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Abstract: As a consequence of the huge development of IMU (Inertial Measurement Unit)
sensors based on MEMS (Micro-Electromechanical Systems), innovative applications related to
the analysis of human motion are now possible. In this paper, we present one of these applications:
a portable platform for training in Ultrasound Imaging-based musculoskeletal (MSK) exploration in
rehabilitation settings. Ultrasound Imaging (USI) in the diagnostic and treatment of MSK pathologies
offers various advantages, but it is a strongly operator-dependent technique, so training and
experience become of fundamental relevance for rehabilitation specialists. The key element of our
platform is a replica of a real transducer (HUSP—Haptic US Probe), equipped with MEMS based IMU
sensors, an embedded computing board to calculate its 3D orientation and a mouse board to obtain
its relative position in the 2D plane. The sensor fusion algorithm used to resolve in real-time the 3D
orientation (roll, pitch and yaw angles) of the probe from accelerometer, gyroscope and magnetometer
data will be presented. Thanks to the results obtained, the integration of the probe into the learning
platform allows a haptic sensation to be recreated in the rehabilitation trainee, with an attractive
performance/cost ratio.

Keywords: IMU sensors; haptic devices; USI based diagnostic

1. Introduction

Throughout our lives, practically everyone will experience an incident that will affect our
musculoskeletal (MSK) or neuromuscular system. At these issues, the effects can take the form of acute
injuries, such as fractures, breaks or muscle tears, sprains, tendinitis, cerebrovascular accidents with
peripheral muscular paralysis, etc. In addition, they can evolve as subacute or chronic processes such
as degenerative processes, rheumatological diseases or neuropathies with muscular involvement.

The impact of these diseases on our functional ability depends not only on the severity of the
process but also on the treatment that will be applied. In this way, rehabilitation treatments play
a fundamental role in the results that follow any type of orthopedic or sports injury or perhaps a
surgical procedure. In these cases, several basic goals must be pursued, such as early mobilization
and the establishment of adequate objectives to carry out such mobilization [1]. Many people with
MSK pathologies benefit from the association of rehabilitation along with complementary medical
treatments, so symptoms and disability are reduced, improving functional ability [2].

Prior to the establishment of a treatment, both medical or rehabilitative, a correct diagnosis
is essential. The diagnostic task begins with an appropriate medical history, which is, usually,
complemented with various imaging tests. These ones include simple X-ray, axial tomography,
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magnetic resonance or USI (UltraSound Imaging). USI is a non-invasive, safe (there is no radiation),
repeatable technique and provides a dynamic study; therefore, it is widely accepted by both patients
and medical services. In addition, thanks to technological advances, the resolution of USI equipment
has been improved remarkably, hence it provides better quality images.

In the last decade [3,4], the use of ultrasound for imaging in the context of MSK evaluation in
rehabilitation environments has expanded dramatically because it allows high-resolution images to
be available in real time. Pioneering applications of ultrasound at MSK studies date back from 1970,
for research on the rotator cuff [5]. Nowdays, this image technology adds accuracy on diagnosis and
certainty to guide the needle insertion in therapeutic interventional procedures [6] such as drainage,
infiltrations, etc. These benefits have led, in advanced countries, to its growing use in MSK clinics
and rehabilitation installations, by providing clinical, anatomical, and technical integration in a
one-day-evaluation [6].

Despite its obvious benefits, USI is a strongly operator-dependent technique, both at the image
capturing stage and at the following evaluation stage. The sonoanatomy of MSK structures differs
from magnetic resonance and radiographic and tomographic images, in such a way that USI images
are harder to understand [6]. Firstly, relating 2D ultrasound imaging to a familiar 3D anatomical model
is not a trivial issue. This difficulty can only be overcome by training, hence experience becomes of
fundamental relevance [7]. In fact, USI technique is being incorporated into numerous university
education curricula in different medical specialties, as it has proven to be very useful along with
physical exploration [8]. The physician must learn to properly establish the position and orientation of
the transducer (probe), and then he has to be able to interpret the obtained images. To do this task,
it is necessary to get a correct mental model, that is, the relationship between hand movements and
probe orientation with the resulting US image, that will let the learning curve improve [9]. The cost of
equipment is high enough to make it impossible to have a device available for individual practice for
medicine students. At present, the best way to acquire a good mental model in USI is a procedure with
a simulator, which can transfer the knowledge from an expert [10]. At this procedure, haptics-based
simulators provide a realistic feedback mechanism that allows the trainees to learn from their mistakes
and to improve their technique, accelerating their learning process to develop accurate skills, as at our
case of study, on MSK diagnosis.

The aim of this paper is to present a tool to train or instruct beginners in the recognition of different
MSK tissues through the visualization of a US image. Our solution consists of two components: a probe
replica that mimics a real US transducer and a multi-platform desktop application. The probe replica,
referred to as HUSP (Haptic US Probe), will be equipped with sensors to capture the movement of a
trainee’s hand. The software application reproduces US images, pre-recorded with real equipment,
according to the probe movements as it is manipulated by the trainee. The portable nature of the device
HUSP facilitates in-home training for the diagnosis of MSK diseases outside clinical and academical
institutions. Obviously, the system applicability is not restricted to this medical diagnostic activity area.

Our innovative application needs to estimate the orientation (roll, pitch, yaw) of the HUSP.
Inertial sensors can be used to capture data about the orientation of the object that includes the
sensor. As a consequence of the huge development in Micro-electromechanical Systems (MEMS)
technologies, IMU (Inertial Measurement Unit) sensors become more accurate, lightweight, compact
and inexpensive. In [11], a complete review of the pose estimation methods using MEMS devices can
be found.

The measurements of the gyroscope, magnetometer and accelerometer present errors due to
bias, noise, magnetic interferences and other external disturbances [11]. Hence, their accuracy of
orientation estimation may be poor if these measurements are considered individually. To improve the
orientation estimation accuracy, sensor fusion algorithms (SFAs) are necessary, where accelerometer
and magnetometer measurements are used for compensating the drift during gyroscope data
integration. In [12], a comprehensive and systematic review of existing methods to reduce the effect of



Sensors 2019, 19, 101 3 of 15

indoor magnetic disturbances is presented. Following this systematic review, we are going to categorize
the SFA proposed in our work to estimate the 3D orientation of the probe.

Among the existing methods to decouple the estimation of the pitch and roll angles from the
magnetic disturbance, our method uses the two-step orientation estimation. First, the pitch and roll
angles using acceleration and angular velocity are estimated, and then yaw angle with the estimated
pitch, roll angles and the magnetometer data are calculated. Ref. [13] proposed a quaternion-based
procedure that, as our proposal, isolates the effect of magnetic disturbances over inclination (pitch and
roll) estimations, but it is more sensible to the drift at gyroscope signals. With respect to the methods
that address the problem of yaw estimation errors that are related to gyroscope bias, a model-based
gyro bias estimation method is used in our solution. In this way, the state vector in the SFA is increased
by adding the gyro bias, thus estimating the orientation and the gyro bias simultaneously. Where the
SFA selected is concerned, this is a dual-extended Kalman filter with gyro bias estimation, where the
orientation is directly represented by the Euler angles. Kalman filters (KFs) and extended Kalman
filters (EKFs) are the preferred sensor fusion methods for estimating the attitude (orientation) using
IMUs [14,15].

The rest of the paper is organized as follows. In Section 2, the ultrasound probe design will be
exposed, and the main components of the hardware design will be described. As a main characteristic,
it can be considered as a low cost and powerful embedded system. One key element of this hardware
are the sensors, among which the IMU device has a central role. When estimating the orientation of
the probe, it will be useful to describe the relationship between the fixed frame and the frame attached
to the body (probe). In addition, the algorithm that is needed to estimate the hand orientation in the
embedded system will be exposed. In Section 3, the main results of the computed orientation will be
shown. In addition, the global simulating environment will be presented, and a case of study of the
use of the probe in a real image based diagnostic task will be exposed. Finally, the discussion and the
main conclusions of the work will be presented.

2. Materials and Methods

2.1. Components of the HUSP Probe

When a rehabilitation specialist performs an MSK evaluation via USI, the professional’s first step
is to move the US probe/transducer to the MSK area of interest. At this time, he rotates, with three
degrees of freedom, the US probe until the ideal orientation is reached to correctly visualize the target
US image. By means of our solution, the student must imitate (mimic) this behavior. The design
objective is to reproduce the translation and rotation movements of the hand of the real specialist as he
handles the probe using hardware components with a high performance/cost ratio.

The HUSP unit (Figure 1) includes a sensor module and a data acquisition and fusion module
which are integrated into a custom housing, replicating a real transducer. In the 3D design of the probe,
an important effort was made to achieve a high degree of realism and to optimize the arrangement
of both modules. The use of 3D additive printing techniques has been very useful at the prototype
design process. The HUSP is powered from a 5 V source.

The sensor module consists of a commercial inertial measurement unit (IMU) MPU-9150 from
InvenSense (InvenSense Co. San Jose, CA, USA) with mutually orthogonal tri-axial accelerometer,
gyroscope and magnetometer, which is used to estimate the 3D orientation (roll, pitch and yaw angles)
of the probe (Figure 2). In addition, the hardware components from an optical mouse are included to
detect the two-dimensional translation movement of the probe back and forth, left and right, relative
to the underlying surface. In this way, we will capture the typical rotation and translation movements
that a rehabilitation specialist performs when positioning an US probe.

The data acquisition and fusion module are supported by iMX233-OLinuXino-NANO (Olimex,
Ltd., Plovdiv, Bulgaria): a Linux computing board that has been designed to be embedded in custom
devices, thanks to its dimensions, light weight and complete capabilities. The MPU-9150 will be
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connected via the I2C interface available on the Olinuxino. The IMU sensors are sampled at a 30 Hz
rate, which is fixed according to the speed at which the probe is moved by the specialist, typically at
a maximum linear velocity around 1 cm/s and a maximum angular velocity around 1 rad/s. Thus,
this sampling rate is sufficient for fidelity and for adequate repeatability of the movement when carried
out by a human being, ensuring real-time computational response.

Figure 1. Arrangement of the hardware modules inside HUSP: optical mouse board, IMU and Linux
embedded computer.

Figure 2. Rotation movements of the probe in the hand of a specialist and body frame.

From the MPU-9150 sensor, the angular rate, the proper linear acceleration and the earth magnetic
field vector are collected in X, Y, Z axes. Integrating the angular rate obtained from the gyro outputs
is not an appropriate method for calculating the orientation of the probe replica because the gyro bias
error causes the orientation error to diverge. A sensor fusion algorithm is used to resolve the entire
three-dimensional orientation of the probe, where data from gyros, magnetometers and accelerometers
are integrated to correct the bias, drifts, noise and the magnetic field distortions that affects these
measurements. In this way, in the following section, we will present the used algorithm which is
based on a two-stage extended Kalman filter. Its implementation will perform the data fusion task for
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the data provided by the IMU device. The body orientation will be represented using Euler angles.
Figure 2 shows the frame attached to the probe (the hand of the specialist) which has been considered
to define the orientation.

Events associated with the movement of the mouse are directly processed in the desktop
application (by the OS services). With the data related to the orientation and translation movements,
the desktop application selects and displays to the user the corresponding US images, which have
been pre-recorded with real US equipment and patients have been previously tagged with the position
and orientation data.

2.2. Calculation of the Probe Orientation by IMU Sensor

The orientation of the probe can be defined by Euler (Tait–Bryan) angles: roll φ, pitch θ and yaw ψ

that represent the relative attitude of a rotating frame b, which is attached at the moving body (probe),
with respect to a fixed original frame n (usually named inertial). The transformation matrix Eb

n from
the fixed frame n to the body frame b is defined by three elemental rotations: first rotation E2

n about
axis z by ψ, then a rotation E3

2 around the new axis y2 by θ and, finally, rotation Eb
3 around the new axis

x3 by φ:

Eb
n = Eb

3(φ)E3
2(θ)E2

n(ψ) = cos θ cos ψ cos θ sin ψ − sin θ

sin φ sin θ cos ψ− cos φ sin ψ sin φ sin θ sin ψ + cos φ cos θ sin φ cos θ

cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ− sin φ cos ψ cos φ cos θ

 (1)

where

Eb
3(φ) =

 1 0 0
0 cos φ sin φ

0 − sin φ cos φ

 (2)

E3
2(θ) =

 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (3)

E2
n(ψ) =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (4)

Let ω with components (ωx, ωy, ωz) be the rotation rate on the probe frame b. Let (φ̇, θ̇, ψ̇) be the
derivatives of the Euler angles, where each component is the magnitude of the angular velocity in the
inertial frame (in which the angle is defined). The on-board rotation rate [16] can be expressed in terms
of the derivative of Euler angles as ωx

ωy

ωz

 =

 φ̇

0
0

+ Eb
3(φ)

 0
θ̇

0

+ Eb
3(φ)E3

2(θ)

 0
0
ψ̇

 (5)

By substituting Equations (2) and (3) into Equation (5), the relationship between rate change for
Euler angles with the measured angular rates will be obtained as φ̇

θ̇

ψ̇

 =

 1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ


 ωx

ωy

ωz

 (6)
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Taking into account the initial conditions, Equation (6) can be integrated obtaining the dynamical
evolution of the probe orientation (φ, θ, ψ) from gyro measurement (ωx, ωy, ωz). As all real components
in real scenarios, MEMS gyros show offsets, drifts and noise, which in numerical integration,
cause tracking errors in the orientation which will increase with the time.

As a powerful solution, we use a well-known sensor data fusion algorithm, Extended Kalman
Filtering (EKF), that will combine the data provided by accelerometers and magnetometers, which act
as measurements of outputs, in a correction stage that will minimize the tracking error.

2.3. Kalman Filter in Tracking of Probe Orientation

To fuse the information of the three IMU sensors, we will use a dual-extended Kalman filter
(Figure 3). The first filter, called Tilt EKF, will compute pitch (θ) and roll (φ) taking as input the gyro data
at the prediction stage and it will use the accelerometer data at the correction phase. The second filter,
named Heading EKF, will compute yaw angle (ψ) by integrating over the time the gyro information
and the Tilt Filter output (θ, φ) at the prediction stage and it will use the magnetometer data at the
correction phase. In this way, our method decouples the estimation of the pitch and roll angles from
the magnetic disturbance, using the two-step orientation estimation.

Figure 3. Scheme of EKF used in the orientation estimation.

2.3.1. EKF Tilt

System state is defined [16–18] by using the third column of the director cosines matrix
(Equation (1)), so

x =

 x1

x2

x3

 =

 − sin θ

sin φ cos θ

cos φ cos θ

 (7)

If x is derived, then

ẋ =

 −θ̇ cos θ

φ̇ cos φ cos θ − θ̇ sin φ sin θ

−φ̇ sin φ cos θ − θ̇ cos φ sin θ

 (8)

By substituting expressions θ̇ and φ̇ from Equation (6) into Equation (8), it will be obtained

ẋ =

 0 ωz −ωy

−ωz 0 ωx

−ωy ωx 0


 x1

x2

x3


If a linearization procedure is carried out, the following expression will be obtained

∆ẋ =

 0 ωz −ωy

−ωz 0 ωx

−ωy ωx 0


 ∆x1

∆x2

∆x3

+

 0 −x3 x2

x3 0 −x1

x2 −x1 0


 ∆ωx

∆ωy

∆ωz

 (9)
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which corresponds to the linearized system model

∆ẋ = F∆x + B∆u (10)

where ∆u is the gyro information (∆ωx, ∆ωy, ∆ωz), ∆x is the state, and F and B the corresponding
matrices appearing in Equation (9). The ∆ symbol preceding the variables refers to deviation variables
with respect to the linearization point (e.g., ∆u = u− ū).

When discretizing the state-space model (Equation (10)), we take the solution x(t) of the state
equation that uses the state-transition matrix eFt. In order to obtain the discrete model in a simple and
computationally tractable way, the following approximation has been considered eF∆T ≈ (I + F∆T).
Hence, the approximate discrete model is

xk+1 = (Fk∆T + I)xk + Bkuk∆T (11)

where ∆T is the sampling time; Fk and Bk are the matrix at instant k

Fk =

 0 ωzk −ωyk

−ωzk 0 ωxk

−ωyk ωxk 0



Bk =

 0 − cos φk cos θk sin φk cos θk
cos φk cos θk 0 sin θk
sin φk cos θk sin θk 0


By defining a reduced system state, as shown in Equation (7), the system model, used in the EKF

prediction phase, depends only on φ and θ and it is independent of ψ. The state at the instant k + 1
depends on the state and the gyro data at the instant k.

At the EKF correction stage, the accelerometer data will be used to compute estimations of φ and
θ. As accelerometer measurements are made respect to the body frame, we must transform the gravity
vector from the fixed frame n to the body frame b. To do that, the following expression can be used: Ax

Ay

Az

 = Eb
n

 0
0
−g

 = −g

 − sin θ

sin φ cos θ

cos φ cos θ

 = −g

 x1

x2

x3

 (12)

where Eb
n represents the matrix in Equation (1) and g will designate the gravity value. Given the state

definition that appears in Equation (7) at the instant k, the observation model will be given by

zk = Hkxk (13)

where zk represents the accelerometer measure [Ax, Ay, Az]T at the instant k and the observation
matrix will be Hk = −g.

2.3.2. EKF Heading

Since the gyro has offset errors (bias),

ψ̇s = ψ̇− ψ̇e (14)

can be written, where ψ̇e and ψ̇s are, respectively, the offset error and the estimated value of ψ̇. Once the
devices have reached the right temperature, we have found that assuming a time-invariant bias is valid.
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Considering yaw estimation errors related to gyroscope bias, we define the discrete system state as

xk =

[
ψs

k
ψ̇e

k

]
(15)

where ψs
k is the estimated yaw angle at instant k and ψ̇e

k is the offset error of ψ̇ at instant k. By sustituting
the discrete derivative of ψ̇s

k+1 at instant k + 1

ψ̇s
k+1 =

ψs
k+1 − ψs

k
∆T

(16)

in Equation (14), one gets
ψs

k+1 = (ψ̇k+1 − ψ̇e
k+1)∆T + ψs

k (17)

If we express the Equation (17) in matrix form, assuming a time-invariant bias ψ̇e
k+1 = ψ̇e

k[
ψs

k+1
ψ̇e

k+1

]
=

[
1 −∆T
0 1

] [
ψs

k
ψ̇e

k

]
+

[
∆T
0

]
ψ̇k+1 (18)

we obtain the system model that is used in the prediction stage of EKF Heading

xk+1 = Fkxk + Bkuk (19)

where xk is defined in Equation (15) and the input uk corresponds to ψ̇k+1. This input can be computed
by substituting the third row from Equation (6) and by using of state vector x defined at EKF Tilt in
Equation (7), as

ψ̇ =
x2

x2
2 + x2

3
ωy +

x3

x2
2 + x2

3
ωz (20)

Input ψ̇ depends on the components (ωy, ωz) of angular rate of the gyro and, additionally,
it depends on roll (φ) and pitch (θ), through (x2, x3), which are calculated by the EKF Tilt. Therefore,
EKF Heading must be calculated after the evaluation of the EKF Tilt.

At the observation stage, the information provided by the magnetometer will be used to compute
an estimation for ψ. Again, it will be necessary to make a transformation for the vector that points
to the magnetic north Hn = [HN HEHD]

T , taken at the fixed frame, with respect to body frame Hb by
means of

Hb = Eb
nHn (21)

where Eb
n is the matrix of Equation (1) and so the resulting matrix is [17,18]:

Hb =

 HN cos θ cos ψ + HE cos θ sin ψ− HD sin θ

HN(sin φ sin θ cos ψ− cos φ sin ψ) + HE(sin φ sin θ sin ψ + cos φ cos ψ) + HD sin φ cos θ

HN(cos φ sin θ cos ψ + sin φ sin ψ) + HE(cos φ sin θ sin ψ− sin φ cos ψ) + HD cos φ cos θ

 (22)

This model is nonlinear, so it is necessary to linearize it, using

Hb = f (ψs, ψ̇e)⇒ ∇Hb =

[
∂Hb
∂ψs ,

∂Hb
∂ψ̇e

]
(ψ̄s , ¯̇ψe)

(23)

where

∇Hb =

 −HN cos θ sin ψ + HE cos θ cos ψ 0
HN(− sin φ sin θ sin ψ− cos φ cos ψ) + HE(sin φ sin θ cos ψ− cos φ sin ψ) 0
HN(− cos φ sin θ sin ψ + sin φ cos ψ) + HE(cos φ sin θ cos ψ + sin φ sin ψ) 0


(ψ̄s , ¯̇ψe)

(24)
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Hence, the observation matrix at the EKF Heading is as shown in Equation (24).

3. Results

3.1. Real-Time Orientation Estimation

This section focuses on the experimental validation of the proposed algorithm to calculate the
complete probe orientation by the sensor fusion of data provided by IMU. In order to perform the tests,
we have built an experimental platform (Figure 4) that allows the probe to rotate, in a controlled way,
with different orientations. The designed HUSP (d) was placed on a support piece (c) that is coupled
to a servomotor (b). The support is made of plastic and has been designed for the servomotor and the
probe was separated at a certain distance (about 25 cm) in order to ensure that the electromagnetic
field generated by the motor operation does not interfere with the measure of the earth magnetic field.
A Rasberry Pi (a) serves as motor supervisor, so the HUSP rotates solidarity. With this experimental
development, we can control the rotation angle of the probe and the time it takes to get its final
orientation at the set speed. A script for the servomotor to rotate a certain angle at a certain speed and
stop a certain time was programmed in the Rasberry Pi. It was verified that the values fixed in the
script were met correctly by the servomotor, as it is obvious.

Figure 4. Experimental platform built to validate the sensor fusion algorithm.

A test procedure was designed that consisted of rotating the probe on each of the three axes
individually, as shown in Figure 2, with different angle values and with the consideration of different
speeds. Before starting the tests, the probe was fixed to the platform to get the three different
orientations by means of different support pieces. In Figure 4c, the support piece for yaw test is shown.

The first test consisted of placing the probe vertically, modifying the yaw angle (relative to
Earth’s magnetic field): the probe has an initial orientation [φ, θ, ψ] = [0, 0, 75◦]; then, it rotates with
ω = 0.3 rad/s, until it reaches the orientation [φ, θ, ψ] = [0, 0, 34◦] and it stops for 10 s; afterwards,
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the probe returns to its initial orientation at the same speed, it stops for 10 s; then, it rotates with
the same speed as far as [φ, θ, ψ] = [0, 0,−8◦], it stops for 10 s and, again, it returns to its initial
orientation. In Figure 5, measurements (Ax, Ay, Az) vs. time for accelerometer (Figure 5a in m/s2 vs. s),
gyro (ωx, ωy, ωz) (Figure 5b in rad/s vs. s) and magnetometer (Mx, My, Mz) (Figure 5c in µT vs. s) can
be observed, where an important presence of white noise can be seen. After the application of the EKF
(that was described in the previous section), the set of values that represent the orientation of the probe
replica is calculated. In Figure 5d, the time evolution of the orientation calculation with EKF is shown,
where ψ varies from 75◦ to 34◦, then from 75◦ to −8◦, stopping for 10 s at each change of orientation.

(a) Accelerometer evolution in m/s2 vs. s (b) Gyroscope evolution in rad/s vs. s

(c) Magnetometer evolution in µT vs. s (d) Orientation (nautical angles) evolution in degrees vs. s

Figure 5. Test 1—Modifying the yaw angle (ψ turn): data collected with the IMU and the
orientation estimation.

In the second test, the probe was arranged horizontally, by means of other support pieces, in order
to check the roll angle and the pitch angle. First, the x-axis of the body frame was made to coincide
with the axis of rotation of the servomotor (roll angle variations only) and, later, the y-axis (pitch angle
variations only). In this second test, first, the probe rotates from [φ, θ, ψ] = [0, 0, 0] to [−40◦, 0, 0] with
ω = 0.3 rad/s; then, it stops and it returns back to initial orientation; afterwards, it turns to [−80◦, 0, 0],
it stops and goes back to initial orientation. In Figure 6, time evolution of accelerometer measurements
(Figure 6a in m/s2 vs. s), gyro (Figure 6b in rad/s vs. s) and magnetometer (Figure 6c in µT vs. s)
can be observed, with an important presence of white noise. In Figure 6d, the orientation calculation
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with EKF is displayed, where φ varies from 0◦ to −40◦, then from −80◦ to 0◦, stopping for 10 s at each
change of orientation.

(a) Accelerometer evolution in m/s2 vs. s (b) Gyroscope evolution in rad/s vs. s

(c) Magnetometer evolution in µT vs. s (d) Orientation (nautical angles) evolution degrees vs. s

Figure 6. Test 2—Modifying the roll angle (φ turn).

In this second test, later, only variations in the pitch angle have been made: θ = 40◦ and θ = 80◦

turns with ω = 0.6 rad/s. In Figure 7, the IMU measurements (Figure 7a for accelerometer, Figure 7b
for gyro, Figure 7c for magnetometer) and calculated orientations (Figure 7d) are shown.

For the accelerometer, gyroscope and magnetometer measurements, which correspond to the
three tests (Figures 5, 6 and 7a–c), it is possible to observe the significant presence of white noise.
Once the proposed SFA has been applied (Figures 5, 6 and 7d), note that the noise has practically
disappeared. In order to get this result by means of the dual EKF, it is very important to compute
the correct covariance matrices. The variance of each input was calculated with the HUSP at a static
position (that is, we assume a white noise behaviour). We have programmed the servomotor with
different speeds to check that the angular velocity and the time between different orientation changes
are correct (that is, artificial delays do not exist).



Sensors 2019, 19, 101 12 of 15

(a) Accelerometer evolution in m/s2 vs. s (b) Gyroscope evolution in rad/s vs. s

(c) Magnetometer evolution in µT vs. s (d) Orientation (nautical angles) evolution degrees vs. s

Figure 7. Test 2—Modifying the pitch angle (θ turn).

3.2. The Complete System Evaluation

The HUSP device has been integrated into the complete platform to instruct future rehabilitation
specialists in MSK ultrasound imaging. In Figure 8, one can see a scheme of our US training tool.
The computer embedded in the probe replica, with the IMU data, calculates the probe attitude and
sends it to the desktop computer through UART-USB communication. The probe replica incorporates
the board of an optical mouse, connected by USB to the desktop computer, to obtain the relative
position of the probe replica in the model.

Using the position and orientation of the physician trainee’s movements, the US images
corresponding to that position and orientation are displayed on the training environment screen.
Previously, medical specialists at USI have recorded images of a person, using real ultrasound
equipment and these images have been tagged with the position and orientation where they
were obtained.
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Figure 8. Global scheme of the US probe-based training platform.

The training platform developed includes a set of theoretical contents about anatomy necessary
to practice the recognition of MSK structures through USI. To facilitate the learning process, a 3D
model of the human body with neuromuscular systems (NMS) has also been included. A team of
rehabilitation specialists, radiologists, traumatologists and anesthesiologists have designed a set of
practical cases in which students will learn interactively how to position and orientate the US probe to
obtain the ideal USI that will allow them to identify the anatomy of a muscle section (or other items
such as nerves or blood vessel) they are visualizing. In the first stage, practical cases have focused
principally on different NMS of the upper and lower limbs. This fact must not be seen as a restriction
since these body parts provide a sufficiently complex scenario.

As the student moves and orients HUSP over the mouse pad, he receives visual feedback (mainly
composed by US images) in the graphical interface of the training application. Orientation and
position tracking of the probe make it possible to show, on the desktop screen (Figure 8), a virtual
ultrasound probe on the upper and lower limbs of a human model. In this figure, a muscle is
identified, but nerves and veins or arteries are also identified in the training platform when they
are distinguishable. In addition, information to make an interpretation of the ultrasound images
corresponding to the human body of the case study is also displayed.

As an aid to learning, a set of gadget tools have been included to facilitate the location and
identification of MSK structures. When probe location is considered, at the moment that the trainee
places and orients the probe in the region of interest, a green box is shown on the ultrasound image;
red and yellow indicate whether it is distant or close, to fix the attention of the student. In addition, it is
possible to show the user the path to be taken for the MSK localization corresponding to that practical
case. As far as identification is concerned, the contours of the MSK structures are superimposed on the
ultrasound image. In this way, the training platform makes it possible for students to create a virtual
haptic sensation with which the physician can enhance his mental model at USI work.

4. Discussion

Diagnosis and treatment of musculoskeletal pathologies, in medical rehabilitation tasks,
have benefited from the use of image treatment techniques, where USI stands out for being
widely accepted by specialists and patients since it is not a technique based on ionizing radiation.
This technology adds the needed accuracy on diagnosis and certainty to guide the professional at
therapeutics interventional procedures. However, this technique has a steep learning curve, since the
specialists must acquire knowledge that allows them to relate the anatomy of the human body (that is,
a three-dimensional space) with the one they will see in the two-dimensional ultrasound images.
In order to achieve this mental model, that relates the hand movements and probe orientation with the
desired US image, our tool provides an economic learning path with good results.
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The learning process can occur at any place with lower hardware requirements than other
proposals such as [19], without loss of precision in the capture of movements. Data on trainee’s
hand movements related to 3D orientation (roll, pitch and yaw angles) are captured by means of an
inertial sensor based on microelectromechanical systems (MEMS), which meets the cost, payload and
space restrictions imposed on HUSP. In [20], several devices are described in such a way that our
base device (MPU-9150) is included. An onboard motion fusion module, named the digital motion
processor (DMP), and calibration firmware was integrated into MPU-9150, which enables users to
quickly develop motion-based functionality. They show that the performance of the set constituted by
this MEMS and its DMP is very poor, but it has interesting advantages such as price, availability or
dimensions that we have exploited.

Thus, we have needed to develop our own sensor fusion algorithm which, as shown, has good
performance. This is due to the solid work done with our algorithmic proposal: A dual EKF that
decouples the estimation of the pitch and roll angles from the magnetic disturbance, using the two-step
orientation estimation. In the first step, the EKF estimates pitch and roll using gyro data at the
prediction stage and accelerometer data at the correction phase. In the second step, the EKF estimates
yaw using, at the prediction stage, the gyro data and the estimated pitch and roll and, at the correction
stage, the magnetometer data. The definition of a reduced system state (as in [16–18]) at the first
EKF achieves: (1) The system model depends only on the pitch and roll angle and it is independent
of the yaw angle; (2) the system model is easily linearized; and (3), in the measurement model, the
accelerometer output is used directly without further complex transformations. Unlike [17], at the
second EKF, the state of the system includes gyro bias to solve the problem of estimation errors related
to gyro bias. Along with the sound formalization of the proposed SFA, an exhaustive calibration of the
mathematical models has been carried out.

With all of them, the trainee sensation is completely free of delays as shown in (http://gro.usal.es/
videos/probe.mp4). By considering the complete software interface that has been developed (with an
impressive HMI), our proposal system can be used, at any time, by specialists that want to acquire the
mental model needed by USI based rehabilitation tasks.

5. Conclusions

This paper describes the development of a haptic US probe integrated into a complete platform
and dedicated to training in musculoskeletal ultrasonography for rehabilitation. The device captures
rotation and translation movements that a physician performs when he moves the probe in the context
of diagnostic work. A MEMS-based IMU sensor together with a robust SFA (that reduces the magnetic
disturbance and bias errors influence) that is executed at an advanced embedded system makes it
possible. A great effort has been done to get that the HUSP aspect to act and feel like a real probe,
not only in the shape but also in a realistic operation. The performance/cost rate has been highly
optimized, so that it will be available for many people. Our solution provides autonomous learning
anytime, anywhere, so the trainee may acquire the needed capabilities on US diagnostic techniques
in a fast and complete way. These techniques are very useful for efficient early treatment in a large
number of medical situations.

6. Patents

The HUSP device is protected by the utility model number 201700521 granted by the OEPM
(Oficina Española de Marcas y Patentes-Spanish Trademark and Patent Office) on 23 April 2018.
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