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ABSTRACT Power and energy systems are very complex, and several tools are available to assist operators
in their planning and operation. However, these tools do not allow a sensitive analysis of the impact of the
interaction between the different sub-domains and, consequently, in obtaining more realistic and reliable
results. One of the key challenges in this area is the development of decision support tools to address the
problem as a whole. Tools Control Center — TOOCC — proposed and developed by the authors, enables
the co-simulation of heterogeneous systems to study the electricity markets, the operation of the smart
grids, and the energy management of the final consumer, among others. To this end, it uses an application
ontology that supports the definition of scenarios and results comparison, while easing the interoperability
among the several systems. This paper presents the application ontology developed. The paper addresses
the methodology used for its development, its purpose and requirements, and its concepts, relations, facets
and instances. The ontology application is illustrated through a case study, where different requirements are
tested and demonstrated. It is concluded that the proposed application ontology accomplishes its goals, as it
is suitable to represent the required knowledge to support the interoperability among the different considered
systems.

INDEX TERMS Application ontology, co-simulation, multi-agent systems, power and energy systems,

semantic interoperability, web-services.

I. INTRODUCTION

Considering the climatic urgency that society is facing in
recent years, the European Commission (EC) has defined
a set of targets to be achieved by 2020, known as
20-20-20 targets [1], [2]. These targets are: i) a 20% reduction
in CO; emissions compared to 1990 levels; ii) a 20% increase
in energy efficiency; and iii) increase the use of Renewable
Energy Sources (RES) to represent 20% of energy production
in the European Union. As a result, the EC intends to achieve
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a significant change in the energy sector, by implementing
new legislation to increase the inclusion of RES and make
their use more intelligent and sustainable. The evolution of
Power and Energy Systems (PES) to support the intermittent
nature of RES raises new challenges [3], [4]. It is crucial
to reduce the inherent risk in the intermittency and unpre-
dictability of the use of RES, to lower prices for production
and installation of renewable generation technology, to adapt
the existing physical infrastructure, and to adopt new regula-
tory measures, among others. Electricity Markets (EM) have
also to be adapted to the different segments of PES (e.g. gen-
eration, transmission, distribution, and commercialization),

81129


https://orcid.org/0000-0002-0848-5319
https://orcid.org/0000-0001-8839-8807
https://orcid.org/0000-0001-8248-080X
https://orcid.org/0000-0002-4560-9544
https://orcid.org/0000-0002-2829-1829

IEEE Access

B. Teixeira et al.: Application Ontology for Multi-Agent and Web-Services’ Co-Simulation in PESs

to the new policies and needs of RES penetration, by con-
ceiving and implementing new market models, changing the
market operation rules, and creating new legislation [5], [6].

In this context, the use of simulation tools developed to
analyze and study the PES domain is indispensable, since
they allow the participating entities to deal with its unpre-
dictability and complexity [7], [8]. Simulators based on
multi-agent technology have particularities that make them
suitable tools for the study of PES, mainly due to their dis-
tributed nature [9], [10]. These tools make it easier to model
the various systems and entities, as well as their constraints,
making the model closer to reality, while decomposing the
problem into less complex modules. Although there are sev-
eral tools in the literature for the study of PES, most of
them only solve problems of a specific PES sub-domain.
Therefore, by using those tools individually, it is not possible
to simulate and study the energy sector with realism and
precision, as the sub-domains have a great interdependence
that strongly impacts the results [11].

One possible solution to take advantage of existing and
well-established PES simulation tools, is to make them inter-
operable through middleware that enables the co-simulation
of heterogeneous tools [12]-[16]. A set of interoperable tools
provides results with higher reliability and realism, besides
of a better understanding of wider implications, restrictions
and influences [17]. It is possible to find in the literature a
few solutions for the cooperation of simulation tools in PES,
namely the Electric Power and Communication Synchroniz-
ing Simulator (EPOCHS) [12], the Global Event-driven Co-
simulation (GECO) [13], Mosaik [14], and Tools Control
Center (TOOCC) [15], [16], conceived and developed by the
authors of the current paper.

These tools use different approaches to achieve inter-
operability between heterogeneous systems. From these,
TOOCC is the only tool that takes advantage of semantic web
technologies for the interoperability with external systems.
Ontologies give semantic meaning to the data exchanged
between heterogeneous parties, promoting their interoper-
ability [18]. The motivation for the development of ontologies
as a means to provide interoperability between heterogeneous
Multi-Agent Systems (MAS) in the scope of PES is addressed
in [19], where the inclusion of external systems that may arise
in the future is also considered.

This paper presents TOOCC’s application ontology for
MAS and web-services co-simulation in PES. TOOCC’s
semantic model describes the scenarios’ configuration while
easing the interoperability between the different simulation
tools and enables the subsequent comparison of results,
thereby overcoming the identified limitations in the field.

The following section gives a background on the dif-
ferent co-simulation tools found in literature, describing
their limitations, and explaining how TOOCC overcomes
those limitations. Section III presents an overview of
TOOCC, detailing its architecture, the multi-agent model,
and explaining why semantic interoperability has been cho-
sen. Section IV introduces TOOCC’s ontology, describing
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its concepts, properties, and purposes. Section V demon-
strates the usefulness of TOOCC’s semantic model through a
case study where the ontology evaluation is also carried out.
Finally, section VI presents the conclusions of this work.

Il. BACKGROUND

Few relevant tools have emerged in the literature to provide
interoperability among already existing PES well-established
simulators. Examples of such tools are EPOCHS [12], GECO
[13], Mosaik [14], and TOOCC [15], [16].

EPOCHS [12] is a multi-agent platform created to simu-
late PES components together with the communication net-
work, to study the grid with the aim to prevent blackouts. It
essentially combines three simulators: i) the Power Systems
Computer-Aided Design/Electromagnetic Transients includ-
ing Direct Current (PSCAD/EMTDC) [20]; ii) the Positive
Sequence Load Flow (PSLF) [21]; and iii) the Network Sim-
ulator 2 (NS2) [22]. An entity called Runtime Infrastruc-
ture (RTI) performs the interface between all components,
ensuring the synchronization in the messages’ exchange. To
interconnect these simulators, EPOCHS uses an application
programming interface (API) encapsulated by the RTI.

GECO [13] has similar characteristics to EPOCHS, as it
also integrates NS2 and PSLF simulators. Its purpose is to
validate monitoring schemes, control, and grid protection.
The communication between GECO and the simulation tools
NS2 and PSLF is made through both Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). The
messages exchanged include information about power data
and control commands.

Mosaik [14] provides interoperability among heteroge-
neous applications through two components: the simulation
interface (SIM API) and the Master Control Program (MCP).
The SIM API enables the communication between Mosaik
and external simulation tools, while the MCP manages the
scenarios’ composition and the tools’ execution. To integrate
a new tool with Mosaik, it is necessary to proceed with
the implementation of a default interface to guarantee the
proper model configuration and the scheduling of the tasks’
execution.

Although these three solutions allow interoperability with
external tools, only Mosaik provides a way to integrate any
tool, while EPOCHS and GECO are restricted to the sim-
ulators they use. Furthermore, whenever it is intended to
run a different scenario, their configuration, data prepara-
tion, and execution’s schedule definition, are complex tasks
since there is a need to write code. Ideally, the execution of
alternative scenarios should be possible with a simple system
reconfiguration, without the need of reprogramming it. It is
possible to realize that these tools were not designed having in
mind a smooth scenarios’ definition, nor a simplified results
analysis.

On the other hand, semantic-based approaches are par-
ticularly suitable for solving interoperability issues [23].
Semantic models establish a common vocabulary so that
applications can interact and communicate, regardless of the
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communication mechanisms [24]. Furthermore, it is possible
to compose more sophisticated solutions by reusing already
existing robust applications and merging different domains,
without interfering with their capabilities [25]. Besides, these
models combined with semantic reasoners allow to perform
more intelligent tasks such as complex queries, the applica-
tion of rules, and to infer new knowledge.

TOOCC [15], [16] has been conceived to overcome the
previously identified limitations in the co-simulation domain.
TOOCC has been proposed by the authors as a multi-agent
tool capable of creating, simulating, and analyzing scenar-
ios covering different PES domains through the interoper-
ability between heterogeneous simulation tools developed
in the GECAD research center. TOOCC takes advantage of
ontologies to be able to interoperate with different systems.
On one side, domain ontologies are used to describe the
knowledge exchanged between the external systems. On the
other, the formalization of the scenarios and respective sim-
ulations’ configuration is achieved by TOOCC’s application
ontology that enables the definition of the external tools to be
used, their input and output models, their input data, order
of execution, and how the results shall be analyzed. The
following section overviews the TOOCC tool, describes its
architecture and multi-agent model, as well as the options
made on semantic interoperability.

lIl. TOOCC OVERVIEW

Tools Control Center (TOOCC) [15], [16] is a co-simulation
solution that acts as a facilitator between heterogeneous tools,
enabling them to share vocabularies and concepts, and thus
collaborate in the simulation of PES scenarios. It allows us
to simulate complex scenarios that result from merging the
individual capabilities of each embedded tool, considering
different PES domains in the same scenario, making the
simulation more realistic and precise.

TOOCC can be seen as a decision support system, as it
provides the user with the means to analyze different prob-
lems with different particularities. It can be adopted to study
PES from the perspective of various entities, such as sys-
tem operators, market operators, grid operators, aggrega-
tors, prosumers, producers, consumers, among others. There
are several domains where TOOCC is being used, namely:
electricity markets, to study the impact of the inclusion of
RES, buildings energy management, demand response (DR),
tariffs application, among others. The simulation for specific
time horizons (e.g.: real-time, hour-ahead, day-ahead) is also
considered, as well as the analysis and results comparison
of alternative scenarios. TOOCC has been designed having
in mind the reduction of the complexity in the definition of
simulation scenarios.

A. ARCHITECTURE

The need to establish interoperability between heterogeneous
systems is one of TOOCC’s key goals. TOOCC’s architecture
enables the communication with external systems regardless
of the programming languages they have been developed.
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It also supports scalability and distribution of agent-based
systems, considering the processing capacity of the machines
available for the simulation. Figure 1 illustrates the core
modules of TOOCC'’s architecture.
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FIGURE 1. TOOCC's architecture.

Analyzing Figure 1, it is visible that TOOCC’s architec-
ture is based on two main modules: the Front-End, for the
user’s interaction, and the Back-End, where the processing
occurs. The interaction between the Front-End and the Back-
End is established through the communication between the
Controllers and the Toocc API sub-modules. The Multi-Agent
System sub-module is responsible for managing the interop-
erability with the external systems, as well as for schedul-
ing simulation scenarios defined by the user. Additionally,
TOOCC uses auxiliary libraries to communicate, interpret,
and transform the knowledge exchanged among the various
integrated systems.

B. MULTI-AGENT MODEL

TOOCC is developed in Java using the Java Agent DEvelop-
ment framework (JADE) [26], [27], which is compliant with
the Foundation for Intelligent Physical Agents (FIPA) [28]
standards.

FIPA promotes the Agent Communication Language
(ACL) as the standard for communication between
agent-based systems. It is also possible to add meaning to
the messages exchanged through the use of ontologies, which
allow the definition of syntax and semantics to their content.
Consequently, agents are able to communicate meaningfully
since they can interpret each message correctly.

Figure 2 presents TOOCC’s multi-agent model.

This model considers six types of agents that provide a con-
ceptual perspective on the execution of a scenario, namely:

e TOOCC API Agent (ApiA): is the agent responsible for
bridging the Toocc API with the Multi-Agent System sub-
module. It asks the main agent to run the simulation and
waits for the results.

e TOOCC Main Agent (TMA): is the agent responsible for
initiating and coordinating the entire simulation at a high
level. When the simulation starts, it triggers the creation
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FIGURE 2. TOOCC's multi-agent model.

of a Scenario Agent for each configured scenario. It
also concludes the simulation after the execution of all
Scenario Agents.

o Scenario Agent (ScenA): is responsible for coordinat-
ing the execution of a specific scenario. The execution
phases are managed by creating Step Agents and ensur-
ing that the scenario runs entirely.

o Step Agent (StepA): its function is to manage communi-
cations with external systems in parallel. That is, it will
create System Agents that will simultaneously commu-
nicate with their respective external systems, within
the same execution phase, allowing agility in obtaining
results.

o Service Agent (ServA): establishes direct communica-
tion with external systems, being aware of the semantics
used in the communication. As soon as it receives the
results, it notifies its creator (Step Agent).

o Mobility Agent (MobiA): has the responsibility to dis-
tribute the several agents to the available machines. The
decision is made according to the operating system and
software installed on each machine.

o Remote Mobility Agent (RMobA): it is hosted on the
available domain machines to which the agents can be
moved and communicates with the Mobility Agent send-
ing the information it needs to decide where to move the
simulation agents.

o Data Agent (DataA): performs centralized management
of simulation data, ensuring that the results are stored
correctly, and that the status of each simulation point is
updated, ensuring complete system’s execution.

In addition to the agents presented, there are also others
native to JADE. These are the Directory Facilitator agent
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as a yellow page directory for service delivery, the Agent
Management System agent for the management and control
of agents and platform, and the Remote Agent Management
which provides a graphical interface for managing and view-
ing agent status and communications.

C. SEMANTIC INTEROPERABILITY

Establishing interoperability between heterogeneous systems
is a complex task. It is not just the exchange of data mes-
sages between systems, but the exchange of knowledge. This
knowledge can be about the domain, about data, or about
features that can be made available and shared.

In computer science, ontologies describe vocabularies
that can model domains shared between heterogeneous
entities [29]. The inclusion of semantics in the messages
exchanged allows an unambiguous conceptualization about
the knowledge shared by both parties, making the com-
munication more effective by removing misunderstandings.
Additionally, other advantages result from the use of seman-
tic models, such as computational inference and knowledge
reuse [30]. They can be used to develop systems decoupled
from the data model, with a high level of abstraction and
flexibility that eases the evolution of the system, such as
in [31]; as well as to validate the system’s knowledge or
apply rules by using, for example, the Semantic Web Rule
Language (SWRL) [32].

Using these techniques, it is possible to strategically use
the individual capabilities of each external tool integrated
with TOOCC, allowing the study of scenarios addressing
several PES sub-domains. At the same time, it allowed to
develop TOOCC with the ability of integrating any external
tool without the need to be reprogrammed, nor to extend any
of TOOCC’s class, nor to implement any interface in the
system to be integrated.

TOOCC’s semantic model is described in Section IV,
where the engineering process is detailed, namely its pur-
pose, goals, requirements, implementation, evaluation, and
evolution.

IV. TOOCC's APPLICATION ONTOLOGY

TOOCC makes use of semantics to ensure the co-simulation
between heterogeneous simulation tools. These simulation
tools may be MAS or web services available in the authors’
research center laboratory. Each system that interoperates
with TOOCC has its knowledge model, which can be seman-
tic or syntactic, and must be considered to ensure the systems’
co-simulation. This section presents TOOCC’s application
ontology (TCC), the methodology used in the engineering
process, and the options made to fulfill our requirements.
There are several methodologies for the development of
ontologies that specify the methods, principles, and rules
to follow during the engineering process [33]. These pro-
cesses support the specification, conceptualization, formal-
ization, implementation, and maintenance of an ontology,
which result in its life cycle. TCC was developed based on
the 101 development methodology [34]. This approach is
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characterized by its simplified view regarding the ontology
development. It is based on the premise that the development
of an ontology is an iterative process, where the ontology is
continuously refined to the needs of its users. This method
considers that there are several possible approaches for the
representation of a domain, where the concepts and their
relations must be clearly stated through the specification of
subjects and predicates.
The 101 methodology is based on the following steps:

o Scope and domain identification;
« Reuse of ontologies;

« Enumeration of important terms;
o Classes definition;

« Properties definition;

« Properties facets definition;

o Creation of instances.

TCC was written using the open-source application
Protégé [35]. It has Ontology Web Language with Logic
Description (OWL-DL) [36] syntax, being represented in
the Resource Description Framework (RDF) Turtle lan-
guage [37]. Being an application ontology, TCC is embedded
in the TOOCC’s application as a resource file. The following
subsections specify TCC’s development process.

A. DOMAIN AND SCOPE

TCC'’s purpose is to configure TOOCC’s simulations, facil-
itate the process of interoperability between external tools
ran by TOOCC, and enable the results’ comparison, when
applicable, at the end of the simulation. To this end, TCC
must be able to: i) describe TOOCC’s configuration model
(i.e., the model that describes the simulations); ii) include the
input and output data models of external systems (semantic
or syntactic); iii) reuse the output model of a system (or part
of it) to get the necessary data for the input of the next system
to execute; and iv) to take advantage of the output models
to perform the automatic results’ comparison, whenever it
makes sense.

Since the input and output models of the systems to be
integrated can be semantic or syntactic, TCC must be agnostic
regarding other data models. TCC must be able to use other
ontologies whenever required, but it does not need to import
them. However, these models must be publicly available or
shared by the external tools.

Thus, the following functional requirements have been
defined to fulfill all the above-mentioned objectives:

o The model must allow the configuration of a set of
simulations to be run simultaneously;

o The model should allow configuring different scenarios
in each simulation (to be executed simultaneously too,
where, after execution, the results can be compared);

« A scenario consists of one or more steps;

o A step can include one or more external systems that
provide services (the step ensures that all services in
it are performed before proceeding to the next step.
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Services in the next step are waiting for the results of
the previous step);

« Each service (provided by a given system) includes input
and output data models, as well as the input data source;

« The input data source can be a local file, a web resource,
or a database;

o The model must allow the automatic results’ comparison
at different levels, namely: simulation level, scenario
level, or service level.

Regarding the non-functional requirements, the following

have been determined:

o Accuracy - determines if the knowledge asserted in the
ontology is according with the domain expert’s knowl-
edge;

o Clarity - validates if the ontology communicates effec-
tively the intended meaning of the defined terms;

« Cohesion - refers to the ontology’s relatedness of ele-
ments, i.e., if the defined classes are strongly related;

« Completeness - checks if the ontology can answer all the
questions;

« Computational efficiency - relates to how fast tools (like
reasoners) can work with the ontology;

« Conciseness - reflects if the ontology defines irrelevant
or redundant elements regarding the domain;

« Consistency - ensures that the ontology does not include
nor allow contradictions;

« Coverage - how well the ontology represents the domain
model.

The functional and non-functional requirements help to
efficiently identify the knowledge that the ontology must
define. Additionally, they also offer a baseline for the vali-
dation and verification of the developed model.

B. REUSING ONTOLOGIES
One of the first phases to be considered in the ontology
development process concerns the reuse of other existing
ontologies. Although there are several ontologies publicly
available in [38] specifying concepts that could be useful
to the configuration of TOOCC’s simulations, these seman-
tic models were designed for different purposes in different
domains and contexts. Thus, they include decontextualized
vocabulary regarding TOOCC’s configuration purpose. For
this reason, TCC does not import any ontology. On the other
hand, importing those inappropriate models could lead to
inconsistencies or ambiguity, since a concept may have dis-
tinct meanings depending on the context or domain.

However, it is important to keep in mind that TCC must
be able to work with the data models (semantic or syntactic)
of the external systems with which it operates. Regarding the
semantic models of external systems, one option could be to
import them into TCC. However, it implies that whenever
a system is included in TOOCC, TCC ontology also has
to be redesigned to ensure there are no inconsistencies nor
ambiguity, which is very time costly.

Instead, it is intended that TCC establishes a relation-
ship with the input/output models of external services, being
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FIGURE 3. TCC's classes and relations.

desegregated from the domain concepts of each system,
unnecessary to the configuration of simulations in TOOCC.
As a result of this approach, TOOCC’s semantic model will
only know the necessary vocabulary to perform its tasks. In
this way, well established PES ontologies such as SEAS [39],
SAREEF [40], EMO [41], DABGEO [42], among others, can
be used by tools that interoperate within TOOCC, without the
need to be imported by TCC.

C. ENUMERATION OF IMPORTANT TERMS
Another important step in the development of an ontology is
the enumeration of important terms that must be represented
as concepts. These concepts are introduced in the ontology as
a class hierarchy.

Considering TCC’s domain and scope, these are the terms
that describe the sufficient and necessary conditions to meet

the above-mentioned requirements:
« Simulation Set - it is the root element of the configura-

tion, where several simulations can be configured to run
simultaneously;

o Simulation - this term describes a user defined simula-
tion;

o Scenario - to define a simulation scenario, since a user
may want to run simultaneously different scenarios and
compare their results at the end;

o Step - identifies the execution phase of a scenario,
helping the system to realize which services can run
concurrently;

« Service - describes an external service (agent-based or
web service) used at a phase of a scenario;

o Input Model - defines the input model (semantic or
syntactic) of a service;

o Output Model - defines the output model (semantic or
syntactic) of a service;

« Input Data Source - identifies the service’s data source,
which can be a local file or web-based;

« File Data Source - describes a service’s file data source;

o Web Data Source - describes a service’s web-based data
source;
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between instances of themselves.

hasComparable

The following subsection details the definitions of classes
and their sub-classes, as well as their properties, facets, and
instances.

D. CLASSES, PROPERTIES, FACETS AND INSTANCES
TCC’s concepts were created using the middle-out approach,
which starts from the most fundamental terms in the domain
before moving on to more abstract and more specific terms.
According to [43], it makes it easier to relate terms more
precisely while it is also likely to reduce rework.

In the previous subsection, a list of terms and respective
descriptions were defined to assist in the development of the
classes and properties of the ontology. Figure 3 introduces
TCC’s class hierarchy and the relations between them. Each
class (in italic) is then described, including the relationships
(in blue) between them.

The Comparable class allows the abstraction of classes
that are intended to be comparable between instances of
themselves, namely the Simulation, the Scenario, and the
Service classes. It is an abstract class that is not supposed
to be instantiated by itself. Instead, one must instantiate its
sub-classes, ensuring that they are only comparable to other
instances of the same class.

The SimulationSet class is the root concept in TCC’s
model. It gathers the various simulations configured by
the user, resulting in a set of Simulation instances. Each
Simulation instance is related to this class by using the
hasSimulation object property.

The Simulation class describes a user-defined simulation.
It is a subclass of Comparable and collects a set of Scenarios,
by using the hasScenario object property, as well as a set of
comparable Simulations settle by the hasComparable object
property, ensuring that only instances of itself are accepted.

In turn, the Scenario class describes the user-defined sce-
nario. It is also a subclass of Comparable, meaning that a
set of comparable Scenarios can be included by using the
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hasComparable object property, allowing only instances of
the Scenario class. This class reunites a set of Steps estab-
lished through the object property hasStep.

The Step class describes the execution phase of a scenario.
The execution phase allows the system to understand which
services will run concurrently. A Step has configured one
or more Services through the hasService relationship. Each
Step is related to the next by the hasNext object property, and
to the previous by the hasPrevious object property. It must
be stressed that the first Step of each Scenario only has the
hasNext object property, while the last Step only considers
the hasPrevious object property.

The Service class defines a service provided by a MAS
or a web-service. It is a subclass of Comparable, allow-
ing only to add Services instances with the object property
hasComparable. Similarly to the Step class, a Service is
also related to the previous or next service to be executed
by using the hasPrevious and hasNext object properties.
However, both its precedents and the following belong to
different implementation phases, i.e., Steps. These proper-
ties serve to create a precedence in which the result of a
service will serve as input to the next one. In addition,
a Service is characterized by an InputModel and respective
InputDataSource, an OutputModel, and the actual result.
The object properties hasinputModel, hasInputDataSource,
and hasOutputModel relate the class Service to the classes
InputModel, InputDataSource, and OutputModel respec-
tively. In turn, the hasResult object property relates to the
superclass owl : Thing. This way, the result of a Service can
be related to instances of the service’s output model.

The InputModel and OutputModel classes characterize
the Service’s input and output models, respectively. These
are abstract classes that enable a recursive definition of
InputModels and OutputModels, by using the hasInputModel
and hasOutputModel object properties respectively. This
way, a complex model can be composed of simpler ones
recursively. On the other hand, it is also allowed to define
an existing input model (from other ontology) as a sub-
class of InputModel, as well as an existing output model
as a subclass of OutputModel. Thus, the reuse of semantic
data models from external systems is assured. Regarding
syntactic data models, their use is guaranteed through their
(XML1 orl) SON2) schemes, made available by the tools inte-
grated in TOOCC. These are identified by Uniform Resource
Identifiers (URIs) that can be included in the ontology as
sub-classes of InputModel and OutputModel, since classes
are identified as URIs in RDF languages [37]. TOOCC is then
able to interpret those schemes to operate with the integrated
systems.

Finally, the InputDataSource class defines the data source
responsible for providing data to the input model. It is an
abstract class that is not supposed to be instantiated. Instead,
one must use its sub-classes, namely the FileDataSource and

1 https://www.w3.org/XML/Schema
2https://json—schema.org/
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the WebDataSource classes. The former describes files as
input data sources, while the latter declares APIs end-points
as data sources.

So far, we have seen the class hierarchy and relations
(object properties) among them. The next step is to present the
classes’ attributes (datatype properties), their value types, and
the properties’ cardinality. The value type is the most relevant
facet in the development of an ontology, as it defines the type
of each property used in the classification process [44].

Table 1 presents TCC’s classes, their properties, and
respective facets, where TCC’s object properties are written
in blue, and the datatype properties are in green.

Observing Table 1, it can be seen that both the Comparable
and InputDataSource classes have no properties defined. As
already explained, these are abstract classes that are not sup-
posed to be instantiated.

In the SimulationSet class, the hasSimulation object
property must have at least one Simulation class asso-
ciated. In turn, the object properties haslnputModel and
hasOutputModel, of InputModel and OutputModel respec-
tively, have no cardinality restrictions.

The Simulation class is defined by an unsigned integer
id, a string name, a string description, and a created and a
modified date-time. The hasComparable and the hasScenario
object properties must have at least one Simulation or
Scenario classes respectively.

The Scenario class is also defined by an unsigned integer
id, a string name, a string description, and a created and a
modified date-time. Additionally, it is also described by an
unsigned integer numberOfSteps, with the number of Step
classes set with the object property hasStep. The hasStep
object properties must have at least one Step class, while
the hasComparable object property can have one or more
Scenario class.

The Step class, in turn, is defined by one unsigned inte-
ger step describing the number of the execution phase (i.e.,
the Step number), and one boolean flag (isCompleted) to
indicate if the Step has finished its execution. The hasService
object property must have at least one Service set, while the
hasPrevious and hasNext object properties can only have at
most one Step each.

The Service class is not defined by any datatype property.
Similarly to Simulation and Scenario, the hasComparable
object property, if set, must have at least one Service
class defined. In the same way, the hasPrevious and
hasNext object properties can only relate to one Service at
most. Finally, the haslnputModel, the haslnputDataModel,
the hasOutputModel, and the hasResult object prop-
erties, can only be related to one InputModel, one
InputDataModel, one OutputModel, and one owl : Thing
respectively.

In turn, the FileDataSource and the WebDataSource
classes are not defined by any object property. The
FileDataSource object is defined by exactly one URI filePath
datatype property describing the local file path, at most one
string fileFormat datatype property with the file format, and
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TABLE 1. TCC's classes, properties and facets.

Class

Properties

Facets

Comparable

Simulation-
Set

hasSimulation

> 1 Simulation

Simulation

id

name
description
created

modi fied
hasComparable
hasScenario

Comparable

1 unsignedInt
1 string

1 string

1 dateTime

1 dateTime

> 1 Simulation
> 1 Scenario

Scenario

id

name
description
created

modi fied

numberO fSteps
hasComparable
hasStep

Comparable

1 unsignedInt
1 string

1 string

1 dateT'ime

1 dateTime

1 unsignedInt
> 1 Scenario
> 1 Step

Step

step
1sCompleted
hasService
hasPrevious
hasNext

1 unsignedInt
1 boolean

> 1 Service
<1 Step

< 1 Step

Service

hasComparable
hasPrevious

has
hasInputModel

hasInputDataSource

hasOutput M odel
hasResult

Comparable

> 1 Service
Service

Service

< 1 InputModel
< 1 InputData-
Source

< 1 OutputModel
< 1Thing

Input-
Model

hasInputModel

InputModel

Output-
Model

hasOutput M odel

Output M odel

Input-
Data-
Source

FileData-
Source

filePath
fileFormat
parseFileTo

InputDataSource
1 anyURI

< 1 string

< lanyURI

Web-
Data-
Source

requestU RL
request M ethod
request Header
request Body

request BodyContentType
responseContentType

responsePath

InputDataSource
1 anyURI

1 string

string

< 1 string

< 1 string

< 1 string

< 1 string

one URI parseFileTo datatype property defining the semantic

model to which the file content should be translated to.

The WebDataSource class is defined by exactly one
URI (resquestURL) and a requestMethod string with the
HTTP request method. A requestHeader string may also
be defined with the request header information. Option-
ally, at most one requestBody string may be defined with
the message body, whenever it makes sense; as well as
a requestBodyContentType string. Similarly, at most one
responseContentType string may be set, and in case the
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response is a JSON or XML structure, the user may also set
the responsePath string to get the intended value.

As already stated, TCC is written in OWL-DL syntax.
OWL-DL provides the maximum expressiveness possible,
maintaining computational completeness, decidability, and
the availability of reasoning algorithms [45]. TCC’s expres-
siveness is ALCQ(D), i.e., it allows: to demonstrate attributive
language (AL), which includes atomic negation, conceptual
intersection, universal constraints, and limited existential
quantification; complex conceptual negation (C); qualified
cardinality constraints (Q); and the use of data type properties
and values (D).

Finally, instances (or individuals) are the objects of the
classes that can be classified and validated by the ontology.
The following section presents a case study where the use
of TCC is demonstrated. It features the ontology instantia-
tion, including its evaluation in which the previously defined
requirements are validated.

V. ONTOLOGY EVALUATION

The following case study was developed to evaluate and test
the requirements established for TCC in subsection IV-A. To
this end, it is considered a scenario where a DR event is
applied to reduce the operating costs of the network while
returning a fair compensation of the resources involved. The
modeled scenario considers historical data for August 2018,
with a granularity of 15 minutes. It includes consumption
data from 144 consumers with varying profiles (domestic
and industrial), generation data from 43 renewable energy
sources (solar and wind), and data from 1 regular supplier and
5 backup suppliers to be used whenever the regular supplier is
not able to fully satisfy the grid needs. In terms of scalability,
this scenario is based on a large amount of data.

Conceptually, the aggregator shall perform the energy
scheduling of the network, taking into account all restrictions
of its users. After scheduling, the users who reduce their con-
sumption according to what is established by the aggregator
are rewarded. Thus, it is necessary to determine what will
be the fair remuneration value for each individual. For this
are made clusters based on the amount of power cut. Finally,
to remunerate the end-user, the maximum rate of each group
will be determined. The consumption reduction is made in
certain consumers’ devices, detailed in their DR contracts.
These devices can be air conditioners, sockets, refrigerators,
washing machines, among others. To ensure that a sensitive
device is not affected, it is possible to assign each device a
degree of priority where the highest priority level means that
it should be cut only as a last resort, while those with lower
priority can be considered more often.

To be able to simulate the described scenario, three
web services were selected. The first service will be the
scheduling optimization, which will be followed by the
aggregation (clustering) service and after by the service
that determines the remuneration applicable to each group.
Services should run sequentially, where part of the out-
put from the first tool is used by the second, and so on.
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FIGURE 4. Case study execution phases.

TOOCC Main

Agent Scenario Agent

Step Agent Service Agent
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simulation

KB Generation

search scenarios

<<creates>>
send KB

store KB

search steps

<<creates>>
send KB

store KB

search services

<<creates>>
send KB

store KB

FIGURE 5. Sequence diagram for multi-agent communications.

Figure 4 illustrates which services run in each phase and their
dependencies.

After the scenario configuration, and the Start button is
pressed, TOOCC’s knowledge base (KB) is filled with the
simulation data. The KB is then queried by TMA to initialize
all necessary agents with the knowledge they need to pro-
ceed. A simplified representation of this process is illustrated
in Figure 5.

After initializing the ScenA, TMA sends it the KB data
about :scenario-1. Listing 1 presents a snippet of
:scenario-1 definition in Turtle.

In line 1, it is possible to observe the defini-
tion of an individual (:simulation-set) of type
tcc:SimulationSet. In line 2 the object property
tcc:hasSimulation indicates that there is only one sim-
ulation defined for this case study (i.e., : simulation-1).
If multiple simulations where defined, this object prop-
erty would have more individuals, separated by com-
mas (as defined in the first requirement). In the same
way, if more scenarios were defined for this case study,
the object property tcc:hasScenarios (line 5) would
have more individuals (as determined in the second require-
ment). The :scenario-1 individual has three steps
configured (lines 12 to 13) fulfilling the third require-
ment. For each step, a StepA agent is initialized, and
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I :simulation-set rdf:type tcc:SimulationSet ,
owl:NamedIndividual ;
tcc:hasSimulation :simulation-1

4 :simulation-1 rdf:type owl:NamedIndividual ,

tcc:Simulation ;

5 tcc:hasScenario :scenario-1 ;

6 tcc:id "simulation-1"

7 tcc:name "Service to Service (S2S) Simulation
" "xsd:string ;

8 tcc:descrition "The simulation demonstrates
the Service to Service integration where
the output of a Service is mapped to be
the input of the next one."""xsd:string ;

9 tcc:icreated "2019-07-25T16:26:24"""xsd:
dateTime ;

10 tccimodified "2019-07-25T16:26:24"""xsd:
dateTime

2 :scenario-1 rdf:type owl:NamedIndividual , tcc:
Scenario ;
tcc:hasStep :step-l-scen-1 , :step-2-scen-1 ,
:step-3-scen-1 ;

14 tcc:numberOfSteps "3"""xsd:unsignedInt ;

15 tcc:id "scenario-1" ;

16 tcc:name "Service to Service (S2S) Scenario"

~"mxsd:string ;

7 tcc:descrition "The scenario demonstrates the
Service to Service integration where the
output of a Service is mapped to be the

input of the next one."""xsd:string ;

18 tcc:created "2019-07-25T16:26:24"""xsd:

dateTime ;

19 tccimodified "2019-07-25T16:26:24"""xsd:

dateTime

Listing. 1. General scenario configuration.

I :step-l-scen-1 rdf:type owl:NamedIndividual ,
tcc:Step ;
tcc:hasService :service-optimization-
algorithm ;
tcc:hasNext :step-2-scen-1 ;
4 tccistep "1"""xsd:unsignedInt

6 :service-optimization-algorithm rdf:type owl:

NamedIndividual , tcc:Service ;
7 tcc:hasNext :service-aggregation-algorithm ;

8 tcc:hasInputModel :InputOptimizationAlgorithm
7
9 tcc:hasInputDataSource :input-file-opti-algo

4
10 tcc:hasOutputModel
OutputOptimizationAlgorithm

Listing. 2. First phase configurations.

the knowledge about each particular step is sent to the
respective agent for its execution. As it is possible to
verify, the first three requirements defined in the subsec-
tion IV-A are present in Listing 1. Listing 2 shows the
:step-1-scen-1 instantiation, as well as the definition
of the : service-optimization-algorithm.

The link between the optimization service running at
this stage and the aggregation service running at the next
stage is achieved through the tcc:hasNext relation-
ship (line 7). The same happens with the tcc:Step,
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I :InputOptimizationAlgorithm rdf:type owl:Class
;
rdfs:subClassOf tcc:InputModel , [
rdf:type owl:Restriction ;
4 owl:onProperty tcc:hasInputModel ;
5 owl:cardinality "1""*“xsd:nonNegativelInteger

;
6 owl:onClass :CutLimitIn

4
8 [ rdf:type owl:Restriction ;
9 owl:onProperty tcc:hasInputModel ;
10 owl:cardinality "1""~"xsd:nonNegativelInteger
7
) owl:onClass :ConsumptionIn

- ’

13 [ rdf:type owl:Restriction ;

14 owl:onProperty tcc:hasInputModel ;

15 owl:cardinality "1""~"xsd:nonNegativelInteger

;
16 owl:onClass :ProductionIn
17 1, [ ... ]

Listing. 3. Excerpt of input model of the first execution phase.

where the execution order is also established through the
same relationship (line 3), together with the tcc:step
property (line 4), which indicates the order in which
the phase will execute. For each service defined in the
tcc:hasService object property (line 2), the StepA
agent creates a ServA agent, being the service informa-
tion transmitted to the latter. If the tcc:hasService
object property would have two services defined, then
these would run concurrently. This property fulfills the
fourth requirement set in subsection IV-A. Additionally, for
the :service-optimization—-algorithm individ-
ual, the relationships are constructed for the input data model
:InputOptimizationAlgorithm (line 8) and the out-
put data model :OutputOptimizationAlgorithm
(line 10) to be able to communicate with the external services.
Here is also demonstrated the fifth requirement defined in
subsection IV-A.

Listing 3 demonstrates how the semantic input data model
is built for the scheduling service : service-optimiza-
tion—-algorithm.

In this model, it is possible to view some of the fields
required for execution, such as: :CutLimitIn (line 6),
:ConsumptionIn (line 11), and : ProductionIn (line
16). These fields inform the algorithm of the characteristics
of the network players, so that it can perform a more efficient
scheduling based on consumption and production profiles.

Listing 4 shows a small excerpt of the data instantiated with
the : CutLimit In model.

On the other hand, Listing 5 gives an overview of the
scenario configuration for running the aggregation algorithm

:service—-aggregation—-algorithm (line 8).

The second step (: step—2—-scen-1) is the execution of
the aggregation algorithm, which will create clusters of con-
sumers to help determine the most appropriate remuneration
rate. However, for this service to run, it needs to populate
its input data model : InputAggregationAlgorithm
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:iPmaxidr a csi:CutLimitIn ;
mat:item :iArray39iPmaxidr , (...)

4 :iArray39iPmaxidr a mat:Array ;
5 mat:item :iItem2316iArray39iPmaxidr , (...)

:iItem2316iArray39iPmaxidr a mat:Item ;
8 mat:pos "2316"""xsd:unsignedInt ;
9 mat:val "0.0037"""xsd:double .

Listing. 4. Excerpt of input data of the first execution phase.

I :step-2-scen-1
) rdf:type owl:NamedIndividual , tcc:Step ;
tcc:hasService :service-aggregation-algorithm
;
4 tcc:hasPrevious :step-l-scen-1 ;
tcc:hasNext :step-3-scen-1 ;
6 tccistep "2"""xsd:unsignedInt .

8 :service-aggregation-algorithm

9 rdf:type owl:NamedIndividual , tcc:Service ;

10 tcc:hasPrevious :service-optimization-
algorithm ;

) tcc:hasNext :service-remuneration-algorithm ;

12 tcc:hasInputModel :InputAggregationAlgorithm

4
tcc:hasOutputModel :
OutputAggregationAlgorithm .

Listing. 5. Configuration of the second phase of execution.

with some of the values that compose the previous phase
output data model. The use of concepts between the output
model of a service and the input model of the next one is
done by using the same class. An example of this process is
illustrated in Listing 6.

The code shows that the input data model for the aggre-
gation algorithm :InputAggregationAlgorithm
(lines 13 to 19) contains the class :O0ptimization-—
SolutionIn (line 18). This class is composed by
:DGResOut (line 30) and :ReduceAmountResOut
(line 26) that result from :OutputOptimization-—
Algorithm (lines 6 and 11 respectively) of the previous
step, demonstrating that the output model of a service can
be used as part of the output model of another service,
or completely.

Besides the input model already presented in Listing 6,
a representation of the output data model :Output-
AggregationAlgorithmis shown in Listing 7.

The next service to be performed is the remuneration ser-
vice. It will assign a remuneration rate to each entity, accord-
ing to the group in which it was classified in the aggregation
phase. The configuration of phase three is shown in Listing 8.

As can be seen in Listing 8, unlike the previous phases,
this service does not have the tcc:hasNext relationship,
since it is the last phase that will be executed. The input data
model : InputRemunerationModel of the third phase
is represented in Listing 9.

Listing 10 presents the algorithm output data model for
obtaining remuneration.
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1 :OutputOptimizationAlgorithm rdf:type owl:Class
7

2 rdfs:subClassOf tcc:OutputModel ,

3 [ rdf:type owl:Restriction ;

4 owl:onProperty tcc:hasOutputModel ;

5 owl:cardinality "1""~"xsd:nonNegativelInteger

;
6 owl:onClass :DGResOut ] ,

7 [ ... 1

8 [ rdf:type owl:Restriction ;

9 owl:onProperty tcc:hasOutputModel ;

10 owl:cardinality "1"""xsd:nonNegativelInteger

;
11 owl:onClass :ReduceAmountResOut ]

13 :InputAggregationAlgorithm rdf:type owl:Class ;

14 rdfs:subClassOf tcc:InputModel ,

15 [ rdf:type owl:Restriction ;

16 owl:onProperty tcc:hasInputModel ;

17 owl:cardinality "1"”"xsd:nonNegativelnteger
4

18 owl:onClass :0ptimizationSolutionIn ] ,

19 [ ... ]

21 :OptimizationSolutionIn rdf:type owl:Class ;

22 rdfs:subClassOf tcc:InputModel ,

23 [ rdf:type owl:Restriction ;

24 owl:onProperty tcc:hasInputModel ;

25 owl:cardinality "1"”""xsd:nonNegativelInteger

4

26 owl:onClass :ReduceAmountResOut ] ,

27 [ rdf:type owl:Restriction ;

28 owl:onProperty tcc:hasInputModel ;

29 owl:cardinality "1"""xsd:nonNegativelnteger
4

30 owl:onClass :DGResOut ]

Listing. 6. Reuse of concepts between different data models.

1 :OutputAggregationAlgorithm
2 rdf:type owl:Class ;
rdfs:subClassOf tcc:OutputModel , [

4 rdf:type owl:Restriction ;
5 owl:onProperty tcc:hasOutputModel ;
6 owl:cardinality "1""~"xsd:nonNegativelInteger

’
7 owl:onClass :BestKOut ] ,
8 [ rdf:type owl:Restriction ;
9 owl:onProperty tcc:hasOutputModel ;
10 owl:someValuesFrom :AggregationListItem ]

Listing. 7. Output model of the second phase of execution.

At the end of the execution the results are made available
to the user so that he can analyze and draw conclusions about
them. These include the results of each intermediate phase,
as well as the final results extracted from the last execution
phase.

With the present case study, it is possible to verify
the fulfillment of several TCC’s requirements identified
in Section IV-A. It shows the possibility of creating a
scenario with several steps that will execute sequentially,
and where each step can consider one or more services
simultaneously, to improve the simulation performance. The
interoperability of those services is achieved through the
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I :step-3-scen-1
2 rdf:type owl:NamedIndividual , tcc:Step ;
tcc:hasService :service-remuneration-
algorithm ;
4 tcc:hasPrevious :step-2-scen-1 ;
5 tccistep "3"""xsd:unsignedInt

7 :service-remuneration-algorithm

8 rdf:type owl:NamedIndividual , tcc:Service ;

9 tcc:hasPrevious :service-aggregation-
algorithm ;

10 tcc:hasInputModel :InputRemunerationAlgorithm

7
1 tcc:hasOutputModel
OutputRemunerationAlgorithm

Listing. 8. Configuration of the third phase of execution.

1 :InputRemunerationAlgorithm rdf:type owl:Class
7
rdfs:subClassOf tcc:InputModel ,
; [
rdf:type owl:Restriction ;
5 owl:onProperty tcc:hasInputModel ;
6 owl:cardinality "1"""xsd:nonNegativeInteger

i
7 owl:onClass :AggregationSolutionIn ] ,

8 [ rdf:type owl:Restriction ;

9 owl:onProperty tcc:hasInputModel ;

10 owl:cardinality "1"""xsd:nonNegativeInteger

4
11 owl:onClass :CostIn ] ,

[ ...

Listing. 9. Input model of the third phase of execution.

:OutputRemunerationAlgorithm rdf:type owl:Class

;
2 rdfs:subClassOf tcc:OutputModel , [

3 rdf:type owl:Restriction ;

4 owl:onProperty tcc:hasOutputModel ;

5 owl:someValuesFrom :RemunerationListItem ]

Listing. 10. Output model of the third phase of execution.

knowledge exchanged between the input and output data
models.

In the simulation process, it was possible to verify that TCC
effectively achieves its purpose. Moreover, the simplicity of
TCC design enables a good performance, and it was proven
that the system can execute scenarios with a large amount of
data.

TCC has the flexibility to model different problems in
the scope of PES, taking into account different perspectives,
roles, and objectives, as can be seen by this case study and
by others already published [15], [16]. This article is distinct
from previously published works, as it presents the applica-
tion ontology defined for the TOOCC tool and uses a case
study to illustrate its use. At the same time, this case study
not only evaluated TCC, but also demonstrated the execu-
tion of a complex simulation scenario in which three web
services are integrated to simulate a DR program in a local
community.
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VI. CONCLUSION

The large-scale implementation of distributed energy sources,
as well as the targets imposed worldwide to face the new
climate paradigm, are causing severe changes in the sector,
which are continually adapting to meet the new challenges.
The development of decision support tools to address the
problem as a whole is one of the key challenges in PES.

TOOCC contributes to increase interoperability between
heterogeneous systems that study, experiment, and test the
PES domain. This work introduces TOOCC’s application
ontology. TCC supports the scenarios’ definition and results
comparison while easing the interoperability among the sev-
eral systems. It has been developed considering a level of
abstraction and flexibility that allows its evolution. At the
same time, TCC can include the semantic or syntactic models
of the various integrated tools, as long as these models are
publicly available or shared by the external tools.

The case study presents a DR program in which the con-
sumer’s remuneration (per power unit) depends on the cluster
to which he is assigned. In turn, this cluster depends on the
amount of energy that the consumer can make available to the
network. The main purpose of the case study is to evaluate
the presented application ontology, while demonstrating how
a simulation is configured and how the interoperability is
achieved by mapping the output of a service to the input
of the next one. During the case study, it was possible to
demonstrate several requirements defined for TCC.

As future work, the next step intends to show the benefits
of using this ontology for the results (models) comparison,
by exploring the reasoning capabilities of the system. For this
purpose, two different scenarios will be considered: i) using
different simulation tools aimed at the study of similar prob-
lems; and ii) using the same system with different inputs. This
way, it will also be possible to demonstrate the simultaneous
execution of distinct simulations and scenarios.
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