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Abstract
This paper introduces the concept of softarison. Softarisons merge soft set theory with the theory of binary relations. Their

purpose is the comparison of alternatives in a parameterized environment. We develop the basic theory and interpretations

of softarisons. Then, the normative idea of ‘optimal’ alternatives is discussed in this context. We argue that the meaning of

‘optimality’ can be adjusted to fit in with the structure of each problem. A sufficient condition for the existence of an

optimal alternative for unrestricted sets of alternatives is proven. This result means a counterpart of Weierstrass extreme

value theorem for softarisons; thus, it links soft topology with the act of choice. We also provide a decision-making

procedure—the minimax algorithm—when the alternatives are compared through a softarison. A case-study in the context

of group interviews illustrates both the application of softarisons as an evaluation tool, and the computation of minimax

solutions.

Keywords Soft set � Soft topology � Optimality � Multicriteria decision-making

1 Introduction

This article proposes a model that combines soft set theory

with binary relations. The performance of binary relations

is enhanced by the explanatory ability of soft set theory for

vague intelligence. The gestalt they give rise to is called

‘softarison’.

The goal of soft set theory [33] is to study imprecisely

perceived knowledge about the performance of alternatives

with respect to their descriptive attributes. Basically, a soft

set provides a paramaterized description of the set of

alternatives, the parameters being their fundamental char-

acteristics. Some works [9, 13, 27] have clarified the role of

this theory among the wide realm of the theories of

uncertainty. Others have established its basic operations

(e.g., [22, 26, 30, 36]). Textbooks summarize the funda-

mental elements of this theory [25]. In addition, direct

extensions exist (incomplete soft sets [24, 45] or N-soft sets

[20]) and many hybrid models have been proposed too

(inclusive of fuzzy soft sets [29], hesitant fuzzy soft sets

[16], Feng-rough soft set models [23], probabilistic soft

sets [21], vague soft sets [42], et cetera; [28, 43] and [25,

Chapter 5] reviewed several classes of hybrid soft set

structures). Applications include medical diagnosis [32],

forecasting [41] or data mining [35].

A first attempt to apply the core notion of soft set theory

to binary relations has produced the successful concept of a

soft relation [15]. Put succinctly, [15] defines a soft relation

from a soft set to another soft set which consists of a soft

subset of the product of both soft sets.

In continuation of this concern, in this article we

investigate the problem from a novel perspective. Our

position here is founded on a completely different origin.

Softarisons are defined on a set of alternatives, rather than

being defined between soft sets. Then, we take advantage

of soft sets in order to establish parameterized comparisons

between these alternatives. As is standard, the parameters

correspond to the relevant attributes of the situation. This

novel model appears to be natural and applicable since it

uses the same primitive elements as standard soft set the-

ory, namely, alternatives and their attributes, together with

ordinary soft sets for this context.

We develop a basic theory of softarisons inclusive of

their representations by tables. We make some consistency

properties explicit. Then we explain that two semantics are
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available, and that this situation parallels the case of binary

relations which are a building block of abstract decision

theory. We also explore the meaning of ‘optimal alterna-

tive’ when the alternatives are compared through a soft-

arison. Several criteria are put forward since the structure

of the problem determines which elements can be used for

differentiating the performance of the options. In particu-

lar, a sufficient condition for the existence of certain ‘op-

timal’ alternatives is proven without restrictions on

cardinality. The condition is expressed in terms of soft

compactness [14], a property defined for soft topological

spaces [6, 19, 37] that has received considerable attention

[4], also in relation with soft topological ordered spaces

[2].

The later achievement is a natural descendant of the

Weierstrass extreme value theorem. This classical result

gives a well-known sufficient condition for a function to

attain a global minimum and a global maximum. Origi-

nally, it states that a continuous function defined on a

closed bounded interval attains at least one global mini-

mum and a global maximum. Its generalization to topo-

logical spaces requires the notion of a compact subset, and

an appropriate generalization of the concept of continuity

of a mapping between topological spaces. There are further

extensions of the extreme value theorem. It can be

improved so as to provide necessary and sufficient condi-

tions for the existence of global minima, and of both global

minima and maxima [31]. Its argument has been exported

to maximization of binary relations, the most basic result

being the Bergstrom–Walker theorem [17, 40]: it asserts

that any continuous acyclic relation defined on a compact

topological space has maximal elements. This theorem has

also been extended to become a characterization [8]. In this

paper, we produce an additional variation of the idea that

continuity together with compactness ensure a suit-

able concept of maximality. We show that the argument is

valid for a novel soft set based model for the expression of

the preferences. Once again, ‘compactness’ (in fact, soft

compactness) allows us to guarantee maximality in infinite

universes (of alternatives). Therefore, in both cases, (soft)

compactness allow ones to extend arguments from the

finite to the infinite case.

It is remarkable that binary relations can also be merged

with soft topological notions through soft topological

ordered spaces [5] which are a recent concept reminiscent

of topological ordered spaces [7, 34].

Finally, we adopt a procedural position in order to

provide a decision-making algorithm for situations where a

softarison captures the soft-theoretical comparisons

between pairs of alternatives. This procedure relies on the

idea of a minimax alternative. It is computed as the mini-

max of a proxy for the overall importance of the attributes

for which an alternative outperforms another. We provide

an illustrative case-study in the context of group inter-

views, a recruiting technique by which employers can

simultaneously evaluate various applicants to a position.

The outline of this paper is as follows. Section 2 gives a

concise and direct presentation of all necessary concepts

from various areas (soft set theory, soft topology and bin-

ary relations). Section 3 introduces softarisons and dis-

cusses their representability and semantics. In Sect. 4 we

link softarisons and choice from a normative perspective.

Then, Sect. 5 produces a decision-making algorithm and

our practical case. Section 6 gives further discussion about

our novel tool. In addition, it points out at several lines for

future research on this topic.

2 Preliminary concepts

This section contains some notions and terminology per-

taining to soft set theory and binary relations [8, 38]. We

shall give all the prerequisites that we need in the rest of

this article. Nevertheless, we avoid a lengthy and reitera-

tive explanation of all the concepts and technical details,

which can be easily found in related literature.

Throughout this paper X denotes a non-empty set of

alternatives. When A is a set, its power set is denoted as

PðAÞ.
The formal definition of a soft set over the set (of

alternatives) X presumes the existence of another set of

attributes E that jointly characterize them:

Definition 2.1 [33] A soft set over the set X, is a pair

(F, E) where F : E ! PðXÞ.
Henceforth, SSEðXÞ, or simply SS(X) when E is common

knowledge, represents the set of all soft sets over X with

attributes E.

As is well known, the interpretation of this structure is

that for each e 2 E, F(e) represents the set of alternatives

from X that satisfy the property represented by e 2 E.

The operations with soft sets are performed in a more

convenient manner with the help of two possible

descriptions:

(1) Any soft set (F, E) can be summarized by the

notation fðe;FðeÞÞ : e 2 Eg.

(2) In the event that both X and E are finite, the soft set

(F, E) can be represented in tabular form too.

Figure 1 shows this representation when X ¼
fo1; o2; . . .; omg and E ¼ fe1; e2; . . .; eng. A conven-

tion is made that we write rjk ¼ 1 when oj 2 FðekÞ,
and we write rjk ¼ 0 otherwise.

16760 Neural Computing and Applications (2021) 33:16759–16771

123



Two special soft sets are the null U and the absolute ~X

soft sets over X. They are such that UðeÞ ¼ £ for each

e 2 E, and ~XðeÞ ¼ X for each e 2 E.

Intersections and unions, as well as inclusions, can be

defined on soft sets [30]. Suppose ðF1;EÞ; ðF2;EÞ
2 SSEðXÞ. Their soft union is denoted as ðF1;EÞ t ðF2;EÞ.
It is ðF;EÞ 2 SSEðXÞ such that FðeÞ ¼ F1ðeÞ [ F2ðeÞ for

each e 2 E. Their soft intersection is denoted as

ðF1;EÞ u ðF2;EÞ. It is ðF0;EÞ 2 SSEðXÞ such that F0ðeÞ ¼
F1ðeÞ \ F2ðeÞ for each e 2 E. The extension of these

operations to infinite collections of soft sets over a common

set are immediate.

As to soft inclusion, we denote it as ðF1;EÞYðF2;EÞ,
and it holds when F1ðeÞ � F2ðeÞ for each e 2 E. Note that

alternative definitions of ‘soft subsethood’ an ‘soft equal-

ity’ exist [22, 26, 36].

We are now ready to recall the concept of a soft

topology:

Definition 2.2 [19, 37] A soft topology on X is a collection

of soft sets over X, i.e., s � PðSSEðXÞÞ that satisfies the

properties:

(1) U; ~X 2 s;

(2) the soft union of any number of soft sets from s
belongs to s; and

(3) the soft intersection of any finite number of soft sets

from s belongs to s.

Soft topologies have been studied extensively

[2–4, 6, 10, 14, 39, 44]. Their elements are called soft open

sets. Notice that just like the open sets in a point-set

topology are sets, the soft open sets in soft topologies are

soft sets.

We shall need the notion of soft compactness of a soft

topology, that in turn uses the concept of cover of

ðF;EÞ 2 SSEðXÞ: it is a collection W of soft sets over X

such that ðF;EÞY t fðF0;EÞ : ðF0;EÞ 2 Wg. When all the

soft sets in W are soft open, we say that W is a soft open

cover of (F, E). Also, a subcover of W is a subcollection of

elements from W that is also a cover.

Definition 2.3 [14, 44] A soft topology s on X is soft

compact if every soft open cover of ~X has a finite subcover.

Now, we recall the following concepts that concern

binary relations.

Definition 2.4 Assume that X is a set. Then, a binary

relation R on X is a subset of the Cartesian product X � X.

We interpret ðx; yÞ 2 X � X as ‘x is related to y’ and we

often denote it as xRy for convenience.

Binary relations are a standard model for the represen-

tation of the preferences of the agents. They allow us to

capture two different types of semantics which determine

the presentation of subsequent concepts:

(1) Under the weak semantics of R, we assume that xRy

represents the broad idea that ‘x is at least as good as y’.

(2) Under the strict semantics of R, we assume that xRy

means that ‘x is strictly better than y’.

It is very important to note which meaning is attached to

any binary relation we work with. Properties that are nat-

ural for the weak semantics are undesirable in the strict

interpretation (like in the case of reflexivity), and con-

versely (irreflexivity). Also certain ideas should be asso-

ciated with finely tuned concepts. Greatest elements are the

adequate concept for the idea of ‘a best alternative’ under

the weak semantics (usually captured by reflexive rela-

tions). However maximal elements better express the idea

of ‘a best alternative’ under the strict semantics (usually

captured by asymmetric or irreflexive relations). We pro-

ceed to recall both concepts:

Definition 2.5 [38, (A.11), (A.13)] Suppose that R is a

binary relation on a set (of alternatives) X. We say that

y 2 X is an R-greatest (or simply greatest) alternative if yRx

for each x 2 X. And we say that y 2 X is R-maximal (or

simply maximal) if for each x 2 X, xRy is false.

The reader is addressed to [12, 18, 38] for other fun-

damental definitions about binary relations.

Our next section introduces a model that blends soft set

theory with binary relations. Their combined features

produce ‘softarisons’ which to some extent, reproduce the

benefits of binary relations while enhancing them with the

descriptive power of soft set theory.

3 Softarison: a soft-set-based methodology
for making comparisons

As a first point, this section defines softarisons. Then, we

expound the semantics of this new concept and give some

illustrative examples in the finite case. We also link them to

a family of binary relations indexed by the attribute set.

(F,E) e1 e2 · · · en
o1 r11 r12 · · · r1n
o2 r21 r22 · · · r2n
...

...
...

...
om rm1 rm2 · · · rmn

Fig. 1 Tabular representation of a soft set (F, E) when the sets of

alternatives and attributes are finite
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Henceforth, in this section, X denotes a (possibly infi-

nite) non-empty set of alternatives, and E is a (possibly

infinite) set of attributes.

Definition 3.1 An E-softarison over X is a collection of

soft sets over X indexed by X. Formally:

S ¼ fðFx;EÞgx2X such that ðFx;EÞ 2 SSEðXÞ for each

2 X:

ð1Þ

Or alternatively, an E-softarison over X is a mapping

S : X �! SSEðXÞ: ð2Þ

We simply refer to softarisons when E is common

knowledge.

Softarison is an acronym for soft-comparison. Indeed,

for the purpose of making effective use of this concept we

interpret: when x 2 X and e 2 E,

y 2 FxðeÞ if and only if x is preferred to

y in terms of attribute e:
ð3Þ

Therefore, when we have a softarison S ¼ fðFx;EÞgx2X , a

soft set ðFx;EÞ encapsulates the benefits of option x with

respect to every other alternative, when each attribute is

considered separately.

We now proceed to discuss the structure of the finite

case and then we shall give illustrative examples with their

natural interpretations. All this is done in Sect. 3.1. We

relate this model to binary relations in Sect. 3.2. Afterward

in Sect. 3.3, we present some properties of consistency of

softarisons. We postpone a more detailed discussion of the

semantics of softarisons till Sect. 3.4.

3.1 Softarisons for finite settings

When the set of alternatives is finite, say X ¼ fo1; . . .; omg,

a softarison S ¼ fðFx;EÞgx2X becomes S ¼ fðFo1 ;EÞ; . . .;
ðFom ;EÞg. Each of these soft sets can be expressed in

tabular form when the set of attributes is finite too.

Therefore, in this case, a softarison is a list of m tables, one

corresponding with each alternative. Figure 2 displays the

general structure of this information. In this representation,

rijðekÞ ¼
1; if oj 2 FoiðekÞ;
0; otherwise :

�
ð4Þ

Examples 3.2 and 3.3 below illustrate Definition 3.1 in

this context.

Example 3.2 Let X ¼ fo1; o2; o3g and E ¼ fe1; e2; e3g. In

order to establish the comparative performance of the

alternatives in X with respect to the properties in E, a

softarison S0 ¼ fðFo1 ;EÞ; ðFo2 ;EÞ; ðFo3 ;EÞg is given. Fig-

ure 3 displays such a softarison in tabular form.

According to Equations (3) and (4), we interpret that

alternative o1 is preferred to o2 if we only consider attribute

e1, and it is preferred to o3 if we only consider attribute e3.

No further preferences of o1 over other alternatives are

apparent from the first table. If we now look at the second

table, we observe that o2 is preferred to o3 if we only

consider either attribute e1 or attribute e2. Finally, the third

table claims that o3 is preferred to o1 if we only consider

attribute e2, and it is preferred to o2 if we only consider

attribute e3.

Example 3.3 In the situation of Example 3.2, Figure 4

displays another softarison S00 ¼ fðHo1 ;EÞ; ðHo2 ;EÞ;
ðHo3 ;EÞg over X in tabular form.

According to this softarison over X, the first table cap-

tures the fact that alternative o1 is preferred to o2 if we

consider either attribute e1 or attribute e3. No further

preference of o1 over other alternatives is put forward. The

second table shows that o2 is preferred to o3 if we only

consider either attribute e1 or attribute e2. Finally, the third

table claims that o3 is preferred to o1 if we only consider

either attribute e2 or attribute e3.

(F o1 , E) e1 e2 · · · en
o1 r11(e1) r11(e2) · · · r11(en)
o2 r12(e1) r12(e2) · · · r12(en)
...

...
...

...
om r1m(e1) r1m(e2) · · · r1m(en)

. . . . . .

(F om , E) e1 e2 · · · en
o1 rm1 (e1) rm1 (e2) · · · rm1 (en)
o2 rm2 (e1) rm2 (e2) · · · rm2 (en)
...

...
...

...
om rmm(e1) rmm(e2) · · · rmm(en)

Fig. 2 Tabular representation of a softarison when the sets of alternatives and attributes are finite. Equations (3) and (4) explain the convention

for the figures in these tables
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3.2 Binary relations associated with a softarison

We proceed to show that an E-softarison fðFx;EÞgx2X over

X induces a family fRege2E of binary relations on X,

indexed by E.

To do that, each attribute e 2 E induces a binary relation

Re on X according to the following rule:

xRey if and only if y 2 FxðeÞ ð5Þ

This definition is the natural interpretation of softarisons

expressed by Equation (3): it establishes xRey if and only if

x is preferred to y in terms of attribute e.

When a tabular representation in the format of Figure 2

exists for a softarison over the set X, we read that for each

oi; oj 2 X and ek 2 E: oi Rek oj if and only if rijðekÞ ¼ 1.

Example 3.4 In the situation of Example 3.2, three binary

relations fRe1
;Re2

;Re3
g are derived from the data by

Equation (5), namely

o1 Re1
o2 Re1

o3,

o2 Re2
o3 Re2

o1,

o1 Re3
o3 Re3

o2.

Example 3.5 In the situation of Example 3.3, three binary

relations fR0
e1
;R0

e2
;R0

e3
g are derived:

o1 R
0
e1
o2 R

0
e1
o3,

o2 R
0
e2
o3 R

0
e2
o1,

o3 R
0
e3
o1 R

0
e3
o2.

The construction in this section creates a link between

softarisons and another tool for the expression of prefer-

ences. Indeed the literature on binary relations is tremen-

dously large. Their role in decision-making, mathematical

economics, mathematical psychology, and many other

branches is of paramount importance [12, 38]. Thus this

literature is a good source for inspiration.

The next section will take advantage of the existence of

associated binary relations in order to transfer some

properties of consistency from binary relations to soft-

arisons. We expound how some can be tested by their

tabular representations easily, provided that the setting is

finite.

3.3 Consistency properties of softarisons

Not all sets of data are sufficiently reliable, and special care

must be taken to jump to conclusions if they arise from

subjective estimates. When we use data that produce

comparisons, it is particularly important to verify what

consistency qualities they satisfy. This is regardless of the

framework where comparisons are established. For exam-

ple, monographs have been written on rationality or con-

sistency properties of comparisons given by binary

relations [12, 18, 38].

Relatedly, Sect. 3.2 gives a simple way to define some

consistency properties of softarisons: We can do that in

terms of its associated family of binary relations. There-

fore, let fRege2E be defined from the E-softarison S ¼
fðFx;EÞgx2X over X by Equation (5). Consider any prop-

erty of binary relations P (for example, reflexivity, asym-

metry, transitivity, ....) We say that the E-softarison is P

when Re satisfies P for each e 2 E. And we say that it is

pre-P when Re satisfies P for some e 2 E.

Thus for example, henceforth we say that an E-soft-

arison is reflexive when each Re is reflexive. We say that it

is irreflexive when each Re is irreflexive. And it is asym-

metric when each Re is asymmetric. Likewise, an E-soft-

arison is pre-transitive if at least one of the Re relations is

transitive; and it is pre-acyclic when at least one Re relation

is acyclic.

Let us illustrate these definitions:

Example 3.6 By Example 3.4, the softarison defined in

Example 3.2 is irreflexive and acyclic (therefore

(F o1 , E) e1 e2 e3
o1 0 0 0
o2 1 0 0
o3 0 0 1

(F o2 , E) e1 e2 e3
o1 0 0 0
o2 0 0 0
o3 1 1 0

(F o3 , E) e1 e2 e3
o1 0 1 0
o2 0 0 1
o3 0 0 0

Fig. 3 Tabular representation of the softarison S0 ¼ fðFo1 ;EÞ; ðFo2 ;EÞ; ðFo3 ;EÞg over X in Example 3.2

(Ho1 , E) e1 e2 e3
o1 0 0 0
o2 1 0 1
o3 0 0 0

(Ho2 , E) e1 e2 e3
o1 0 0 0
o2 0 0 0
o3 1 1 0

(Ho3 , E) e1 e2 e3
o1 0 1 1
o2 0 0 0
o3 0 0 0

Fig. 4 Tabular representation of the softarison S00 ¼ fðHo1 ;EÞ; ðHo2 ;EÞ; ðHo3 ;EÞg in Example 3.3
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asymmetric); however, it is not even pre-transitive (neither

of the three relations derived from it is transitive).

The same is true for the softarison defined in Exam-

ple 3.3, by Example 3.5.

Let us write down explicit definitions of the most fun-

damental concepts that we shall use in the next sections.

An E-softarison S over X is:

• Reflexive when x 2 FxðeÞ, for each x 2 X and e 2 E.

• Irreflexive when x 62 FxðeÞ, for each x 2 X and e 2 E.

• Asymmetric when x 2 FyðeÞ implies y 62 FxðeÞ, for each

x; y 2 X and e 2 E.

In the finite setting studied in Sect. 3.1, we do not need to

actually write down the binary relations associated with a

softarison in order to study all their consistency properties.

They should be apparent from the tabular representation of

the softarison. The aforementioned three properties are

especially simple to check:

• Reflexive softarisons are characterized by tabular rep-

resentations with riiðekÞ ¼ 1 for each i 2 f1; . . .;mg and

k 2 f1; . . .; ng. In other words: row i of table i is filled

with ones, for each i.

• Irreflexive softarisons are characterized by tabular

representations with riiðekÞ ¼ 0 for each i 2 f1; . . .;mg
and k 2 f1; . . .; ng. In other words: row i of table i is

filled with zeros, for each i.

• Asymmetric softarisons are characterized by tabular

representations that satisfy: rjiðekÞ ¼ 1 implies rijðekÞ
¼ 0, for each i; j 2 f1; . . .;mg and k 2 f1; . . .; ng. In

other words: when there is a 1 at row i and column k of

table j, there is a 0 at row j and column k of table i, for

each feasible i, j, k.

3.4 Weak and strict semantics of softarisons

We are now ready to explain the semantics of softarisons in

more detail. Earlier in this section we submitted the general

idea that a softarison is a ‘soft comparison’. By this, we

meant that for each alternative and attribute, it produces the

set of elements for which the alternative is preferred to

them with regard to that attribute. However the term

‘preferred’ is deliberately ambiguous. It admits two dif-

ferent semantics:

(1) The weak semantics is related to reflexive soft-

arisons.

Here ‘preferred’ means ‘at least as good as’. For

this reason, x 2 FxðeÞ must always be true: no matter

what property we focus on, any alternative is ‘at least

as good as’ itself in terms of that property.

In this semantics, it is possible that both x 2 FyðeÞ

and y 2 FxðeÞ hold true. This case is associated with

indifference or indecisiveness: we are declaring that

when we only consider attribute e, y is at least as

good as x, and x is at least as good as y.

(2) The strict semantics is related to irreflexive soft-

arisons.

Here ‘preferred’ means ‘strictly better than’. For

this reason, x 2 FxðeÞ is never true: for each property

we focus on, an alternative is never ‘strictly better

than’ itself in terms of that property.

The classification above is the natural replication of the

discussion given for binary relations in Sect. 2. Obviously

it relies on very basic consistency requirements. In the

strict semantics, one would at least expect asymmetric

softarisons from a consistent evaluation. For if asymmetry

is contradicted we would be admitting that an alternative is

‘strictly better than’ another alternative which in turn, is

‘strictly better than’ the first one, when both comparisons

are made by focusing on the same attribute.

Remark 3.7 Neither of these semantics is superior to the

other. The practitioner must decide what type of evalua-

tions will be used and proceed accordingly. If the opinion

of an expert is required, he/she should be instructed to

either declare which options are ‘at least as good as’ others,

or alternatively, he/she must declare which options are

‘strictly better’ than others. All evaluations must be made

separately in consideration of each attribute.

We are now enabled to discuss the idea of an ‘optimal

alternative’ in the framework that we have designed. The

next section discusses this important issue.

4 The selection of optimal alternatives:
a normative analysis

We cannot disentangle soft sets (or soft-set-based theories)

from multi-criteria decision-making: soft sets are defined

from multiple attributes. This poses a difficulty for decid-

ing what alternative is ‘optimal’ since we are obliged to

balance the often opposed recommendations of the attri-

butes. Alternatives that are excellent in terms of an attri-

bute may be dreadful in relation with other attributes.

In the face of this problem, two positions may be taken:

Normative theories attempt to define the characteristics

that an ‘optimal’ alternative should meet. The downside

of this approach is that not always such ‘optimal’

alternatives exist; and in addition, different concepts may

be arguably ‘optimal’. A fundamental line of research

investigates the conditions that guarantee or characterize

the existence of ‘optimal’ alternatives, whatever the

exact meaning of this term.
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Procedural decision-making bypasses this discussion. It

concentrates on producing one (possibly multiple) out-

put. Quite often, the procedure that gives the solution is

an algorithm.

In this Section, we adopt a normative position in order to

improve the theoretical foundations of softarions. We

proceed to discuss some concepts that are arguably

acceptable as an ‘optimal’ solution, in several frameworks.

Then Sect. 5 gives a discussion about a procedural

approach to decision-making based on softarisons with an

example.

4.1 The choice of optimal alternatives when E is
finite

Along this section, we assume that E ¼ fe1; . . .; emg is

finite and S is a softarison over X. No other special

assumptions on S are made. In particular, X may or may

not be infinite.

The next concept will be used as a proxy of the per-

formance of the alternatives:

Definition 4.1 The inverse score of x respect to y is

IyðxÞ ¼ jfe 2 E j x 2 FyðeÞgj: When X ¼ fo1; . . .; ong, the

inverse score of oi respect to oj is also written as

IojðoiÞ ¼ jfe 2 E j oi 2 FojðeÞgj ¼
Xn
k¼1

r ji ðekÞ ð6Þ

The inverse score IyðxÞ captures the number of attributes

for which y performs better than x. If a tabular represen-

tation is available because X ¼ fo1; . . .; ong is finite, IojðoiÞ
is the sum of the indices in row i of the table associated

with oj.

Remark 4.2 It is just natural to generalize the concept

introduced in Definition 4.1 to a ‘weighted’ version, pro-

vided that we have weights associated with the attributes in

E. We just need to modify the expressions in Definition 4.1

as follows. When x ¼ ðx1; . . .;xmÞ is a vector of weights

with x1 þ . . .þ xn ¼ 1, xi 2 ½0; 1� for each i ¼ 1; . . .; n,

then Wy
xðxÞ ¼

Pn
k¼1fxk j x 2 FyðekÞg is the x-weighted

inverse score of x respect to y. It gives us a measure of the

total weight (instead of the total number) of the attributes

for which y performs better than x.

When X ¼ fo1; . . .; ong, the x-weighted inverse score of

oi respect to oj is written as

Woj
x ðoiÞ ¼

Xn
k¼1

xkr
j
i ðekÞ: ð7Þ

In the current context, we submit that alternatives that

are never outperformed in terms of inverse scores are

especially interesting. In formal terms, an appealing solu-

tion should be an alternative that satisfies the following

property:

Definition 4.3 The alternative y 2 X is score undominated

if

IyðxÞ > IxðyÞ for each x 2 X: ð8Þ

If a vector of weights x for the attributes exists, y is

weighted-score undominated if

Wy
xðxÞ > Wx

xðyÞ for each x 2 X ð9Þ

In words, score undominated alternatives satisfy the

following property: when they are compared with any other

alternative, the number of attributes for which the first

improves the second, is at least as high as the number of

attributes for which the second improves the first. Score

undominated options beat any other alternative in pairwise

comparisons, when this comparison is made by the number

of attributes for which one improves the other. The

weighted version of this concept replaces ‘number of

attributes’ by ‘overall weight of the attributes’ in this

explanation.

It is not true that all softarisons have score undominated

alternatives:

Example 4.4 The softarison S0 in Example 3.2 has one

score undominated alternative, namely, o1. Figure 5 dis-

plays the inverse scores associated with the softarison

defined in this example. Notice that Io1ðo2Þ ¼
1[ Io2ðo1Þ ¼ 0 and Io1ðo3Þ ¼ 1 ¼ Io3ðo1Þ. However, o2

does not satisfy this property: Io2ðo1Þ ¼ 0\Io1ðo2Þ ¼ 1 as

mentioned above. And o3 does not satisfy Definition 4.3

either: Io3ðo2Þ ¼ 1\Io2ðo3Þ ¼ 2.

By contrast the softarison S00 defined in Example 3.3,

whose inverse scores are given in Fig. 6, lacks score

undominated alternatives. The fact Io3ðo1Þ ¼ 2[ Io1ðo3Þ ¼
0 discards o1, Io1ðo2Þ ¼ 2[ Io2ðo1Þ ¼ 0 discards o2, and

Io2ðo3Þ ¼ 2[ Io3ðo2Þ ¼ 0 discards o3.

Example 4.4 raises a natural question: which properties

of a softarison ensure that score undominated alternatives

o1 o2 o3
o1 Io1(o1) = 0 Io2(o1) = 0 Io3(o1) = 1
o2 Io1(o2) = 1 Io2(o2) = 0 Io3(o2) = 1
o3 Io1(o3) = 1 Io2(o3) = 2 Io3(o3) = 0

Fig. 5 Inverse scores of the softarison S0 defined in Example 3.2
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exist? We first propose two sufficient conditions that are

rather naive and easy to check, and then we put forward a

more demanding condition.

The first one is quite obvious:

Proposition 4.5 If y 2 X satisfies IxðyÞ ¼ 0 for all x 2 X,

then y is score undominated. If a vector of weights x for

the attributes exists, y is weighted-score undominated when

Wx
xðyÞ ¼ 0 for each x 2 X.

Notice that any alternative y that satisfies the assumption

of this Proposition must also satisfy Wy
xðxÞ > Wx

xðyÞ ¼ 0

for each x 2 X. This obvious fact guarantees that y is

weighted-score undominated.

Remark 4.6 Corollary 4.12 below relates Proposition 4.5

to a different concept of optimality.

Now we prove a less trivial sufficient condition for the

existence of score undominated alternatives:

Proposition 4.7 Suppose S is an asymmetric softarison

over X. If y 2 X satisfies IyðxÞ > jEj
2
for all x 2 X, then y is

score undominated.

Proof Let us fix an arbitrary oi 2 X. By Definition 4.1,

IyðxÞ ¼ jfe 2 E j x 2 FyðeÞgj. Because the softarison is

asymmetric, IxðyÞ ¼ jfe 2 E j y 2 FxðeÞgj 6 jEj
2
6 IyðxÞ.

This proves that y 2 X satisfies Definition 4.3. h

Example 4.4 proves that neither of the sufficient con-

ditions in Propositions 4.5 and 4.7 are necessary. It is

therefore important to give other sufficient conditions for

the existence of score undominated alternatives. We pro-

ceed to state another more technical solution to this

problem.

4.2 The choice of optimal alternatives
when E and X are finite

Section 3.2 produced a collection of binary relations for

any softarison (one for each attribute). With the aid of the

concepts in this section, we now define a new binary

relation associated with any softarison when E is finite:

Definition 4.8 For each x; y 2 X,

x�Sy if and only if IxðyÞ[ IyðxÞ: ð10Þ

Example 4.4 computed the inverse scores from the

softarison S00 defined in Example 3.3. One can observe

o1�S00o2�S00o3�S00o1, so S00 has a cycle. We proceed to

show that this may be the technical reason for the absence

of score undominated alternatives for S00. The next formal

definition is needed:

Definition 4.9 We say that S is score-acyclic when �S is

acyclic.

We are now ready to prove a sufficient condition for the

existence of score undominated alternatives when both

E and X are finite:

Proposition 4.10 Suppose S is a softarison over X, which

is finite. If S is score-acyclic then there is a score

undominated alternative for S.

Proof It is well known that there is a maximal element of

�S in X [38, Theorem A(3)]. Therefore there is y 2 X such

that for each x 2 X, x�Sy is false or equivalently,

IxðyÞ[ IyðxÞ is false. This proves that for each x 2 X,

IyðxÞ > IxðyÞ, i.e., y is score undominated. h

4.3 The choice of optimal alternatives:
the general case

In order to focus our general discussion about optimality,

we restrict our attention to the strict semantics of soft-

arisons. Thus in this section all softarisons are asymmetric.

Ideally, a softarison might identify an alternative that

irrespective of what attribute we look at, it is never beaten

by any other alternative. We call any such alternative E-

maximal:

Definition 4.11 We say that y 2 X is E-maximal for S if it

is maximal for Re, for each e 2 E.

E-maximal alternatives should be quite rare. When E is

finite, they are easily identified by their inverse scores: they

are the alternatives oj 2 X that satisfy IoiðojÞ ¼ 0 for all

oi 2 X. In practical terms, when a tabular representation

exists, every row corresponding with oj should be filled

with zeros, no matter which table we look at.

We can now observe that with this terminology,

Proposition 4.5 can be expressed as in the following

corollary:

Corollary 4.12 Fix any softarison over X, and suppose that

E is finite. Then all E -maximal elements are score

undominated.

o1 o2 o3
o1 Io1(o1) = 0 Io2(o1) = 0 Io3(o1) = 2
o2 Io1(o2) = 2 Io2(o2) = 0 Io3(o2) = 0
o3 Io1(o3) = 0 Io2(o3) = 2 Io3(o3) = 0

Fig. 6 Inverse scores of the softarison S00 defined in Example 3.3
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In the very likely event that no E-maximal alternatives

exist, we might at least recommend alternatives with the

following property (which is weaker):

Definition 4.13 We say that y 2 X is pre-maximal for S if

it is maximal for Re, for some e 2 E.

A pre-maximal alternative is such that for at least one

attribute, it is never outperformed when we restrict our

attention to that attribute. Nevertheless the existence of

pre-maximal elements for a softarison is not guaranteed

either.

When E is finite, in between both concepts lies the

following idea (i.e., it is weaker than E-maximal but

stronger than pre-maximal):

Definition 4.14 We say that y 2 X is quasi-maximal for S
if it is pre-maximal for S and the number of attributes e for

which y is maximal of Re is the highest.

Definition 4.14 is relevant because when there are pre-

maximal but not E-maximal alternatives, some pre-maxi-

mal alternatives are more acceptable than others. Alterna-

tives that for example, are pre-maximal for all but one

attribute, are preferable to those that are pre-maximal for

only one attribute. When the number of attributes is finite,

and they are equally important, then we can prioritize pre-

maximal elements by the number of attributes for which no

other alternative outperforms them.

Remark 4.15 It is also natural to generalize the concept

introduced in Definition 4.14 to a ‘weighted’ version,

provided that we have weights associated with the attri-

butes in E. We just need to replace ‘number of attributes’

by ‘total sum of weights of attributes’ (quite like we did in

Remark 4.15). We will not exhaust all theoretical possi-

bilities of this problem of selection among pre-maximal

elements here. The reader is addressed to [11] for inspiring

antecedents in the literature about binary relations.

To conclude this section, we prove a theorem that links

the quest for pre-maximal elements and soft topology. So,

it bridges a gap for which excellent antecedents exist since

Weierstrass extreme value theorem. We need the next new

concept:

Definition 4.16 Suppose that s is a soft topology on X. We

say that a softarison over X, S ¼ fðFx;EÞgx2X , is s-con-

tinuous when ðFx;EÞ 2 s for each ðFx;EÞ 2 S. Put shortly:

S is s-continuous when S � s.

Theorem 4.17 Assume that s is a soft topology on X that is

soft compact. Then for any pre-acyclic softarison S over X

that is s -continuous, there is a pre-maximal alternative.

Proof By absurdum, suppose that there are not pre-maxi-

mal alternatives for S. Then for all x 2 X, because x is not

pre-maximal, for each e 2 E there must exist y 2 X such

that x 2 FyðeÞ. Therefore tx2XðFx;EÞ ¼ ~X, and each

ðFx;EÞ is soft open because S is s-continuous. In other

words, the expression above assures that S is an open soft

covering of X.

Soft compactness ensures the existence of a finite soft

subcovering of fðFx;EÞgx2X , i.e., there are fx1; . . .; xng �
X such that tn

i¼1ðFxi ;EÞ ¼ ~X.

We shall produce a contradiction if we prove from the

latter expression that each Re has a cycle, because S is pre-

acyclic hence at least one relation Re is acyclic.

For any fixed e 2 E, we have stated [n
i¼1F

xiðeÞ ¼ X.

Consider x1. There must exist xi such that x1 2 FxiðeÞ, i.e.,

xiRex1. If i ¼ 1, we have a cycle of Re (of length 1).

Otherwise, we do not lose generality if we suppose i ¼ 2

(we can relabel the subindices of x2 and xi since they are

assigned arbitrarily) thus x2Rex1. Now consider x2. There

must exist xi such that x2 2 FxiðeÞ, i.e., xiRex2. If i ¼ 1 or

i ¼ 2, we have a cycle of Re (of length 1 or 2). Otherwise,

we do not lose generality if we suppose i ¼ 3 thus

x3Rex2Rex1. We can proceed recursively until

xn�1 2 FxiðeÞ, which produces either a cycle of Re or

xnRexn�1Re. . .Rex2Rex1. But now because xn 2 FxiðeÞ for

some i ¼ 1; . . .; n, we obtain a cycle of Re. This completes

the argument. h

5 A decision-making procedure based
on softarisons

In this section we adopt a procedural position. We set forth

a decision-making algorithm for situations where a soft-

arison is used in order to model the soft-theoretical com-

parisons between pairs of alternatives.

Our procedure is justified by the following argument.

Alternatives that are score undominated, or weighted-score

undominated when a vector of weights is available (Defi-

nition 4.3), are optimal choices. However these properties

are very demanding, and we know that such alternatives

may not exist (cf., Example 4.4). In their place, minimax

alternatives are a nice substitute. To show why, we argue

with the case where all attributes are equally important for

the sake of clarity. When IoiðojÞ ¼ 0 for all oi 2 X,

Proposition 4.5 guarantees that oj is score undominated.

This is the most desirable case: no matter which attribute

we look at, no alternative beats oj. The same is true for the

weighted case. It is very unlikely that this happens in

practice. But we can first look at the maximum of IoiðojÞ
across i, i.e., Mj ¼ maxfIoiðojÞ j i ¼ 1; . . .;m; i 6¼ jg. This

figure is the largest number of attributes for which there is

some other alternative that outperforms oj in that number.

So the smallest this figure is, the better. Under a cautious
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approach we should therefore recommend an alternative ol
for which Ml is smallest, i.e., minimize Mj or find a solu-

tion for minj¼1;...;m maxfIoiðojÞ j i ¼ 1; . . .;m; i 6¼ jg. Such

an alternative is a minimax alternative.

We can therefore endorse the following procedure for

decision-making:

The figures Woi
x ðojÞ computed at Step 1 give us the

overall importance of the attributes for which the other

alternatives outperform oj. Then, Mj computed at Step 2 is

a proxy for the worst possible comparison of oj versus any

other alternative. Finally, we select an alternative that when

compared with any other alternative, is outperformed in the

least aggregate importance.

Remark 5.1 Some weighted-score undominated alterna-

tives are detected by the minimax algorithm. Proposi-

tion 4.5 and its weighted counterpart assure that if oj 2 X

satisfies IoiðojÞ ¼ 0 (resp., Woi
x ðojÞ ¼ 0) for all oi 2 X, then

oj is score (resp., weighted-score) undominated. Notice that

in this case Mj ¼ 0, therefore it minimizes fM1; . . .;Mmg
and this alternative will be selected by the minimax

algorithm.

We apply the minimax algorithm to a practical case-

study in our next synthetic example, that concerns job

hiring.

Example 5.2 Group interviews are an efficient interview-

ing technique whereby employers evaluate several candi-

dates simultaneously in order to fill a position. It can also

be used to hire more than one candidate for similar posi-

tions. Its main advantage is that it is less time-consuming

than individual recruitment evaluations.

In this down-to-earth context, real data are highly

confidential. Therefore the following streamlined situation

is considered for illustration. Let X ¼ fo1; o2; o3; o4g be a

set of four applicants. The employer considers their

comparative performance with respect to

E ¼ fe1; e2; e3; e4; e5g, where attribute e1 refers to ‘Com-

mon interview questions’, e2 refers to ‘Role-playing

exercises’, e3 refers to ‘Practical tasks’, e4 refers to ‘Case

studies’, and e5 refers to ‘Group presentations’. He/she

adopts the weak semantics for the retrieval of information.

After completion of the group interview, the employer

produces a comparative performance of the candidates with

respect to the activities in E. This generates a softarison

S ¼ fðFo1 ;EÞ; ðFo2 ;EÞ; ðFo3 ;EÞ; ðFo4 ;EÞg. Figure 7 dis-

plays such a softarison in tabular form. For illustration,

the employer annotates ‘When the common interview

questions took place, I did not perceive that candidate o1

performed at least as well as o2’. This annotation translates

into o2 62 Fo1ðe1Þ, hence the 0 at row o2 and column e1 of

the first table.

The attributes are not equally important. Their relative

relevance is captured by a vector of weights

x ¼ ð0:2; 0:2; 0:3; 0:15; 0:15Þ. Figure 8 shows the relevant

x-weighted inverse scores associated with the softarison

defined in this Example 5.2. These figures are defined at

Step 1 of the minimax algorithm. The table shows the Mj

proxies defined at Step 2 of the minimax algorithm in its

right column. The only solution is o2, which is the

candidate where the minimum of M1;M2;M3;M4 is

attained.

Observe that the minimax algorithm has singled out a

weighted-score undominated applicant: Wo2
x ðo1Þ ¼ 0:7

[Wo1
x ðo2Þ ¼ 0:35, Wo2

x ðo3Þ ¼ 0:35 ¼ Wo3
x ðo2Þ, and

Wo2
x ðo4Þ ¼ 0:35 ¼ Wo4

x ðo2Þ.

Algorithm 1: The minimax algorithm

7

Input : X = {o1, . . . , om}, a set of alternatives.
E = {e1, . . . , en}, a set of attributes.
A vector of weights ω for the attributes.
An E-softarison S over X

1 Define W oi
ω (oj) for each i, j, using Equation ( ).

2 Compute Mj = maxi=1,...,mW oi
ω (oj) for each j = 1, . . . ,m.

3 Compute mini=1,...,mMj , i.e., minj=1,...,mmaxi=1,...,mW oi
ω (oj).

Solution: An alternative ol such that Ml = minj=1,...,mMj .
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6 Discussion and conclusion

Softarisons constitute a novel approach to the specification

of comparisons among alternatives in the setting of soft set

theory. It is valid when there are multiple features and we

need to pay attention to them separately; however, we

cannot assess the value of the alternatives. Instead, we can

only provide a parameterized description of which alter-

natives each alternative improves upon. Soft relations [15]

which had been studied in the literature originate with a

very different motivation. Their structure and semantics are

unrelated to ours.

Our main target in this paper is to show that softarisons

facilitate theoretical manipulations in novel directions. In

particular, with the help of the model presented here we

have first established a close link between soft topology

and the selection of ‘best’ alternatives in an infinite con-

text. We have done this through the theoretical approach in

Sect. 4.3. Hence one can regard this achievement as a

practical application of softarisons to the expanding field of

soft set topology. Admittedly, we have prioritized mathe-

matical applicability to validation through examples.

Nevertheless Sect. 5 has shown the sort of practical situa-

tions where softarisons provide the right conceptual model

for decision-making.

Multiple lines of research open up and we have only

settled the ground for some of them. Among the possible

avenues for additional research we cite but a few:

1. One can still delve deeper into the debate procedural

vs. normative solutions. Other procedural solutions can

be produced and compared with our minimax

algorithm.

2. In addition to the brief introduction in Sect. 3.3, much

more can be said about the consistency properties of

softarisons. Notice that the inspirational case of binary

relations is enormously rich [18]. Procedures for their

easy identification from the tabular form should be

helpful in applications. Computer-assisted algorithms

may be especially useful for large sets of data.

3. Multi-agent decision-making would require the utiliza-

tion of several softarisons. Suitable solution concepts

and mechanisms should be given accordingly.

4. A more general model (maybe called N-softarisons)

can be defined with the assistance of N-soft sets [20].

They should be useful when we have multinary

parameterized descriptions (of which alternatives each

one improves upon) at our disposal. A full more

general theory can be developed from this starting

point. One could even resort to more general models

for inspiration, like hesitant fuzzy N-soft sets [1].

Nevertheless, it is important that we investigate the

bounds of the model by softarisons separately.

(F o1 , E) e1 e2 e3 e4 e5
o1 1 1 1 1 1
o2 0 1 0 1 0
o3 0 0 1 0 1
o4 1 0 1 1 0

(F o2 , E) e1 e2 e3 e4 e5
o1 1 1 0 1 1
o2 1 1 1 1 1
o3 1 0 0 0 1
o4 1 0 0 1 0

(F o3 , E) e1 e2 e3 e4 e5
o1 0 1 1 1 0
o2 0 1 0 1 0
o3 1 1 1 1 1
o4 1 0 1 0 1

(F o4 , E) e1 e2 e3 e4 e5
o1 1 0 1 0 1
o2 1 0 0 1 0
o3 0 0 1 0 1
o4 1 1 1 1 1

Fig. 7 Tabular representation of the softarison S ¼ fðFo1 ;EÞ; ðFo2 ;EÞ; ðFo3 ;EÞ; ðFo4 ;EÞg over X in Example 5.2

o1 o2 o3 o4 Mj

o1 − W o2
ω (o1) = 0.7 W o3

ω (o1) = 0.65 W o4
ω (o1) = 0.65 0.7

o2 W o1
ω (o2) = 0.35 − W o3

ω (o2) = 0.35 W o4
ω (o2) = 0.35 0.35

o3 W o1
ω (o3) = 0.45 W o2

ω (o3) = 0.35 − W o4
ω (o3) = 0.45 0.45

o4 W o1
ω (o4) = 0.65 W o2

ω (o4) = 0.35 W o3
ω (o4) = 0.65 − 0.65

Fig. 8 Inverse scores of the softarison S defined in Example 5.2
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