the main symmetry axes of graphene.

Let us consider once again the system of dynamical equations de-

rived in sec 3.1. Multiplying by e
i
 h

∫t
t0 [E+(κκκτ)−F(τ)Dy(κκκτ)]dτ both sides

of Eq (3.19) and rearranging terms, we obtain:

d
dt

[
e

i
 h

∫t
t0 [E+(κκκτ)−F(τ)Dy(κκκτ)]dτC+(κκκt, t)

]
=

i
 h
e

i
 h

∫t
t0 [E+(κκκτ)−F(τ)Dy(κκκτ)]dτF(t)Dy(κκκt)C−(κκκt, t). (3.37)

Integrating between t and t0 and after some manipulation, we have:

C+(κκκt, t) = e−
i
 h

∫t
t0 [E+(κκκτ)−F(τ)Dy(κκκτ)]dτC+(κκκt0 , t0) +

i
 h

∫ t

t0
e
− i

 h

[∫t
τ1
[E+(κκκτ)−F(τ)Dy(κκκτ)]dτ

]
F(τ1)Dy(κκκτ1)C−(κκκτ1 , τ1)dτ1. (3.38)

A similar equation for C−(κκκt, t) is obtained following the same proce-
dure with Eq. (3.20). Introducing the action integral between t and t0:

S±(k, t, t0) = −

∫ t

t0

[
E±(κκκτ) − F(τ)Dy(κκκτ)

]
dτ, (3.39)

we can write the probability coefficients in the following form:

C+(κκκt, t) = e
i
 hS+(k,t,t0)C+(κκκt0 , t0) +

i
 h

∫ t

t0
e
i
 hS+(k,t,τ)F(τ)Dy(κκκτ)C−(κκκτ, τ)dτ, (3.40)

C−(κκκt, t) = e
i
 hS−(k,t,t0)C−(κκκt0 , t0) +

i
 h

∫ t

t0
e
i
 hS−(k,t,τ)F(τ)Dy(κκκτ)C+(κκκτ, τ)dτ, (3.41)

which constitute the formal solutions of the TDSE during the interac-
tion interval ∆t = t − t0. Now, assume that the interaction begins at
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t0 = 0, with initial conditions C−(k, 0) = 1 and C+(k, 0) = 0, i. e. we
focus on the dynamics of the valence electron initially located at the
point κκκt=0 = k, that follows the quiver trajectory in the BZ given by
κκκt. Then, the solutions of the TDSE are:

C+(κκκt, t) =
i
 h

∫ t

0

e
i
 hS+(k,t,τ)F(τ)Dy(κκκτ)C−(κκκτ, τ)dτ, (3.42)

C−(κκκt, t) = e
i
 hS−(k,t,0) +

i
 h

∫ t

0

e
i
 hS−(k,t,τ)F(τ)Dy(κκκτ)C+(κκκτ, τ)dτ. (3.43)

As we saw in section 3.1, Dy(κκκt) presents singularities near the
Dirac points. We model this behavior defining Dy(κκκt) as an impulse
function Dy(κκκt) ' D0δ(κκκt − kD), where kD is the coordinate of the
Dirac point at K, see Fig. 2.4, though the following discussion applies
as well to the K’ Dirac point, due to the inversion symmetry. Since
the integrals in Eqs. (3.42) and (3.43) run over time, we use:

1 =

∫
δ(κκκt − kD)dκκκt =

∫
δ(t − tD,k)dt, (3.44)

where tD,k is the time when the electron crosses through the Dirac
point leaving a hole and thus, κκκtD,k = kD. From Eq. (3.44), we have:∫

δ(κκκt − kD)dκκκt =

∫
δ(κκκt − kD)

dκκκt

dt
dt =

∫
δ(t − tD,k)dt→

δ(κκκt − kD)
dκκκt

dt
= δ(t − tD,k). (3.45)

Taking into account the definition of κκκt, Eq (3.16), this condition can
be written as:

δ(κκκt − kD) =
 h

qeF(t)
δ(t − tD,k), (3.46)

which allows us to write the impulse ansatz in terms of time:

Dy(κκκt) '
 hD0

qeF(t)
δ(t − tD,k). (3.47)

The model assumes than before tD,k the electron remains in the va-
lence band, so C+(kD, t ′) = 0 if t ′ 6 tD,k. Then, using the impulse
function, the probability coefficients in Eqs. (3.42) and (3.43) can be
written in the much simpler form:

C+(κκκt, t) =
iD0
qe
e

i
 hS+(k,t,tD,k)C−(kD, tD,k), (3.48)

C−(κκκt, t) = e
i
 hS−(k,t,0). (3.49)

The interpretation of (3.48) and (3.49) is straightforward and pro-
vides insight into the excitation mechanism that occurs in graphene



68 hhg in gapless graphene

after the interaction with an intense laser field, as shown in Fig. 3.11:
an electron, initially at point k in the valence band, quivers in momen-
tum space with amplitude κκκt due to the interaction with the field;
at time tD,k the electron’s trajectory approximates the Dirac point,
and the electron is promoted to the conduction band through theExcitation

mechanism non-adiabatic interaction represented by the singular matrix element
Dy(kD), leaving a hole; after the promotion, the electron and the hole
continue oscillating following the trajectories given by κκκt. Most re-
markably, this mechanism differs from that described for finite-gap
semiconductor solids [65], where the excitation of the e-h pair is due
to tunneling, rather than to the non-adiabatic crossing near the Dirac
point. This fact is of paramount importance, since it implies that elec-
trons in graphene can be promoted to the conduction band at any
time during the interaction, as long as their semiclassical trajectories
pass near the Dirac points. Hence, excitation is not restricted to the
field’s maxima, as it is the case of tunnel excitation in finite-gap ma-
terials.

Figure 3.11: Mechanism for high-order harmonic generation in graphene.
(1) As the interaction begins, the electron starts quivering in
the valence band following the trajectory defined by κκκt. Eventu-
ally, the electron reaches the proximity of the Dirac point and
is promoted to the conduction band, leaving a hole. (2) The
electron keeps quivering in the conduction band while the hole
oscillates in the valence band. (3) The harmonic emission takes
place when the electron and hole trajectories overlap in direct
space emitting a photon resonant with the band gap.

As discussed in section 3.3, the lower-order harmonic emission is
dominated by intraband dynamics, while interband transitions are
responsible for the higher frequency spectrum [17, 65, 66]. Note that
from Eq. (3.32) we can extract the interband component of the com-
plex amplitude of the emission dipole, which is given by:

d̃l(κκκt, t) = D(κκκt)C+(κκκt, t)C∗−(κκκt, t). (3.50)
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Using equations (3.48) and (3.49), it can be readily seen that:

d̃y,l(κκκt, t) =
iD0
qe
e

i
 hSg(k,t,tD,k)Dy(κκκt), (3.51)

where Sg(k, t, tD,k) = S+(k, t, tD,k)−S−(k, t, tD,k). Therefore, the total
amplitude of the q-th harmonic of the interband dipole is given by the
Fourier transform of the k-space integral of Eq. (3.51):

d̃y,l(qω0) =
iD 0
qe

∫∞
−∞
∫

k
e

i
 h [Sg(k,t,tD,k)+q hω0t]Dy(κκκt)dkdt. (3.52)

Since Dy(κκκt) is a smooth function in the reciprocal space except in
the proximity of the Dirac points, the complex exponential of the ac-
tion Sg(k, t, tD,k) oscillates much faster than Dy(κκκt). As a consequence,
the relevant contributions to the integral in Eq. (3.52) result from the
stationary points of the semiclassical action, i.e. from those points
satisfying the conditions: The saddle-point

approximation
model for high-order
harmonic emission

∂

∂t
[Sg(k, t, tD,k) + q hω0t] = 0→ E+(κκκt) − E−(κκκt) = q hω0, (3.53)

∇kSg(k, t, tD,k) = 0→
∫ t

tD,k

v+(κκκτ)dτ =
∫ t

tD,k

v−(κκκτ)dτ, (3.54)

where the terms v±(κκκt) = (1/ h)∇kE±(κκκτ) represent the velocity of
the electrons. The first condition can be interpreted as the resonant
emission of a photon by interband relaxation at the point κκκt. Thus,
according to this, after the non-adiabatic crossing through the Dirac
point, the electron and the hole oscillate until time t, when they re-
combine emitting a photon resonant with the band gap at κt. The
second condition Eq. (3.54) implies that recombination only occurs
at times when the electron and hole trajectories overlap in the direct
space.

The main limitation of the SPAM is the assumption that the polar-
ization of the driving beam is parallel to the main symmetry axes of
graphene. Although significant effort has been made to extend the
model to other linear and elliptical polarizations, we have not yet
been able to succeed.

3.6 publications

To finalize this chapter, we include the full text of the two articles pub-
lished from the results and conclusions of our study on high-order
harmonic generation in graphene. The first one was issued in 2018

in the New Journal of Physics, under the title "Theory of high-order har-
monic generation for gapless graphene" [106], and includes the results
discussed in sections 3.1 to 3.3 and 3.5. The second article develops in
detail the contents of section 3.4 and was published in 2019 in the jour-
nal Optics Express with the title "Optical anisotropy of non-perturbative
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high-order harmonic generation in gapless graphene" [107]. In order to
comply with the regulations of the University of Salamanca, before
each article we include an abstract in Spanish language.
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3.6.1 Theory of high-order harmonic generation for gapless graphene

Resumen

La generación de armónicos orden elevado (HHG) resulta de la inter-
acción de la materia con radiación electromagnética intensa. A difer-
encia de la mayoría de los mecanismos convencionales, la HHG no
se basa en la excitación multifotónica de las transiciones atómicas en-
tre estados ligados, sino en la dinámica de los electrones no ligados.
El carácter no perturbativo de la HHG tiene como firma la aparición
de una estructura en forma de meseta o plateau en el espectro de
intensidad de los armónicos, seguida de un corte abrupto [39]. Se
han observado armónicos de orden superior en una amplia variedad
de blancos, incluyendo gases, sólidos y plasmas. Recientemente, tam-
bién se ha observado la HHG en el grafeno [16, 17]. En este trabajo
presentamos nuevos resultados teóricos de HHG en grafeno mono-
capa (SLG) inducida por pulsos de láser ultracortos en longitudes de
onda infrarrojas. En primer lugar, desarrollamos un método computa-
cional basado en la descripción tight-binding del grafeno que soslaya
las inestabilidades numéricas asociadas al carácter singular de los
elementos de matriz de la transición dipolar en el entorno de los
puntos de Dirac. Utilizamos este método para integrar la ecuación
de Schrödinger dependiente del tiempo con diferentes longitudes de
onda e intensidades del campo incidente, con el fin de caracterizar la
aparición de características espectrales no perturbativas. Finalmente,
desarrollamos un modelo semiclásico para la emisión dipolar basado
en la aproximación del punto de silla (SPAM), que retiene las princi-
pales contribuciones a la HHG y que revela el mecanismo fundamen-
tal de la emisión armónica: excitación en el entorno de los puntos de
Dirac y creación de un par electrón-hueco que, posteriormente, emite
un fotón de alta frecuencia tras la recombinación del electrón y del
hueco cuando éstos se superponen en el espacio directo. Las predic-
ciones del SPAM para el escalado de la frecuencia de corte con la
intensidad están en excelente acuerdo con los resultados de los cál-
culos numéricos basados en la ecuación de Schrödinger. Por tanto,
como conclusión principal, demostramos que el grafeno presenta un
mecanismo particular para la generación de armónicos de orden ele-
vado que se inicia por la transición no adiabática de las trayectorias
de los electrones de valencia a través de los puntos de Dirac. Este
mecanismo de excitación es radicalmente diferente del proceso de
ionización/excitación por efecto túnel observado en átomos, molécu-
las y sólidos semiconductores [65].
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Abstract
We study the high-harmonic spectrum emitted by a single-layer graphene, irradiated by an ultrashort
intense infrared laser pulse.We show the emergence of the typical non-perturbative spectral features,
harmonic plateau and cut-off, formid-infrared driving fields, atfluences below the damage threshold.
In contrast to previousworks, using THz drivings, we demonstrate that the harmonic cut-off
frequency saturates with the intensity. Our results are derived from the numerical integration of the
time-dependent Schrödinger equation using a nearest neighbor tight-binding description of
graphene.We also develop a saddle-point analysis that reveals amechanism for harmonic emission in
graphene different from that reported in atoms,molecules andfinite gap solids. In graphene, thefirst
step is initiated by the non-diabatic crossing of the valence band electron trajectories through the
Dirac points, instead of tunneling ionization/excitation.We include a complete identification of the
trajectories contributing to any particular high harmonic and reproduce the harmonic cut-off scaling
with the driving intensity.

1. Introduction

High-order harmonic generation (HHG) is a remarkable process resulting from the interaction of physical
systemswith intense electromagnetic radiation. In contrast tomost of the conventional photon up-conversion
mechanisms,HHG is not based in themultiphoton excitation of atomic bound-state transitions, but on the
dynamics of the unbound electrons. The non-perturbative character ofHHGhas as a distinguishable signature:
the emergence of a plateau-like structure in the harmonic intensity spectrum, followed by an abrupt cut-off [1].
This plateau is characterized by a dependence of the harmonic intensity with the harmonic order, q, much
weaker that the qth-power predicted by the perturbation theory. This structure extends the harmonic emission
up to thousands of harmonic orders, therefore conveying the possibility of generating coherent extreme
ultraviolet (XUV) or even soft x-ray radiation [2, 3].

High-order harmonics have been observed from awide variety of targets, including gases, solids, and
plasmas. In the latter caseHHGarises from the collective response at relativistic intensities [4]. For the atomic or
molecular gases andfinite-gap solids, high harmonic radiation is produced by intense pulses, yet below the
relativistic limit. In these systems,HHG shares some commonbasic principles [5]. In particular, harmonics are
generated by electrons initially bounded, that are promoted into free or quasi-free states by tunneling excitation.
Once freed, the electrons are accelerated by the electricfield to, subsequently, release the acquired kinetic energy
in the formof high-frequency radiation.HHG leads to awide range of applications, from imaging and
spectroscopywith sub-femtosecond resolution to sources of XUV/soft x-ray coherent pulses [6, 7]. Recently,
HHG from solids has burgeoned a great interest,mainlymotivated by the quadratic scaling of the harmonic
conversion efficiencywith the density of the target, as a result of the coherent nature of the process [5, 8–14].

Despite those similarities, the first experiment ofHHG in solid state [8]noticed substantial differences in the
laws governing the spectral plateau and cut-off frequency, compared to the atomic case. In atoms andmolecules,
the cut-off frequency scales with the product of the laser intensity and the squaredwavelength, w lµ Ic

2. This
law reflects themechanismunderlyingHHG: the cut-off frequency corresponds to themaximumkinetic energy
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of an ionized electron recollidingwith the parent ion. In contrast, the cut-off frequency has been found to scale
linearly with the driving field amplitude for semiconductors [8]. This kind of behaviormay remind theHHG
from simple two-level systems, where the cut-off energy reflects themaximum instantaneous Stark shift [15, 16].
However, two-level systems are not sufficient to explain the complex dynamics introduced by the intraband
contributions. Several theoreticalmodels have been used to explain this linear response, including the intraband
dynamics of the quasi-free states, such as semiclassicalmodels for intraband currents [17], semiconductor
optical Bloch equations [18–21], and Bloch equations usingWannier localized functions [22]. HHG in 2D
materials withfield polarization perpendicular to the plane has been recently explored theoretically [23].

Remarkably enough, electron tunneling plays a fundamental role as the first step in theHHGprocess for
systems presenting an energy gap, or ionization potential, larger thanmid-IR photon energy. In this sense, the
gapless structure of graphene presents a new scenario, and the actual details of themechanismunderlyingHHG
remain unaddressed.

The gapless band structure of single-layer graphene (SLG) allows the optical resonant excitation at all
frequencies, up to the vacuumultraviolet. This conveys graphene particular optical properties, as a strong
broadband linear responsewith a comparatively large optical absorption (>2%) of visible light [24], and a strong
nonlinear response for THz radiation [25, 26].While the generation of the second harmonic is forbidden in the
dipole approximation, due to the centrosymmetric structure of ideal SLG, it can be observed in stacked samples
[27]. Third-order nonlinearities are found to be also remarkably strong in SLG, with nonlinear susceptibilities
several orders ofmagnitude above those of transparentmaterials, and of the same order as in other resonant
materials, such asmetal nanoparticles. The third harmonic has been observed in few-layer graphene for
transitions occurring near theK andMpoints of the Brillouin zone (BZ) [28–30]. Nonlinear effects arising from
induced plasma have been predicted to enhanceHHG [31, 32]. HHG in gapless graphene has not been reported
until recently [33, 34], observing the generation of up to the 9th harmonic using amid-infrared driving laser.
This demonstrates the experimental feasibility of producingHHG inmonolayer graphene.

Despite these promising characteristics, current theoreticalmodels for gapless graphene are not complete in
describing the nonlinear dynamics induced by short intense laser pulses. Somemodels have been used for
dopped graphenewith a small energy gap [35], which do not include the important effects induced by the
singular coupling near theDirac cone [36]. Othermodels accounting for theDirac singularity do not consider
the entire BZ, therefore limiting the cut-off scaling predictions [37]. Questions as the role of the spectrally
ubiquitous resonance, the singular transitionmatrix elements at theDirac points, the cut-off scaling, or the
underlying physicalmechanism inHHG remain unveiled.

In this paperwe present new theoretical results ofHHG in SLG induced by few-cycle laser pulses at infrared
wavelengths. On one side, we develop an exact computationalmethod that overcomes the numerical
instabilities associatedwith the singular dipole transition elements near theDirac points.We use thismethod to
integrate the time-dependent Schrödinger equation (TDSE) for different driving fieldwavelengths and
intensities, in order to characterize the emergence of the non-perturbative spectral features (a plateau in the
harmonic intensities, followed by a cut-off). Finally, we develop an approximatedmodel that retains themain
contributions toHHGand reveals the fundamentalmechanismof harmonic emission: excitation near theDirac
points and creation of an electron–hole pair that subsequently emits a high-frequency photon upon
recombination, when the electron and hole overlap in direct space. Therefore, as amain conclusion, we
demonstrate that graphene presents its particularmechanism ofHHG, inwhich the first step is initiated by the
non-adiabatic crossing of the valence electron trajectories through theDirac points. This first step is radically
different from the tunneling ionization/excitation process found in atoms,molecules and finite gapmaterials
[19]. Our trajectory analysis accounts exactly for the cut-off scalingwith the intensity.

Themanuscript is organized as follows. In section 2we present our theoretical framework. In section 3we
present ourmethod for the numerical integration of the TDSE in SLG, showingHHG spectra and the scaling of
the cut-off harmonic frequencywith the intensity for different wavelengths. In section 4we develop our
approximate description and derive the physical conditions for the harmonic emission, as well as the rules
governing the harmonic cut-off frequency. Finally, we present our conclusions in section 5.

2. Theory

Weconsider the standard tight-binding description of SLG [38], where thewavefunctions of the conduction (+)
and valence (−) bands can bewritten as linear combinations of Bloch states from twoneighboring sublattices,
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f(k) being the argument of the complex function
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and a= 2.46Å the lattice constant. Figures 1(a) and (b) show the structure of SLG in the direct and reciprocal
space, respectively. TheDirac points are located in points K andK′ in the reciprocal space. K is related toK′ by
inversion symmetry. TheΓ point, at the center of the BZ, corresponds to themaximumgap;17.8 eV in the
tight-binding description. The driving electric field is assumed polarized in the y direction, and aimed
perpendicularly to the graphene layer. Dirac cones result from the overlap of atomic pz orbitals, and are coupled
when thefield polarization is parallel to the graphene sheet. The interactionwith afield perpendicular to the
layer has been studied recently elsewhere for the case of 2Dmaterials, and found to resembleHHG in atoms [23].

The vectors in equation (1) are eigenstates of the system’sHamiltonianHGwith energies g= ( ) ∣ ( )∣E fk k
(γ= 2.97 eV). The interaction of the laser pulse F(t)with the system is described by the time-dependent
HamiltonianH(t)=HG+Vi(t), whereVi(t)=−qe F(t) y is the electric field couplingwithin the dipole
approximation.

During the interaction, the time-dependent wavefunction can be expressed as a superposition of the
eigenstates (1):
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Inserting (3) into the TDSE, ¶Y ¶ = Y( ) ( ) ( )t t H t tr ri , , and projecting, wefind the following set of coupled
two-level equations
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with f= ¶ ¶( ) ( ) ( )D q kk k2y e y [39]. For ultrashort pulses (<30 fs full-width at halfmaximum, FWHM), it is
possible to remain in the Schrödinger representation instead of using the density-matrix formalism, as the
carrier collisional diffusion has characteristic times of several tens of femtoseconds [40–42]. Furthermore, it is
also possible to draw a parallelismbetween equation (4) and the standard strong-field formulation for atoms
[43], replacing the band structure, E+(k), by the parabolic shape of the free electron energy, including the energy
term−F(t)Dy as a phase-shift, and takingC−(k, t)=1.

Equations (4) and (5) include interband and intraband couplings, the intraband contribution corresponding
to derivatives in the reciprocal space. The computational complexity introduced by these gradients can be
removed introducing the kineticmomentum:

Figure 1. Scheme of graphene’s structure in (a) direct and (b) reciprocal space. The unit cell is composed by two carbon atoms (red and
blue). In the reciprocal space, points K andK′ correspond to the location of theDirac cones. In our study the laser pulse is linearly
polarized along the y direction and it is aimed perpendicularly to the graphene layer (x–y plane).
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( )tA being the vector potential. The equations (4) and (5) are then reduced to:
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This set of equations corresponds to a driven two-level parametric oscillator.

3.Numerical results

The numerical integration of equations (7) and (8) is of difficult convergence due to the singular values ofDy(k)
near theDirac points. It is possible to recast these equations and renormalize the terms containingDy(k) using
the following transformation, which effectively undoes the diagonalization ofHG:
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Now, from (7) and (8), we derive the following set of equations
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According to Larmor’s semiclassical formula, the harmonic emission is given by the dipole acceleration. The
mean value of the dipole can bewritten as the sumof two contributions, corresponding to intraband ( «d ) and
interband ( d ) transitions [20],
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Using (9) and (10), the total dipole can also bewritten as
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Wehave integrated numerically equations (11), (12) and (16), considering few-cycle driving pulses at
different intensities andwavelengths. The driving pulses aremodeled using an 8 cycle (full width) sin2 temporal
envelope, 2.9 cycles FWHM.The totalfield is defined as p w=( ) ( ) ( )F t F t T tsin 8 sin0

2
0 for  t T0 8 , and 0

elsewhere, where F0 is thefield amplitude,T is the period, andω0=2π/T the field frequency. Figure 2 shows the
calculatedHHG spectra at two different intensities for a driving field of 3 μmwavelength. For the lowest
intensity,figure 2(a), theHHG spectrum shows the typical perturbative behavior: amonotonous decrease of
efficiencywith increasing harmonic order. This behavior changes drastically for driving fields at higher intensity,
figure 2(b), with a clear emergence of a spectral plateau, extending up to amaximum (cut-off) frequency. It has
been reported that the inclusion of additional energy bands results in the appearance of secondary plateaus, with
higher cut-off frequencies, butwith efficiencies smaller in various orders ofmagnitude [20], not affecting
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therefore our conclusions. It is interesting to note also that the spectral content infigure 2 is quite rich, even for
the lower intensity case. This results from the interference of two different contributions to the same radiated
energy, namely, the intraband and interband components of the emission dipole, and from the different
electron–hole pair’s trajectories leading to the same harmonic, as we shall describe below. For the sake of
comparison, we show in the inset offigure 2(b) theHHG spectrum corresponding to the hydrogen atom, driven
by a 800 nm laser with the same pulse width.Wewill show that themechanism of electron excitation in
graphene differs substantially from the tunnel ionization in atoms. The efficiency in the latter case ismuch lower,
andHHG typically occurs for laser intensities one or two orders ofmagnitude above those required in graphene.
Note that, although the spectra is quite complex in both cases, atoms present amore regular structure after the
cut-off frequency. This difference will be discussed in the following section.

We show infigure 3 the scaling of the cut-off frequencywith the driving field intensity for laserwavelengths
800 nm, 1.6 μmand 3.0 μm.Note that for the three cases the cut-off frequency saturates at the largest intensities,
and the saturated cut-off corresponds to a photon energy of;17.8 eV, i.e. themaximumgap in the BZ. This
saturation has also been described in gap semiconductors [5]. Unlike the other physical systemsmentioned in
the introduction (atoms,molecules or two-level systems), there is no simple law (linear or quadratic) describing
the scaling of the cut-off frequencywith the field amplitude.

The use of arbitrary large intensities is precluded by the damage of the sample.We indicate with a colored
area infigure 3 the intensities for which thematerial is expected to have damage, assuming a damage fluence-
threshold of 150 mJ cm−2 [44]. Observe that for longerwavelengths it is possible to reach the saturated cut-off at
intensities below the damage threshold. Note however that, as the laser period increases, the decoherence due to
carrier collisions, typically of several tens of fs, becomes a limitation. This tradeoff indicates that theHHG
production ismore favorable atmid-IRwavelengths in the short-cycle regime.

Our numericalfindings reflect some fundamental properties of the harmonic emission: (i) emergence of a
spectral plateau at large intensities, (ii) a nontrivial cut-off dependencewith the intensity, and (iii) a limiting
photon energy close to themaximumenergy gap of thematerial. In the following section, we develop a saddle-
point approximationmodel (SPAM) that provides a simple description ofHHG in SLG. The SPAMallows to
identify the fundamentalmechanism and predicts the spectral cut-off energies, in excellent agreementwith our
numerical calculations.

Figure 2.HHG spectra fromSLGdriven by a 3μmwavelength, 28 fs (2.9 cycles) FWHMpulse at two different intensities: (a)
5×1010 W cm−2 and (b) 1×1012 W cm−2. As a reference, the inset shows theHHG spectrum emitted by the hydrogen atom,
driven by a 800 nmpulsewith the same number of cycles, at an intensity of 1.57×1014W cm−2.
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4.Underlyingmechanism

Our description starts with the integral formof the dynamical equations (7) and (8):
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wherewe define the action term ò k kt t= - -t t ( ) [ ( ) ( ) ( )]S t t E F Dk, , d
t

t
y1

1
. Note that for the initial time,

k =t= k0 . In SLG, k( )Dy t presents singularities near theDirac points.Wemodel this behavior defining k( )Dy t

as an impulse function k kd= -( ) ( )D ky t t D0 , where kD is the coordinate of theDirac point at K. The
following discussion applies as well to theK′Dirac point, due to the inversion symmetry, assuming a change of
sign in the electricfield amplitude. Using the impulse ansatz, we focus on the dynamics of the valence electron
initially located at the point k, that follows the quiver trajectory in the BZ given bykt . Using the impulse
function, the probability amplitudes (17) and (18) can be thenwritten as
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wherewe use the initial conditionsC−(k, 0)=1 andC+(k, 0)=0. tD,k is the time instant when the electron
crosses theDirac point and is promoted to the conduction band leaving a hole, i.e.k = kt DD k, .

High-harmonics in solids, including graphene, are dominated by interband dynamics [20, 34]. Using
equations (19) and (20), the complex amplitude of the interband dipole (15) is given by

Figure 3.Cut-off scalings with intensity for a 8 cycle pulsewithwavelengths (a) 3μm, (b) 1.6μmand (c) 800 nm. The blue diamonds
correspond to the numerical integration of the TDSE. The red circles are given by the semiclassicalmodel SPAM (more details are
given in the text). Filled areas correspond to intensities above damage threshold.
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where = -+ -( ) ( ) ( )S t t S t t S t tk k k, , , , , ,g D D Dk k k, , , . The amplitude of the qth harmonic of the interband
dipole is then given by the Fourier transformof the k-space integral
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Following [19, 43] (in the context of solids), we can identify that themain contributions to the integral in (22) are
the stationary phase points. Therefore, the harmonic emission takes place predominantly at those times that
fulfill the equation,
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This condition can be interpreted as the emission of a photon by interband relaxation at the pointkt , where the
gap is resonant with the emitted photon. This condition, togetherwith equations (19) and (20), leads to a simple
picture of the qth order harmonic emission in SLG: an electron, initially at point k in the valence band, quivers in
momentum space with amplitude kt due to the interactionwith the field; at time tD,k the electron’s trajectory
approximates theDirac point, and the electron is promoted to the conduction band through the non-adiabatic
interactionwith the singularmatrix elementDy, leaving a hole; finally, the electron and the hole oscillate until
time t, when they recombine emitting a photon resonant with the band gap atkt . Thismechanism for SLG
differs from the one described forfinite-gap semiconductor solids [19], as the excitation in the latter is
dominated by tunneling, rather than by the non-adiabatic crossing. The SPAMpredicts that only those states
with initialmomentumvertically aligned near theDirac points can be promoted to the conduction band, as
these are the only trajectories that cross theDirac points. As these states are also vertically alignedwith theΓ
point, themaximumenergy of the photon emissionwill be limited by the gap at this point (17.8 eV), which
matches with the value of the saturated cut-off energymentioned above.

We obtain an additional condition by applying the saddle-point analysis inmomentum space to (22), which
leads to
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where the terms k k=  t ( ) ( ) ( )Ev 1t k represent the velocity of the electrons. The time integral of the
velocities corresponds to classical electron trajectories. The interpretation in terms of semiclassical trajectories is
at the core of the present understanding ofHHG from atoms [43], and it is also extended to solids in [5] or used
for the description of the dynamics of hot free carriers in graphene [30]. In this semiclassical framework the
interpretation of equation (24) is straightforward: once the electron–hole pair is created at time tD,knear the
Dirac point, both are driven by thefield; condition (24) states that the pair recombines emitting a photon at time
t, only when their trajectories intersect in real space.

Figure 4(b) shows the classical trajectories of two electrons, with different initial positions in the BZ (kA and
kB), which cross theDirac point at times tD k, A

and tD k, B
. The trajectories correspond to a 3 μmwavelength pulse,

with intensity 1011W cm−2. Note that for the trajectory A, the electron and the hole created at tD k, A
meet in

direct space at thefinal time t. In contrast, in B, the electron and the hole do notmeet at t. According to
equation (24), the photon emission at t is effective only for the case A. Figure 4(a) shows amap of the energy gap
at themoment twhere the photonmay be emitted, as a function of the time inwhich the electron–hole pair is
created, tD,k. The points A andB in themap correspond to the cases shown infigure 4(b).We have colored in red
the points (tD,k, t) corresponding to electron–hole pairs, created at tD,k, that are driven to overlap in the same
direct-space unit cell at the emission time t. These colored areas are, therefore, in compliancewith both
conditions (23) and (24), and correspond to the situations when the harmonic photon is effectively emitted.
According to thismap, point A corresponds to an electron–hole pair created at t T0.3D k, , which emits a
w10 0 photonwhen recombined at t T0.9 . Note that, as it happens in B, other points in themapmay

potentially emit higher frequency harmonics (up to w14 0, i.e. themaximumgap energy attained during the
electron–hole excursion). However, the photon emission is not possible since the electron–hole pairs are
spatially apart at t. Themaximal photon energy is, therefore, given by the energymaxima in themap of
figure 4(a), constrained to the colored zone, which corresponds to the trajectories endingwith an electron–hole
intersection and therefore, having the possibility of recombination. Infigure 4, the cut-off harmonic
corresponds to point A, with an energy w10 0, smaller than themaximumgap ( w14 0 at theΓ point). In
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figure 3(a)we compare this cut-off prediction (red circle)with the results of the exact integration of equations (4)
and (5) (blue diamonds). As it can be noticed, this cut-off prediction is in excellent agreementwith the results of
the numerical calculations.

We show infigure 5 the SPAMenergymaps at 3 μmwavelength for the four additional intensities used in
figure 3(a).We observe that for increasing intensity, the topology of the colored region, i.e. the condition for the
electron–hole overlapping at the emission time, becomesmore complex. It is interesting to note that the same
harmonicmay be emitted by two ormore trajectories within the same driving field’s half cycle. These interfering
contributions are also found inHHGby atoms andmolecules [45], although in SLG their characteristics, i.e. the
number of trajectories, initial andfinal times, etc reveal amore intricate scenario. Note, in particular, that
figures 5(c) and (d) reveal three ormore path contributions for themaximum (cut-off) frequency. In contrast,
there is a single electron trajectory emitting cut-off harmonics in atoms andmolecules. As a result, in these latter
systems, theHHG spectrumbecomes regular at the cut-off, while in graphene remains, still, complex (see
figure 2(b) and its inset).

Figure 4. (a)Mapof the energy of the emitted photon for different classical trajectories computedwith the SPAM, t
k
D being the time of

the electron–hole pair creation and t the potential time of photon emission. The points where the electron–hole pair trajectories
intersect in direct-space at time t are represented by the red area. (b)Two electron trajectories corresponding to points A andB
illustrated in (a). The trajectory of the electron (black line) and hole (dashed line) are represented as a function of time. This figure
corresponds to a 3 μmwavelength laser pulse with peak intensity of 1011W cm−2.
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As described, we can use thesemaps to identify the cut-off harmonic order at each intensity. The predicted
values are plotted infigure 3(a), and show an excellent agreementwith the results of the numerical
computations. Figures 3(b) and (c) show the cut-off extracted from the SPAMmaps in comparisonwith the
TDSE results, for different intensities and 1.6 μmand 800 nmwavelengths, demonstrating a similar accuracy of
the SPAM for thewhole range of parameters.

Before concluding, let us comment the harmonic emission associatedwith the intraband transitions from
this simplified perspective. Substituting equations (17) and (18) in (14), and discarding the terms that vanish
after the integration over the BZ (due to the graphene’s inversion symmetry), wefind,
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This corresponds to the time-dependent dipole associated to the position of a valence electron in direct-space,
initially with pseudomomentum k, that undergoes an excitation to the conduction band at time tD,k. The
intraband dipole, therefore, is also a source of harmonics due to the non-parabolic shape of the electronic bands.
Previous studies in finite gap crystals show that the intraband contribution dominates the harmonic emission of
loworder harmonics, while the interband dominates for the higher frequency spectrum [19, 20].

5. Conclusions

Wehave studied theHHG in SLG irradiated by intense few-cycle infrared laser pulses. The study is two-fold.
First, we integrate exactly the TDSE using a non-diagonal basis to circumvent the numerical instabilities
associated to theDirac points. Ourmethod allows, therefore, to account the singular non-adiabatic coupling
near theDirac coneswithout approximation.Our numerical results demonstrate the emergence of the non-
perturbative signatures in the harmonic spectrum (intensity plateau, followed by an abrupt cut-off) atmid-
infraredwavelengths, below the damage threshold. In contrast to the atomic case, we show that in graphene the
harmonic cut-off frequency saturates with increasing intensity. In a second part, we develop a SPAM to unveil
the basicmechanismofHHG in graphene. According to the SPAM, harmonics are generated by electron–hole
pairs produced during the non-adiabatic crossing of the electron trajectories near theDirac points. This
mechanismdiffers from the tunnel excitation giving rise toHHG in atoms,molecules and solids withfinite gaps.
Once generated, the electron and hole are driven by the field until their trajectories intersect in real space,
allowing recombination, and thus emitting a high-frequency photon. This electron–hole recombination
mechanism is analogous to the rescattering process found in atoms andmolecules. In this latter case, however,
the hole remains static in the ion, while in solids, it quivers with the electricfield. Our SPAMreproduces the

Figure 5.Energymaps for the emitted harmonic photon according to the SPAM, for the 3 μmwavelength driving pulse and the
intensities used infigure 3(a). The points corresponding to intersecting electron–hole trajectories at time t are highlighted in red.
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scaling of the harmonic cut-off frequencywith the driving field intensity with excellent agreement with the
numerical results, and fully characterizes the trajectories, their number, and the electron–hole creation and
recombination times leading to the emission of harmonics.

The theory presented in thismanuscript can be extended to other two-dimensionalmaterials. Our SPAM
results are encouraging for the development and design of newmaterials, and ofmethods to control the electron
dynamics to tailor theHHGemission [46]. This work paves theway for further investigations in the
understanding of the nonlinear optical response of gaplessmaterials and in themanipulation of electron carriers
at the petahertz domain. The formalismpresented here is also specially suitable to study the interplay of
nonlinearly polarized pulses and the role of strong electron–hole correlations in the production ofHHG [47].
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3.6.2 Optical anisotropy of non-perturbative high-order harmonic genera-
tion in gapless graphene

Resumen

La generación de armónicos de orden elevado (HHG) en sistemas
atómicos o moleculares es un mecanismo robusto para producir pul-
sos ultracortos coherentes en la región del ultravioleta extremo y con
polarización controlable. Aunque durante mucho tiempo se creyó que
la HHG estaba restringida a la producción de armónicos polarizados
linealmente, varias técnicas han logrado generar armónicos con polar-
ización elíptica y circular en gases atómicos, aunque utilizando con-
figuraciones bastante sofisticadas [126, 127]. Por otra parte, existe un
creciente interés por la utilización de sólidos cristalinos para la HHG,
debido a su mayor eficiencia en la conversión armónica y la flexibil-
idad que exhiben para ser utilizados como blancos de alta densidad
[58]. Se ha reportado que la HHG en los sólidos es sensible a la ori-
entación del campo eléctrico en relación con el eje del cristal [128].
Otros trabajos recientes revelan también que la HHG en el grafeno
es más eficiente mediante excitaciones polarizadas elípticamente, y
que los armónicos con polarización circular se pueden obtener a par-
tir de pulsos con polarización circular [16]. En este contexto, hemos
realizado un estudio teórico detallado de las características de po-
larización de los armónicos inducidos al irradiar grafeno con pulsos
láser ultracortos infrarrojos, en función de los parámetros de polar-
ización del láser. Así, hemos analizado la elipticidad, el ángulo de
inclinación y la intensidad de los armónicos generados por pulsos
láser con diferentes polarizaciones y orientaciones. Nuestros resulta-
dos demuestran una conversión de la polarización de los armónicos
extraordinariamente compleja, que conduce a un amplio abanico de
posibilidades para su control: rotación óptica, polarización sintoniz-
able y polarización transitoria ultrarrápida. Por otra parte, nuestros
resultados revelan que los pulsos armónicos se producen con eliptici-
dad variable en la escala del femtosegundo, mostrando así al existen-
cia de cambios ultrarrápidos en el estado de polarización. Además,
aunque ya se ha observado despolarización en la respuesta a pulsos
polarizados circularmente en sistemas atómicos [126, 134], nuestros
resultados muestran que este fenómeno es aún más acusado en el
grafeno.
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Abstract: High harmonic generation in atomic or molecular targets stands as a robust mechanism
to produce coherent ultrashort pulses with controllable polarization in the extreme-ultraviolet.
However, the production of elliptically or circularly-polarized harmonics is not straightforward,
demanding complex combinations of elliptically or circularly-polarized drivers, or the use of
molecular alignment techniques. Nevertheless, recent studies show the feasibility of high-
harmonic generation in solids. In contrast with atoms and molecules, solids are high-density
targets and therefore more efficient radiation sources. Among solid targets, 2D materials are
of special interest due to their particular electronic structure, which conveys special optical
properties. In this paper, we present theoretical calculations that demonstrate an extraordinary
complex light-spin conversion in single-layer graphene irradiated at non perturbative intensities.
Linearly-polarized drivings result in the emission of elliptically-polarized harmonics, and
elliptically-polarized drivings may result in linearly-polarized or ellipticity-reversed harmonics.
In addition, we demonstrate the ultrafast temporal modulation of the harmonic ellipticity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

High-order harmonic generation (HHG) results from the interaction of physical systems with
intense electromagnetic radiation and has led to a large number of relevant applications in
attosecond science [1]. HHG is based on the dynamics of the unbound electrons rather than in
bound-state transitions, as in conventional perturbative photon up-conversion schemes. As a
non-perturbative process, HHG has a noticeable feature: the harmonic spectra show a plateau-like
structure, followed by a steep drop in efficiency beyond certain cut-off frequency [2]. The plateau
may extend up to thousands of harmonic orders, allowing the generation of coherent extreme
ultraviolet (XUV) or even soft x-ray radiation [3].
High-order harmonics have been observed from a wide diversity of materials. For gas-

phase systems, HHG arises from ionized electrons pulled away from their parent atoms or
molecules and recolliding back as the field reverses its sign. During recollision electrons may
recombine, emitting coherent high-energy photons [4, 5]. For a long time, HHG was thought
to be restricted to produce linearly polarized harmonics due to the weak rescattering efficiency
when driven by circularly polarized IR pulses [6]. However, several techniques have recently
succeeded in generating elliptically and circularly polarized harmonics in atomic gases, using
rather sophisticated configurations: HHG driven by a two-color counter-rotating circularly
polarized field [7–10]; HHG driven by single-color noncollinear counter-rotating beams [11, 12];
HHG in a double gas jet configuration irradiated by orthogonally polarized beams [13]; or by
using molecular targets irradiated by ellipticaly and linearly polarized driving pulses [14–17].
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Anisotropic molecules have been also demonstrated to produce elliptical-polarized harmonics
out of linear-polarized drivings, after being strongly aligned [18].
High density targets, as crystalline solids, have become increasingly interesting due to their

higher efficiency in harmonic conversion and the flexible design of target geometries. HHG in
solids, however, is limited by photoinduced damage, which restricts the maximum intensity of
the driving field. Until recently, only bulk solids were considered for HHG, with energy gaps
larger than the driver photons [19]. HHG from finite-gap solids follows a similar process to
atoms or molecules, where ionization is replaced by tunnel excitation from the valence to the
conduction band at the driving field maxima, and harmonics are radiated upon electron-hole
recombination [20].
Modern materials, such as topological insulators and 2D materials, present a wide variety

of electronic structure configurations, controlled by manufacturing, that make them interesting
candidates for HHG [21, 22]. Specifically, single-layer graphene (SLG) shows a potential due to
the presence of degenerate points in the reciprocal space, that convey extraordinary electronic and
optical properties. The singular band-structure provides graphene with a strong non-linear optical
response [23, 24]. For instance, second and third harmonics have been observed in multilayer
graphene [22, 25–27], and harmonics up to the 9th-order in SLG driven by mid-infrared laser
pulses have also been reported [28,29]. In contrast with the finite-gap case, HHG in graphene
relies on the excitation of electron-hole pairs at the Dirac points, which is not associated to tunnel
excitation [30]. Dirac points at topological-phase boundaries have been also associated to the
enhancement of harmonic conversion [31, 32].
It has been reported that HHG in solids is sensitive to the orientation of the electric field

relative to the crystal axis [21, 33, 34]. Recent reports revealed also that HHG in graphene is
enhanced by elliptically polarized excitations [28, 35, 36], and that circular-polarized harmonics
can be obtained from circular-polarized drivers [36, 37]. In this paper we present a detailed
theoretical study of the polarization characteristics of the harmonics induced by a few-cycle
infrared laser pulse, as a function of the driver polarization parameters. We analyze the ellipticity,
tilt angle and intensity of the harmonics when driven by a laser pulse with different polarizations
and orientations. Our results demonstrate an extraordinarily complex photon-spin conversion,
leading to a rich scenario for harmonic polarization control: optical rotation, tunable polarization
and ultrafast transient polarization. Although time-dependent ellipticity has been observed in the
response to circularly and elliptically-polarized drivers in atomic systems [12, 38], here we show
that this phenomenon is even stronger for SLG.

2. Methods

Single layer graphene is composed of carbon atoms arranged in an 2D-hexagonal honeycomb
lattice, with the first Brillouin Zone as shown in Fig. 1(a). According to the standard tight-binding
description of SLG within the nearest-neighbor aproximation [39], the out-of-plane atomic pz
orbitals overlap resulting in π-type bands. Taking the energy of the carbon 2p orbitals as reference
(ε2p = 0), the hamiltonian which describes the electron dynamics in the periodic potential of the
crystal is a 2 × 2 matrix of the form

H0 =
©«

0 γ f (k)
γ f ∗(k) 0

ª®¬
(1)

where γ = 2.97 eV is the hopping integral and f (k) the complex function:

f (k) = e−iakx/
√

3
(
1 + 2ei

√
3akx/2 cos

aky
2

)
, (2)
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being a = 2.46 Å the lattice constant. The band structure of SLG is obtained upon diagonalization
of H0, which yields to eigenvalues E±(k) = ±γ | f (k)|. The wave functions of the corresponding
eigenstates of the conduction (+) and valence (-) bands can be written as

Φ±(k; r) =
√

1
2

eik·r ©«
±1

e−iφ(k)
ª®¬
, (3)

being φ(k) the argument of the complex function f (k). E±(k) describe the conduction and
valence bands of graphene shown in Fig. 1(b). In the reciprocal space, the high-symmetry points
K and K’ are degenerated at the energy origin (Dirac points). At their vicinity the band dispersion
is linear: electrons and holes behave as massless fermions with constant velocity vF ' 106 m/s.
The maximum energy gap, ' 17.8 eV, occurs at the center of the Brillouin Zone, labeled Γ in Fig.
1(a). We note that, in practical situations, the chemical potential of graphene can be shifted by
electrostatic fields or introducing chemicals. If constant fields are applied near the breakdown
threshold, energy shifts of few hundred meV (charge density of few 1013 electrons per cm2) are
induced. These values of the chemical potential have a small effect in the optical properties of
graphene [40]. Note also that the conduction band occupation with chemical potentials of 100
meV is still very low in comparison with the valence band occupation (> 1015 electrons per cm2)
and thus, Pauli blocking is not likely to be relevant. As a result of these considerations, we do not
expect that chemical potential shifts affect substantially our results.
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Fig. 1. (a) Scheme of graphene’s first Brillouin Zone in the reciprocal space. (b) Graphene’s
band structure within the nearest-neighbor tight-binding approximation. The Fermi level is
set to zero. The conduction and valence bands correspond to positive and negative values of
energy, respectively. Dirac points K and K’ are degenerated in energy at the Fermi level.

The interaction of the laser pulse F(t) with the system is described by the time-dependent
Hamiltonian H(t) = H0 + Vi(t), where H0 is the SLG hamiltonian (1), and Vi(t) = −qeF(t) · r
is the electric field coupling in the dipole approximation, being qe the elementary charge. The
time-dependent wave function can be expressed as a superposition of the eigenstates (3):

Ψ(r, t) =
∫
Ψ(k; r, t)dk =

∫
[C+(k, t)Φ+(k; r) + C−(k, t)Φ−(k; r)] dk. (4)

Following [30], the dynamics can be computed from the integration of the following two-level



equations at each point of the Brillouin Zone:

i~
d
dt

CM (κt, t) = E+(κt ) + E−(κt )
2

CM (κt, t) + E+(κt ) − E−(κt )
2

eiφ(κt )C̃P(κt, t) (5)

i~
d
dt

C̃P(κt, t) = E+(κt ) + E−(κt )
2

C̃P(κt, t) + E+(κt ) − E−(κt )
2

e−iφ(κt )CM (κt, t) (6)

where ~κt = ~k − qeA(t)/c, A(t) being the vector potential, and

CM (κt, t) = C+(κt, t) − C−(κt, t) (7)
CP(κt, t) = e−iφ(κt ) [C+(κt, t) + C−(κt, t)] . (8)

We take as initial condition the SLG in its ground state, i.e. C−(k, 0) = 1 and C+(k, 0) = 0. The
harmonic emission is given by the dipole acceleration, i.e. the second time derivative of

d(t) = 〈Ψ(r, t)|qer|Ψ(r, t)〉 = i
qe
2

∫ [
CM∗∇κt CM + CP∗∇κt CP

]
dk. (9)

We have integrated numerically Eqs. (5), (6), and (9), considering an 8-cycle (full extend)
driving pulse with sin2 temporal envelope, modeled as:

F(t) = sin2(πt/8T) [Fx sin(ω0t)ex + Fy sin(ω0t + ∆φ)ey
]

(10)

where Fx and Fy are the cartesian components of the field amplitude, T is the period, ω0 = 2π/T
the field frequency, and ∆φ the relative phase between the field components. We neglect local
field corrections to the driving field amplitude, as the field is aimed perpendicularly to the
graphene layer and, therefore, propagates through an atomic-size thickness. For the calculations
presented in this work, we have considered a wavelength of 3 µm, resulting in a pulse duration
of 28 fs (2.9 cycles) at full-width-half-maximum in intensity, ensuring that the pulse length is
smaller than the decoherence time due to carrier collisions [41]. We have considered a peak
intensity of 5 × 1010 W/cm2, well below the threshold damage, assuming damage for fluences
above 150 mJ/cm2 [42].

3. Results and discussion

3.1. Linearly polarized laser driver

We first have studied the dependence of the non-linear response of SLG to a linearly-polarized
field, i.e. ∆φ = 0 in Eq. (10), as a function of the tilt angle, θ = arctan(Fx/Fy). Figure 2(a) shows
the calculated spectra for different values of θ, obtained by the addition of the spectral components
Sx(θ, ω) and Sy(θ, ω). The response shows the typical non-perturbative behaviour (plateau) up
to the seventh harmonic order, followed by a cut-off. These results are in good agreement with the
experimental observations reported in [28], where HHG was observed up to the ninth harmonic.
As a consequence of the symmetry, the optical response with respect to the driver’s polarization
follows a periodic pattern with period ∆θ = 60◦. Thus, the harmonic spectrum for θ = 30◦ is
indistinguible from the one corresponding to θ = 90◦ (horizontally polarized driver). Note that
the spectra shown in Fig. 2(a) are particularly rich. This is a consequence of the interference
of the two different contributions, intraband and interband, as well as of the contributions of
different electron-hole pair’s trajectories leading to the same harmonic [30].
The fact that the spectra in Fig. 2(a) are not identical demonstrates the anisotropic nature

of the optical response of SLG under intense laser fields. As noted previously, anisotropy in
HHG is also expected for aligned molecular targets due to the non-spherical symmetry of the
molecular orbitals [43]. However, crystalline solids include an additional source of anisotropy, as
the dynamics of the electrons in the conduction band are still subjected to the details of the crystal
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Fig. 2. (a) Total harmonic yield from SLG for different angles of linear polarization of the
driving laser, measured from the vertical axis, as shown in the inset. The total yield for each
angle is obtained by the addition of the spectral components Sx(θ, ω) and Sy(θ, ω) and it
is given in units of the driver’s intensity I0. (b) Intensities of the harmonic yield of SLG
as a function of θ. For each harmonic, intensities are normalized to the value at θ = 0. (c)
Ellipticity of the harmonic yield as a function of θ. Positive values of the ellipticity indicate
left handed polarization. (d) Harmonic tilt angle shift with respect to the driver’s tilt, as a
function of θ.

potential. In contrast, ionized electrons in molecules behave approximately as free particles and
therefore, respond to the field isotropically.
Figure 2(b) shows the variation of the intensity of the harmonic yield with the driver’s

polarization angle θ. The intensity of each harmonic is normalized to the corresponding value at
θ = 0. All the harmonics present a maximum intensity value for θ = 15◦ and 45◦, which increases
with the harmonic order. On the other hand, the harmonic yield finds a minimum efficiency at
θ = 30◦ for the higher-order harmonics. Note, therefore, that the crystal symmetry axes do not
correspond to the optimal driver polarization directions to generate harmonics efficiently.

Figures 2(c) and 2(d) show the dependence of the harmonic ellipticity εq and relative tilt angle
θq − θ with respect to the driver’s polarization direction. The ellipticity and tilt angle of the q-th
harmonic are derived from the Stokes parameters {Sq

0 , S
q
1 , S

q
2 , S

q
3 }, computed from the intensity

of the different polarization components, integrated over a spectral window of width ω0 around
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Fig. 3. Time dependent ellipticity for a tilt angle θ = 15◦ of the input beam. Panels (a) and
(c) show the time dependence of the ellipticity parameter εq and relative tilt angle θq − θ
for the fifth and eleventh harmonics, respectively. The blue line in the background of each
panel represents the intensity profile of the harmonic emission. Panels (b) and (d) show
the 3D plots of the electric field for the fifth and eleventh harmonic pulses along with their
ortogonal X and Y components.

each harmonic frequency. Then, the ellipticity and tilt angle are defined as:
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Inspection of Fig. 2(c) reveals that all harmonic orders are linearly polarized when the driving
field is aligned with a symmetry axis of the SLG lattice (θ = 0, 30◦, etc.), and elliptically
polarized elsewhere. The harmonic ellipticity for angles θ < 30◦ and > 30◦ are related by mirror
symmetry. We find a remarkable difference between the lower and higher-order harmonics: for
angles θ < 30◦ the third, fifth and seventh harmonics present left-handed elliptical polarization,
whilst the ninth and eleventh are right handed. In contrast, in the case of aligned molecules, the
harmonic ellipticity against the driver’s tilt behaves similarly for all harmonic orders. According
to [20, 30] the frequency of the emitted harmonic corresponds to the instantaneous energy of the
electron-hole pair when recombining. This suggests that the third harmonic is generated near the
Dirac points, where the band structure is isotropic and therefore, the third-harmonic emission
becomes insensitive to the orientation of the driver’s polarization.
The combination of the results shown in Figs. 2(b) and 2(c) leaves the conclusion that

SLG behaves most efficiently as a source of elliptically polarized harmonics when the driver’s



polarization axis is rotated 15◦ from the crystal symmetry axes. It also demonstrates that the
ellipticity of the harmonics generated in SLG can be easily tuned by changing the tilt angle of the
linearly polarized driver, without the need of complex driving configurations.

The orientation of the polarization ellipse (i.e. the tilt angle θq of its main axis), is analyzed in
Fig. 2(d). The major axis is almost parallel to the signal’s polarization for the lower harmonics,
while it rotates gradually as the harmonic order increases, reaching a maximal angular difference
around θ = 15◦ and 45◦. For these tilt angles, the main axis of the polarization ellipse of the
eleventh harmonic is almost perpendicular to the direction of the driver polarization.
We plot in Fig. 3 the time evolution of the polarization of the harmonics generated at a

driver’s tilt of 15◦, which corresponds to the maximum conversion efficiency, see Fig. 2(b). Our
computations show a clear evidence of ultrafast polarization changes both in ellipticity, at the
scale of 0.2 per cycle, and tilt angle. The time-dependent harmonic ellipticities are also found in
collinear [38] and non-collinear [12] schemes in atomic targets. However, we show that the range
and rate of ellipticity variation in SLG are considerable higher. As a general trend, the rate of
variation is shown to increase with the harmonic order. This suggests possible applications in
ultrafast pump-probe transient absorption experiments.

3.2. Elliptically polarized laser driver

We have also investigated the variation of the HHG response to changes in the ellipticity of the
driving pulse. We consider a right-handed elliptically polarized driving pulse, as described by
Eq. (10) with ∆φ = π/2. The ellipticity of the driver is, therefore, εIR = Fx/Fy . The rest of the
driving field’s parameters are defined as in the linear case, so that εIR = 0 corresponds to the
(vertical) linearly polarized driver of the preceding section.

Figure 4(a) shows the calculated harmonic yield for different values of εIR. The spectra also
show the non-perturbative characteristics (plateau and cut-off) observed for linear polarization
in the previous section. A main observation from Fig. 4(a) is the drop in the efficiency of the
HHG for circularly polarized drivings (green line, εIR = 1). This trend is also observed in
atoms, where the number of rescattering trajectories drops drastically with the ellipticity of the
driver [44]. However, in comparison with the atomic case, the drop in efficiency in SLG is much
weaker. Most interestingly, for εIR = 1, the three-fold rotational symmetry of graphene forbids
the generation of one every three harmonic orders, as it has been recently reported in [36], much
in the same way as in atomic HHG driven by two-color counter-rotating fields [7–10].
As a further observation, Fig. 4(a) also shows that the harmonic intensity does not decrease

monotonically with the driver’s ellipticity, as can be noticed by comparing the red (εIR = 0) and
blue (εIR = 0.3) curves. We further explore this phenomena in Fig. 4(b), where we plot the
normalized harmonic intensity as a function of the driver’s ellipticity for different harmonics.
The harmonic response is split into two components, parallel to the major axis Sy(ε, ω), dotted
lines, and minor axis Sx(ε, ω), solid lines, of the driver’s polarization ellipse. All the intesities
are normalized by Sy at εIR = 0. Note that, while Sy decreases with the ellipticity for all the
harmonic orders, Sx shows a pronounced increase with a maximum for the driver’s ellipticity in
the interval 0.3 < εIR < 0.4. This result is in agreement with the experimental data presented
in [28]. Complementary, Fig. 4(d) shows the dependence of the ellipticity of each harmonic field
as a function of the driver’s ellipticity. Note that the region of optimal harmonic conversion in Fig.
4(b) corresponds to harmonics with polarization close to linear. This behavior is the opposite
of what we found for the linear-polarized driving in the preceding section, where the optimal
conversion efficiency is associated with the generation of elliptically polarized harmonics. Note
also that for smaller values of εIR the polarization is right-handed (as it is the input beam), whilst
it turns to left-handed for higher ellipticities. Remarkably enough, for circularly polarized input
signal (εIR = 1.0) the fifth and seventh harmonics are nearly circularly polarized [36], and with
opposite handeness, also as found in atomic HHG driven by counter-rotating fields [7–10].
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Fig. 4. (a) Harmonic yield from SLG for three different values of the ellipticity of the input
beam. The total yield is obtained by the addition of the spectral components Sx and Sy
parallel to the axes of the laser polarization ellipse and it is given in units of the driver’s
intensity I0. (b) Normalized intensities for the harmonic yield as a function of the laser
ellipticity. (c) Tilt angle of the harmonic response as a function of εIR . The tilt angle of the
input laser is always zero. (d) Ellipticity of the harmonic yield from SLG as a function of
εIR . Positive values of the ellipticity indicate left handed polarization. The lines connecting
graphics (b) and (d) are eye guides. In (b), (c) and (d) the highest harmonics are not plotted
for the largest ellipticities because they are not resolved in the spectra.

As additional information, we plot in Fig. 4(c) the tilt angle of the major axis polarization
ellipse of each harmonic as a function of the driving field’s ellipticity. Our results show that the
main axis of the response is almost perpendicular to the main axis of the driving for ellipticity
values of maximal efficiency. As shown in Fig. 4(b), this is a consequence of the steep increase of
Sx in these cases. Together with the data shown in Fig. 4(d), we can conclude that the harmonic
emission efficiency shows a maximum for driving ellipticities in the range 0.3 < εIR < 0.4, where
the harmonics are emitted with polarization close to linear and tilt angles perpendicular to the
main axis of the driver’s polarization ellipse.

Finally, Fig. 5 shows the time dependent polarization for εIR = 0.3, i.e. a value corresponding
to maximal conversion efficiency according to Fig. 4(b), and for εIR = 1.0. In the case of the
elliptically-polarized drivers, the polarization of the harmonic field varies at the femtosecond
scale, in the same way than for linearly-polarized drivings. Note however that the ellipse tilt
remains approximately constant at each pulse component of the harmonic field. On the other hand,
the ellipticity remains close to pure circular in time when the driving field is circularly-polarized.
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Fig. 5. Panels (a) and (c) show the time dependence of the ellipticity for εIR = 0.3 and 1.0,
respectively. The blue line in the background of each panel represents the intensity profile of
the harmonic emission within the laser pulse. Panels (b) and (d) show the 3D plots of the
electric field for the harmonic pulses along with its ortogonal X and Y components.

4. Conclusions

We have studied the polarization properties of the high-harmonic emission from single-layer
graphene irradiated by intense few-cycle infrared laser pulses with different polarizations. Our
numerical results demonstrate that the anisotropic response of SLG induces a complex photon-
spin conversion, and thus the production of ellipticaly polarized harmonics from linear-polarized
infrared pulses, and linearly polarized harmonics from elliptical-polarized infrared pulses. For the
case of elliptically polarized drivers, we have confirmed the increasing role of the polarizability in
the x direction, revealing a strong sensitivity of the polarization characteristics of the harmonics
field to variations on the driver’s ellipticity. Our results also reveal the ultrafast change of the
harmonic polarization state, producing pulses with femtosecond time-varying ellipticity. This
dynamics may be resolved experimentally using spatial-spectral interferometry [45]. These
pulses convey an extraordinary tool for ultrafast pump-probe experiments, ultrafast chiral
dichroism [46,47] and spin/charge dynamics in magnetic materials [48, 49].
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4
H I G H - O R D E R H A R M O N I C G E N E R AT I O N I N
C A R B O N N A N O T U B E S

This chapter is devoted to study HHG in single wall carbon nan-
otubes irradiated by intense ultrashort IR laser pulses. Using the
tight-binding and zone folding approximations, discussed in chapter
2, we first derive in section 4.1 the dynamical equations and the ex-
pression for the emission dipole governing the harmonic generation.
Next, in section 4.2 we focus in the study of the harmonic spectra,
which show the emergence of the typical non-perturbative features at
fluences below the damage threshold. We demonstrate that the har-
monic cut-off frequency saturates with the intensity, as it occurs in
the case of graphene. We discuss the results for the different types
of SWNTs attending to the differences between them. Finally, in sec-
tion 4.3 we apply our saddle-point approximation model (SPAM) to
show that the mechanism for harmonic emission is similar to that re-
ported for graphene in section 3.5, although now is triggered by the
non-adiabatic crossing of electrons through van Hove singularities in-
stead of Dirac points. These results have been partially published in
Ref. [135], which is fully included in section 4.4.

4.1 model and main equations

The symmetries of SWNTs discussed in section 2.2.2 determine the
selection rules for the optical transitions between electronic states. If
the wavelength of the incident beam is large compared to the trans-
lational period a0, the conservation of the linear quasi-momentum
leads to almost direct transitions (∆k ≈ 0). Furthermore, within the
dipole approximation the interaction Hamiltonian is proportional to
the momentum operator and consequently, it transforms according
to the polar vector representation Dpv of the symmetry group of the
nanotube. Therefore, any optical transition from the state | i 〉 into the
state | f 〉 is allowed if the direct product of the representations of the
polar vector and those of the electronic states have a common compo-
nent, i. e. if D| f 〉 ⊆ D| i 〉 ⊗Dpv [74]. The z component of a polar vector
belongs to the non-degenerate representation 0A

−
0 , since it has even

parity with respect to σv and odd parity under σh reflections and U-
axis transformations [136].1 Consequently, z-polarized light changes

1 We will consider only drivers with polarization parallel to the tube axis (z). If another
polarization direction was to be considered, note that the x- and y- components of
the polar vector are double-degenerate and have even parity under σh but odd parity
under U-axis transformations. Therefore the irreducible representations are given by
0E

+
±1 for achiral tubes and 0E−1 for chiral SWNTs [136].
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neither the angular momentum m nor the σv parity quantum num-
bers, but it does reverse the σh parity of the state it interacts with.
Therefore, for the transition | i 〉 → | f 〉 to be allowed, the states must
have same k, m and σv-parity, and opposite σh-parity quantum num-
bers [89]. In addition, the electronic intraband dynamics is subjected
to umklapp rules, that govern the jump of the quantum number m
when the k-trajectories exceed the first Brillouin zone [74]. We shall
discuss such umklapp rules in more detail in the following sections.

Let us begin considering a nanotube (n1, n2) irradiated by an in-
tense laser pulse, linearly polarized along its axis, F(t) = F(t)uz. The
electron dynamics is governed by the time-dependent hamiltonian
H(k, m, t) = H0(k, m)+Vint(t), where H0(k, m) is the unperturbed hamil-
tonian of graphene constrained to the 1D k-space manifold of the
nanotube (see chapter 2), and Vint(t) = −qe F(t)z is the electric field
coupling in the dipole approximation. If |Φ±k,m〉 are the eigenstates of
the conduction and valence bands in the zone-folding approximation,
the time-dependent wave function of the Bloch electron can be writ-
ten as:

Ψ(r, t) =
∑

m

∫
ψk,m(r, t)dk

=
∑

m

∫ [
C+

m (k, t)Φ+
k,m(r) +C

−
m (k, t)Φ−

k,m(r)
]

dk. (4.1)

Inserting Eq. (4.1) into the TDSE, Eq. (3.3), and following the proce-
dure described in section 3.1 for graphene, we obtain the following
set of coupled two-level equations:Dynamical

equations of SWNTs

i  h
d
dt
C+

m (κt, t) =
[
E+

m (κt) − F(t)Dm(κt)
]
C+

m (κt, t)

−F(t)Dm(κt)C
−
m (κt, t), (4.2)

i  h
d
dt
C−

m (κt, t) =
[
E−

m (κt) − F(t)Dm(κt)
]
C−

m (κt, t)

−F(t)Dm(κt)C
+
m (κt, t), (4.3)

where  hκt =  hk− qe A(t)/c, being A(t) the vector potential, E±m are the
energy eigenvalues for band index m, see section 2.2.2, and Dm is the
component of the transition matrix element of graphene parallel to
the nanotube axis, Eq. (3.22), constrained to the set of allowed wave
vectors. That is:

Dm(k) =
qe

2

∂ϕm

∂k
, (4.4)

being ϕm(k) the phase of the complex function fm(k) defined by Eq.
(2.47). To integrate equations (4.2) and (4.3) we follow the approach
used for graphene in section 3.1. Introducing the off-diagonal coeffi-
cients CM

m (κt, t) and CP
m(κt, t)

CM
m (κt, t) = C+

m (κt, t) −C−
m (κt, t), (4.5)

CP
m(κt, t) = e−iϕm(κt)

[
C+

m (κt, t) +C−
m (κt, t)

]
, (4.6)
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it is thereby also possible to recast the equations to overcome the
numerical instabilities that appear as a consequence of the divergence
of Dm at the vicinity of the Dirac points K and K’: Integration scheme

for the dynamical
equations of SWNTs

i  h
d
dt
CM

m (κt, t) =
E+

m (κt) + E−
m (κt)

2
CM

m (κt, t)

+
E+

m (κt) − E−
m (κt)

2
e iϕm(κt)CP

m(κt, t) (4.7)

i  h
d
dt
CP

m(κt, t) =
E+

m (κt) + E−
m (κt)

2
CP

m(κt, t),

+
E+

m (κt) − E−
m (κt)

2
e−iϕm(κt)CM

m (κt, t). (4.8)

As discussed in section 3.2, the harmonic emission is proportional
to the second derivative of the emission dipole, which is given by the
restriction of Eq. (3.33) to the Brillouin zone of the nanotube: Emission dipole of

SWNTs

d(t) = i
qe

2

∑
m

∫ [
CM∗

m
∂CM

m
∂κt

+CP∗
m
∂CP

m
∂κt

]
dk. (4.9)

In addition, note that the intraband component of the emission
spectra can be also computed as the restriction of Eq. (3.34) to the BZ
of the nanotube:

aintra
m (t) =

qe
2

 h2
F(t)
∫ [

|C+
m |2

∂2E+
m

∂κ2t
+ |C−

m |2
∂2E−

m

∂κ2t

]
dk. (4.10)

4.2 high-order harmonic spectra

We have integrated numerically Eqs. (4.7)–(4.10), considering mid-IR
few-cycle driving pulses at different intensities targeting SWNTs of
different types and diameters. The driving pulses are modeled using
an 8-cycle (full width) sin2 temporal envelope as defined by Eq. (3.27).
We neglect local field corrections to the driving field amplitude, as the
beam is aimed perpendicularly to the nanotube and, therefore, prop-
agates through walls of atomic-size thickness. The spectra thereby
computed are discussed in the following sections.

4.2.1 Armchair nanotubes

All (n, n) type tubes exhibit the π-band structure shown in Fig. 4.1(a),
with the valence and conduction bands crossing at a0k = 2π/3, so they
are always metallic. Optical transitions A+

0 → B+
0 and B+

n → A+
n in-

duced by z-polarized drivers are forbidden in any (n, n) A -type tube
as a consequence of the σh-parity selection rule. The rest of bands
|m| = 1, . . . , n − 1 are doublets where optical transitions are allowed
for any a0k ∈ (0,π], but forbidden at a0k = 0. Furthermore, the intra-
band dynamics is also subjected to the umklapp rule m ′ = m± n (mod
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2n), so that m shifts to m ′ when the first Brillouin zone is exceeded
through a0k = π [137]. The pink-filled area in the background of Fig.
4.1(a) shows the DOS for a (9, 9) tube, which is dominated by the van
Hove singularities at the zero-slope points of the band’s diagram, and
has a small non-null value nearby the Fermi level. This structure is
common to all A -tubes.

(b)

(c)

(9,9) armchair(a)

(9,9) Total
(9,9) Intraband
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Figure 4.1: (a) Band structure of (9, 9) A -type tube. The energy is given in
units of the frequency of a 3 µm laser ( hω0 = 0.41 eV). The hori-
zontal axis represents the wave vector times the translational pe-
riod a0 = 2.46 Å. The pink-filled area in the background shows
the DOS. (b) Harmonic yield from (9, 9) armchair driven by a
3 µm wavelength, 28 fs (2.9 cycles) FWHM pulse at 5 × 1010
W/cm2 peak intensity. The solid (dashed) line represents the to-
tal (intraband) harmonic spectrum. (c) Contribution to the total
harmonic yield from transitions between m bands.

Figure 4.1(b) shows the calculated HHG yield from a (9,9) A -tube at
a driving peak intensity of 5× 1010 W/cm2 and 3 µm wavelength.2

The emergence of a spectral plateau extending up to a cut-off fre-
quency corresponding to the seventh harmonic is clearly observed.
Only odd-order harmonics are present in the spectrum, as a conse-
quence of the centrosymmetric structure of the system. All harmonics
are linearly polarized in the direction of the tube axis. In Fig. 4.1(c)
we show the contributions to the emission spectra corresponding to
different values of m. The coherent addition of the contributions from
all m-values results in the spectra shown in (b). Note that the higher
order harmonics are given by the contribution from bands |m| = 8,

2 The results included in this section were reported in our publication of Ref. [135].
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which include the first van Hove singularity. Remarkably, the band
gap at the first van Hove singularity is nearly resonant with a 5ω0

transition, thus enhancing the interband component of the high har-
monic emission around this resonance. The other points of the BZ
contribute to the lower order harmonics mainly with intraband radi-
ation.

According to Eqs. (4.2) and (4.3), the valence and conduction bands
are coupled during the interaction with the laser field by the matrix
element Dm, which in the case of A -type tubes has the form [138, 139]:

Transition matrix
element for A -type
tubes

Dm(k) = −
a0qe

2

sin
(

a0k
2

)
sin
(mπ

n

)
1+ 4 cos

(
a0k
2

) [
cos
(mπ

n

)
+ cos

(
a0k
2

)] . (4.11)

Fig. 4.2 depicts Dm in the (9, 9)-armchair tube for different band in-
dices m. Note that Dm is null for m = 0, n at any a0k ∈ (−π,π ], thus de-
coupling the dynamical equations (4.2) and (4.3). We assume that ini-
tially the states bellow the Fermi level are fully occupied, C−

m (k, 0) = 1,
and those at the conduction band are empty, C+

m (k, 0) = 0. Since the

-π/�-�π/�-�π/�-�π/�-π � π/� �π/� �π/� �π/� π

-�

-�

-�

�

�

�

�

m = 0, 9
m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7
m = 8

m = -1
m = -2
m = -3
m = -4
m = -5
m = -6
m = -7
m = -8

a0k

Figure 4.2: Matrix element Dm(k) corresponding to the (9,9) armchair tube
for different m values. The vertical dotted lines at a0k = ±2π/3
indicate the band’s crossing at the Dirac points for m = 9.

states B+
n (A+

0 ) and A+
n (B+

0 ) are decoupled, their population remains
in B+

n (A+
0 ) and contributes to HHG only through intraband transi-

tions. This conclusion is a consequence of the σh symmetry-induced
selection rule. The coupling is symmetric with respect to a0k = 0 for
bands with equal |m|, and shows peaks of magnitude increasing with
|m| at the wave vectors corresponding to the first four van Hove sin-
gularities in the DOS. The absolute maximum of Dm is reached at the
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first van Hove singularity, which in the zone folding approach corre-
sponds to the bands located closest to the Dirac points, |m| = n − 1.
This suggests that the interaction with the driver laser is much more
efficient for these states and, therefore, that the interband emission
spectra is mainly due to transitions within states |m| = n−1. Note that
the increased band curvature near the Dirac points entails sharper
van-Hove singularities, which also enhances the efficiency of the inter-
band transitions. In contrast, in 1D models with finite gaps intraband
currents are the main source of harmonic radiation [64].

Figure 4.3 shows the harmonic yield from A -tubes of different di-
ameters. The basic features of the spectra are maintained, although
the efficiency of the harmonics near resonance (5th and 7th) increase
with the tube diameter. Note that the slope of the bands closest to
a0k = ±2π/3 increases with the tube diameter, and the number of
electronic states available at the maximal values of Dm also increases.
As the diameter increases, the BZ points of bands |m| = n − 1 fall
closer to the Dirac points and, therefore, Dm approaches the singu-
larity, which explains the higher efficiency of the harmonics. In addi-
tion, as the diameter increases, the resonance near the 5th harmonic is
red-shifted since the gap energy of the |m| = n − 1 bands is reduced.
Finally, note also that the cut-off barely changes, independently of the
size of the nanotube.

Figure 4.3: Harmonic yield from (9, 9), (10, 10), (11, 11) and (12, 12) armchair
tubes. The diameters of these tubes are dt = 1.22, 1.36, 1.50 and
1.63 nm, respectively. The electric field parameters are those in
Fig. 4.1.

4.2.2 Zigzag nanotubes

While armchair tubes correspond to a chiral angle θ = 30◦ and al-
ways have metallic character, zigzag nanotubes (Z -tubes) are defined
by θ = 0◦ and can be either metallic or semiconducting, depending
on the chiral index (n, 0). The anisotropic dispersion of the graphene
bands at the vicinity of the Dirac points results in three different types
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of Z -tubes. In metallic tubes with n ≡ 0 (mod 3) the valence and con-
duction bands |mF| = 2n/3 are degenerated at the Fermi level, and the
non-degenerated bands closest to them, m = mF± 1, present different
dispersion despite being located symmetrically with respect to K, as
can be seen in Figs. 2.12(a) and 4.4(a). The same dispersion asymme-
try leads to a variation of the transition energies for semiconducting
tubes, with different behavior depending on whether n ≡ 1 or n ≡ 2
(mod 3), as shown in Figs. 2.12(b) and 4.4(b), and Figs. 2.12(c) and
4.4(c), respectively.

Figure 4.4: π-band structure of (a) (12, 0), (b) (13, 0) and (c) (14, 0) zigzag
nanotubes. The energy is given in units of the frequency of a 3
µm laser driver ( hω0 = 0.41 eV). The horizontal axis represent
the wavevector times the translational period a0. Note that for all
Z -tubes, a0 = 4.26Å. The pink colored area in the background is
the DOS.

All Z -tubes present band diagrams similar to those shown in Fig.
4.4. The zero-slope points are always at a0k = 0, where the DOS shows
the van Hove singularities. A remarkable feature of zigzag tubes is the
absence of symmetry-related restrictions to interband transitions for
z-polarized beams, as valence and conduction bands conform multi-
plets or singlets with same σv and opposite σh parities. The umklapp
rule applicable to intraband transitions exceeding the first Brillouin
is the same than for A -type tubes: m ′ = m± n (mod 2n) [137]. In the
vicinity of the Fermi level, the DOS is null for semiconducting species
and present a small non-null value for metallic tubes, much alike the
A -type nanotubes.
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For Z -tubes, the matrix element that couples the valence and con-
duction bands in Eqs. (4.2) and (4.3) is:Transition matrix

element for Z -type
tubes

Dm(k) = −
aqe
2

sinΘk
m sinΞk

m

1+ 4 cosΘk
m
[
cosΞk

m + cosΘk
m
] (4.12)

where

Θk
m =

πm
2n

+

√
3ak
4

(4.13)

Ξk
m =

3πm
2n

−

√
3ak
4

(4.14)

being a the lattice constant of graphene. As happens in A -type species,
in zigzag nanotubes Dm is symmetric with respect to a0k = 0 for
bands with equal |m|. Fig. 4.5(a) shows the matrix element Dm for
the (12, 0) metallic tube, which diverges at a0k = 0 for |m| = mF and
reaches maxima of decreasing magnitude for the rest of m values.
Note that the maximal values of Dm are always located at the prox-

m = 6
m = 7
m = 8
m = 9
m = 10
m = 11
m = 12

-π - � π
�

- π
� - π

� � π
�

π
�

� π
�

π

-�

-�

�

�

�

Sp
ec

tra
l i

nt
en

sit
y 

(a
rb

. u
ni

ts)

a0k

(b)

Sp
ec

tra
l i

nt
en

sit
y 

(a
rb

. u
ni

ts)

Harmonic order (laser frequency units)

(c)

(a)
(12,0) Total Intraband

� � � � � �� �� ��

��-��

��-��

��-�

��-�

|m| = 7
|m| = 8
|m| = 9
|m| = 10

� � � � � �� �� ��

��-��

��-��

��-�

��-�

Figure 4.5: (a) Matrix element Dm(k) corresponding to the (12, 0) zigzag
tube for different m values. The inset shows the relative loca-
tion of the different bands with respect to K. (b) Harmonic yield
from (12, 0) Z -tube driven by a 3µm wavelength, 28 fs (2.9 cycles)
FWHM pulse at 5× 1010 W/cm2 peak intensity. (c) Contribution
to the harmonic yield from the different values of |m|.

imity of a0k = 0. Semiconducting species show a similar behavior,
except for that the matrix element remains finite in all bands, as can
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be seen from Figs. 4.6(a) and 4.7(a). Since Dm is in general nonzero
in Z -tubes, the dipole emission consists of both intraband and inter-
band contributions for all m. As happens also in A -tubes, interband
transitions take place mostly in the vicinity of a0k = 0, where both
Dm and the DOS reach maximal values.
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Figure 4.6: (a) Dm(k) corresponding to the (13, 0) semiconducting zigzag
tube for different m values. The location of the different bands
with respect to the point K is shown in the inset. (b) Harmonic
yield from (13, 0) Z -tube. The contributions to the total harmonic
yield from the different values of |m| are shown in panel (c). The
parameters of the drivers are the same than those in Fig. 4.5.

Fig. 4.5(b) shows the harmonic yield from the metallic (12, 0) Z -tube
at a driving peak intensity of 5× 1010 W/cm2 and 3 µm wavelength.
The spectrum shows the clear emergence of the 6-photon resonance,
the lower harmonics (3rd and 5th) almost suppressed, and the higher
ones well resolved. The intraband component of the emission spec-
tra shows a noisy structure extending to arbitrary high frequencies,
which is a consequence of the divergence of the transition matrix el-
ement at the Dirac points. This unphysical spectrum is cancelled by
the interband emission, so that the total spectrum remains finite.

In Fig. 4.5(c) we show the contributions related to the different val-
ues of |m|. Note that the total yield is almost entirely due to the con-
tribution from |m| = 9 bands and corresponds to states packed at the
first van Hove singularity, where Dm presents its maximal value. As
for the A -type case, the other bands, where Dm is weaker, contribute
only to the lower harmonics. As a conclusion, the high-order emis-
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sion spectra in metallic Z -type nanotubes is mainly due to transitions
between states |m| = |mF|+ 1 at wave vectors near the first van Hove
singularity, similarly to what happens in armchair tubes.
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Figure 4.7: (a) Dm(k) corresponding to the semiconducting (14, 0) Z -type
tube. The inset shows the location of the different bands relative
to the point K. (b) Harmonic yield from (14, 0) Z -tube. (c) Contri-
butions to the total harmonic yield from the different values of
m. The parameters of the drivers are the same than those in Fig.
4.5.

The emission spectra from semiconducting tubes belonging to the
two different types, n ≡ 1 and n ≡ 2 (mod 3), are shown in Figs.
4.6(b) and 4.7(b), respectively. The peak intensity and wavelength of
the driving field remain the same as those employed in the cases pre-
viously discussed in this section. We find that both spectra are similar,
but the efficiency is lower for the tube with smaller radius (13, 0). Sub-
tle differences between the spectra are caused by the different band
dispersion at the two first van Hove singularities, since they appear
at opposite sides of the K point. Note that the intraband component
does not contribute to the higher harmonic orders in either case, as it
also happens in metallic A and Z nanotubes. Note also that the spec-
tra of these two semiconducting tubes show signals near the 2nd and
4th harmonics, which are resonant with the band gap at the two first
van Hove singularities, see Figs. 4.4(b) and (c).

Finally, Figs. 4.6(c) and 4.7(c) show the contributions from the dif-
ferent bands. In both cases, the total yield is effectively given by the
coherent addition of two contributions, corresponding to bands at the
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first and second van Hove singularities, where Dm presents maximal
values. This feature is not observed in armchair or metallic zigzag
tubes, where only the contribution from the band crossing the first
van Hove singularity is relevant to HHG. The resonances at the first
and second van Hove singularities (near the 2nd and 4th harmonics,
respectively) are clearly observed in both figures. These resonances
cause the complex structure of the spectral region below the 5th har-
monic.

Figure 4.8 shows additional information on the dependence of HHG
with the nanotube’s diameter. As a first result, note that the cut-off
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Figure 4.8: Harmonic yield from metallic and semiconducting zigzag tubes
of different diameters. (a) Metallic tubes with diameters 1.18, 1.41
and 1.65 nm, respectively. (b) Semiconducting type n ≡ 1 tubes
with dt = 1.24, 1.49 and 1.73 nm. (c) Type n ≡ 2 tubes with
diameters 1.33, 1.57 and 1.81 nm.
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frequency is barely affected by the diameter, as it was also the case
in armchair tubes. For metallic tubes, shown in Fig. 4.8(a), the spec-
tral efficiency is found to increase with the tube diameter. The lower
order harmonics are better resolved and red-shifted as the diame-
ter increases, since the resonance with the gap energy of the bands
m = mF±1 is reduced. These results are in line with those already
obtained for A -tubes and suggest, as a general rule, that in metallic
tubes the interband component of the emission dipole becomes more
relevant as the diameter increases, since the first van Hove singular-
ity is located closer to the Dirac points and, therefore, the band gap
is smaller and the matrix element is stronger. For semiconducting
tubes, there is no clear correlation between the nanotube diameter ei-
ther with the spectral efficiency or the harmonic peak resolution, see
Figs. 4.8(b) and (c). The basic features of the spectra are maintained,
and the same spectral complexity at the low frequency spectrum is
observed, independently of the diameter. Note that, as the diameter
increases, the differences amongst the band structure of the tubes
become less relevant at the vicinity of the Fermi level, as it also hap-
pens in metallic nanotubes. This conclusion explains why we do not
observe a monotonous increase of the spectral efficiency with the di-
ameter.

4.2.3 The effect of chirality

Let us now study the dependence of the variation the chiral angle
0◦ < |θ| < 30◦ on HHG. General C -type tubes correspond to indices
(n1, n2) such that n1 6= n2 and n1, n2 6= 0. Like zigzag species, chi-
ral tubes can be either metallic or semiconducting, though they do
not posses mirror reflection planes. Therefore, in the domain a0k ∈
(0,π), the electronic bands are singlets with opposite (±) U-parity,
and there are no symmetry-related restrictions to optical transitions
with z-polarized light, as was the case of the Z -type tubes.

Fig. 4.9 shows the BZ, the band structure and the transition ma-
trix element corresponding to the metallic (8, 2) C -type tube. Metallic
chiral SWNTs with n1 − n2 ≡ 0 (mod 3) exhibit band degeneracy at
the Fermi level at a0kF = 2π/3 and mF = nr (mod q) when R = 3, or
a0kF = 0 and mF = ±q/3 if R = 1 [85], where the parameters n, r, q and
R are defined in section 2.2. The matrix element Dm diverges at these
points where the DOS presents a small non-zero value, much alike Z -
tubes. The van Hove singularities are located at wave vectors where
Dm reaches finite maximal values. Similarly, semiconducting C -type
tubes show the same behavior than their achiral counterparts, with
Dm maximal at the proximity of the van Hove singularities. Therefore,
the conclusions drawn above for the Z -species are also applicable to
C -type tubes.
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Figure 4.9: (a) First Brillouin zone of the (8, 2) C -type tube. The structural pa-
rameters of this nanotube are: dt = 7.18 Å, a0 = 6.51 Å, θ = 11◦,
n = 2, r = 11, q = 28 and R = 3. (b) Band structure of the
chiral tube (8, 2). The energy is given times the tight binding in-
tegral γ0. The red line emphasizes the degenerated |m| = 6 bands,
while bands at the first, |m| = 7, and second, |m| = 5, van Hove
singularities are indicated by blue and green lines, respectively.
(c) The transition matrix element Dm(k) corresponding to these
highlighted bands is shown in (c).

Figure 4.10(a) shows the comparison of the harmonic yields from
A , Z and C -type SWNTs of diameters ∼ 0.95 nm at a driving peak
intensity of 5× 1010 W/cm2 and wavelength 3 µm. The yield from
the semiconducting chiral species (10, 3), θ = 13◦, is clearly distin-
guishable from the spectra of the other two metallic tubes (7, 7) and
(12, 0), which are very similar. All the spectra maintain the features al-
ready observed in metallic and semiconducting nanotubes, namely, (i)
similar cut-off frequency, (ii) higher harmonic yield for the semicon-
ducting species, and (iii) enhancement of the low harmonic spectrum
in semiconducting species due to resonance. Additionally, Fig. 4.10(b)
shows the harmonic yield from three tubes of greater diameter ∼ 1.10
nm, generated by the same laser pulse. Again, it is the semiconduct-
ing tube which gives the most efficient spectra. In this case, the chiral
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Figure 4.10: (a) Comparison of harmonic yields from (7, 7) armchair, (10, 3)
chiral and (12, 0) zigzag. The achiral species are metallic, while
the chiral is semiconducting. The diameters of the three tubes
are similar: 0.95 nm, 0.93 and 0.94 nm, respectively. (b) Har-
monic yields from A (8, 8), C (12, 3) and Z (14, 0). In this case, the
zigzag tube is semiconducting, whilst the other two are metal-
lic. The diameters of the three tubes are 1.09, 1.08 and 1.10 nm,
respectively. In both panels, the driving pulse is the same than
for the rest of cases analyzed in this section.

tube (12, 3), θ = 11◦, is metallic and its harmonic yield is quite similar
to that produced by the metallic (8, 8) armchair. Finally, in Fig. 4.11

we compare the harmonic yield from two semiconducting nanotubes
of different chirality with diameters ∼ 0.85 nm. The spectral struc-
ture and overall efficiency of all harmonic orders is quite similar in
both cases, though they show some differences in the 5th order and in
the perturbative spectral tail. In any case, those differences are much
less significative than the ones observed between semiconducting and
metallic tubes of the same diameter.

As a conclusion, for nanotubes of the similar diameter, semicon-
ducting species lead to more efficient HHG than their metallic coun-
terparts. In fact, tubes with similar diameter and same conducting
character generate similar spectra, independently of their chirality.
Thus, the harmonic spectra is very sensitive to the variation of the
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Figure 4.11: Harmonic yield from (8, 4), θ = 19◦ chiral and (11, 0) zigzag.
Both nanotubes are semiconducting species with diameters 0.83
and 0.86 nm, respectively. The parameters of the driver are the
same than in Fig. 4.10.

chiral angle θ only if it changes the tube from semiconducting to metal-
lic and vice versa. Otherwise, variation of θ has little impact on the
harmonic response.

4.2.4 Dependence on the driving intensity

All the spectra obtained so far have been calculated using the same
mid-IR 8-cycle pulse with 5× 1010 W/cm2 peak intensity and 3 µm
wavelength. Note that the cut-off frequency is 7ω0 in all cases, re-
gardless the size, chirality or conducting character of the nanotube.
In order to explore the dependence of HHG with intensity, we plot
in Fig. 4.12(a) the spectral yield from (16, 0) Z -tube irradiated by a
driving pulse of the same duration and wavelength, but with peak in-
tensity of 5× 1012 W/cm2. The spectral plateau is extended towards
the XUV, although the tangled structure already observed for lower
intensities is even more pronounced.

We show in Fig. 4.12(b) the scaling of the cut-off frequency with
the driving field intensity. As the use of arbitrary large intensities is
precluded by the damage of the sample, we indicate with a green
background the intensities for which nanotubes are expected to have
damage, assuming that the damage fluence threshold is 150 mJ/cm2

[124]. The dependence of the cut-off frequency with the intensity is
similar to that found in graphene, see section 3.3. Note that the cut-
off frequency saturates at the largest intensities. The saturated cut-
off corresponds to a photon energy of ' 12.7 eV, which is the gap
corresponding to the maximum oscillation of the quasimomentum
κt of electron-hole pairs generated at the first van Hove singularity,
corresponding to the interband transition E−5 → E+5 , see the inset
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Figure 4.12: (a) Harmonic yield from (16, 0) Z -tube driven by a 3µm wave-
length, 28 fs (2.9 cycles) FWHM pulse at 5× 1012W/cm2 peak
intensity. (b) Cut-off scaling with intensity from (16, 0) zigzag ir-
radiated by an 8-cycle mid-IR pulse with 3µm wavelength. The
blue diamonds are the result of the numerical integration of
the TDSE. The red circles are given by the semiclassical SPAM
considering the the electron-hole pair is created at the first van
Hove singularity: a0k = 0, |m| = 11. The green filled area area
corresponds to intensities above damage threshold. The inset
shows the band structure at |m| = 5 and 11, and the maximum
excursion of the e-h hole pair in the BZ corresponding to inten-
sity points A, B and C.

of Fig. 4.12(b).3 As in graphene, there is no simple law relating the
cut-off frequency with the field amplitude. In Fig. 6 of section 4.4
we present similar results for the (9, 9) armchair nanotube that were
reported in our publication of Ref. [135].

To summarize our findings in this section, for SWNTs of the same
diameter, semiconducting tubes are more efficient sources of high-
order harmonics than metallic species. In the former, the spectral
yield is the result of the coherent addition of contributions from
states packed at the first and second van Hove singularities, while
only states at the first van Hove singularity contribute in the latter.

3 According to the umklapp rule, band m = 11 shifts to m ′ = 5 if the intraband oscilla-
tion exceeds the first Brillouin zone through a0k = π.



4.3 the generation mechanism 115

While the lower order harmonics are caused both by intraband and
interband dynamics, the higher-orders are due to interband transi-
tions. The spectra obtained from tubes of the same diameter are vey
similar for SWNTs with the same conduction character (semiconduct-
ing or metallic). Therefore, it is metallicity rather than chirality what
influences the spectral yield. Although it is observed that for metal-
lic tubes the spectral efficiency increases with the diameter up to a
certain value, the spectra of semiconducting tubes does not show any
significative correlation with the tube diameter, neither in the effi-
ciency nor in the resolution of the harmonics. As intensity increases,
the spectral plateau is extended towards the XUV regime, with a non-
trivial dependence of the cut-off scaling, but showing a saturation of
the cut-off photon energy, corresponding to the maximum gap reach-
able for electron-hole pairs generated at the first van Hove singularity
in their quiver motion through the BZ.

4.3 the generation mechanism

As in the case of graphene, we have found that the spectral features of
the radiated harmonics can also be explained in semiclassical terms.
For this purpose we use the saddle-point approach model (SPAM)
introduced for graphene in section 3.5 [106, 140]. The SPAM demon-
strated that the high-harmonic spectra in graphene results from the
recombination of electron-hole pairs, created during the non-adiabatic
crossing near the Dirac points. To extend this description to SWNTs,
we shall replace this condition by the non-adiabatic crossing through
the first van Hove singularity, which we consider located at band m.
In nanotubes, therefore, the SPAM describes the q-th order harmonic
emission as the Fourier transform of the dipole acceleration, and is
computed from the k-space integral

d̃lm(qω0) =
iD m
0

qe

∫∞
−∞
∫

k
e

i
 h [Sm(k,t,tH)+q hω0t]Dm(κt) dk dt, (4.15)

where Sm(k, t, tH) =
∫t

tH
[E+

m (κτ) − E−
m (κτ)] dτ, κt is the kinetic quasi-

momentum as defined by Eq. (3.16), D m
0 is a constant, and tH is the

time of crossing the first van Hove singularity, when the electron-hole
pairs are generated. Note that Eq. 4.15 is the restriction of Eq. 3.52,
derived in section 3.5 for graphene, to the SWNT’s one-dimensional
manifold. However, there is the important difference that the role of
the Dirac points in graphene is replaced by that of the first van Hove
singularity. Bearing this in mind, the derivation of Eq.4.15 is straight-
forward following the methodology described in section 3.5.

Taking into account that the main contributions to the integral in
Eq. (4.15) are the stationary-phase points [49, 65, 140], the saddle-
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1

2

3

4

Figure 4.13: Mechanism for high-order harmonic generation in SWNTs. (1)
Upon interaction with the electromagnetic field, the electron
quivers in the valence band following the trajectory defined by
κt. (2) Eventually, the electron reaches the first van Hove singu-
larity and is promoted to the conduction band, leaving a hole.
(3) The electron-hole pair oscillates in momentum space. (4) The
harmonic emission takes place when the electron and hole tra-
jectories overlap in direct space emitting a photon resonant with
the band-gap.

point analysis results in the harmonic emission occurring when the
following conditions are fulfilled:∫ t

tH
v+m (κτ) dτ =

∫ t

tH
v−m (κτ) dτ, (4.16)

and

E+
m (κt) − E−

m (κt) = q hω0, (4.17)

where the terms v±m (κt) =
1
 h
∂
∂k E±m (κt) correspond to the velocities of

the valence and conduction band electrons, respectively. In this semi-
classical framework, conditions (4.16) and (4.17) define the generation
mechanism for HHG in SWNTs, see Fig. 4.13: (i) as a consequence of
the interaction with the field, the electron initially at point k in the va-
lence band oscillates with amplitude κt − k; (ii) at time tH the electron
crosses the first van Hove singularity, where Dm reaches its maximal
value, and is promoted to the conduction band, leaving a hole; (iii)
according to Eq. (4.16), the electron-hole pair will quiver in the mo-
mentum space until time t, when their trajectories intersect in the real
space; and (iv) upon recombination, a photon resonant with the band
gap at κt is emitted, thus fulfilling Eq. (4.17).

Figure 4.14 shows the classical trajectories corresponding to two
electrons, with different initial positions in the Brillouin zone, kA and
kB, which reach the first van Hove singularity of a semiconducting
(16, 0) Z -tube at times tHA and tHB . The trajectories correspond to a
3 µm wavelength pulse, with intensity 5 × 1011 W/cm2. Note that
for the trajectory A, the electron and the hole created at tHA meet in
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direct space at the final time t. In contrast, in B, the electron and the
hole do not meet at t. According to Eq. (4.16), the photon emission at
t is effective only for the case A.

Figure 4.14: (a)–(b) Electron and hole trajectories corresponding to points
A and B illustrated in (c). The trajectory of the electron (black
solid line) and hole (dashed line) are represented as a function
of time. The figure corresponds to a driving laser pulse of 3 µm
wavelength with peak intensity of 5× 1011 W/cm2 targeting a
(16, 0) zigzag tube. (c) Energy map of the maximum gap energy
of the quivering electron for the classical trajectories computed
with the SPAM, being tH the time of the creation of the electron-
hole pair and t the time of the potential photon emission. The
red area represents the points where the electron-hole trajecto-
ries intersect in direct space at time t and, therefore, where there
is an actual photon emission.

Figure 4.14(c) shows a map of the energy gap as a function of the
initial time tH, when the electron-hole pair is created, and the final
time t, when the pair annihilates. Points A and B in the energy map
correspond to the cases shown in Figs. 4.14(a) and (b), respectively.
We have colored in red the points (tH, t) corresponding to electron-
hole pairs, created at tH, whose trajectories overlap in the same crystal
cell at time t and, therefore, are allowed to recombine. These colored
areas are, therefore, in compliance with both conditions (4.16) and
(4.17), and correspond to situations when the harmonic photon can be
effectively emitted. According to this map, point A corresponds to an
electron-hole pair created at tH ' 0.4T which emits a' 17 hω0 photon
when recombined at t ' 0.9T . Note that, as it happens in B, other
points in the map may potentially emit higher frequency harmonics
at time t, but the photon emission is not possible, since the electron-
hole pairs are spatially apart. The maximal photon energy is therefore
given by the energy maxima in the map of Fig. 4.14(c) constrained to
the red area. According to this, Fig. 4.14(c) predicts the harmonic cut-
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off at ' 21 hω0, smaller than the maximum gap that the electron-hole
pair access during its oscillation in the reciprocal space (' 23 hω0).
In Figure 4.12(b) we have already shown this cut-off prediction (red
circles) in comparison with the results of the integration of the TDSE,
Eqs. (4.2) and (4.3). As it can be noticed, this cut-off prediction is in
excellent agreement with the results of the numerical calculations.

We show in figure 4.15 the SPAM energy maps at 3 µm wavelength
for two additional intensities. As it also happens with single layer
graphene, we observe that for increasing intensity the topology of
the red-colored region, i. e. the condition for the electron-hole overlap
at time t, becomes more complex. It is interesting to note that the
same harmonic may be emitted by two or more trajectories within the
same half cycle of the driving field. In particular, Fig. 4.15(b) shows
four contributions, labelled from a to d, for the maximum (cut-off)
frequency. In the publication included in section 4.4 we show similar
maps for the metallic nanotube (9, 9) armchair.

Figure 4.15: Energy map for the emitted harmonic photon from a (16, 0)
zigzag tube according to SPAM for driver peak intensities of
(a) 5× 1012 and (b) 1013W/cm2. The points corresponding to
intersecting electron-hole trajectories are highlighted in red.

4.4 publications

To conclude the chapter, we include the full version of the article pub-
lished in 2020 in the journal Optics Express under the title "High har-
monic generation in armchair carbon nanotubes" [135]. In this article we
reported the results and conclusions drawn from the study of HHG
in A -type nanotubes. According to the requirements of the University
of Salamanca, the Spanish version of the abstract is also included.
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High harmonic generation in armchair carbon nanotubes

Resumen

En este trabajo presentamos un estudio sobre la generación de ar-
mónicos de orden elevado (HHG) en nanotubos de carbono de pared
simple (SWNT) tipo armchair generados por pulsos láser ultracortos
en el infrarrojo medio. Para un SWNT con índices quirales (n, n), de-
mostramos que el proceso de HHG está dominado por las bandas
|m| = n − 1 y que la frecuencia de corte se satura al incrementar la
intensidad del láser, como ocurre en el caso del grafeno. En conse-
cuencia, la HHG en los nanotubos armchair se describe a partir de
un sistema periódico unidimensional, cuya emisión de alta frecuen-
cia puede modificarse mediante el control de sus parámetros estruc-
turales. Además, mostramos que el mecanismo de HHG en nanotu-
bos tiene similitudes con el del grafeno. Sin embargo, como diferen-
cia principal, observamos que la excitación del par electrón-hueco en
los SWNT está conectada con transiciones no adiabáticas de los elec-
trones de valencia de las bandas |m| = n − 1 a través de la primera
singularidad de van Hove, que tiene un rol similar al de los puntos
de Dirac en el grafeno.
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Abstract: We study high-order harmonic generation (HHG) in armchair-type single-wall carbon
nanotubes (SWNTs) driven by ultrashort, mid-infrared laser pulses. For a SWNT with chiral
indices (n, n), we demonstrate that HHG is dominated by bands |m| = n− 1 and that the cut-off
frequency saturates with intensity, as it occurs in the case of single layer graphene. As a
consequence, HHG in SWNTs can be described effectively as a one-dimensional periodic system,
whose high-frequency emission can be modified through the proper control of the structural
parameters. Additionally, we show that the HHGmechanism in nanotubes has some similarities to
that previously reported in single layer graphene. However, as a main difference, the electron-hole
pair excitation in SWNTs is connected to the non-adiabatic crossing through the first van Hove
singularity of the |m| = n− 1 bands, instead of the crossing through the Dirac point that takes
place in graphene.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. introduction

Carbon nanotubes are carbon allotropes with quasi-one dimensional periodic structure. Their
remarkable mechanical, electrical and thermal properties have attracted considerable interest
since their discovery at the early 90’s. They were first reported as carbon microtubules, made of
concentric shells and diameters ranging from a few to several hundred nanometers [1]. Some years
later, single-wall carbon nanotubes (SWNTs) were synthesized rolling monolayer graphene [2,3].
SWNTs have diameters around the nanometer and an extraordinarily perfect crystalline structure.
SWNTs are also interesting topological objects, with electronic, optical and structural properties
depending on the rolling direction (chiral angle) of the graphene sheet. These somewhat complex
structures, which exhibit tens to hundreds of atoms in the unit cell, have well defined symmetries
that easy the understanding of their physical properties [4,5].

Recently, the nonlinear optical response of periodic systems to intense mid-infrared radiation
has captivated the interest of the scientific community. High-order harmonic generation (HHG) in
crystalline solids has been a subject of interest already at the early days of the study of strong-field
phenomena, either in realistic bulk solids [6] or dimensionally reduced models [7,8]. Experiments
in crystalline solids subjected to intense fields have been demonstrated to emit high harmonics
[9], resulting from the non-perturbative electronic response to the driving field. HHG has been
extensively studied in atomic and molecular systems [10]. In gases, harmonics are radiated upon
the recollision of electrons, that are first ionized, next accelerated and finally, redirected to the
parent ion by the electromagnetic field [11,12]. The absence of a privileged resonance results
in well defined plateau structures in the harmonic spectra extending up to cut-off frequencies
at the extreme ultraviolet (UV) or even, at the soft x-rays regime [13,14]. In finite-gap solids,
interband HHG follows a mechanism similar to that in gases or molecules, but ionization is
replaced by the tunnel excitation from the valence to the conduction band, and the harmonic
radiation occurs when the exited electron recombines with its hole [15]. Single layer (gapless)
graphene has also been recently demonstrated to produce high order harmonics when interacting

#394714 https://doi.org/10.1364/OE.394714
Journal © 2020 Received 8 Apr 2020; revised 7 Jun 2020; accepted 8 Jun 2020; published 19 Jun 2020
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with a strong mid-infrared (IR) field [16]. It has been shown that HHG in this system differs from
bulk solids, as the first step (tunnel excitation) is replaced by electron-hole pair creation during
the non-adiabatic crossing of the momentum-space trajectories near the Dirac points [17]. This
fact introduces an extraordinary complexity, since the initiation of the HHG process is not linked
to the field’s amplitude maxima, when tunnel excitation is more likely. Graphene shows also an
interesting non-linear anisotropy, allowing for photon spin conversion and ultrafast polarization
changes in the emitted harmonic spectra [18].

Despite the considerable effort in the study of HHG in graphene and other 2D materials, similar
studies for technologically feasible lower dimensional geometries —quasi 1D— are not abundant
[19]. In this paper we present theoretical results of HHG in armchair-type SWNTs induced by
few-cycle IR laser pulses. We demonstrate that, in this context, SWNTs behave effectively as
one-dimensional two-band systems, whose properties can be modified with the choice of the
SWNT’s geometry. Remarkably enough, a recent experimental report shows that the high order
harmonic emission spectra can be controlled either by tuning the electronic structure of SWNTs
or carrier injection using electrolyte gating approaches, with up to the 11th-order harmonic being
observed in semiconductor tubes of relative large band gap ∼ 1.26 eV [20].
The paper is organized as follows: First, we briefly review the structural characteristics of

SWNTs, with special emphasis on their symmetries and the zone-folded electronic band structure.
Next, in section 3 we present our method for the numerical integration of the time-dependent
Schrödinger equation (TDSE) in SWNTs. In section 4 we present and discuss our results for
the high harmonic spectra and, using a semiclassical model, we describe the HHG mechanism
along with the dependence of the cut-off frequency with the intensity. Finally, we present our
conclusions.

2. Structure of A-type single-wall carbon nanotubes

For diameters above one nanometer, the effects of curvature can be neglected and the SWNT’s
electronic structure can be derived from that of single-layer graphene [21,22]. The nanotube
corresponds to a graphene sheet rolled along the direction pointed by the chiral vector Ch =
n1a1 + n2a2, (n1, n2) ∈ Z2 being the tuple of chiral indices, and a1 = a0(

√
3/2, 1/2) and

a2 = a0(
√
3/2,−1/2) the graphene’s primitive vectors, with a0 = 2.46 Å. The chiral indices

(n1, n2) define the nanotube diameter dt = |Ch |/π, the chiral angle θ between Ch and a1,
0◦ ≤ |θ | ≤ 30◦, and the translational period along the tube axis a =

√
3a0

√
n21 + n1n2 + n22/NR,

where NR = gcd (2n1 + n2, 2n2 + n1). A-type —armchair— nanotubes correspond to chiral
indices (n, n) and |θ | = 30◦, while (n, 0) denotesZ-type —zigzag— tubes, with |θ | = 0◦. Both
zigzag and armchair tubes are achiral species, unlike C —chiral— nanotubes, where n2 , n1
(ni , 0).

Figure 1 shows the structure of a (9, 9) armchair SWNT in (a) real and (b) reciprocal space,
respectively. Symmetries of SWNTs are directly related to chirality. All nanotube species show
a-period translational symmetry along the tube axis (z axis, by convention), a screw axis of pure
rotational symmetries, which in the case of A-type nanotubes coincides with the tube axis, and
π-rotational symmetry around the U-axis, transverse to z. In addition, Z and A-type tubes
present mirror symmetries in the horizontal xy-plane (σh) and vertical yz-plane (σv). Figure 1(a)
shows the essential symmetry elements of armchair nanotubes. Note that σh = U · σv.
The translational periodicity implies the conservation of the quasi-momentum along the

nanotube axis k. Besides, the rotational symmetry around the z-axis implies the conservation
of m, the z-projection of the electron’s orbital angular momentum. For A-type nanotubes, the
mirror reflection planes impose well-defined parities to the electronic states: the parity with
respect to σv is denoted as A for even states, and B, for odd ones, while the parity under σh
reflections is denoted by ± for even and odd states, respectively. Therefore, the state of the
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Fig. 1. (a) View of the structure and symmetries of a (9,9) armchair nanotutube. Magenta
and green circles represent the atoms in the two sublattices of the unrolled graphene sheet.
(b) Allowed k vectors in the first Brillouin zone of (9,9) armchair tube (green lines). This
nanotube has 36 C-atoms in its unit cell, q = 18, m = 0,±1,±2, . . . ,±8, 9 and dt = 12.2 Å.
The red hexagon shows the boundary of the graphene’s BZ along with the high symmetry
points K and Γ.

electron corresponds to a particular irreducible representation of the line group, characterized by
the set {k,m,A/B,±}.
Curvature effects being neglected, SWNT’s Brillouin zone (BZ) can be constructed from

graphene’s using the zone-folding approach, i.e. considering the nanotube as graphene with
periodic boundary conditions along the circumferential direction [4,5]. As a result, the BZ of the
nanotube corresponds to a set of q —the number of hexagons in the unit cell— straight lines
with length 2π/a, parallel to the tube axis and separated by constant distances 2/dt. Each line is
labelled by the index m, which takes integer values in (−q/2, q/2]. As an example, Fig. 1(b)
depicts the BZ of (9,9) armchair. Note that for A-type tubes, the translational period is a = a0.
Within the nearest-neighbor tight-binding approximation, the energy dispersion is given by

E±(k) = ±γ |f (k)|, where γ = 2.97 eV is the hopping parameter and f (k) the complex function

f (k) = e−ia0k⊥/
√
3
(
1 + 2ei

√
3a0k⊥/2 cos

a0k
2

)
, (1)

being k⊥ = 2m/dt the set of wave vectors along the circumferential direction. Figure 2 shows the
band structure of the (9,9) nanotube. Bands are labelled according to the value of |m| and the
parities upon the vertical and horizontal mirror symmetries, A/B and +/− respectively. Bands
with m = 0 and 9, drawn in black, are singlets with + parity, while the rest of bands are doubly
degenerated in the interval a0k ∈ [0, π), with E = A or B parity, and converge at a0k = π. For
ka0 = 0 all states have + parity. A-type (n, n) nanotubes are semimetals, as both valence and
conduction bands are degenerated at the point a0k = ±2π/3 of the band m = n, corresponding to
the Dirac points K and K’ of the graphene’s Brillouin zone, see Fig. 1(b). The density of states
(DOS) profile is shown as a shaded area in the background of Fig. 2. Van Hove singularities
correspond to points where the slope of the energy bands is null.
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Fig. 2. Band structure of (9,9) armchair. The energy is given in units of the frequency of a
3µm driving field (~ω0 = 0.41 eV). The horizontal axis represents the wave vector times the
translational period a0. The solid (dashed) black lines indicate the m = 0 (m = 9) singlets.
The rest of the bands represent double degenerated states E±|m | , with E = A/B. Parities under
σh reflections at a0k = 0 and π are also indicated. The pink-filled profile in the background
shows the density of states, dominated by the van Hove singularities.

3. Interaction with an electromagnetic field

Symmetries ofA-type SWNTs impose selection rules for the optical transitions between electronic
states. If the incident electric field is linearly polarized along the nanotube axis, optical transitions
are essentially vertical, conserve m and A/B, while swap ±. As a result, transitions A+0 → B+0
and B+n → A+n are forbidden in any (n, n) A-type tube. The rest of transitions involving bands
|m| = 1, . . . , n−1 are allowed for any a0k ∈ (0, π], but they are forbidden at a0k = 0. Furthermore,
the electronic intraband dynamics are also subjected to the Umklapp rule m′ = m ± n (mod 2n),
so that m shifts to m′ when the first Brillouin zone is exceeded through a0k = π [4,23].

Let us consider anA-type SWNT being irradiated by a laser pulse F(t) linearly polarized along
the direction of its axis. Within the dipole approximation, the interaction is described by the
time-dependent Hamiltonian H(t) = H0 − qeF(t)z, where qe is the elementary charge. If Φ±m(k; r)
are the eigenstates of the conduction and valence bands, the time-dependent wavefunction can be
expressed as:

Ψ(r, t) =
∑
m

∫
Ψm(k; r, t)dk =

∑
m

∫ [
C+m(k, t)Φ+m(k; r) + C−m(k, t)Φ−m(k; r)

]
dk. (2)

As shown for graphene in [17], introducing the oscillating frame ~κt = ~k − qeA(t)/c, where A(t)
is the vector potential, and using the transformation:

CM
m (κt, t) = C+m(κt, t) − C−m(κt, t) (3)

C̃P
m(κt, t) = e−iφm(κt) [C+m(κt, t) + C−m(κt, t)

]
, (4)
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the dynamical equations can be written in the following form:

i~
d
dt

CM
m (κt, t) =

E+m(κt) + E−m(κt)
2

CM
m (κt, t) +

E+m(κt) − E−m(κt)
2

eiφm(κt)C̃P
m(κt, t) (5)

i~
d
dt

C̃P
m(κt, t) =

E+m(κt) + E−m(κt)
2

C̃P
m(κt, t) +

E+m(κt) − E−m(κt)
2

e−iφm(κt)CM
m (κt, t), (6)

where E±m is the energy of the valence (-) and conduction (+) bands with index m, and φm is the
phase of the complex function f (k) in Eq. (1). The harmonic emission is then proportional to the
second derivative of the emission dipole, which is given by:

d(t) = i
qe
2

∑
m

∫ [
CM∗

m
∂CM

m
∂κt
+ C̃P∗

m
∂C̃P

m
∂κt

]
dk. (7)

In addition, we compute the intraband fraction of the harmonic spectra as:

aintram (t) = q2

~2
F(t)

∫ [
|C+m |2

∂2E+m
∂κ2t

+ |C−m |2
∂2E−m
∂κ2t

]
dk. (8)

4. Results and discussion

Equations (5), (6), (7) and (8) have been integrated numerically considering mid-IR 8-cycle
driving pulses. The electric field is assumed linearly polarized along the nanotube axis and
defined as F(t) = F0 sin2(πt/8T) sin(ω0t) for 0 ≤ t ≤ 8T and 0 at any other t, being F0 the field’s
amplitude, T the period, and ω0 = 2π/T the frequency. The beam is aimed perpendicularly to the
nanotube, thus traversing an atomic-size thickness and therefore, we neglect propagation effects.
Figure 3 shows the calculated HHG yield from (9,9) A-tube at a driving peak intensity of

5 × 1010 W/cm2 and 3 µm wavelength. The pulse duration is 28 fs (2.9 cycles) at full width at
half maximum (FWHM), which is smaller than the decoherence time due to carrier collisions
[24–26]. Figure 3 shows clearly the emergence of a spectral plateau extending up to a cut-off
frequency, which corresponds to the seventh harmonic. Note that the intensity used here is about
two-orders of magnitude below the "transition intensity" to non-perturbative HHG, predicted
in 1D models [7]. Only odd-order harmonics are present in the spectrum, as a consequence of
centrosymmetric structure of the system. All harmonics are linearly polarized in the direction of
the tube axis.

Fig. 3. The solid line represents the total harmonic yield from (9,9) A-tube driven by a
3µm wavelength, 28 fs (2.9 cycles) FWHM pulse at 5 × 1010 W/cm2 peak intensity. The
dotted line indicates the intraband spectral component.
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We can analyze the contribution of the different m bands to the harmonic spectra by considering
the specific form of the component parallel to the nanotube axis of the interband matrix element
in the length gauge [27–29]:

Dm(k) = −a0qe
2

sin
(

a0k
2

)
sin

(mπ
n

)
1 + 4 cos

(
a0k
2

) [
cos

(mπ
n

)
+ cos

(
a0k
2

)] . (9)

Figure 4(a) shows the magnitude of the matrix element |Dm(k)| in the (9, 9)-armchair tube
for different band indices m. Consistent with the symmetry considerations discussed above,
|Dm(k)| is null for m = 0, 9. As a consequence, the contribution of these bands to the total HHG
corresponds solely to the intraband dynamics. For the rest of bands, the coupling shows peaks of
magnitude increasing with |m|, corresponding to the first four van Hove singularities in the DOS.
The absolute maximum of |Dm(k)| is reached at the first van Hove singularity. This suggests
that the interaction with the driver laser is much stronger for the states packed at the first van
Hove singularity than for others and therefore, that the interband emission spectra is mainly due
to transitions within such states. Note that the increased band curvature near the Dirac points
entails sharper van-Hove singularities and, therefore, enhances the efficiency of the interband
transitions in HHG. In contrast, 1D models with finite gaps demonstrate intraband currents as the
main source of harmonic radiation [30]. This behavior is further illustrated in Fig. 4(b), where

Fig. 4. (a) Matrix element |Dm(k)| corresponding to the (9,9) armchair tube for different m
values. The dotted line at a0k = 2π/3 indicates the band’s crossing point for m = 9. (b)
Contribution to the harmonic yield from the different values of m. The driver’s parameters
are the same as in Fig. 3.
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we show the different contributions to the emission spectra from the (9,9)-A-tube corresponding
to several values of m. The coherent addition of the contributions from all m-values gives the
spectrum shown in Fig. 3. Nevertheless, note that the higher order harmonics are given by
the contribution from the slices |m| = 8 of the Brillouin Zone shown in Fig. 1(b), which are
connected with the first van Hove singularity. The other points of the BZ, where |Dm(k)| and the
curvature of the bands are weaker, contribute to the lower order harmonics mainly with intraband
radiation. Note that the band gap at the first van Hove singularity is near resonant with a 5ω0
transition, thus enhancing the interband component of the high harmonic emission.
Figure 5 shows the harmonic yield from several A-tubes of different diameters. The basic

features of the spectra are maintained, although the efficiency of the higher order harmonics in
the spectral non-perturbative area (5th and 7th) increases with the tube diameter. Note that the
slope of the bands closest to a0k = 2π/3 increases with the tube diameter, which implies that
the number of electronic states available at the maximal values of Dm(k) also increases. Also,
the value of |Dm(k)| approaches the singularity at the Dirac points, which explains the higher
efficiency of the harmonics. It is also observed that, as the diameter increases, the 5th harmonic
is red-shifted since the resonance with the gap energy of the m = n − 1 band is reduced. Note
that the cut-off barely changes, independently of the size of the nanotube.

Fig. 5. Harmonic yield from (9,9), (10,10), (11,11) and (12,12) armchair tubes. The
diameters of these tubes are dt = 1.22, 1.36, 1.50 and 1.63 nm, respectively. The electric
field parameters are those in Figs. 3 and 4(b).

Figure 6(a) shows the spectral yield from the (9,9) A-tube irradiated by a driving pulse of
the same duration and wavelength, but with peak intensity of 5 × 1012 W/cm2. As intensity
increases, the spectral plateau is extended towards the extreme UV. In Fig. 6(b) we show the
scaling of the cut-off frequency with the driving field intensity. The filled area in the background
corresponds to intensities above the damage threshold, assuming that the damage threshold
fluence is 150 mJ/cm2 [31]. Note that the cut-off frequency saturates at the largest intensities to a
photon energy of ' 16.7 eV, which is the gap corresponding to the maximum oscillation of the
coupled quasimomentum κt. This saturation has also been described in graphene [17] and in gap
semiconductors [32].
The spectral features of the radiated harmonics can be described in semiclassical terms. For

this purpose we use the saddle-point approach model (SPAM) introduced for single layer graphene
[17,33]. The SPAM demonstrated that the high-harmonic spectra in graphene results from the
recombination of electron-hole pairs, created during the non-adiabatic crossing of the Dirac
points by the electron trajectories. For the description of SWNTs, we shall replace this condition
by the non-adiabatic crossing through the first van Hove singularity. In nanotubes, therefore,
the SPAM describes the q-th order harmonic emission as the Fourier transform of the dipole
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Fig. 6. (a) Harmonic yield from (9,9)A-tube driven by a 3µmwavelength, 28 fs (2.9 cycles)
FWHM pulse at 5 × 1012 W/cm2 peak intensity. (b) Cut-off scaling with intensity from
(9,9) armchair. The blue diamonds are the result of the numerical integration of the TDSE.
The red circles are predicted by the semiclassical SPAM considering electron-hole creation
at the first van Hove singularity: a0k = 2π/3, m = 8. The filled area in the background
corresponds to intensities above the damage threshold.

acceleration, computed from the k-space integral:

d̃ lm(qω0) = i
Dm

0
qe

∫
k

∫ ∞

−∞
e

i
~ [Sm(k,t,tH )+q~ω0t]Dm(κ t)dkdt, (10)

where Sm(k, t, tH) =
∫ t
tH

[
E+m(κτ) − E−m(κτ)

]
dτ, Dm

0 is a constant, and tH is the time of crossing
the first van Hove singularity, when the electron-hole pairs are generated. Taking into account that
the main contributions to the integral in Eq. (10) are the stationary-phase points [15,33,34], from
saddle-point analysis we find that the harmonic emission occurs when the following conditions
are fulfilled: ∫ t

tH
v+m(κτ)dτ =

∫ t

tH
v−m(κτ)dτ, (11)

and
E+m(κt) − E−m(κt) = q~ω0, (12)

where v±m(κt) = 1
~
∂
∂k E±m(κτ) are the velocities of the valence and conduction band electrons. In

this semiclassical framework, conditions (11) and (12) define the generation mechanism for HHG
in SWNTs: (i) as a consequence of the interaction with the field, the electron initially at point k in
the valence band oscillates with amplitude κt − k; (ii) at time tH the electron crosses the first van
Hove singularity, where Dm reaches its maximal value, and is promoted to the conduction band,
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Fig. 7. (a) Map of the energy of the emitted photon for different classical trajectories
computed with the SPAM, being tH the time of creation of the electron-hole pair and t
the potential time of the photon emission. The points where the electron-hole trajectories
intersect in direct space at time t are represented by the red area. (b) Electron and hole
trajectories corresponding to point A illustrated in panel (a). The trajectories of the electron
(black solid line) and the hole (dashed line) are represented as a function of time. The
red curve represents the energy gap Eg(t) between the electron and the hole during their
oscillation in the bands. The figure corresponds to a driving laser pulse of 3 µm wavelength
with constant intensity of 5 × 1011 W/cm2 targeting a (9,9) armchair tube.

leaving a hole; (iii) according to Eq. (11), the electron-hole pair will quiver in the momentum
space until time t, when their trajectories intersect in the real space; and (iv) upon recombination,
a photon resonant with the band gap at κt is emitted, thus fulfilling Eq. (12).
The SPAM predicts that the maximum energy of the photon emission will be the maximum

gap experienced by the electron-hole pair during its oscillation in the reciprocal space. For (n, n)
tubes, the first van Hove singularity is located at the band m = n − 1 and therefore, this band
holds the relevant contribution to the total HHG, as shown in Fig. 4(b). If the driving pulse is
strong enough, the electron-hole pair originated in the band m = n − 1 will eventually exceed the
first Brillouin zone at a0k = π and shift the oscillation to band m = 0 according to the Umklapp
rule. In particular, for (9,9) A-type tubes the maximum gap experienced by the electron-hole
pairs created at m = 8 corresponds to 16.7 eV, which matches with the value of the saturated
cut-off energy shown in Fig. 6(b). As the nanotube diameter increases, the contributions from
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the second and third van Hove singularities become more relevant, increasing the efficency of the
HHG (as shown Fig. 5).
Figure 7(a) shows a map of the energy gap experienced by an electron-hole pair, created at

the first van Hove singularity in time tH , as a function of time t. The map corresponds to a 3
µm wavelength pulse with constant intensity of 5 × 1011 W/cm2 targeting an (9,9) A-tube, thus
representing in a simple way the phenomenology during the cycle of maximum amplitude of
the 8-cycle laser pulse considered above for the quantum mechanical model. The red-colored
areas correspond to electron-hole trajectories created at tH that overlap in the same unit cell in
the real space at time t. As an example, in point A the electron-hole pair is created at tH ' 0.35T
and emits a ' 19~ω0 photon when recombined at t ' 0.85T . Figure 7(b) shows the classical
trajectories of this electron. Note that, for the laser parameters in Fig. 7(a), the maximal photon
energy is given by the highest contour constrained to the red-colored area. Therefore, we can use
these kind of maps to identify the cut-off frequency of the HHG spectra at each intensity and
wavelength. Figure 6(b) shows a comparison between the SPAM cut-off prediction (red circles)
and the results of the exact integration of TDSE (blue diamonds). Both results are in excellent
agreement.
Additionally, we show in Fig. 8 the SPAM energy map at 3 µm wavelength for a pulse of

larger intensity 1013 W/cm2. As it also happens in single layer graphene [17], when the driver’s
intensity increases, the topology of the red-colored region becomes more complex, so the same
harmonic may be emitted by two or more sets of trajectories within the same half cycle of the
field. In particular, note that Fig. 8 shows four sets of contributions, labelled from a to d, for the
maximum (cut-off) frequency.

Fig. 8. Energy map for the emitted harmonic photon from a (9,9) armchair tube according to
SPAM for a driver peak intensity of 1013 W/cm2. The points corresponding to intersecting
electron-hole trajectories are highlighted in red.

5. Conclusions

We have studied the non-perturbative emission of armchair (n, n) carbon nanotubes irradiated
by intense few-cycle infrared laser pulses, both from the numerical integration of the TDSE
and using a semiclassical model. We have found that the harmonic spectrum follows the
typical non-pertubative characteristics, a plateau followed by a cut-off frequency. We show
that high-harmonics are generated mainly from interband —valence to conduction— transitions
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between nanotube bands with index |m| = n − 1. According to our semiclassical model, HHG is
initiated by electrons initially quivering in the valence band, that are promoted to the conduction
band during the non-adiabatic excursion across the first van Hove singularity. This first step
shares similarities with the case of graphene, and departs strongly from the tunnel picture, valid
for atoms, molecules and bulk solids. After the excitation to the conduction band, the generated
electron-hole pair evolves under the influence of the electric field. The harmonic emission takes
place upon recombination of the pair when both electron and hole overlap in real space. In
comparison with graphene, HHG in nanotubes is constrained by their one-dimensional nature, i.e.
the discrete nature of the reciprocal space: nanotubes with larger diameters emit harmonics more
efficiently, since the |m| = n − 1 band is closer to the Dirac points, the first van Hove singularity
becomes more pronounced and the dipole matrix element is increased. Our semiclassical model
predicts the scaling of the harmonic cut-off frequency with the driving field intensity and fully
characterizes the electron-hole pairs’ creation and recombination times leading to the emission
of harmonics. The results presented in this manuscript may be extended in future works to the
analysis of the influence of chirality and driver’s polarization on the high harmonic emission
spectra.

Funding

Junta de Castilla y León, European Regional Development Fund(SA287P18); Ministerio de
Ciencia, Innovación y Universidades (FIS2016-75652-P, RYC-2017-22745, PID2019-106910GB-
I00); European Research Council (851201).

Acknowledgments

The authors acknowledge V. Marcos for exciting infusions. This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program.

Disclosures

The authors declare no conflicts of interest.

References
1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56–58 (1991).
2. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1 nm diameter,” Nature 363(6430), 603–605 (1993).
3. D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed

growth of carbon nanotubes with single-atomic-layer walls,” Nature 363(6430), 605–607 (1993).
4. S. Reich, C. Thomsen, and J. Maultzsch, Carbon nanotubes: basic concepts and physical properties (WILEY-CVH

Verlag GmbH & Co. KGaA, 2004).
5. L. E. F. Foa-Torres, S. Roche, and J. C. Charlier, Introduction to graphene-based nanomaterials: from electronic

structure to quantum transport (Cambridge University, 2014).
6. L. Plaja and L. Roso, “High-order harmonic generation in a crystalline solid,” Phys. Rev. B 45(15), 8334–8341

(1992).
7. F. H. M. Faisal and J. Z. Kamiński, “Floquet theory of high-harmonic generation in periodic structures,” Phys. Rev. A

56(1), 748–762 (1997).
8. K. A. Pronin, A. D. Bandrauk, and A. A. Ovchinnikov, “Harmonic generation by a one-dimensional conductor: Exact

results,” Phys. Rev. B 50(5), 3473–3476 (1994).
9. S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order

harmonic generation in a bulk crystal,” Nat. Phys. 7(2), 138–141 (2011).
10. L. Plaja, R. Torres, and A. Zaïr, Attosecond Physics. Attosecond Measurements and Control of Physical Systems

(Springer-Verlag, 2013).
11. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997

(1993).
12. K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander, “Above threshold ionization beyond the high harmonic

cutoff,” Phys. Rev. Lett. 70(11), 1599–1602 (1993).



Research Article Vol. 28, No. 13 / 22 June 2020 / Optics Express 19771

13. J. L. Krause, K. J. Schafer, and K. C. Kulander, “High-order harmonic generation from atoms and ions in the high
intensity regime,” Phys. Rev. Lett. 68(24), 3535–3538 (1992).

14. T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O.
Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A.
Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime
from Mid-Infrared Femtosecond Lasers,” Science 336(6086), 1287–1291 (2012).

15. G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec, “Theoretical Analysis of
High-Harmonic Generation in Solids,” Phys. Rev. Lett. 113(7), 073901 (2014).

16. N. Yoshikawa, T. Tamaya, and K. Tanaka, “High-harmonic generation in graphene enhanced by elliptically polarized
light excitation,” Science 356(6339), 736–738 (2017).

17. O. Zurrón, A. Picón, and L. Plaja, “Theory of high-order harmonic generation for gapless graphene,” New J. Phys.
20(5), 053033 (2018).

18. O. Zurrón-Cifuentes, R. Boyero-García, C. Hernández-García, A. Picón, and L. Plaja, “Optical anisotropy of
non-perturbative high-order harmonic generation in gapless graphene,” Opt. Express 27(5), 7776–7786 (2019).

19. S. de Vega, J. D. Cox, F. Sols, and F. J. García de Abajo, “Strong-field-driven dynamics and high-harmonic generation
in interacting one dimensional systems,” Phys. Rev. Res. 2(1), 013313 (2020).

20. H. Nishidome, K. Nagai, K. Uchida, Y. Ichinose, Y. Yomogida, K. Tanaka, and K. Yanagi, “Control of high-harmonic
generation by tuning the electronic structure and carrier injection,” arXiv:2004.11000v1 [physics.optics] (2020).

21. N. Hamada, S. I. Sawada, and A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules,” Phys. Rev.
Lett. 68(10), 1579–1581 (1992).

22. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Appl.
Phys. Lett. 60(18), 2204–2206 (1992).

23. N. Bozović, I. Bozović, and M. Damnjanović, “Selection rules for polymers and quasi-one-dimensional crystals: IV.
Kronecker products for the line groups isogonal to Dnh,” J. Phys. A: Math. Gen. 18(6), 923–937 (1985).

24. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast Carrier Dynamics in Graphite,” Phys. Rev. Lett. 102(8), 086809
(2009).

25. J. M. Iglesias, M. J. Martín, E. Pascual, and R. Rengel, “Carrier-carrier and carrier-phonon interactions in the
dynamics of photoexcited electrons in graphene,” J. Phys.: Conf. Ser. 647, 012003 (2015).

26. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G.
Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat. Commun. 4(1),
1987 (2013).

27. S. V. Goupalov, “Optical transitions in carbon nanotubes,” Phys. Rev. B 72(19), 195403 (2005).
28. S. V. Goupalov, A. Zarifi, and T. G. Pedersen, “Calculation of optical matrix elements in carbon nanotubes,” Phys.

Rev. B 81(15), 153402 (2010).
29. H. K. Kelardeh, V. Apalkov, and M. I. Stockman, “Wannier-Stark states of graphene in strong electric field,” Phys.

Rev. B 90(8), 085313 (2014).
30. D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled

dynamics of optical inter- and intraband excitations,” Phys. Rev. B 77(7), 075330 (2008).
31. A. Roberts, D. Cormode, C. Reynolds, T. Newhouse-Illige, B. J. LeRoy, and A. S. Sandhu, “Response of graphene to

femtosecond high-intensity laser irradiation,” Appl. Phys. Lett. 99(5), 051912 (2011).
32. G. Vampa and T. Brabec, “Merge of high harmonic generation from gases and solids and its implications for

attosecond science,” J. Phys. B: At., Mol. Opt. Phys. 50(8), 083001 (2017).
33. A. Nayak, M. Dumergue, S. Kühn, S. Mondal, T. Csizmadia, N. G. Harshitha, M. Füle, M. U. Kahaly, B. Farkas, B.

Major, V. Szaszkó-Bogár, P. Földi, S. Majorosi, N. Tsatrafyllis, E. Skantzakis, L. Neoričić, M. Shirozhan, G. Vampa,
K. Varjú, P. Tzallas, G. Sansone, D. Charalambidis, and S. Kahaly, “Saddle point approaches in strong field physics
and generation of attosecond pulses,” Phys. Rep. 833, 1–52 (2019).

34. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by
low-frequency laser fields,” Phys. Rev. A 49(3), 2117–2132 (1994).



5
C O N C L U S I O N S

This thesis presents a comparative study on the process of high-order
harmonic generation (HHG) by intense few-cycle pulses in single
layer graphene (SLG) and single-wall carbon nanotubes (SWNTs).
Both are carbon allotropes with effectively reduced dimensions, that
react to light in a way different to the most common systems, as
atoms, molecules or bulk solids. From our study we can derive the
following main conclusions:

1. In both allotropes, the HHG mechanism follows a three step
path: (1) Creation of an electron-hole pair; (2) acceleration of
the electron (hole) in the conduction (valence) band by the field,
and (3) recombination of the pair with the emission of a high-
frequency photon. Noticeably, the first step is particular to these
kind of systems, as it is not linked to tunneling ionization/ex-
citation, but rather to non-adiabatic excitation, a consequence
of the singular geometry of their band structure. In this sense,
we have demonstrated the crucial role that Dirac-Weyl points
in graphene and van Hove singularities in SWNTs play in the
creation of the electron-hole pair. This conclusion is of utmost
relevance, since it implies that the generation of higher-order
harmonics is not linked to the field amplitude maxima, as oc-
curs in gas systems or bulk solids.

2. As a common feature, the emission spectra of both allotropes
present a plateau connected to the non-perturbative character
of the HHG process. The cut-off frequency increases with the in-
tensity, but, in contrast to atoms, molecules and bulk solids, we
have not found a simple law, linear or quadratic, that describes
the scaling of the cut-off frequency with the field amplitude,
since it saturates for higher intensities.

3. We have shown that in both systems the main contribution to
the high-order spectra comes from interband transitions. We
have identified the cut-off saturation frequency with the max-
imum energy accessible by the electron-hole pair in its quiver
motion through the BZ.

4. We have demonstrated that SLG is highly anisotropic, mak-
ing it possible to emit elliptically polarized harmonics from
linear-polarized drivers, and linearly polarized harmonics from
elliptically-polarized pulses. The conclusions stemming from
our simulations compare well with the experimental results in
the literature.

133



134 conclusions

5. For metallic SWNTs, the highest efficiency of the HHG is con-
nected to interband transitions between bands including the
first van Hove singularity. On the other hand, semiconducting
tubes exhibit a different behavior, since the main contributions
come from states at the first and second van Hove singulari-
ties. In both cases, the non-perturbative low-order spectra corre-
sponds to both the intraband and interband components of the
emission dipole.

6. In metallic SWNTs, it is observed that the spectral efficiency in-
creases with the diameter until it saturates. On the other hand,
the spectra of semiconducting tubes does not show a significa-
tive correlation with the tube diameter, neither on the efficiency
nor in the resolution of the harmonics. For nanotubes of the
same diameter, semiconducting species are more efficient tar-
gets for HHG than their metallic counterparts.

7. The harmonic spectra is very sensitive to the variation of the
chiral angle only if it changes the tube character from semi-
conducting to metallic and vice versa. Otherwise, variation of
chirality has little impact on the harmonic response. Therefore,
is metallicity rather than chirality what influences the spectral
yield.

From the methodological point of view:

1. We have developed a first-principle description of HHG in SLG
and SWNTs starting from the tight-binding description of graph-
ene in the nearest neighbors approximation.

2. We have proposed a change of basis to circumvent the numeri-
cal instabilities caused by the singularity of the transition matrix
element near the Dirac points, which allows to account for the
singular non-adiabatic coupling at the Dirac cones without ap-
proximation.

3. We have proposed an approximated semiclassical model that
explains the main features of HHG in terms of electron-hole
trajectories in the reciprocal space.

Our results present a comprehensive description of the HHG pro-
cess in these low-dimensional carbon allotropes. We have demon-
strated that this type of systems posses a very rich non-linear re-
sponse, that considerably broadens its possible applications compared
to bulk solids, atoms and molecules. Although the semiclassical model
that we propose is currently limited to linear polarized drivers with
the electric field parallel to the main symmetry axis of the samples,
our intuition is that it can be extended to drivers with any polariza-
tion direction or ellipticity, although not in a straightforward way. Fur-
thermore, we believe that our theoretical approach can be extended to
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other low-dimensional materials. In particular, it could be applied to
systems with broken inversion and/or time-reversal symmetry [78],
where the gap at the Dirac points opens and the anomalous velocity
caused by the non-zero Berry curvature will certainly influence the
electron dynamics [141]. We find our results encouraging for the de-
velopment and design of new materials, and methods to control the
electron dynamics to tailor the HHG emission [142]. This work paves
the way for further investigations in the understanding of the nonlin-
ear optical response of gapless materials and in the manipulation of
electron carriers at the petahertz domain.

conclusiones

Esta tesis presenta un estudio comparativo del proceso de generación
de armónicos de orden elevado (HHG) inducido por pulsos láser in-
frarrojos, ultracortos e intensos, irradiando sobre grafeno monocapa
(SLG) y nanotubos de carbono de pared simple (SWNTs). Ambos ma-
teriales son alótropos de carbono con dimensiones efectivas reduci-
das, que interaccionan con la luz de manera diferente a otros sistemas
más comunes, como átomos, moléculas o sólidos semiconductores.
Las principales conclusiones de nuestro estudio son las siguientes:

1. En ambos sistemas, el mecanismo de HHG sigue una ruta de
tres pasos: (1) creación de un par electrón-hueco; (2) aceleración
del electrón (hueco) en la banda de conducción (valencia) por el
campo, y (3) recombinación del par con la consecuente emisión
de un fotón de alta frecuencia. Cabe destacar que el primero de
los pasos es especial en estos sistemas, ya que no está ligado
a la ionización/excitación por efecto túnel, sino a la excitación
no adiabática asociada a la geometría singular de la estructura
de bandas. En este sentido, nuestro trabajo demuestra el pa-
pel crucial que los puntos de Dirac-Weyl, en el grafeno, y las
singularidades de van Hove, en los SWNTs, representan en la
creación del par electrón-hueco. Esta conclusión es de suma im-
portancia, ya que implica que la generación de armónicos de
orden elevado no se restringe a los instantes de máximo campo,
como ocurre en sistemas gaseosos o sólidos semiconductores.

2. Como característica común, los espectros de emisión de ambos
alótropos presentan una meseta asociada al carácter no pertur-
bativo del proceso de HHG. La frecuencia de corte aumenta
con la intensidad, pero, a diferencia de los sistemas atómicos,
moléculares o sólidos semiconductores, no hemos encontrado
una ley simple, lineal o cuadrática, que describa el escalado de
esta frecuencia con la amplitud del campo, ya que se satura para
las intensidades más altas.
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3. Hemos demostrado que, en ambos sistemas, la principal con-
tribución a los espectros de armónicos de orden elevado provie-
ne de transiciones interbanda. Hemos identificado además que
la saturación de la frecuencia de corte está relacionada con la
energía máxima accesible por el par electrón-hueco durante su
movimiento oscilatorio en el espacio recíproco.

4. Hemos demostrado que la HHG en SLG es altamente anisotró-
pica, lo que hace posible la emisión de armónicos polarizados
elípticamente a partir de haces incidentes linealmente polariza-
dos, y de armónicos polarizados linealmente generados con pul-
sos polarizados elípticamente. Las conclusiones derivadas de
nuestras simulaciones están alineadas con los resultados experi-
mentales.

5. Para SWNTs metálicos, la mayor eficiencia de la emisión ar-
mónica está asociada a transiciones interbanda entre estados lo-
calizados en la primera singularidad de van Hove. Los nanotu-
bos semiconductores presentan un comportamiento diferente,
ya que las principales contribuciones provienen de estados en
localizados en las dos primeras singularidades de van Hove.
En ambos casos, los espectros de armónicos de orden bajo co-
rresponden a las componentes intrabanda e interbanda de la
emisión dipolar.

6. En los SWNTs metálicos se observa que la eficiencia espectral
aumenta con el diámetro, hasta cierto valor de saturación. Por
otro lado, los espectros de los nanotubos semiconductores no
muestran una correlación significativa con el diámetro del tubo,
ni en la eficiencia ni en la resolución de los armónicos. Para
nanotubos del mismo diámetro, las especies semiconductoras
son blancos más eficientes para la HHG que las especies metáli-
cas.

7. Hemos encontrado que el espectro armónico es muy sensible a
la variación del ángulo quiral sólo si ésta se traduce en que el
carácter del tubo pase de semiconductor a metálico y viceversa.
En caso contrario, la variación de la quiralidad tiene poco im-
pacto en la respuesta armónica. Por lo tanto, es la metalicidad
más que la quiralidad lo que influye en el rendimiento espec-
tral.

Desde el punto de vista metodológico:

1. Hemos desarrollado una descripción desde primeros principios
de la HHG en SLG y SWNTs a partir del modelo tight-binding
del grafeno en la aproximación de vecinos más próximos.

2. Hemos propuesto un cambio de base para evitar las inestabili-
dades numéricas causadas por la singularidad del elemento de
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matriz de la transición dipolar en el entorno de los puntos de
Dirac, lo que permite dar cuenta del singular acoplamiento no
adiabático en los conos de Dirac, sin realizar aproximaciones.

3. Hemos propuesto un modelo semiclásico aproximado que ex-
plica las características principales de la HHG en términos de
las trayectorias seguidas por electrones y huecos en el espacio
recíproco.

En resumen, nuestros resultados presentan una descripción com-
pleta del proceso de HHG en estos alótropos de carbono de baja di-
mensión. Hemos demostrado que este tipo de sistemas posee una
respuesta no lineal muy rica, que amplía considerablemente sus posi-
bles aplicaciones en comparación con los sistemas atómicos y mo-
leculares, y los sólidos semiconductores. Aunque la validez del mo-
delo semiclásico que proponemos se limita actualmente a haces in-
cidentes polarizados linealmente y con el campo eléctrico paralelo
a los ejes principales de simetría de los blancos, nuestra intuición es
que pueda extenderse a haces con cualquier dirección de polarización
o elipticidad, si bien no de forma sencilla. Creemos que nuestro en-
foque teórico puede extenderse a otros materiales de dimensiones
reducidas. En particular, podría aplicarse a sistemas con rotura de las
simetrías de inversión temporal y/o espacial [78], donde el gap en
los puntos de Dirac se abre y en los que la componente anómala de
la velocidad causada por la curvatura de Berry ciertamente influirá
sobre la dinámica del electrón [141]. Nuestros resultados alientan el
desarrollo y diseño de nuevos materiales y métodos para controlar la
dinámica de los electrones y modificar la emisión de HHG [142]. Este
trabajo allana el camino para futuras investigaciones sobre la respues-
ta óptica no lineal de materiales sin gap y sobre la manipulación de
portadores en el dominio del petahercio.
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in nanotubes. Phys. Rev. B 62, 6971–6974 (2000).

90. Yariv, A. Quantum electronics (3rd. Ed.) (Wiley, 1989).

91. Glauber, R. J. Coherent and Incoherent States of the Radiation
Field. Phys. Rev. 131, 2766–2788 (1963).

92. Kaiser, W. & Garrett, C. G. B. Two-Photon Excitation in CaF2:
Eu2+. Phys. Rev. Lett. 7, 229–231 (1961).

93. Giordmaine, J. A. & Miller, R. C. Tunable Coherent Parametric
Oscillation in LiNbO3 at Optical Frequencies. Phys. Rev. Lett. 14,
973–976 (1965).

94. Colin, S., Contesse, E., Le Boudec, P., Stephan, G. & Sanchez,
F. Evidence of a saturable-absorption effect in heavily erbium-
doped fibers. Optics Letters 21, 1987–1989 (Dec. 1996).

95. Dong, L., Archambault, J. L., Reekie, L., Russell, P. S. J. & Payne,
D. N. Photoinduced absorption change in germanosilicate pre-
forms: evidence for the color-center model of photosensitivity.
Appl. Opt. 34, 3436 (June 1995).



146 bibliography

96. Paoli, T. L. Saturable absorption effects in the self-pulsing (AlGa)
As junction laser. Applied Physics Letters 34, 652 (May 1979).

97. Kazzaz, A., Ruschin, S., Shoshan, I. & Ravnitsky, G. Stimulated
Raman scattering in methane-experimental optimization and
numerical model. IEEE Journal of Quantum Electronics 30, 3017–
3024 (Jan. 1994).

98. Boyd, R. W. Nonlinear Optics Third Edition (Academic Press,
2008).

99. Li, X., L’Huillier, A., Ferray, M., Lompré, L. & Mainfray, G.
Multiple-harmonic generation in rare gases at high laser inten-
sity. Phys. Rev. A, 5751 (1989).

100. Krause, J. L., Schafer, K. J. & Kulander, K. C. Calculation of
photoemission from atoms subject to intense laser fields. Phys.
Rev. A, 4998 (1992).

101. Van Linden van den Heuvell, H. B. & Muller, H. G. Multiphoton
Processes (eds Smith, S. J. & Knight, P. L.) (Cambridge Univer-
sity Press, 1988).

102. Gallagher, T. F. Above-Threshold Ionization in Low-Frequency
Limit. Phys. Rev. Lett. 2304 (1988).

103. Popmintchev, T., Chen, M., Arpin, P., Murnane, M. M. & Kapt-
eyn, H. C. The attosecond nonlinear optics of bright coherent
X-ray generation. Nature Photon, 822 (2010).

104. García, C. H. Coherent attosecond light sources based on high-order
harmonic generation: influence of the propagation effects PhD thesis
(Departamento de Física Aplicada. Universidad de Salamanca,
2013).

105. Pérez-Hernández, J. A., Ramos, J., Roso, L. & Plaja, L. Har-
monic generation beyond the strong-field approximation: phase
and temporal description. Laser Phys. 5, 1044–1050 (2010).

106. Zurrón, Ó., Picón, A. & Plaja, L. Theory of high-order har-
monic generation for gapless graphene. New Journal of Physics
20, 053033 (2018).

107. Óscar Zurrón-Cifuentes, Boyero-García, R., Hernández-García,
C., Picón, A. & Plaja, L. Optical anisotropy of non-perturbative
high-order harmonic generation in gapless graphene. Opt. Ex-
press 27, 7776–7786 (2019).

108. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynam-
ics in graphite. Phys. Rev. Lett. 086809 (2009).

109. Brida, D., Tomadin, A., Manzoni, C., Kim, Y. J., Lombardo, A.,
Milana, S., Nair, R. R., Novoselov, K. S., Ferrari, A. C., Cerullo,
G. & Polini, M. Ultrafast collinear scattering and carrier multi-
plication in graphene. Nat. Commun. 611 (2013).



bibliography 147

110. Iglesias, J. M., Martín, M. J., Pascual, E. & Rengel, R. Carrier-
carrier and carrier-phonon interactions in the dynamics of pho-
toexcited electrons in graphene. J. Phys.: Conf. Ser. 012003 (2015).

111. Meystre, P. & Sargent, M. Elements of Quantum Optics 4th ed.
(Springer-Verlag Berlin Heidelberg, 2007).

112. Kelardeh, H. K., Apalkov, V. & Stockman, M. I. Wannier-Stark
states of graphene in strong electric field. Phys. Rev. B 90, 085313

(2014).

113. Kelardeh, H. K., Apalkov, V. & Stockman, M. I. Graphene in
ultrafast and superstrong laser fields. Phys. Rev. B 91, 045439

(2015).

114. Zak, J. Dynamics of Electrons in Solids in External Fields. Phys.
Rev. 168, 686–695 (1968).

115. Houston, W. V. Acceleration of electrons in a crystal lattice.
Phys. Rev. 184–186 (1940).

116. Wolkow, D. M. Über eine Klasse von Lösungen der Diracschen
Gleichung. Zeitschrift für Physik 94, 250–260 (1935).

117. Jackson, J. D. Classical Electrodynamics 3rd Edition (Wiley, 1998).

118. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields 4th
Edition (Pergamon, 1975).

119. Boyero-García, R., Zurrón-Cifuentes, O., Plaja, L. & Hernández-
García, C. Transverse phase matching of high-order harmonic
generation in single-layer graphene. Opt. Express 29, 2488–2500

(2021).

120. Wikmark, H., Guo, C., Vogelsang, J., Smorenburg, P. W., Coudert-
Alteirac, H., Lahl, J., Peschel, J., Rudawski, P., Dacasa, H., Carl-
strom, S., Macloa, S., Gaarde, M. B., Johnsson, P., Arnold, C. L.
& L’Huillier, A. Spatiotemporal coupling of attosecond pulses.
PNAS, 4779–4787 (2019).

121. García, C. H., Román, J. S., Plaja, L. & Picón, A. Quantum-path
signatures in attosecond helical beams driven by optical vor-
tices. New J. Phys. 093029 (2015).

122. L’Huillier, A., Balcou, P., Candel, S., Schafer, K. J. & Kulander,
K. C. Calculations of high-order harmonic generation processes
in xenon at 1064 nm. Phys. Rev. A, 2778 (1992).

123. Rego, L., Román, J. S., Picón, A., Plaja, L. & García, C. H. Non-
perturbative twist in the generation of extreme-ultraviolet vor-
tex beams. Phys. Rev. Lett. 163202 (2016).

124. Roberts, A., Cormode, D., Reynolds, C., Newhouse-Illige, T.,
LeRoy, B. J. & Sandhu, A. S. Response of graphene to femto-
second high-intensity laser irradiation. Appl. Phys. Lett. 051912

(2011).



148 bibliography

125. Pérez, J. M. I. Out-of-equilibrium carrier dynamics in graphene and
graphene-based devices for high-performance electronics PhD thesis
(Departamento de Física Aplicada. Universidad de Salamanca,
2019).

126. Huang, P. C., Hernández-García, C., Huang, J. T., Huang, P. Y.,
Lu, C. H., Rego, L., Hickstein, D. D., Ellis, J. L., Jaron-Becker,
A., Becker, A., Yang, S. D., Durfee, C. G., Plaja, L., Kapteyn,
H. C., Murnane, M. M., Kung, A. H. & Chen, M. C. Polarization
control of isolated high-harmonic pulses. Nat. Photonics 12, 349–
354 (2018).

127. Dorney, K. M., Rego, L., Brooks, N. J., San Román, J., Liao,
C.-T., Ellis, J. L., Zusin, D., Gentry, C., Nguyen, Q. L., Shaw,
J. M., Picón, A., Plaja, L., Kapteyn, H. C., Murnane, M. M. &
Hernández-García, C. Controlling the polarization and vortex
charge of attosecond high-harmonic beams via simultaneous
spin–orbit momentum conservation. Nature Photonics 13, 123–
130 (2019).

128. You, Y. S., Lu, J., Cunningham, E. F., Roedel, C. & Ghimire, S.
Crystal orientation-dependent polarization state of high-order
harmonics. Opt. Lett. 44, 530–533 (2019).

129. Budil, K. S., Salières, P., L’Huillier, A., Ditmire, T. & Perry, M. D.
Influence of ellipticity on harmonic generation. Phys. Rev. A 48,
R3437–R3440 (1993).

130. Chen, Z.-Y. & Qin, R. Circularly polarized extreme ultraviolet
high harmonic generation in graphene. Opt. Express 27, 3761–
3770 (2019).
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This thesis presents a comprehensive theoretical study of the process of 
high-order harmonic generation induced by intense few-cycle infrared laser 
pulses in two different types of low dimensional carbon allotropes: 2D single 
layer graphene and 1D single-wall carbon nanotubes. Our results show the 
emergence of the typical non-perturbative spectral characteristics but, 
unlike other more common systems, there is no simple law governing the 
scaling of the cut-off frequency. Interpreting this particular behavior allows 
us to unveil the fundamental mechanism for HHG in those low dimensional 
carbon allotropic structures. We show that the first step for HHG is radically 
different from the tunneling ionization/excitation process found in gas 
systems and finite gap solids, and that is closely related to the singular 
geometry of their band structure.
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