

Tesis Doctoral

Condiciones de Atención y Esfuerzo Cognitivo en Contextos de Ejecución Experta

Hugo Manuel Marte Santana

Directora

Mª Isabel Garcia Ogueta

Salamanca 2021

ÍNDICE

Indice de Tablas	5
Indice de Figuras	9
Resumen	12
Atención	14
Redes Neurales de la Atención	22
Atención y Esfuerzo	31
Atención y Adquisición de Habilidades	35
Atención y Control Inhibitorio	46
Atención y Automatización	54
Ejecución Experta	65
Ejecución y Estado de Flujo	74
Medidas de Esfuerzo.	81
Justificación de la Investigación	86
Objetivos e Hipótesis	90
Objetivo General.	91
Objetivos Específicos e Hipótesis	91

Parte Experimental	95
Experimento 1: Carga de Atencion y Carga de Memoria	96
Participantes	99
Diseño y Tarea	100
Recolección de Datos	103
Procesamiento de los Datos	103
Resultados Experimento 1.	106
Análisis Estadístico	106
Resultados Conductuales	107
Resultados EEG	109
Resultados Para la Banda de Frecuencias Theta	109
Resultados Para la Banda de Frecuencias Alpha	111
Resultados Para la Banda de Frecuencias Beta	113
Resultados ERP	115
Resultados Para las Amplitudes del Componente P3	115
Resultados Para las Amplitudes del Componente N4	117
Resultados Para las Amplitudes del Componente LPP	120

Discusión Experimento 1	123
Discusión Sobre los Resultados EEG	124
Discusión Sobre los Resultados ERP	125
Experimento 2: Ajedrez	126
Participantes	130
Diseño y Tarea	131
Recolección de Datos	135
Procesamiento de los Datos	135
Resultados Experimento 2	138
Análisis Estadístico	138
Resultados Conductuales	139
Resultados EEG	140
Resultados Para la Banda de Frecuencias Theta	140
Resultados Para la Banda de Frecuencias Alpha	142
Resultados Para la Banda de Frecuencias Beta	144
Resultados ERP	146
Resultados Para las Amplitudes del Componente P3	146

Resultados Para las Amplitudes del Componente N4	150
Resultados Para las Amplitudes del Componente LPP	154
Discusión Experimento 2	157
Discusión Sobre los Resultados EEG	158
Discusión Sobre los Resultados ERP	160
Experimento 3: Contexto de Ejecución Musical	161
Participantes	165
Diseño y Tarea	166
Recolección de Datos	168
Procesamiento de los Datos	169
Resultados Experimento 3	174
Análisis Estadísticos	174
Resultados Conductuales	175
Resultados EEG	176
Resultados Para la Banda de Frecuencias Theta	176
Resultados Para la Banda de Frecuencias Alpha	178
Resultados Para la Banda de Frecuencias Beta	181

Resultados ERP	184
Resultados Para las Amplitudes del Componente P3	184
Resultados Para las Amplitudes del Componente N4	187
Resultados Para las Amplitudes del Componente LPP	191
Discusión Experimento 3	196
Discusión Sobre los Resultados EEG	197
Discusión Sobre los Resultados ERP	201
Discusión General	202
Discusión General Sobre los Resultados EEG	202
Discusión General Sobre los Resultados ERP	204
Conclusiones	207
Limitaciones y Futuras Líneas de Investigación	210
Referencias	212

RESUMEN

La ejecución de actividades incluso en contextos de ejecución experta, bajo determinadas condiciones, suponen generalmente una demanda cognitiva que se experimenta como sensación de esfuerzo. Estas demandas se han asociado al consumo de recursos atencionles (Kahneman, 1973; Wickens, 1984) y aunque los modelos de recursos han sido muy cuestionados en el ámbito experimental, en el ámbito de la ergonomía aplicada el concepto de recursos se utiliza para la medición de la sobrecarga de tarea, especialmente en contextos de alta responsabilidad como el control de tráfico aéreo o el pilotaje de aeronaves. Durante años las medidas más comunes de esfuerzo cognitivo han sido de tipo subjetivo a través de cuestionarios o autoinformes, medidas enormemente cuestionadas, además de por su carácter subjetivo, por su inestabilidad y por ser intrusivas. Se intentan buscar medidas fisiológicas, como la Heart Rate Variability o el diámetro pupilar, las cuales también adolecen de especificidad. En cambio las medidas neurales de EEG podrían indicar el nivel de demanda mental asociada a una tarea dada con la ventaja de que pueden proporcionar de manera continua y no intrusiva una monitorización sin interferencia que prevenga la sobrecarga mental del sujeto. Bruya & Tang (2018) proponen la idea de que los recursos cognitivos tienen una dimensión metabólica a nivel del tejido nervioso, de modo que, su consumo sería un fenómeno bioquímico y fisiológicamente medible. En la presente investigación nos planteamos el objetivo de estudiar el efecto que diferentes condiciones experimentales, con diferente demanda atencional o carga cognitiva, tienen en registros comportamentales (tiempos de reacción y corrección de la ejecución) y electrofisiológicos (EEG –bandas de frecuencias- y ERPs). Con este objetivo, diseñamos tres experimentos, que pretendían manipular la demanda cognitiva a la que eran sometidos los participantes n tres contextos de ejecución experta más generalizables que los tradicionalmente estudiados;

en concreto en nuestra investigación en contextos de: procesamiento de información, ajedrez y música. En el experimento 1 (N=24), utilizamos manipulaciones de la carga atencional y de la carga de la memoria de trabajo (variación del paradigma N-back y doble tarea). En el experimento 2 (N=18), se utilizó una tarea de ajedrez con una serie de normas y niveles de dificultad adaptados, con el fin de inducir distintos niveles de demanda atencional. En el experimento 3 (N=20), utilizamos ejercicios de escalas musicales adaptadas a velocidades cambiantes de metrónomo en dos condiciones, una de cambios predecibles y una de cambios impredecibles, estos cambios supondrían cargas atencionales distintas. En nuestros resultados resalta el aumento en los tiempos de reacción y adaptación a los cambios en las tareas y el aumento en la cantidad o proporción de errores relacionados con el aumento en la demanda atencional. Observamos también un aumento en las amplitudes de la banda Theta y Beta en zonas frontales y centrales y una disminución en las amplitudes de la banda Alpha en determinadas condiciones experimentales. También obtuvimos un patrón de fluctuaciones en las amplitudes de los componentes ERP N4 y LPP frente a la carga cognitiva, común para los tres contextos de ejecución.

Palabras clave: Demanda cognitiva; demanda atencional; música; ajedrez; procesamiento de información; EEG; ERP;

Abstract

The execution of activities even in contexts of expert execution, under certain conditions, generally involves a cognitive demand that is experienced as a sensation of effort. These demands have been associated with the consumption of attention resources (Kahneman, 1973; Wickens, 1984) and although resource models have been highly questioned in the experimental field, in the field of applied ergonomics the concept of resources is used for measurement of task overload, especially in highly responsible contexts such as air traffic control or aircraft piloting. For years, the most common measures of cognitive effort have been subjective through questionnaires or self-reports, measures that are highly questioned, in addition to their subjective nature, their instability and because they are intrusive. An attempt is made to find physiological measures, such as Heart Rate Variability or pupillary diameter, which also lack specificity. On the other hand, the neural EEG measurements could indicate the level of mental demand associated with a given task with the advantage that they can provide continuous and non-intrusive monitoring without interference that prevents the subject's mental overload. Bruya & Tang (2018) propose the idea that cognitive resources have a metabolic dimension at the level of the nervous tissue, so that their consumption would be a biochemical and physiologically measurable phenomenon. In the present investigation we set ourselves the objective of studying the effect that different experimental conditions, with different attentional demand or cognitive load, have on behavioral (reaction times and execution correction) and electrophysiological (EEG – frequency bands- and ERPs). With this objective, we designed three experiments, which attempted to manipulate the cognitive demand to which the participants were subjected in three contexts of expert performance more generalizable than those traditionally studied; specifically in our research in contexts of: information processing, chess and music. In

experiment 1 (N = 24), we used manipulations of attentional load and working memory load (variation of the N-back paradigm and double task). In experiment 2 (N = 18), a chess task with a series of adapted rules and levels of difficulty was used, in order to induce different levels of attentional demand. In experiment 3 (N = 20), we used musical scale exercises adapted to changing metronome speeds under two conditions, one of predictable changes and one of unpredictable changes, these changes would imply different attentional loads. In our results, the increase in reaction times and adaptation to changes in tasks and the increase in the amount or proportion of errors related to the increase in attention demand stands out. We also observed an increase in the amplitudes of the Theta and Beta band in frontal and central areas and a decrease in the amplitudes of the Alpha band under certain experimental conditions. We also obtained a pattern of fluctuations in the amplitudes of the ERP N4 and LPP components versus to the cognitive load, common for the three contexts of execution.

Keywords: Cognitive demand; attention demand; music; Chess; information processing; EEG; ERP;