
Numerical Methods of Stochastic Differential
Equations in Finance

S. Llamazares Eĺıas
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1 Introduction

The study of stochastic differential equations (SDEs) originated with a ground-
breaking paper published by Kiyosi Itô in the 1940’s. In this paper, Itô defined
a kind of stochastic integral, called the Itô integral, which allowed the integra-
tion of a certain class of functions with respect to a stochastic process [12]. The
Itô integral was later used as the basis of Itô calculus, which allowed for the
definition and study of SDEs [13]. Since then SDEs have been used to model
a wide array of phenomena of stochastic nature in all kinds of scientific fields.
In Physics, stochastic models are in many cases a more appropriate way to
describe systems that cannot be isolated from their environment. SDEs allow
the generalization of many deterministic models to their random counterpart
such as noisy radioactive decay, the noisy pendulum [5] and the stochastic
oscillator [23]. Models based on SDEs are also used in Biology for population
growth where there are many factors operating (immigration, diseases, war...)
and a deterministic model may therefore fail to provide accurate results [8].
The field in which SDEs have seen perhaps the biggest success is mathematical
finance, where models based on SDEs have been used to give accurate pricing
of a wide range of financial assets [2] and to model interest rates [6].

An SDE is a generalization of a deterministic differential equation. By
incorporating a noise term and random coefficients, the differential equation
becomes an SDE whose solution is no longer deterministic but rather a stochas-
tic process. For example, let’s consider the simplest interest rate model

dX(t)

dt
= rX(t) (1)

where X(t) is the currency at time t and r is the interest. The model given by
(1) has solution

X(t) = X(0)ert.

However, in practice, the interest rater might be slightly more complex, say a
random variable of the form

r(t) = µ(t) + ”noise”

so that (1) turns into the SDE

dX(t)

dt
= (µ(t) + ”noise”)X(t)
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of the sort we will analyze more in depth in the following sections. The solu-
tions of these SDEs are no longer deterministic functions, but rather stochastic
processes. For example, in Figure 1 we see ten trajectories of a geometric
Brownian motion, i.e., a solution of the equation

dXt = µXt dt+ σXt dWt, (2)

that in Finance is named as Black-Scholes equation. In this paper we will

Figure 1: Ten trajectories of the solution to the Black-Scholes equation (2).

develop the fundamental theory of SDEs and use this theory to study the
numerical solution of an important model in finance, the CIR model. In the
first chapter we construct and study some of the basic properties of one of
the most important stochastic processes, Brownian motion, which has been
studied by some of the most influential scientific minds and has a fundamental
role in Itô calculus. The second chapter is devoted to analyzing the central
concept of Itô calculus, the Itô integral, and to prove its most important result,
the Itô formula, which is the stochastic analog of the deterministic chain rule.
In the third chapter we examine one of the only classes of SDEs with a closed
form solution, linear SDEs, and study when and how a more general SDE can
be reduced to a linear one. In the fifth chapter we go through several of the
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most commonly used numerical methods used to approximate the solutions
of SDEs. The sixth chapter is used to introduce some of the basic concepts
found in mathematical finance as well as to survey some of the main models
that have been developed in this field. Finally, in the seventh chapter we
perform a comparison of some of the most used ways to simulate the CIR
model as well as analyzing another way to approximate the CIR process.

2 Stochastic Processes and Brownian Motion

Throughout this paper we work fundamentally with stochastic processes, a
mathematical object which is used to model systems which evolve in a random
fashion.

Definition 2.1 (Stochastic Process). A stochastic process X on a probability
space (Ω,F ,P) is a function

X : T × Ω→ S

such that X(t) is a measurable function for all t ∈ T . T is the index set, often
thought of as time, in this paper it will be a real interval of the form T = [t0, tf ].
S is called the state space, in this paper we will consider that S = Rn.

We say that a stochastic process X is sample path continuous if the function

X(w) : T → S

t 7→ X(t, w)

is continuous for all w ∈ W . We will also denote the function X(w) as Xw

and use the analogous notation for

X(t) : Ω→ S

w 7→ X(t, w).

Definition 2.2 (Filtration). A filtration on a measurable space (Ω,F) is a
sequence of sub-σ-algebras {Mt}t∈T of F such that

Mt1 ⊆Mt2 ⇐⇒ t1 6 t2.

That is, a filtration on a measurable space is an non-decreasing sequence of
sub-σ-algebras.

6



Definition 2.3 (Adapted Stochastic Process). A stochastic process {Xt}t∈T ,
defined on a probability space (Ω,F ,P), is said to be adapted with respect to the
filtration {Mt}t∈T if Xt is Mt -measurable for every t ∈ T . This is commonly
summarized by saying that {Xt,Mt}t∈T is an adapted process.

The intuition behind an adapted process is that Xt depends only upon the
information contained in the sub-σ-algebra Mt.

Definition 2.4 (Martingale). A stochastic process {Xt}t∈T , defined on a prob-
ability space (Ω,F ,P) is a martingale with respect to a filtration if {Xt,Mt}t∈T
is an adapted process,

E[|Xt|] <∞ ∀t ∈ T
and

E (Xt | Ms) = Xs ∀s ≤ t ∈ T.
This is commonly summarized by saying that {Xt,Mt}t∈T is a martingale.

Intuitively, the fact that E (Xt | Ms) = Xs for s ≤ t means that the best
bet for the future is the present.

Definition 2.5 (Progressively Measurable). An adapted process {Xt,Mt}t∈T
defined on a probability space (Ω,F ,P) is said to be progressively measurable if
X is jointly B([t0, t])×Mt measurable for every t ∈ T where B([t0, t]) denotes
the Borel σ-algebra on the interval [t0, t].

2.1 Brownian Motion

In 1825 the botanist Robert Brown was the first to describe the chaotic dis-
placement of pollen particles in water [4]. This movement is due to the collision
of the pollen grains with water particles and was later studied by Albert Ein-
stein [7].

From the mathematical perspective, Brownian motion is described by a stochas-
tic Wiener process, which owes its name to Norbert Wiener [24].

The Wiener process {Bt}t≥0 starting at x can be constructed as follows. We
first look for a family of probability measures that agree with experimental
results. This family is defined as follows:

νt1,...,tk(F1, ..., Fk)

=

∫
F1×...×Fk

p (t1, x, x1) p (t2 − t1, x1, x2) · · · p (tk − tk−1, xk−1, xk) dx1 · · · dxk
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for all, k ∈ N, 0 6 t1 6 ... 6 tk, F1, ..., Fk ⊆ Rn measurable sets,

p(t, x, y) =

{
(2πt)−

n
2 e−

|x−y|2
2t si t > 0

δx(y) if t = 0
.

where δx is the Dirac delta at x. Intuitively, this means that if a pollen particle
starts at point x, then the probability that it reaches some point in F1 after
t1 seconds, then reaches the set F2 after another t2 − t1 seconds and so on is
νt1,...,tk(F1, ..., Fk).

Now, since the family of probability measures that we have just defined verify
the two hypotheses of the Kolmogorov extension theorem (see Appendix A
Lemma 10.1), there is a probability space (Ω,F ,Px) and a stochastic process
{Bt}t≥0 defined on this probability space such that

Px(Bt1 ∈ F1, ..., Btk ∈ Fk) = νt1,...,tk(F1, ..., Fk) (3)

for all k ∈ N, 0 6 t1 6 ... 6 tk and F1, ..., Fk ⊆ Rn measurable sets .

Theorem 2.6 (Properties of the Wiener Process). The Wiener process {Bt}
starting at x fulfills the following properties:

1. B0 = x, i.e the process starts at point x.

2. {Bt}t∈R+ is a Gaussian process.

3. {Bt}t∈R+ has independent increments, or equivalently,

Bt1 −Bt0 , Bt2 −Bt1 , B..., Btk −Btk−1

are independent for all k > 1 and 0 6 t0 < t1 < ... < tk.

4. Bt −Bs ∼ N ((0, ..., 0),min(t− s)In).

5. There is a stochastic process {Xt}t∈R+ equivalent to the Wiener process
{Bt}t∈R+ and almost certainly continuous in time, that is, such that the
function t 7→ Xt is continuous for almost every w ∈ Ω.

Proof. 1. This follows from the definition of the transition density.

Px(B0 ∈ F ) = ν0(F ) =

∫
F

p(0, x, y)dy =

∫
F

δx(y)dy = x
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2. We wish to show that

Bt1,t2,...,tk := (Bt1 , Bt2 , ..., Btk)

is a Gaussian random vector for all k∈ R+ and 0 6 t1 6 ... 6 tk.
Given that a random variable’s distribution is uniquely determined by
its characteristic function, it is enough to show that there exist µ ∈ Rnk

and Σ ∈ Rnk×nk such that

ϕBt1,...,tk (A) = Ex

[
exp

(
i

nk∑
j=1

AjBtj

)]
= exp

(
−1

2

nk∑
j,m=1

AjΣjmAm + i

nk∑
j=1

Ajµj

)
(4)

for all A ∈ Rnk. Expanding the expected value using (3) it can be shown
that (4) holds for

µ = Ex[Z] = (x, x, · · · , x) ∈ Rnk (5)

and

Σ =


t1In t1In · · · t1In
t1In t2In · · · t2In

...
...

...
t1In t2In · · · tkIn

 . (6)

A representation of this covariance matrix for a one-dimensional Brow-
nian motion can be seen in Figure 2.

3. As we have just seen, Bt1,t2,...,tk is a random Gaussian vector and hence
so its linear combinations are. Consequently

(Bt1 −Bt0 , Bt2 −Bt1 , ..., Btk −Btk−1
)

is a Gaussian vector. Therefore, to see that these increments are inde-
pendent, it suffices to prove that they are uncorrelated. We have that

Ex
[(
Bti −Bti−1

) (
Btj −Btj−1

)]
= Ex

[
BtiBtj −Bti−1

Btj −BtiBtj−1
+Bti−1

Btj−1

]
= n(ti − ti−1 − ti + ti−1) = 0

where in the second equality we have used (6). From this we deduce that
Bs −Bt is independent of Ft for all s > t where

Ft := σ{Bk; k < t}

9



Figure 2: Covariance function of a one-dimensional Wiener process.

is the sigma-algebra generated by the Wiener process before t. Intu-
itively, this corresponds to the fact that Bs −Bt is independent of what
happened in moments before t.

4. We have already seen that {Bt}t∈R+ has Gaussian increments. In addi-
tion by (3) these increments mean is

µ = (0, 0, ..., 0)

and their covariance matrix is

Σ = min(t− s)In.

5. We have shown that Bt − Bs ∼ N ((0, ..., 0),min(t − s)In) therefore, its
fourth order is

Ex[(Bt −Bs)
4] = n(n+ 2)(t− s)2.

Hence, by Kolmogorov’s continuity theorem (see Appendix A, Lemma
10.2) applied to the complete metric space L1(Rn) and the stochastic
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process Bt : [0,∞]× Rn → Rn we conclude that the Wiener process has
a continuous version.

In Figure 3 five trajectories of a three-dimensional Wiener process are
shown.

Figure 3: Five simulations of a 3D Brownian motion.

3 Stochastic Calculus

3.1 The Itô Integral

In the introduction we mentioned that SDEs were generalizations of deter-
ministic differential equations, for example the stochastic interest rate growth
model

dX(t)

dt
= (µt + ”noise”)X(t).
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Now let’s try to make sense of an equation of the form

dXt = µ (t,Xt, ) dt+ σ (t,Xt, )Wt

that we mentioned in the introduction. This equation is more commonly writ-
ten as

dXt = µ (t,Xt, ) dt+ σ (t,Xt, ) dBt (7)

using the fact that the white noise process Wt is the distributional derivative
of the Wiener process Bt. That is,

(W, f) =

∫
R
Wtftdt = −

∫
R
Btf

′
t = (dB, f)

for every test function f ∈ D(R,Rn). The question that arises naturally is
how we should interpret (7)? If we choose to view (7) in a discrete sense, by
partitioning our time interval then we would have

Xtk = Xt0 +
k−1∑
j=0

µ
(
tj, Xtj

)
∆tj +

k−1∑
j=0

σ
(
tj, Xtj

)
∆Btj

where ∆Btj = Btj+1
−Btj . Now, if we could take the limit when ∆tj ↓ 0 then

intuitively we would arrive at an expression of the form

Xt = X0 +

∫
T

µ (s,Xs) ds+

∫
T

σ (s,Xs) dBs; (8)

which is why if {Xt}t∈T is a solution of the integral equation (8) it is said that
{Xt}t∈T is a solution of the SDE (7) . However, while the first integral in (8)
is a commonplace integral, the second one∫

T

σ (s,Xs) dBs (9)

is not. This second integral is a stochastic integral which we must now de-
fine and analyze in order to continue our study of SDEs. At first glance, one
could believe that (9) is a Riemann-Stieljes integral. However, the fact that
Brownian motion is not of bounded variation means that it cannot be. In
the following pages we will go through the construction of the Itô integral, a
particular type of stochastic integral.

First of all, to define the set of functions for which this integral makes sense,
we give the following definitions.
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Definition 3.1 (Square Integrable Function). Given a probability space (Ω,F ,P),
a stochastic process f : T × Ω→ Rn is said to be square integrable if

||f ||2,T :=

√∫
T

E [|ft|2] dt <∞.

We denote this by f ∈ L2(T × Ω;Rn). Likewise, we say that f is integrable,
and denote this by f ∈ L1(T × Ω;Rn), if f verifies

||f ||1,T :=

∫
T

E [|ft|] dt <∞.

These last two definitions are crucial for the Itô integral. This is because,
as we shall see later on, for a function to be Itô integrable, it must be both
square integrable and progressively measurable with respect to a certain fil-
tration.

To start off, we will consider the one-dimensional case. Given a probabil-
ity space (Ω,F ,P) and a one-dimensional Wiener process {Bt}t∈T we define
the set I(T ×Ω;R) of real valued integrable processes with respect to {Bt}t∈T
as the set of functions

f : T × Ω→ R

verifying that:

1. There exists a filtration {Mt}t∈T such that {ft,Mt}t∈T is progressively
measurable and {Bt,Mt}t∈T is a martingale.

2. f ∈ L2(T × Ω;R).

In the future, whenever we refer to an integrable process Mtt∈T will denote
the filtration verifying the above conditions.

The Itô integral construction is similar in some sense to that of the Lebesgue
integral. First of all, we define the stochastic integral for step functions. We
say that a function f ∈ I(T × Ω;R) is a step function if it can be written as

f(t, w) =
n−1∑
j=0

φj(w)X[tj ,tj+1)(t)
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where t0 6 t1 6 · · · 6 tn = tf and φj ∈ L∞
(
Mtj

)
are bounded Mtj measur-

able random variables. We denote the set of step functions as ST . If f ∈ ST
we define its Itô integral with respect to Bt as∫

T

f (t, w) dBt(w) :=
n−1∑
j=0

φj(w)(Btj+1
−Btj)(w).

Lemma 3.2. Itô Isometry for Step Functions. If f ∈ ST then

E

[(∫
T

f(t, w)dBt(w)

)2
]

= E
[∫

T

f 2(t, w)dt

]
Proof. Since f ∈ ST then f has the form

f =
n−1∑
j=0

φj(w)X[tj ,tj+1)(t).

Therefore we have that

E

[(∫
T

fdB

)2
]

=
n−1∑
j=0

E[φ2
j(Btj+1

−Btj)
2] + 2

n−2∑
i=0

n−1∑
j=i+1

E
[
φiφj(Bti+1

−Bti)(Btj+1
−Btj)

]
=

n−1∑
j=0

E[φ2
j(Btj+1

−Btj)
2] =

n−1∑
j=0

E[φ2
j(tj+1 − tj)] = E

[∫
T

f 2dt

]
,

where we have used that Brownian motion has independent increments of mean
zero and variance the time elapsed.

Our goal is to approximate any integrable function f by a sequence of step
functions {fn}n∈N and then define the integral of f as the limit of the integrals
of the step functions, which we have just defined. To do this we must prove
that the set of step functions ST is dense in the set of integrable functions
I(T ×Ω;R) with the norm || · ||2,T , that such a limit exists and that it does not
depend on the choice of sequence {fn}n∈N. The proof of the density of the set
of step functions in the set of integrable functions is divided into four parts.
First we show that for any integrable function, there is a sequence of bounded
integrable functions that converge to it.

Lemma 3.3. Let f ∈ I(T × Ω;R), then there exists {fn}n∈N ⊂ ST such that
limn→∞ ||f − fn||2,T = 0.

14



Proof. We define fn as follows:

fn(t) := min{max{−n, f(t)}, n}

Clearly fn is bounded and square integrable. It is also {Mt}t∈T adapted
because fn(t) is the minimum of twoMt measurable functions for each t ∈ T .
Furthermore we have that

|fn(t, ω)− f(t, ω)| 6 |fn(t, ω)|+ |f(ω)| 6 2|f(t, ω)|

hence we conclude that
lim
n→∞

||fn − f ||2,T = 0

by the dominated convergence theorem applied to the sequence{
E
[
|fn(t)− f(t)|2

]}
n∈N

which is dominated by
4E[|f(t)|2].

The second step is to prove that given a bounded integrable function, there
is a sequence of bounded and pathwise continuous functions that converge to
said function.

Lemma 3.4. Suppose that f ∈ I(T × Ω;R) is bounded. Then there exists
a sequence of bounded, pathwise-continuous processes {fn}n∈N ⊂ I(T × Ω;R)
such that

lim
n→∞

||f − fn||2,T = 0

Proof. For each n ∈ N, we define fn as follows

fn(t, ω) :=

∫
T

ϕn(s− t)f(s, ω)ds.

where ϕn : R → R+ is a continuous function such that ϕn(s) = 0 if s ∈(
− 1
n
, 0
)C

and ∫ ∞
−∞

ϕn(s)ds = 1.

Then for every ω ∈ Ω it can be shown that fn(t, ω) is continuous in t,
|fn(t, ω)| 6 K and ||fn||2,T < ∞. Additionally {fn(t),Mt}t∈T is an adapted
process for every n ∈ N and

lim
n→∞

∫
T

|f(t, ω)− fn(t, ω)|2 dt = 0
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for all ω ∈ Ω. These results are technically complex and not very connected
with SDEs in general, hence their proof will be omitted proof can be found in
[15]). They allow us to use the dominated convergence theorem to show that

lim
n→∞

||f − fn||2,T = 0.

Finally, given an integrable, bounded and pathwise continuous function,
we will show that there is a sequence of step functions that converge to it.

Lemma 3.5. Suppose that f ∈ I(T×Ω;R) is bounded and pathwise-continuous.
Then there exists a sequence {fn}n∈N ∈ STN such that

lim
n→∞

||f − fn||2,T = 0

.

Proof. We define fn as

fn(t, w) :=
∞∑
j=0

f (tj, w)X[tj ,tj+1)(t)

where tj := j2−n. Then limn→∞ fn(t)− f(t) = 0 for all t ∈ T and since

|fn(t, ω)− f(ω)| 6 |fn(t, ω)|+ |f(t, ω)| 6 2‖ft‖∞ <∞

we conclude that
lim
n→∞

||fn − f ||2,T = 0

by the dominated convergence theorem.

Lemma 3.6. The set of step functions ST is dense in the metric space

(I(T × Ω;R), || · ||2,T ).

Proof. This is immediate by using the previous three lemmas.

Lemma 3.7. Let f be an integrable function and let {fn}n∈N be a sequence of
step functions converging to f as in Lemma 3.4. Then

lim
n→∞

∫
T

fn(t, w)dBt(w)

exists and does not depend on the sequence of step functions converging to f .
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Proof. By Lemma 3.2 we have that

E

[∣∣∣∣∫
T

fn(t, w)dBt(w)−
∫
T

fm(t, w)dBt(w)

∣∣∣∣2
]

= E
∫
T

|fn(t, w)− fm(t, w)|2 dt

≤ 2

∫
T

(
E
[
|fn(t, w)− f(t, w)|2

]
+ E

[
|fm(t, w)− f(t, w)|2

])
dt

where in the last inequality we have used that

(a+ b)2 = a2 + b2 + 2ab 6 a2 + b2 + a2 + b2 = 2(a2 + b2).

This last expression converges to 0 when n,m→∞ so we have that{∫
T

fn(t, w)dBt(w)

}
n∈N

is a Cauchy sequence in the complete space L2(Ω;R). Therefore limn→∞
∫
T
fn(t, w)dBt(w)

exists.

Now suppose that {f̄n} is another sequence of step functions converging to
f as in Lemma 3.4. Then clearly the alternating sequence {gn}n∈N, where
g2n−1 = fn and g2n = f̄n also converges to f in this sense. Consequently the
sequence {∫

T

gn(t, w)dBt(w)

}
n∈N

is also convergent, say to it’s limit I, in L2(Ω;R). Therefore it’s subsequences
with increasing sub-index, in particular {g2n−1}n∈N = {fn}n∈N and {g2n}n∈N =
{f̄n}n∈N, converge to I which conclude the proof.

Now we have the tools necessary to define the Itô integral.

Definition 3.8 (Itô Integral). Given a function f ∈ I(T ×Ω;R) we define its
Itô integral as follows∫

T

f(t, w)dBt(w) := lim
n→∞

∫
T

fn(t, w)dBt(w)

where {fn}n∈N is a sequence of step functions converging to f .
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Now that we have defined the Itô integral, let’s look at some of its proper-
ties.

Lemma 3.9 (Properties of the Itô Integral). For any f ∈ I(T×Ω;R), a, b ∈ R
and t1 < t2 < t3 ∈ T the following statements hold:

1.
∫
T
f(t, w)dBt(w) is MT measurable.

2.
∫
T

(af(t, w) + bg(t, w))dBt(w) = a
∫
T
f(t, w)dBt(w) + b

∫
T
g(t, w)dBt(w)

almost surely.

3. E [f(t, w)dBt(w)] = 0.

4. E
[(∫

T
f(t, w)dBt(w)

)2
]

= E
[∫
T
f 2(t)dt

]
(Itô isometry).

5.
∫ t3
t1
f(t, w)dBt(w) =

∫ t2
t1
f(t, w)dBt(w) +

∫ t3
t2
f(t, w)dBt(w) for almost all

w ∈ Ω.

Proof. It is easy to check that the properties hold for step functions. By
Lemma 3.4 there exist sequences of step functions {fn}n∈N and {gn}n∈N that
converge to f and g respectively; from here the properties hold for f and g.

Another important property of the Itô integral is that it is a martingale.
This is a crucial property that distinguishes the Itô integral from other stochas-
tic integrals.

Theorem 3.10. Suppose that f ∈ I(T × Ω;R) and T = [t0, tf ]. Then, the
stochastic process If : T × Ω→ R defined by

If (t, w) :=

∫ t

t0

f(s, w)dBs(w).

is a martingale.

Proof. By Lemma 3.9 If has expected value zero. It remains to see that

E [If (t)|Ms] = If (s)

for all t0 6 s < t 6 tf . Using Lemma 3.9 we have that

E [If (t)|Ms] = E
[∫ t

t0

f(u)dBu|Ms

]
= E

[∫ s

t0

f(u)dBu|Ms

]
+E

[∫ t

s

f(u)dBu|Ms

]
.
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Since, again by Lemma 3.9,
∫ s
t0
f(u)dBu is Ms measurable with null expecta-

tion,

E [If (t)|Ms] =

∫ s

t0

f(u)dBu + E
[∫ t

s

f(u)dBu|Ms

]
= E

[∫ t

s

f(u)dBu|Ms

]
.

If f were a step function, then by the definition of Itô integral for step functions
and the property of independent increments of the Wiener process, we would
have that

∫ t
s
f(u)dBu would be independent of the σ-algebra Ms. Given any

integrable function f , by Lemma 3.4 there is a sequence of step functions that
converge to f ; then the limit

∫ t
s
f(u)dBu is independent of Ms. Therefore

E [If (t)|Ms] = E
[∫ t

s

f(u)dBu|Ms

]
=

∫ t

s

f(u)dBu = If (s)

just as we wanted.

Finally we will see that there exists a continuous version of the Itô integral.
For this reason whenever we consider an Itô integral we will suppose it to be
continuous.

Theorem 3.11. Let f ∈ I(T ×Ω;R) an integrable function. Then there exists
an almost surely pathwise-continuous version of the stochastic process

If (t, w) =

∫ t

t0

f(s, w)dBs(w).

Proof. Our goal will be to construct a sequence of continuous functions that
converges almost surely to the desired stochastic process. We construct this
sequence in the most natural way possible. Let {φn}n∈N be a sequence of step
functions that converge to f we define the sequence {In}n∈N as

In(t, w) :=

∫ t

t0

φn(s, w)dBs(w).

As we have seen the Itô integral is a martingale with respect to the filtration
generated by the Brownian motion. In addition, by the definition of the Itô
integral for step functions In(t, w) is almost surely continuous with respect to
t for all n ∈ N. It remains to see that this sequence converges uniformly to I.
Since In − Im is an almost surely pathwise continuous martingale by Doob’s
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martingale inequality 10.4 we have that

P

[
sup
t∈T
|In(t, ω)− Im(t, ω)| > ε

]
6

1

ε2
· E
[
|In(tf , ω)− Im(tf , ω)|2

]
=

1

ε2
E
[∫

T

(φn − φm)2 ds

]
→ 0

as n,m→∞. Therefore we can choose a subsequence such that

P

[
sup

06t6T

∣∣Ink+1
(t, ω)− Ink(t, ω)

∣∣ > 2−k
]
< 2−k.

Applying the Borel-Cantelli lemma 10.5 to the sequence of events{
sup

06t6T

∣∣Ink+1
(t, ω)− Ink(t, ω)

∣∣ > 2−k
}
k∈N

it follows that only a finite number of these events can occur. Hence, for almost
every w ∈ Ω there exists k(w) ∈ N such that

sup
06t6T

∣∣Ink+1
(t, ω)− Ink(t, ω)

∣∣ 6 2−k; k ≥ k(w).

Consequently In(t, w) converges to uniformly, to its continuous limit, for all
t ∈ T and for almost all w ∈ Ω. Furthermore since

If (t) = lim
n→∞

In(t)

we conclude that If (t) is almost surely continuous.

In the future we will use that any Itô integral is an almost surely pathwise
continuous martingale. In particular, it allows the use of Doob’s martingale
inequality (see Lemma 10.4 in Appendix A) as in the following proof:

Lemma 3.12 (Maximal Inequality). Let (Ω,F ,P) be a probability space and
f ∈ I(T × Ω;R) an integrable function. Then

E
[∫

T

|f(s)|2ds
]
6 E

[
sup
t∈T

(∫ t

t0

f(s)dBs

)2
]
6 4E

[∫
T

|f(s)|2ds
]
.

Proof. From Theorem 3.10 and Theorem 3.11 the random variable

If (t, w) =

∫ t

t0

f(s, w)dBs(w)
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is almost surely a continuous martingale. Therefore we can apply Doob’s
martingale inequality. Then

E
[∫

T

|f(s)|2ds
]

= E

[(∫
T

f(s)dBs

)2
]
6 E

[
sup
t∈T

(∫ t

t0

f(s)dBs

)2
]

6 4E

[(∫
T

f(s)dBs

)2
]

= 4E
[∫

T

∣∣f(s)2
∣∣ ds] ,

where the Itô isometry has been used.

The Itô integral has been defined for a certain class of R-valued functions
with respect to a one dimensional Wiener process. This definition can be
generalized to the multidimensional case in the following way.

Definition 3.13. Let B = (B1, ..., Bm) be an m-dimensional Wiener process
and

f =

 f11 · · · f1m
...

...
fn1 · · · fnm

 ∈ I (T × Ω;Rnm) ,

we define∫
T

f(t, w)dB(t, w) :=

(
m∑
j=1

∫
T

f1j(t, w)dBj(t, w), ...,
m∑
j=1

∫
T

fnj(t, w)dBj(t, w)

)

It is easy to check that all the properties of Lemma 3.9 hold for the generalized
definition. While, as we have seen, the Itô integral is a martingale, which is
an important property for modelling processes whose expected values only
depend on the current value of the process, the derivation rules resulting from
this definition do not follow those of ordinary calculus. Transforming a process
and then differentiating it leads to a surprising result if we consider the chain
rule of ordinary calculus. This stochastic chain rule is given by the the Itô
lemma, also called Itô formula, which we shall prove in the one-dimensional
case.

3.2 The Itô Formula

Definition 3.14 (Itô Process). Given a probability space (Ω,F ,P), an n−dimensional
stochastic process {Xt}t∈T is said to be a Itô process with respect to the filtration
{Mt}t∈T if there exists:
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1. an m−dimensional Wiener process {Bt}t∈T which is a martingale with
respect to {Mt}t∈T

2. An adapted process {µt,Mt}t∈T called drift such that µ ∈ L1(T ×Ω;Rn).

3. An adapted process {σt,Mt}t∈T called diffusion such that σ ∈ I(T ×
Ω;Rnm)

verifying the relation
dXt = µtdt+ σtdBt. (10)

In this case we will say that X is an n-dimensional Itô process driven by
an m-dimensional Brownian motion.

Theorem 3.15 (One-dimensional Itô Formula). Let

f :R+ × R→ R
(t, x)→ f(t, x)

be continuously differentiable with respect to t and twice continuously differ-
entiable with respect to x and suppose that {Xt} is the one-dimensional Itô
process driven by a one-dimensional Brownian motion given in (10). Then
f(t,Xt) is an Itô process verifying the identity

df(t,Xt) =

(
∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt)µ(t,Xt) +

1

2

∂2f

∂x2
(t,Xt)σ

2(t,Xt)

)
dt

+
∂f

∂x
(t,Xt)σ(t,Xt)dBt.

Proof. Part of the proof is quite technical and will therefore be abbreviated;
more details can be found in [17]. The first step is to show that it suffices to
prove the theorem for bounded stochastic processes by considering a sequence
of bounded stochastic processes that approximate X. Secondly, it is possible
to show that there exists a sequence of functions {fn}n∈N which are C2 in both
t and x, instead of just x, and whose partial derivatives f, ∂f

∂t
, ∂f
∂x
, ∂f
∂x2

, converge
to those of f uniformly on compact subsets of T ×R. Next, as we have already
done previously, we can approximate σ and µ by step functions. In summary,
it suffices to prove the theorem for bounded, twice continuously differentiable
functions and stochastic processes whose drift and diffusion are step functions.
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After this simplification of the problem we consider the second order Taylor
expansion of f(t,Xt):

f (t,Xt) =f (0, X0) +
∑
i

∂f

∂t
∆ti +

∑
i

∂f

∂x
∆Xi +

1

2

∑
i

∂2f

∂t2
∆t2i +

∑
i

∂2f

∂t∂x
∆ti∆Xi

+
1

2

∑
i

∂2f

∂x2
∆X2

i +
∑
i

Ri

where ∆ti = ti+1 − ti, ∆Xi = X (ti+1) − X (ti) , Ri = o (∆t2i + ∆x2
i ) and

the partial derivatives are evaluated at (ti, Xti). Our goal now is to study each
member of this expression in an attempt to simplify it. When the size of the
partition converges to zero we have that∑

i

∂f

∂t
∆ti =

∑
i

∂f

∂t
(ti, Xi) ∆ti →

∫ t

t0

∂f

∂t
(s,Xs) ds, (11)

∑
i

∂f

∂x
∆Xi =

∑
i

∂f

∂x
(ti, Xi) ∆Xi →

∫ t

t0

∂f

∂x
(s,Xs) dXs, (12)

∑
i

Ri → 0, (13)

and
1

2

∑
i

∂2f

∂t2
∆t2i → 0, (14)

because ∂2f
∂t2

is bounded. Let us see what happens with the remaining two
terms. On the one hand∑

i

∂2f

∂t∂x
∆ti∆Xi =

∑
i

∂2f

∂t∂x
µi(∆ti)

2 +
∑
i

∂2f

∂t∂x
σi∆ti∆Bi

where µi := µ(ti, X(ti)) and σi := σ(ti, X(ti)). When the size of the partition
converges to zero, the first addend does too; for the second one we have

E

(∑
i

∂2f

∂t∂x
σi∆ti∆Bi

)2
 =

∑
i

E

[(
∂2f

∂t∂x
σi

)2
]

(∆ti)
3 −→ 0

due to the boundedness of ∂2f
∂t∂x

; this means that∑
i

∂2f

∂t∂x
∆ti∆Xi

L2T−→ 0. (15)
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On the other hand

1

2

∑
i

∂2f

∂x2
∆X2

i =
1

2

∑
i

∂2f

∂x2
µ2
i (∆ti)

2+
∑
i

∂2f

∂x2
µiσi∆ti∆Bi+

1

2

∑
i

∂2f

∂x2
σ2
i (∆Bi)

2.

The first two addends converge to zero because ∂2f
∂x2

is bounded and

E

(∑
i

∂2f

∂x2
µiσi∆ti∆Bi

)2
 =

∑
i

E

[(
∂2f

∂x2
µiσi

)2
]

(∆ti)
3.

Since E [∆B2
i ] = ∆ti intuitively it would seem that the final term verifies

1

2

∑
i

∂2f

∂x2
σ2
i (∆Bi)

2 → 1

2

∫
T

∂2f

∂x2
σ2dt.

Let us see that this in fact true by subtracting 1
2

∑
i
∂2f
∂x2
σ2
i ∆ti from 1

2

∑
i
∂2f
∂x2
σ2
i (∆Bi)

2

and showing that this subtraction converges to zero in L2(T ×Ω;R). To make

the expression a bit simpler, we abbreviate 1
2
∂2f
∂x2
σ2
i by ai. Proceeding as we

explained we obtain

E

(∑
i

ai(∆Bi)
2 −

∑
i

ai∆ti

)2
 = E

[∑
i

∑
j

aiaj
(
(∆Bi)

2 −∆ti
) (

(∆Bj)
2 −∆tj

)]

= E

[∑
i

a2
i

(
(∆Bi)

2 −∆ti
)2

]

because when i 6= j then (∆Bi)
2−∆ti and (∆Bj)

2−∆tj are independent and
their expected values are 0. Now using the formula for the expected value of
a normal distribution we have that

E

[∑
i

a2
i ((∆Bi)

2 −∆ti)
2

]
=
∑
i

E
[
a2
i

] (
3 (∆ti)

2 − 2 (∆ti)
2 + (∆ti)

2)
= 2

∑
i

E
[
a2
i

]
(∆ti)

2

which converges to zero as we wished to show since ∂2f
∂x2

is bounded. This means
that

1

2

∑
i

∂2f

∂x2
∆X2

i

L2T−→ 1

2

∫ t

t0

∂2f

∂x2
σ2dt. (16)

24



Using (11)-(16) we obtain that

f (t,Xt) = f(0, X(0))

+

∫ t

t0

(
∂f

∂t
(s,Xs) +

∂f

∂x
(s,Xs)µ (s,Xs) +

∂2f

∂x2
(s,Xs)σ

2(s,Xs)

)
ds

+

∫ t

t0

∂f

∂x
(s,Xs)σ(s,Xs)dBs(Xs).

The above lemma can be generalized to higher dimensions.

Lemma 3.16 (Multidimensional Itô Lemma [12]). Suppose that X is an n-
dimensional Itô process with respect to the Brownian motion B and let f =
(f1, ..., fn) : T ×Rn → Rp be a function whose components are C1 with respect
to t and C2 with respect to x. Then f(t,Xt) is an Itô process with

dfk(t,Xt) =
∂fk
∂t

(t,Xt)dt+
n∑
i=1

∂fk
∂xi

(t,Xt)dXi +
1

2

∑
1≤i,j≤n

∂2fk
∂xi∂xj

(t,Xt)dXidXj

(17)
where dXi · dXj is computed using the rules

dtdt = dtdBi = dBidt = 0; dBidBj = δijdt (18)

for all 1 ≤ i, j ≤ m.

This result can be expressed more compactly as

df(t,Xt) =

(
∂f

∂t
(t,Xt) +∇xfµ(t,Xt) +

1

2
Tr
[
σT (t,Xt)Hxf(t,Xt)σ(t,Xt)

])
dt

+∇xf(t,Xt)σ(t,Xt)dBt

where ∇xf and Hxf denote the gradient and the Hessian matrix of f respec-
tively:

∇xf =

(
∂f

∂x1

, ...,
∂f

∂xn

)
Hxf =


∂f

∂x1x1
· · · ∂f

∂x1xn
...

. . .
...

∂f
∂xnx1

· · · ∂f
∂xnxn

 .
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4 Stochastic Differential Equations

In this section we define in a more rigorous manner what an SDE is and what
its solutions are, concepts that were intuitively introduced above. Then we will
study under what conditions the solutions of an SDE exist and are unique, as
well as what properties they verify. In the field of SDEs, we also differentiate
between weak and strong solutions. However, this notion is very different from
the one found in ODEs and PDEs.

4.1 Definitions and Existence and Uniqueness Theorem

Let (Ω,F ,P) be a probability space, {Bt}t∈T an m-dimensional Wiener process
with respect to to the filtration {Mt}t∈T .

Definition 4.1. Given µ, σk : T × Rn → Rn, k = 1, . . . ,m, a stochastic
differential equation (SDE) is an equation of the form

dXt = µ(t,Xt) dt+
m∑
k=1

σk(t,Xt) dBk(t); t ∈ T, (19)

also denoted in a compact form as

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt, (20)

where µ and σ are called the drift and diffusion coefficients respectively.

Notice that the SDE (19) is equivalent to the integral equation

Xt = Xt0 +

∫ t

t0

µ(s,Xs) ds+
m∑
k=1

∫ t

t0

σk(s,Xs) dBk(s).

Definition 4.2. Given a random variable ξ : Ω → Rn, a stochastic process
Y : T ×Ω→ Rn is a strong solution of the SDE (20) with initial value Xt0 = ξ
if it verifies:

1. Y is progressively measurable with respect to {Mt}t∈T .

2. Y is sample path continuous.

3. µ(t, Yt) ∈ L1(T × Ω;Rn)

4. σ(t, Yt) ∈ I(T × Ω;Rn)
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5. Yt = ξ +
∫ t
t0
µ(s, Ys)ds+

∫ t
t0
σ(s, Ys)dBs with probability 1 for all t ∈ T .

Clearly if Y is the solution of an SDE then it is an Itô process. In the
case of the strong solutions, we have fixed the probability space, the Wiener
process, the filtration and the initial value. However, in the case of the weak
solution we will let them vary.

Definition 4.3. A weak solution of an SDE of the form (20) is a probability
space (Ω,F ,P), a filtration {Mt}t∈T , a Wiener process {Bt}t∈T which is a
martingale with respect to {Mt}t∈T and a stochastic process Y : T × Ω→ Rn

such that

1. Y is progressively measurable with respect to {Mt}t∈T .

2. Y is sample path continuous.

3. µ(t, Yt) ∈ L1(T × Ω;Rn)

4. σ(t, Yt) ∈ I(T × Ω;Rn)

5. Yt = Yt0 +
∫ t
t0
µ(s, Ys)ds+

∫ t
t0
σ(s, Ys)dBs almost surely for all t ∈ T .

Since the solution of an SDE is a stochastic process, we have to slightly alter
the concept of uniqueness of solutions from ODEs. In this case we consider
two strong solutions Y , Z of (20) to be equivalent if Z is a version of Y , that
is, if

P(Yt = Zt) = 1

for all t ∈ T . Therefore, a strong solution Y is unique if and only if all other
solutions are modifications of Y . Unfortunately, we can’t use the same notion
of uniqueness for weak solutions because two weak solutions don’t need to be
defined on the same probability space. Instead, we say that two weak solutions
X,Y are equivalent if they have the same finite-dimensional distribution. In
symbols,

PX {ω ∈ ΩX | Xti(ω) ∈ Aj for 1 6 i 6 k} = PY {ω ∈ ΩY | Yti(ω) ∈ Aj for 1 6 i 6 k}

for all k ∈ N, t1, ..., tk ∈ T and A1, ..., Ak ∈ B(Rn).

We shall now see under what conditions we can assure that an SDE has a
solution that is unique.

Definition 4.4. A function f : T × Rn → Rn satisfies a
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1. Lipschitz condition in x if there exists a constant K ∈ R such that

|f(t, x)− f(t, y)| 6 K|x− y| for all t ∈ T and for all x, y ∈ Rn (21)

2. Linear growth condition if there exists a constant K ∈ R such that

|f(t, x)−f(t, y)| 6 K(1 + |x|) for all t ∈ T and for all x, y ∈ Rn (22)

Notice that the Lipschitz condition implies uniform continuity in x. On
the other hand, linear growth condition can be written as

|f(t, x)− f(t, y)| 6 K2(1 + |x|2) for all t ∈ T and for allx ∈ Rn.

Theorem 4.5 (Existence and Uniqueness). Consider the SDE (19) with coeffi-
cients µ, σk, k = 1, . . . ,m satisfying the Lipschitz and linear growth conditions.
If ξ is F0 measurable then there exists a unique strong solution X to (19) such
that Xt0 = ξ. If, in addition, E [|ξ|2] <∞ then X ∈ I(T × Ω;Rn).

Proof. Suppose that Xt and Yt are solutions of (19).

E[|Xt − Yt|2] = E

[∣∣∣∣∫ t

t0

(µ(s,Xs)− µ(s, Ys))ds+

∫ t

t0

(σ(s,Xs)− σ(s, Ys))dBs

∣∣∣∣2
]

(∗)
6 2E

[∣∣∣∣∫ t

t0

(µ(s,Xs)− µ(s, Ys))ds

∣∣∣∣2
]

+ 2E

[∣∣∣∣∫ t

t0

(σ(s,Xs)− σ(s, Ys))dBs

∣∣∣∣2
]

(∗∗)
6 (t− t0)E

[∫ t

t0

|µ(s,Xs)− µ(s, Ys)|2ds
]

+ E
[∫ t

t0

|σ(s,Xs)− σ(s, Ys)|2ds
]

(∗∗∗)
6 K2(t− t0)

∫ t

t0

E
[
|Xs − Ys|2ds

]
+K2

∫ t

t0

E
[
|Xs − Ys|2ds

]
= K2(t− t0 + 1)

∫ t

t0

E
[
|Xs − Ys|2ds

]
,

where in (*) we have used that (a+ b)2 6 2(a2 + b2), in (**) we have used the
Cauchy-Schwarz inequality and the Itô isometry while in (***) we have used
the Lipschitz condition on µ and σ. Using Gronwall’s integral inequality (see
Lemma 10.3 in Appendix A) we conclude that

E[|Xt − Yt|2] 6 0.

Then Xt is almost surely equal to Yt and the uniqueness is proved.
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To prove that a solution Yt exists, we shall use the Picard iteration method.
We define

Y
(k+1)
t := ξ +

∫ t

t0

µ
(
s, Y (k)

s

)
ds+

∫ t

t0

σ
(
s, Y (k)

s

)
dBs.

Our goal is to show that Y
(k+1)
t converges to a solution of (19). This proof is

similar to the one used to show that there was a continuous version of the Itô
integral. The method consists in bounding the probabilities

P

(
max
t∈T

∣∣Y (k+1)(t)− Y (k)(t)
∣∣ > 2−k

)
6 Ck

by constants Ck such that ∑
k∈N

Ck <∞

and applying Borel-Cantelli to conclude that the sequence is uniformly con-
vergent. For this reason the first step of proving the existence will be to show
that

E
[∣∣Y (k+1)(t)− Y (k)(t)

∣∣2] 6 Ck,t :=
(α(t− t0))k+1

(k + 1)!
. (23)

for some constant α ≥ 2K2(tf − t0 + 1) ∈ R+, for all t ∈ T and k ∈ N. We
shall do this by induction.

1. k = 0: We have that

E
[∣∣Y (1)(t)− Y (0)(t)

∣∣2] = E

[∣∣∣∣∫ t

t0

µ
(
s, Y (0)(s)

)
ds+

∫ t

t0

σ
(
s, Y (0)(s)

)
dBs

∣∣∣∣2
]

(∗)
6 2E

[∣∣∣∣∫ t

t0

K(1 + |ξ(s)|)ds
∣∣∣∣2
]

+ 2E
[∫ t

t0

K2
(
1 + |ξ(s)|2

)
ds

]
(∗∗)
6 2K2(t− t0 + 1)E

[∣∣∣∣∫ t

t0

(1 + |ξ(s)|)2ds

∣∣∣∣]
6 α

for an appropriately large α, which exists because E [|ξ|] <∞. In (*) we
have used that (a + b)2 6 2(a2 + b2), the Itô isometry and the bounded
growth condition on µ and σ. For (**) we have used Cauchy-Schwarz.
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2. Suppose now (23). Then abbreviating µ
(
s, Y (k)(s)

)
by µk(s) and likewise

for σ we have that

E
[∣∣Y (k+2)(t)− Y (k+1)(t)

∣∣2]
= E

[∣∣∣∣∫ t

t0

(µk+1(s)− µk(s))ds+

∫ t

t0

(σk+1(s)− σk(s))dBs

∣∣∣∣2
]

(∗∗∗)
6 2K2(tf − t0)E

[∫ t

t0

|Y (k+1)(s)− Y (k)(s)|2ds
]

+ 2K2E
[∫ t

t0

|Y (k+1)(s)− Y (k)(s)|2ds
]

(∗∗∗∗)
6 2K2(tf − t0 + 1)

∫ t

t0

(α(t− t0))k+1

(k + 1)!
ds

6
(α(t− t0))k+2

(k + 2)!
,

where in (***) we have used (a+ b)2 6 2(a2 + b2), the Itô isometry, the
Lipschitz condition on µ and σ and Cauchy-Schwarz and in (****) we
have used the hypothesis of induction.

Now by Doob’s martingale inequality we have that

P

(
sup
t∈T

∣∣Y (k+1)(t)− Y (k)(t)
∣∣2 > 2−k

)
6 22kE

[∣∣Y (k+1)(tf )− Y (k)(tf )
∣∣2]

6 22k (αtf )
k+1

(k + 1)!
;

so with the same procedure used when we showed that there exists a continuous
modification of the Itô integral, by the Borel-Cantelli lemma we conclude that
{Y n}n∈N converges uniformly for all t ∈ T and almost all w ∈ Ω to a limit,
denoted by Y . Passing to the limit it is clear that Y verifies (19). Clearly Y
is progressively measurable with respect to {Mt}t∈T and pathwise continuous
as it is the uniform limit of the sequence {Y (n)}n∈N with these properties.
Furthermore, by (23), {Y (n)}n∈N is a Cauchy sequence in L2(T×Ω;Rn). Hence
its limit Y also belongs to L2(T ×Ω;Rn) and we have that Y ∈ I(T ×Ω;Rn),
which concludes the proof.

4.2 Stability of Solutions

As is the case in ODE, when the conditions of the theorem of existence and
uniqueness are verified, then the SDE has stable solutions. Simply put, this
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means that a slight disturbance in the solution’s initial conditions produces
only a small change in the solution

Theorem 4.6. Suppose that Xt and Yt are solutions of the SDE (19) with
initial conditions Xt0 = ξ and Xt0 = φ respectively. Then if the coefficient
functions µ and σ of (19) verify the Lipschitz condition (21) and ξ and φ are
F0 measurable variables such that ξ, φ ∈ L2(Ω;Rn), then it holds that

E
[
sup
t6T
|Xt − Yt|2

]
6 3e3K2(tf−t0+4)(tf−t0)E

[
|ξ − η|2

]
.

Proof.

E
[
sup
t∈T
|Xt − Yt|2

]
= E

[
sup
t∈T

∣∣∣∣ξ − φ+

∫ t

t0

(µ(s,Xs)− µ(s, Ys))ds|+
∫ t

t0

(σ(s,Xs)− σ(s, Ys))dBs

∣∣∣∣2
]

(∗)
6 3E

[
|ξ − φ|2

]
+ 3E

[
sup
t∈T

∣∣∣∣∫ t

t0

(µ(s,Xs)− µ(s, Ys))ds

∣∣∣∣2
]

+ 3E

[
sup
t∈T

∣∣∣∣∫ t

t0

(σ(s,Xs)− σ(s, Ys))dBs

∣∣∣∣2
]

(∗∗)
6 3E

[
|ξ − φ|2

]
+ (tf − t0)3E

[∫
T

|µ(s,Xs)− µ(s, Ys)|2ds
]

+ 12E
[∫

T

|σ(s,Xs)− σ(s, Ys)|2ds
]

(∗∗∗)
6 3E

[
|ξ − φ|2

]
+ 3K2(tf − t0)

∫
T

E
[
|Xs − Ys|2ds

]
+ 12K2

∫
T

E
[
|Xs − Ys|2ds

]
= 3E

[
|ξ − φ|2

]
+ 3K2(tf − t0 + 4)

∫
T

E
[
|Xs − Ys|2ds

]
6 3E

[
|ξ − φ|2

]
+ 3K2(tf − t0 + 4)

∫
T

E
[
sup
s∈T
|Xs − Ys|2ds

]
,

where in (*) we have used that (a + b + c)2 6 3a2 + 3b2 + 3c2, in (**) we
have used the Cauchy-Schwarz inequality and Lemma 3.12 and in (***) we
have used the Lipschitz condition on µ and σ. Now we conclude, by Gronwall
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inequality, that

E
[
sup
t6T
|Xt − Yt|2

]
6 3e3K2(tf−t0+4)(tf−t0)E

[
|ξ − φ|2

]
.

as we wished to see.

5 Explicitly solvable SDEs

5.1 Linear SDEs

As is the case with ODEs the analytical solution of a linear SDE can be given
in closed form, which we examine the procedure in this section.

Definition 5.1 (Linear SDE). An SDE is said to be linear if it can be written
as

dXt = (F (t)Xt + f(t))dt+
m∑
k=1

(Gk(t)Xt + gk(t)) dBk(t); t ∈ T (24)

where f, g : T → Rn; F,Gk : T → Rnn; 1 ≤ k ≤ m. Furthermore, a linear
SDE is said to be homogeneous if it is of the form

dXt = F (t)Xtdt+
m∑
k=1

Gk(t)XtdBk(t); t ∈ T. (25)

In the remainder of this section we will suppose that the functions f, g, Fk, Gk

verify the existence and uniqueness conditions of Theorem 4.5.

Definition 5.2. The fundamental solution Φ of the homogeneous linear equa-
tion (25) is the stochastic process

Φ : T × Ω→ Rnn

such that Φi is the solution to said SDE with initial condition X(t0) = (0, ..., 0,
i

1, 0, ..., 0).

This solution receives the name of fundamental the solution of (25) with
any other initial condition can be expressed in terms of Φ.

Lemma 5.3. Suppose that Y is the solution to (25) with initial condition
Y (t0) = y0 then

Y = Φy0
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Proof. We define Z := Φy0 and wish to see that Z = Y . By definition of Φ we
have that Φ(t0) = In hence

Z(t0) = y0 = Y (t0).

Now by Theorem 4.5 it remains to see that Z is a solution to (25). This is also
simple to see since

dZ(t) = dΦ(t)y0 = F (t)Φ(t)y0dt+
m∑
k=1

Gk(t)Φ(t)y0dBk(t)

= F (t)Z(t)dt+
m∑
k=1

Gk(t)Z(t)dBk(t).

Using the fundamental solution, Φ of (25) we can obtain the solution of
the general equation (24) using the following theorem.

Theorem 5.4. The solution of (24) with initial condition y0 is

Y (t) = Φ(t)Ψ(t)

where

Ψ(t) = y0+

∫ t

t0

Φ−1(s)

(
f(s)−

m∑
k=1

Gk(s)gk(s)

)
ds+

m∑
k=1

∫ t

t0

Φ−1(s)gk(s)dBk(s)

Proof. It is convenient to note that that Φ is invertible on T since using the Itô
formula it is possible to show that Det(Φ(t)) > 0 almost surely for all t ∈ T .
Therefore the function Ψ(t) makes sense and

dΨ(t) = Φ−1(t)

(
f(t)−

m∑
k=1

Gk(t)gk(t)

)
dt+

m∑
k=1

Φ−1(t)gk(t)dBk(t)

Using the Itô formula to calculate dYt = d(h(Φ(t),Ψ(t))) and the function
with h(x1, x2) = x1x2 we obtain
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dY (t) = d(Φ(t)Ψ(t)) = dΦ(t)Ψ(t) + Φ(t)dΨ(t) + dΦ(t)dΨ(t).

=

(
F (t)Φ(t)dt+

m∑
k=1

Gk(t)Φ(t)dBk(t)

)
Ψ(t)

+ Φ(t)Φ−1(t)

(
f(t)dt−

m∑
k=1

Gk(t)gk(t)dt+
m∑
k=1

gk(t)dBk(t)

)

+

(
F (t)Φ(t)dt+

m∑
k=1

Gk(t)Φ(t)dBk(t)

)
Φ−1(t)

×

(
f(t)dt−

m∑
k=1

Gk(t)gk(t)dt+
m∑
k=1

gk(t)dBk(t)

)

=(F (t)Y (t) + f(t))dt+
m∑
k=1

(Gk(t)Y (t) + gk(t)) dBk(t)

where in the last equality we have used (18). Hence by uniqueness Y (t) =
Φ(t)Ψ(t) is the solution to (24) with initial condition y0.

When the SDE (25) is one-dimensional then we can actually calculate Φ(t)
as follows.

Theorem 5.5. The fundamental solution Φ(t) of the homogeneous one-dimensional
linear SDE (25) is

Φ(t) = exp

(∫ t

t0

(
F (s)− 1

2

m∑
k=1

G2
k(s)

)
ds+

m∑
k=1

∫ t

t0

Gk(s)dBk(s)

)

Proof. In the scalar case the fundamental solution is the solution to the ho-
mogeneous equation with initial condition y0 = 1. By Itô lemma applied to
the stochastic process

Y (t) :=

∫ t

t0

(
F (s)− 1

2

m∑
k=1

G2
k(s)

)
ds+

m∑
k=1

∫ t

t0

Gk(s)dBk(s)
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and the function x 7→ ex we have that

dΦ(t) = Y (t)dY (t) +
1

2
Y (t)

m∑
k=1

Gk(t)
2dt

= Y (t)

((
F (t)− 1

2

m∑
k=1

G2
k(t)

)
dt+

m∑
k=1

Gk(t)dBk(t)

)
+

1

2
Y (t)

m∑
k=1

G2
k(t)dt

= Y (t)

(
F (t) +

m∑
k=1

Gk(t)dBk(t)

)
as we wished to see.

5.2 Reducible SDEs

Given an Itô process Xt as the solution of an SDE, Itô lemma gives the SDE
fulfilled by the process f(Xt); in some cases the transformed equation is a
linear SDE.

Suppose that f : T ×R→ R verifies the conditions of Lemma 3.16 and Xt

is a solution of the one-dimensional SDE

dXt = µ(t,Xt) dt+ σ(t,Xt)dBt. (26)

Then, by Itô lemma we have that Yt := f(t,Xt) is an Itô process with drift
coefficient

µ(t,Xt) =
∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt)µ(t,Xt) +

1

2

∂2f

∂x2
(t,Xt)σ

2(t,Xt)

and diffusion coefficient

σ(t,Xt) =
∂f

∂x
(t,Xt)σ(t,Xt).

Our desire is to find the conditions for the existence of an invertible f such
that the resulting stochastic differential equation

dYt = µ(t, Yt) dt+ σ(t, Yt)dBt (27)

has a explicitly solvable solution. If this were the case, we could obtain the
explicit solution of (26) by applying the inverse transform f−1 to the solution
of (27). As we have just seen, we can calculate the solution of one-dimensional
linear SDEs; then, the possibility of transforming our equation into a linear
SDE is highly desirable. Next lemma shows a simple procedure to check if we
can transform our SDE into an homogeneous linear SDE of the form

dYt = µ(t)dt+ σ(t)dBt. (28)
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Lemma 5.6. The one dimensional SDE (26) can be reduced to a one-dimensional
homogeneous equation of the form (28) if and only if

∂

∂x

(
1

σ(t, x)

∂σ

∂t
(t, x)− σ(t, x)

∂

∂x

(
µ(t, x)

σ(t, x)
− 1

2

∂σ

∂x
(t, x)

))
= 0. (29)

Proof. Suppose that (26) can be reduced to (28) by means of a function f :
T × R→ R verifying the conditions of Lemma 3.16. Then, by Itô formula

µ(t) =
∂f

∂t
(t,Xt) +

∂f

∂x
(t,Xt)µ(t,Xt) +

1

2

∂2f

∂x2
(t,Xt)σ

2(t,Xt) (30)

σ(t) =
∂f

∂x
(t,Xt)σ(t,Xt). (31)

By (30) we have that

∂µ

∂x
(t) = 0 =

∂2f

∂t∂x
(t, x) +

∂

∂x

(
µ(t, x)

∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x)

)
(32)

and by (31) we know that

∂f

∂x
(t, x) =

σ(t)

σ(t, x)

∂2f

∂x2
(t, x) = −

σ(t)∂σ
∂x

(t, x)

σ2(t, x)

∂2f

∂t∂x
(t, x) =

1

σ2(t, x)

(
∂σ

∂t
(t)σ(t, x)− σ(t)

∂σ

∂t
(t, x)

)
;

so substituting the values of these derivatives in (32) we obtain

∂σ(t)

∂t

1

σ(t)
=

1

σ(t, x)

∂σ

∂t
(t, x)− σ(t, x)

∂

∂x

(
µ(t, x)

σ(t, x)
− 1

2

∂σ

∂x
(t, x)

)
.

Finally differentiating with respect to x we conclude that a necessary condition
for the existence of f is

0 =
∂

∂x

(
1

σ(t, x)

∂σ

∂t
(t, x)− σ(t, x)

∂

∂y

(
µ(t, x)

σ(t, x)
− 1

2

∂σ

∂y
(t, x)

))
.

Reciprocally if (29) holds then working backward we have that

U(t, x)

= C exp

(∫ t

0

(
1

σ(s, x)

∂σ

∂s
(s, x)− σ(s, x)

∂

∂x

(
µ(s, x)

σ(s, x)
− 1

2

∂σ

∂x
(s, x)

))
ds

)∫ x

0

1

σ(t, z)
dz

(33)
reduces the SDE (26) to the desired SDE (28).
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6 Numerical Methods for Solving SDEs

Given an SDE
dXt = µ(t,Xt)dt+ σ(t,Xt)dBt (34)

with solution X a numerical method is an algorithm that is used to find an
approximation of the exact solution X. In this section we analyze some of the
most commonly used numerical methods used for solving SDEs. But before
doing so we will define the stochastic analogous of the properties we desire
of our numerical method. Throughout this section we consider that the SDE
whose solution we wish to approximate is of the form (19) and verifies the hy-
pothesis of the existence and uniqueness theorem. its solution will be denoted
X and we shall consider a uniform discretization

P h = {t0, t0 + h, ..., tf − h, tf}

of the time interval T = [t0, tf ] and a numerical scheme

Y h : P h × Ω→ Rn

whose goal is to approximate the values of X at each point of P . For con-
venience we will denote Y h(t0 + nh) as Y h(tn), Y h

n or Yn if h is clear from
the context. In addition, we will denote the cardinal of P h as |P h|. The
most simple example of a numerical method for solving an SDE is the Euler-
Maruyama scheme. This numerical method, named after Leonhard Euler and
Gisiro Maruyama, is a generalization of the Euler method for ODEs and can
be written as{

Y0 = ξ

Yn = Yn−1 + hµ(tn−1, Yn−1) + σ(tn−1, Yn−1)∆Bn; 1 6 n 6 |P h|
(35)

where B is a Wiener process and ∆Bn := Btn+1 −Btn . It is worth noting that
the definitions we will now give are easily generalizable in the case that the
discretization is not uniform by setting h to be the maximum step size.

6.1 Convergence of Numerical Methods

The convergence of a numerical scheme is a property that tells us how well
this scheme approximates in some sense the exact one when the step size goes
to 0. We can differentiate between strong convergence and weak convergence
of numerical methods.
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Definition 6.1 (Strong Convergence at t). We shall say that the numerical
solution Y h converges strongly to X at time t ∈ P h if

lim
h↓0

E
[∣∣X(t)− Y h(t)

∣∣] = 0.

We say that this convergence is of order p if

E
[∣∣X(t)− Y h(t)

∣∣] = O(hp)

i.e. if there exists a constant K ∈ R and a step size h0 such that

E
[∣∣X(t)− Y h(t)

∣∣] 6 Khp

for all h ∈ [0, h0].

Definition 6.2 (Weak Convergence at t). We shall say that Y h converges
weakly to X at time t ∈ P h with respect to a class of functions D ⊂ RRn if

lim
h↓0

∣∣E [f(X(t))]− E
[
f(Y h(t))

]∣∣ = 0

for all f ∈ D. Analogously we say that the weak convergence is of order p∣∣E [f (X(t))]− E
[
f(Y h(t))

]∣∣ = O(hp)

for all f ∈ D.

For these definitions we can also consider (instead of convergence at only
one instant of time) convergence in the whole time interval T by requiring the
respective bound to hold for each t ∈ P h. For example, Y h converges strongly
to X if

E
[∣∣X(t)− Y h(t)

∣∣] = 0; ∀t ∈ P h

6.2 Convergence of the Euler-Maruyama Method

Theorem 6.3. The Euler-Maruyama method (35) has strong order of conver-
gence of 1

2
.

Proof. For simplicity we shall conduct the proof in the scalar case. The method
for proving this statement is to define a step function Y h which is equal to the
Euler-Maruyama approximation Y h at each point in the discretization P h and
then applying Gronwall’s inequality on

f(t) := sup
s∈[t0,t]

E(|Y h(s)−X(s)|2).
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Defining the step function Y h facilitates the proof as it is defined on the real
interval T , as opposed to Y h which is only defined on P , thus allowing us to
use Gronwall’s inequality on f in order to reach the desired bound. The step
function Y h is defined as follows

Y h(t) :=

|Ph|−1∑
k=0

Y h
n X[tn,tn+1)(t).

Let t ∈ [tn, tn+1) we have that

Y (t) = Yn = Y0 +
n−1∑
k=0

(Yk+1 − Yk)

= Y0 +
n−1∑
k=0

(hµ (tk, Yk) + σ (tk, Yk) ∆Bk)

= Y0 +
n−1∑
k=0

∫ tk+1

tk

µ (tk, Yk) ds+
n−1∑
k=0

∫ tk+1

tk

σ (tk, Yk) dBs

= Y0 +

∫ tn

t0

µ(ts, Y (s))ds+

∫ tn

t0

µ(ts, Y (s))dBs
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so abbreviating µ(ts, Y h(ts)) by µY
h

s and likewise for σ we have that

E
[∣∣∣Y h(t)−X(t)

∣∣∣2]
= E

[∣∣∣∣∫ tn

t0

(
µY

h

s − µXs
)
ds+

∫ tn

t0

(
σY

h

s − σXs
)
dBs −

∫ t

tn

µXs ds−
∫ t

tn

σXs dBs

∣∣∣∣2
]

(∗)
6 4(tn − t0)E

[∫ tn

t0

∣∣∣µY hs − µXs ∣∣∣2 ds]+ 4E
[∫ tn

t0

∣∣∣σY hs − σXs ∣∣∣2 ds]
+ 4(t− tn)E

[∫ t

tn

∣∣µXs ∣∣2 ds]+ 4E
[∫ t

tn

∣∣σXs ∣∣2 dBs

]
(∗∗)
6 4(tn − t0 + 1)K2E

[∫ tn

t0

∣∣Y (s)−X(s)
∣∣2 ds]

+ 4K(t− tn + 1)E
[∫ t

tn

(1 + |Xs|2)ds

]
(∗∗∗)
6 4(tf − t0 + 1)K2

∫ t

t0

f(s)ds+ 4Kh(h+ 1) sup
s∈T

E[|Xs|2]

:= h(B1 + hB2) + C

∫ t

t0

f(s)ds

where in (*) we have used that (a+b+c+d)2 6 4(a2+b2+c2+d2), the Cauchy-
Schwarz inequality and the Itô isometry, in (**) we employed the Lipschitz and
linear boundedness condition of µ and σ and in (***) we used Theorem 4.5.
Therefore we arrive at

f(t) 6 h(B1 + hB2) + C

∫ t

t0

f(s)ds

which means by Gronwall’s inequality that

f(t) 6 h(B1 + hB2)eC(t−t0) 6 h(B1 + hB2) + +eC(tf−t0) := h(B1 + hB2)K2.

Hence

max
t∈Ph

E
[∣∣X(t)− Y h(t)

∣∣] 6 sup
t∈T

E
[∣∣∣X(t)− Y h(t)

∣∣∣]
6
√
f(t) 6 K

√
h(B1 + hB2) = O(

√
h)

which concludes the theorem.
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There is also a well known result regarding the weak convergence of the
Euler-Maruyama scheme. We will state it without the proof which can be
found at [20].

Theorem 6.4. The Euler-Maruyama method 35 applied to an SDE which
verifies the conditions of the theorem of existence an uniqueness has a weak
order of convergence of 1.

6.3 The Milstein Method

The Milstein scheme is a higher order numerical method that owes its name
to Grigori Milstein [19]. The Milstein approximation Yt := Yt for a one dimen-
sional SDE can be defined as follows

Y0 = ξ

Yn = Yn−1 + hµ(tn−1, Yn−1) + σ(tn−1, Yn−1)∆Bn

+1
2
σ(tn−1, Yn−1)∂σ

∂x
(tn−1, Yn−1) (∆B2

n −∆t) .

(36)

In the most general case, where we have an n-dimensional SDE driven by an
m-dimensional Wiener process the i-th component of the Milstein method is

Yi(tp+1) = Yi(tp)+hµi+
m∑
j=1

σj,i∆Bi+
m∑

j,k=1

n∑
l=1

σjl
∂σki
∂xl

∫ tk+1

tp

∫ t

tp

dBj(s)dBk(t) 1 ≤ i ≤ n

where µi, σi and their derivatives are evaluated at (tp, Y (tp)). For the Milstein
method we have the following theorem

Theorem 6.5. The numerical scheme (6.3) has a strong and weak order of
convergence of 1.

This theorem tells us that the Milstein method improves on the Euler-
Maruyama scheme in the sense that its strong order of convergence is higher.
However, the order of weak convergence remains the same.

6.4 General Itô-Taylor approximations

In this section we will generalize how to obtain numerical methods of any
strong order based on here Itô expansion of the SDE in question. We will
present here a series of results since they are exceedingly useful. However their
proof is outside of the scope of this work, a complete exposition can be found
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at [16]. First of all we must start with a series of definitions. A multi-index α
of length k ∈ N0 is a vector of length k whose components are natural numbers.
We denote by v the multi index of length 0 and defineMm to be the set of all
multi-indices whose indices are at most m, that is,

Mm :=

(⋃
n∈N

∏
n

{1, 2, ...,m}

)⋃
v.

We define l and z as the functions defined on Mm that return the length and
number of zeroes of multi-indices. Given a subset of multi-indices A ∈ Mm

we define its remainder set B(A) as

B(A) := {α = (α1, α2..., αn) ∈Mm\A | (α2..., αn) ∈ A} .

We say that set of multi-indices A is hierarchical if

1. supα∈A l(α) <∞.

2. (α1, α2, ..., αn) ∈ A and l(α) ≥ 2 =⇒ (α2, ..., αn) ∈ A.

Given a multi-index α = (α1, α2, ..., αn), and a Brownian motion B we define
the iterated integral Iα,t1,t2(f) of the stochastic process f between the times t1
and t2 as

Iα,t1,t2(f) :=

∫ t2

t1

∫ s2

t1

...

∫ sn

t1

f(s1)dBα1(s1)dBα2(s2)...dBαn(sn)

and
Iα,t1,t2 := Iα,t1,t2(1)

where we have denoted dB0(s) = ds so as to not over complicate the notation.
Additionally f must obviously be a stochastic process such that the successive
Itô integrals are defined. With these definitions we can give a fairly compact
construction for the Itô-Taylor expansion of a given Itô process.

Theorem 6.6. If

Xt = Xt0 +

∫ t

t0

µ (s,Xs) ds+
m∑
j=1

∫ t

t0

σj (s,Xs) dBj(s); t ∈ T

is an n-dimensional Itô process with respect to an m-dimensional Wiener pro-
cess and A ∈Mm is a hierarchical set of multi-indices such that then

f(t,Xt) = f(t0, Xt0) +
∑
α∈A

Lα(f)(t0, Xt0)Iα,t0,t +
∑

α∈B(A)

Iα,t0,t(L
α(f)) (37)
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where f : T × Rn → R is a process such that (37) is well defined and

L0 :=
∂

∂t
+

n∑
i=1

µi
∂

∂xi
+

1

2

n∑
i,j=1

m∑
k=1

σk,iσk,j
∂2

∂xi∂xj

Lk :=
n∑
i=1

σk,i
∂

∂xi
; k ∈ N

Lα := Lα1Lα2 ...Lαk ; α = (α1, α2..., αk) ∈Mm.

(37) is called the Itô-Taylor expansion of f(t,Xt) with respect to A.

For example if Xt is a two dimensional process with respect to a one-
dimensional Brownian motion B and

A = {v, (0), (1)}

with remainder set

B(A) = {(0, 0), (0, 1), (1, 0), (1, 1)}

then applying Theorem 6.6 to

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt; Xt0 = ξ,

we have that

f(t,Xt) =
∑
α∈A

Iα,t0,t(L
α(f)) +

∑
α∈B(A)

Iα,t0,t(L
α(f))

= f (t0, Xt0) +

∫ t

t0

L0f (t0, Xt0) ds+

∫ t

t0

L1f (t0, Xt0) dBs

+

∫ t

t0

∫ s2

t0

L0(L0(f))(s1, Xs1)ds1dBs2 +

∫ t

t0

∫ s2

t0

L0(L1(f))(s1, Xs1)ds1dBs2

+

∫ t

t0

∫ s2

t0

L1(L0(f))(s1, Xs1)dBs1ds2 +

∫ t

t0

∫ s2

t0

L1(L1(f))(s1, Xs1)dBs1dBs2

= f (t0, Xt0) + L0(f)(t0, Xt0)(t− t0) + L1(f)(t0, Xt0)(Bt −Bt0) +R

where R are the four remaining double integrands. Notice that if we remove
R from this identity we obtain the Euler-Maruyama method. This provides
motivation for the following result. For each k ∈ N we define the set

Ak :=

{
α ∈Mm| l(α) + n(α) ≤ 2k or l(α) = n(α) = k +

1

2

}
,

these are the sets we will use for our desired theorem.
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Theorem 6.7. If Xt is the solution of an SDE of the form (19), Y h
n is the

numerical method given by{
Y h

0 := Xt0

Y h
n :=

∑
α∈Ak L

α(X)(t0, Xt0)Iα,tn−1,tn

(38)

and suppose that Lα(X) verifies the Lipschitz condition (21) for all α ∈ Ak.
Suppose additionally that Lα(X) verifies the linear growth condition (22) and
the conditions of the Itô lemma for all α ∈ Ak ∪ B (Ak). Then there exists
K1, K2 ∈ R independent of the step size h such that

E
(

max
tn∈Ph

∣∣Xtn − Y h
n

∣∣2 | F0

)
≤ K1

(
1 + |Xt0|

2)h2k +K2

∣∣Xt0 − Y h
0

∣∣2
i.e Yn has strong order 2k.

The numerical method Yn given in the previous theorem is called the strong
Itô-Taylor approximation of order k of the Itô process f(t,Xt).

In other words the strong Itô-Taylor approximation of order k converges
strongly with order k to the solution. The analogous result for the weak
convergence order uses the sets

A′k := {α ∈Mm| l(α) < k}

and states the following

Theorem 6.8. If Xt is the solution of an SDE of the form (19), Y h
n is the

numerical method given by{
Y h

0 := Xt0

Y h
n :=

∑
α∈A′k

Lα(X)(t0, Xt0)Iα,tn−1,tn

(39)

and suppose that the drift and diffusion coefficients µi, σj,i verify the Lipschitz
condition (21), the linear growth condition (22) and have derivatives of order
up to 2(k+ 1) that are continuous and have polynomial growth. Then for each
g : Rn → R whose derivatives of order up to 2(k + 1) are continuous and have
polynomial growth there exist K ∈ R+ and r ∈ N such that∣∣E (g (Xtn)− g

(
Y h
n

)
| F0

)∣∣ ≤ K
(
1 + |X0|2r

)
hk+1

for all tn ∈ P h i.e Yn has weak order k + 1.
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6.5 Implicit Methods

Implicit algorithms differentiate themselves from explicit ones by needing to
solve an equation in each time step. Despite requiring this extra calculation in
some cases, specifically when we are dealing with a stiff equation, this can come
accompanied by an improved numerical stability. A family of semi-implicit
methods studied in [22] and [11] corresponding to the Euler-Maruyama scheme
is 

Y (t0 =)ξ

Yk(ti+1) = Yk(k + [αkµk (ti+1, Y (ti+1)) + (1− αk)µk]h
+
∑m

j=1 σk,j∆Bj(ti); 1 ≤ k ≤ n

(40)

where α ∈ [0, 1]n. Notably when α = 0, α = 1
2

and α = 1 (40) becomes the
explicit Euler method, the trapezoidal rule and the fully implicit or backward
Euler method respectively. The one-dimensional implicit Milstein scheme is

Y0 = ξ

Yn+1 = Yn + [αµ(tn, Yn) + (1− α)µ(tn+1, Yn+1)]h

+ σ(tn, Yn)∆B(tn) +
1

2
σ(tn, Yn)

∂σ

∂x
(tn, Yn)

(
∆B2

n −∆t
)
.

In the case that our SDE is n-dimensional with an m-dimensional Brownian
motion the component number k of the implicit Milstein scheme is
Y0 = ξ

Yk(ti+1) = Yk(ti) + [αkµk (ti+1, Y (ti+1)) + (1− αk)µk]h

+
m∑
j=1

σj,k∆Bj(ti) +
1

2

m∑
j1,j2=1

Lj1σj2,kI((j1,j2),ti,ti+1); 1 ≤ k ≤ n

where the drift and diffusion coefficients are evaluated at (ti, Y (ti)) unless
otherwise specified. Let us take a look at a stiff equation in which the ad-
vantages of implicit stochastic methods are manifest. Suppose {Xt}t∈T is a
one-dimensional process satisfying the equation

Xt = µXt + dBt; t ∈ T

where µ ∈ R− and {Bt}t∈T is a one-dimensional Brownian motion. The numer-
ical solution Yn with initial condition ξ given by the Euler-Maruyama algorithm
is {

Y0 = ξ

Yn+1 = Y h,ξ
n (1 + µh) + ∆Bn.
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Thus we have that ∣∣Y h,ξ1
n − Y h,ξ2

n

∣∣ ≤ |1 + µh|n |ξ1 − ξ2|

For the error to not increase in every subsequent iteration of this algorithm it
would then be necessary for

|1 + µh| ≤ 1 ⇐⇒ h ∈
[
0,− 2

µ

]
.

If however we consider the implicit Euler method we have that{
Y0 = ξ

Yn+1 = Y h,ξ
n+1(1 + µh) + ∆Bn.

so ∣∣∣Y h,ξ1
n+1 − Ȳ h,ξ2

n

∣∣∣ ≤ |1− µh|−n |ξ1 − ξ2|

which means that to preserve the stability of (6.5) we are not restricted on the
step size h using the implicit Euler method.

6.6 Runge-Kutta methods

The generalization to SDEs of Runge-Kutta schemes provide us with a familiy
of iterative single-step methods that do not rely on the derivatives of the drift
and diffusion of the SDE. The drawback that they present is that it is neces-
sary to evaluate the drift and diffusion several times for each time step. Here
we present two schemes of orders 1 and 1.5 respectively as schemes of higher
order become increasingly complex.

The order 1 scheme is not valid for the more general case in which the Brow-
nian motion is m-dimensional, however we will showcase it as it is similar to a
two-stage deterministic Runge-Kutta method. Using the usual notation sup-
pose we have an n-dimensional SDE with respect to a 1-dimensional Brownian
motion. Let us consider the approximation{

Y0 = ξ

Yn = 1
2
(K1 +K2)

(41)

where

K1 := hµ (tn, Yn) +
(

∆Bn − Sn
√
h
)
σ (tn, Yn)

K2 := hµ (tn+1, Yn +K1) +
(

∆Bn + Sn
√
h
)
σ (tn+1, Yn +K1)
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and Sn is a Bernouilli process with P(Sn = 1) = P(Sn = −1) = 1
2

for each n.
In the deterministic case, σ = 0,it is easy to see that this scheme corresponds
to Heun’s method.

Theorem 6.9. The numerical scheme (41) has strong order 1.[21]

To obtain Runge-Kutta methods of higher order is substantially more dif-
ficult than to obtain Taylor approximations, since there is no known general
procedure to do so. In [16] Runge-Kutta methods of strong order 1, 1.5 and 2
can be found For example for solving a scalar autonomous SDE of the form

dXt = µ(Xt)dt+ σ(Xt)dBt

consider the approximation Yn

Yn+1 = Yn + σ∆Bn +
1

2
√
h

(
µ
(
Ῡ+

)
− µ

(
Ῡ−
))
I(1,0),tn,tn+1

+
1

4

(
µ
(
Ῡ+

)
+ 2µ+ µ

(
Ῡ−
))
h

+
1

4
√
h

(
σ
(
Ῡ+

)
− σ

(
Ῡ−
)) (

(∆Bn)2 − h
)

+
1

2h

(
σ
(
Ῡ+

)
− 2σ + σ

(
Ῡ−
)) (

∆Bnh− I(1,0),tn,tn+1

)
+

1

4h

(
σ
(
Φ̄+

)
− σ

(
Φ̄−
)
− σ

(
Ῡ+

)
+ σ

(
Ῡ−
))(1

3
(∆Bn)2 − h

)
∆Bn

(42)
where

Ῡ± = Yn + µh± σ
√
h; Φ̄± = Ῡ+ ± σ

(
Ῡ+

)√
h.

and µ, σ are evaluated on (tn, Yn) unless otherwise specified.

Theorem 6.10. [16] The numerical scheme given by (42) has strong order 3
2

for autonomous SDEs .

6.7 Predictor-Corrector Methods

This class of methods aims to improve on single step methods by initially cal-
culating a ”predictor” Y n which is then used to calculate the ”corrector” Yn. In
general predictor-corrector numerical schemes have better numerical stability
than the single step explicit methods without needing to solve an equation for
each step of the algorithm. In the scalar case the family of predictor-corrector
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schemes corresponding to the semi-implicit Euler-Maruyama schemes takes the
form 

Y0 = ξ;

Yn+1 = Yn +
{
αµ̄β

(
tn+1, Ȳn+1

)
+ (1− α)µ̄β (tn, Yn)

}
h

+
{
βσ
(
tn+1, Ȳn+1

)
+ (1− β)σ (tn, Yn)

}
∆Bn

where

Ȳn+1 = Yn + µ(tn, Yn)h+ σ(tn, Yn)∆Bn; µ̄β = µ− βσ∂σ
∂x
.

and α, β ∈ [0, 1]. So essentially we take the Euler method as a predictor
and then take a weighted sum of the diffusion and a slightly modified drift
coefficient. In the most general case where the solution of the SDE is an n-
dimensional Itô process driven by an m−dimensional Brownian motion this
scheme can be written as

Y0 = ξ;

Yi(tk+1) = Yi(tk) +
{
αµ̄i,β

(
tn+1, Ȳn+1

)
+ (1− α)µ̄i,β (tn, Yn)

}
h

+
m∑
j=1

(
βσj,i

(
tn+1, Ȳn+1

)
+ (1− β)σj,i (tn, Yn)

)
∆Bi(tn)

where Ȳn+1 is given by the Euler method starting at (tn, Y (tn)),

µ̄i,β = µi − β
m∑
j=1

σj,i
∂σj
∂xi

and α, β ∈ [0, 1]. Additionally it can be shown that this family of methods has
weak order 1 [16].

7 SDEs in Finance

A financial market is a marketplace in which the trade of financial assets
takes place. These financial assets are liquid, in the sense that they can be
converted quickly into cash, and derive their value from a contractual claim.
There are many types of financial assets, e.g., bank deposits, stocks, bonds and
derivatives. Due to the vast amount of capital that continuously changes hands
in financial markets such as the New York and Shanghai Stock Exchanges and
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the growing interest and participation of the population in financial markets,
several fields have arisen with the goal of studying these markets. The field of
mathematical finance aims to do so by attempting to model the evolution of
a financial market in a mathematically rigorous way. In 1973 the economists
Fischer-Black and Myron Scholes wrote an article in which, using stochastic
calculus, they derived a partial differential equation to model the price of
European options in a financial market[2]. This paper sparked the interest in
mathematical finance and established a method for the fair pricing of options
that is still used today.

One of the most common tools to model a market in mathematical finance
is the Brownian model. In this model a market X on a probability space
(Ω,F ,P) driven by an m-dimensional Brownian motion {Bt}t∈T is an (n+ 1)-
dimensional Itô process X = (X0, X1, ..., Xn) where

{
X0(t) = 1

dX0(t, ω) = µ0(t, ω)X0(t, ω)dt; t ∈ T

and

{
Xi(t) = xi

dXi(t, ω) = µi(t, ω)dt+
∑m

j=1 σj(t, ω)dBj(t, ω); 1 ≤ i ≤ n t ∈ T.

Each component of the market X is the price of a financial asset. The under-
lying asset of price X0 is called a riskless asset with riskless rate µ0 because
its price is not driven by a Brownian motion. The rest of the assets are called
risky assets. An important feature of this model is the assumption that finan-
cial assets have prices that change continuously and are driven by a Wiener
process.

A portfolio or strategy {Pt}t∈T is an (n + 1)-dimensional process adapted
to the filtration generated by {Bt}t∈T . The i-th component of the portfolio P
represents the share of the asset i. Thus, its value V P (t) at time t ∈ T is given
by the formula

V P (t) :=
n∑
i=0

Pi(t)Xi(t).
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The portfolio P is said to be self-financing if

dV P (t) =
n∑
i=0

Pi(t)dXi(t).

This condition makes the continuous model to be consistent with discrete ones,
where a change in price ∆Xi(tk) of the asset i would correspond to an increase
of

Pi(tk)∆Xi(tk)

in the value of the portfolio. A portfolio {Pt}t∈T is said to be admissible if it
is self-financing and there exists K ∈ R such that

P(V P (t) > K) = 1; for all t ∈ T .

The condition of admissibility means that the value of the portfolio is almost
surely lower bounded, which rules out strategies where one invests without
limit.

An arbitrage is an admissible portfolio {Pt}t∈T such that

V P (t0) = 0; V P (tf ) ≥ 0; P(V P (tf ) > 0) = 0.

Subsequently an arbitrage is a strategy that guarantees that the investor will
never lose money and will occasionally turn a profit.

7.1 The Black-Scholes Model

Let’s take a look at the most well known contribution of mathematical finance.
The Black-Scholes model consists of a market X = (X0, X1) formed by a
riskless asset of price X0 and a risky asset whose price is X1. These prices
follow the equations

dX0(t) = rX0dt

dX1(t) = µdt+ σdBt

where r is the rate of the riskless asset and µ, σ ∈ R correspond respectively to
the expected rate of return and the volatility of X1(t). The price of the risky
asset X1(t) is an Itô process called geometric Brownian motion. In Figure 1
10 trajectories of the risky asset are shown for µ = σ = 0.1. The market X is
supposed to present no arbitrage and have no cost associated to transactions.
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The goal of the Black-Scholes model is to give an accurate price for the Eu-
ropean call option associated with the asset of price X1. This call option is a
contract that gives the buyer the option of buying the asset of price X1 from
the seller at a strike price of K and at the time of maturity tm. This option
then pays the buyer

(X1(tm)−K)+ := max(X1(tm)−K, 0).

What Black and Scholes proved, using the Itô formula and the assumption
that there can exist no arbitrages in the market, was that the price C(t,X1(t))
of the option must verify the PDE(

∂

∂t
+
σ2x2

2

∂2

∂x2
+ rx

∂

∂x
− r
)
C(t, x) = 0.

Solving this equation one arrives at the Black-Scholes formula

C (t,X1(t)) = X1(t)N (d1(t))−Ke−r(tm−t)N (d2(t)) ,

where N is the CDF of a Gaussian N (0, 1) distribution and

d1(t) :=
log (X1(t)/K) +

(
r + 1

2
σ2
)

(tm − t)
σ
√
tm − t

d2(t): = d1 − σ
√
tm − t.

7.2 The CIR Model

One of the most important models in mathematical finance is the Cox-Ingersoll-
Ross model (CIR)[6]. In the Black Scholes model the riskless asset has a con-
stant rate of return r. However, in practice this interest rate may vary in time.
The CIR model, which seeks to explain the evolution of this interest rate, is
the SDE

dXt = s(m−Xt)dt+ v
√
XtdBt, (43)

where

1. {Xt}t∈[0,∞) is a one-dimensional stochastic process representing the in-
terest rate.

2. {Bt}t∈[0,∞) is a one-dimensional Brownian motion starting at zero.

3. m, s, v ∈ [0,∞) are respectively the mean, the speed of reversion to the
mean and the financial volatility.
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The first aspect we should analyze of the stochastic differential equation (43)
is is the existence and uniqueness of solutions, due to it is not obvious: notice
that in (43) the drift and diffusion coefficients are respectively

µ(t, x) = µ(x) = s(m− x)

σ(t, x) = σ(x) = v
√
x;

then µ and σ verify the Lipschitz condition (21) which guarantees the unique-
ness of solutions, but the linear growth condition (22) is not verified for σ and
Theorem 4.5 can not be applied. Fortunately, in the one-dimensional case the
theorem of existence and uniqueness has been refined to include a larger class
of SDEs, as the following theorem, proved in [25], shows.

Theorem 7.1. Given a one dimensional SDE{
X0 = ξ

dXt = µ (t,Xt) dt+ σ (t,Xt) dBt

(44)

if there exists K ∈ R+ such that µ and σ verify the inequalities

|µ(t, x)− µ(t, y)| ≤ K|x− y| for every t ∈ R+ and for all x, y ∈ R
|σ(t, x)− σ(t, y)| ≤ h(|x− y|) for every t ∈ R+ and for all x, y ∈ R

where and h : R+ → R+ is a strictly increasing function such that h(0) = 0
and ∫ ε

0

1

h2(x)
dx =∞; ∀ε > 0,

then the equation (44) has a unique strong solution.

Applying Theorem 7.1 to the SDE (43) with h(x) :=
√
x we obtain the

existence of a unique strong equation to the CIR model. From now on we will
refer to this solution as the CIR process and will denote it as Y ξ

t or simply
as Yt. As a matter of fact, the cumulative distribution function (CDF) of the
solution of (43) is known:

Proposition 7.2. The cumulative distribution function of Yt given Y ′t with
t′ < t is given by

P(Yt < x | Y ′t ) = Fχ2 (f1(t′, t, x); d, f2(t′, t)) , (45)

where

f1(t′, t, x) :=
4sx

v2 (1− e−s(t−t′))
; d :=

4sm

v2
; f2(t′, t) := Yt′

4se−s(t−t
′)

v2 (1− e−s(t−t′))
,
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and where Fχ2 (x; d, λ) is the CDF of the non-central chi-squared distribution
with d degrees of freedom and non-centrality parameter λ.

Using this CDF it follows that

E[Yt | Yt′ ] = m+ (Yt′ −m)e−s(t−t
′) (46)

Var[Yt | Yt′ ] =
Yt′v

2e−s(t−t
′)

s

(
1− e−s(t−t′)

)
+
mv2

2s

(
1− e−s(t−t′)

)2

. (47)

The expression (46) gives an important property of the CIR process: its mean
reversion. The expected value of Yt converges to m as time goes to infinity and
the velocity increases with the speed of reversion s. On the other hand, (47)
tells us that that the variance of the CIR process increases with the volatility
parameter and decreases with its speed of reversion to the mean. Another
important property of the CIR model, derived from (45), is the so called Feller
condition:

Proposition 7.3. [Feller Condition ][9] Suppose that ξ > 0 and 2sm ≥ v2,
then the CIR process Y ξ

t with initial condition ξ verifies

Y ξ
t > 0 for all t ∈ R+. (48)

So, essentially, if the coefficients of (43) verify a certain bound then the
CIR process will always remain positive. However, in practice the parameters
associated to a financial market seldom verify this inequality. This means that
the boundary value zero is accessible in most cases.

7.3 Stochastic Volatility Models

Stochastic volatility models are financial models used for options pricing in
which the underlying asset’s volatility is an Itô process. In the Black-Scholes
model the price of the asset follows the equation

dXt = µtdt+ σdBt,

where the volatility σ was constant. The general stochastic volatility model is
of the form

dXt = µtXtdt+ σ(t, Yt)XtdB1(t)

dYt = µ(t, Yt)dt+ σ(t, Yt)dB2(t).
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where B1 and B2 are scalar Brownian motions with correlation c ∈ (−1, 1).

The most well know stochastic volatility model is the Heston model, devel-
oped by Steven Heston [10]. The Heston model of parameter c ∈ (−1, 1) is

dXt = µXtdt+
√
YtXtdB1(t)

dYt = s(m− Yt)dt+ v
√
XtdB2(t)

where µ ∈ R, m, s, v ∈ [0,∞) and B1, B2 are stndard scalar Brownian motions
with correlation c. So in the Heston Model the volatility of the asset of price
Xt is given by the square root of the CIR process. This model can also be
written as

d ln(Xt) = (µ− 1

2
)Ytdt+

√
YtdB1(t)

dYt = s(m− Yt)dt+ v
√
YtdB2(t)

by applying Itô formula to ln(Xt). Using this form of the equation, Heston [10]
calculated the characteristic function of ln(Xt). This characteristic function
can be used to prove the following

Proposition 7.4. [1] The call option with strike price K and time of maturity
tm has expected value given by the formula

E
(
(X(tm)−K)+

)
= X(t0)− K

2π

∫ ∞
−∞

exp {(1/2− ix) ln(X(t0)/K) + h1 − (x2 + 1/4)h2}V (t0)

x2 + 1/4
dx

where i =
√
−1 and

h1 = −sm
v2

(
∂+tm + 2 ln

(
∂− + ∂+e

−ptm

2p

))
, h2 =

1− e−ptm
∂− + ∂+e−ptm

, ŝ = s− cv/2

∂± = p∓ (ixcv + ŝ), p =
√
x2v2 (1− c2) + 2ixvcŝ+ ŝ2 + v2/4.

8 Simulation of the CIR Model

The CIR model is quite interesting numerically speaking. This is because if
we apply a naive method to obtain a numerical approximation Yn on a finite
interval T , for example, the Euler-Maruyama method with initial condition ξ.{

Y0 = ξ

Yn = Yn−1 + s(m− Yn−1)h+ v
√
Yn−1∆Bn; 1 6 n 6 |P h|
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we may encounter significant problems, particularly when Feller inequality (see
Proposition 7.3) is not verified and m ∼ 0. These obstacles are encountered
when the stochastic process approaches zero as small imprecisions can make the
numerical approximation reach negative values and hence have no real square
root. There are a few relatively simple ways of eliminating these problems, at
a cost. The first modification consists of replacing

√
Yn−1 by

√
|Yn−1|; so our

algorithm becomes{
Y0 = ξ

Yn = Yn−1 + s(m− Yn−1)h+ v
√
|Yn−1|∆Bn; 1 6 n 6 |P h|.

(49)

The second modification is similar, replacing now
√
Yn−1 by

√
[Yn−1]+, where

[Yn−1]+ = max{Yn−1, 0}; the method is written{
Y0 = ξ

Yn = Yn−1 + s(m− Yn−1)h+ v
√

[Yn−1]+∆Bn; 1 6 n 6 |P h|.
(50)

Lastly, in this vein, instead of forcing the diffusion term to be zero, we can
apply this same principle to avoid the approximation from ever being negative:

{
Y0 = ξ

Yn =
[
Yn−1 + s(m− Yn−1)h+ v

√
Yn−1∆Bn

]
+

; 1 6 n 6 |P h|.
(51)

We will refer to the numerical schemes (49)-(51) as the Euler absolute value
method, the Euler square root truncation method and the Euller full trunca-
tion method respectively.

Another way of dealing with the problems posed by discretizing the time in-
terval, proposed in [3], is to consider an exact simulation using the cumulative
function distribution (45). The issue that this method has is that it can be
inefficient. This is because if we wish to sample the exact solution knowing its
CDF it is necessary to perform inverse transform sampling, a process which
relies on using the inverse of the CDF given in (45), for which there is no closed
form solution. In addition, often it will be desirable to simulate the CIR model
along a large amount of times; so the step size h will be very small. But when
h converges to zero the degrees of freedom of the chi-squared distribution that
the CIR process’s CDF follows diverge to infinity, as Proposition 7.2 estab-
lishes, which also results problematic.
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In [14] the authors propose to use the scheme{
Y0 = ξ

Yn =
Yn−1+smh+v

√
Yn−1h∆Bn−1+ 1

4
v2(∆B2

n−1−h)

1+sH

with the advantage over the naive method that it cannot become negative
when 4ms > v2. Unfortunately this bound, like the Feller one, is seldom veri-
fied in practical applications and thus is of limited use.

What we suggest is generalizing these methods of avoiding negative square
roots to the Milstein scheme. The Milstein scheme is particularly suited to the
task because its added term with respect to the Euler scheme is

1

2
σ(t, x)

∂σ(t, x)

∂x
(∆B2

n − h)

which in the case of the CIR model (43) is equal to

v2

4
(∆B2

n − h),

This means that the Milstein scheme does not necessitate any simplification
of its added term in order eliminate negative square roots unlike what would
occur in most other numerical methods. The Milstein versions of methods
(49)-(51) are{
Y0 = ξ

Yn = Yn−1 + s(m− Yn−1)h+ v
√
|Yn−1|∆Bn + v2

4
(∆B2

n − h); 1 6 n 6 |P h|,
(52)

{
Y0 = ξ

Yn = Yn−1 + s(m− Yn−1)h+ v
√

[Yn−1]+∆Bn + v2

4
(∆B2

n − h); 1 6 n 6 |P h|
(53)

andY0 = ξ

Yn =
[
Yn−1 + s(m− Yn−1)h+ v

√
Yn−1∆Bn + v2

4
(∆B2

n − h)
]

+
; 1 6 n 6 |P h|.

(54)
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In the following we will compare the numerical schemes (49)-(54) to try
to determine which one of them is the most suited to the CIR model. The
simulation we will present were carried out in Wolfram Mathematica 12.1 for
which the code can be found in the Appendix B. The parameters m, s, v were
chosen to be in line with those calculated by maximum likelihood estimation
in [18], although we will experiment with different ones as well to test the
flexibility of our conclusions. For each set of parameters 10000 simulations
were carried out for each numerical method. To start off our parameters are

s = 0.44; m = 0.06; v = 0.32,

the time interval is T = [0, 5], the step size is h = 2−5 and the starting point is
ξ = m. First of all we will carry out a detailed analysis of the Euler schemes
(49)-(51). In Figure 4 we represent the mean of each numerical method’s 10000

Figure 4: Comparison of the three modified Euler methods.

trajectories. As we can see the means of methods (49) and (50) are quite sim-
ilar, however, method (51) is notably larger than the other two. Figure 5,
which represents the tenth trajectory of the methods (49) and (51), serves to
explain the reason of the differences shown in Figure 4. At the start both tra-
jectories are positive, so they are indistinguishable. Later on, when the Euler
method would take a negative value, the full truncation scheme substitutes it
by zero whereas the absolute value scheme keeps it and modifies the algorithm
by using the square root of its absolute value to calculate the next step. This
leads to values in (49) lesser or equal to those in (51). The same is true when
comparing (50) to (51).

Let’s compare these means with the expected value of the true solution.
Since the starting point is equal to m, the CIR process {Yt}t∈T has constant
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Figure 5: Comparison of a trajectory of the absolute value and full truncation
methods.

expected value, see (46),
E[Yt] = m,

We will compare the numerical schemes calculating the mean square error
between the numerical means and the expected value of the CIR process at
each point of the time discretization. That is, if E

[
Ȳn
]

is the mean of the 104

simulations of numerical scheme Ȳn and E [Yn] is the mean of the CIR process
then the mean square error between both is

1

|P h|

√√√√|Ph|∑
k=1

(Ȳk − Yk)2.

Computing these distances results in Figure (6) shows that methods (49)

Figure 6: Mean square error between the expected values of the numerical
Euler methods and the CIR process

and (50) have means more similar to the mean of the exact solution than (51).
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Another way of contrasting the numerical schemes is to compare their em-
pirical distributions with the distribution of the CIR process, which was given
in (45). By empirical distribution F of the data points D = {y1, ..., yn} ⊂ R
we mean the step function

F :R→ [0, 1]

x 7→ F (x) =
|{y ∈ D : y ≤ x}|

|D|
.

In other words, the empirical distribution evaluated at x is the probability that
a data point chosen at random (with equal likelihood) is less than or equal to
x. So when we say empirical distribution of, for example, method (49) at time
t we mean the empirical distribution of the values of its 10000 trajectories at
time t. We graphically compare the empirical distributions of the numerical
methods and the exact distribution at time t = 5 in the following image

Figure 7: Comparison of the exact and empirical CDFs at time t = 5.

It is difficult to come to any conclusion regarding Figure 7 as all the dis-
tributions are very similar. We can affirm at first glance that the empirical
CDF of method (51) is below the others. However this could be compensated
by the fact that, in contrast to methods (49) and (50), method (51) can’t take
negative values, as is the case with the exact solution. To determine the meth-
ods with empirical distributions most similar to the exact distribution at the
instant t we calculate the distance between them, or error, as follows. Suppose
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that F̄t is an empirical distribution of the type obtained from our simulations
at time t and Ft is the exact distribution at time t. We define the distance
between F̄t and Ft as

d(Ft, F̄t) := ||Ft − F̄t||2.
It is worth noting that Ft− F̄t is in fact square integrable for all t ≥ 0 because
the data points empirical distribution is bounded and due to the convergence
speed of Ft − 1 to 0 as t→∞. We will approximate this distance as follows

d(Ft, F̄t) =

√∫ ∞
−∞

(Ft(x)− F̄t(x))2dx ∼

√∫ b

a

(Ft(x)− F̄t(x))2dx

where a and b are such that

Ft(a) = F̄t(a) = 0; Ft(b) ≥ 1− 10−5; F̄t(b) = 1.

So essentially we choose the integration limits so that the data points are
contained within the interval (a, b] and the exact solution is almost certainly
contained in the same interval. Finally we compute this second integral nu-
merically using the trapezoid rule with uniform partition size of 0.02. Doing
so results in the following Although all three errors are low it is worth noting

Figure 8: The distances between the empirical Euler and exact distribution at
time t = 5.

method (50) outperforms the rest. To confirm this result we take the mean of
the distances for times t ∈ {1, 2, 3, 4, 5}. This result is found in Figure 9 We

Figure 9: The average distance between the empirical Euler and exact distri-
bution.

have that methods (49) and (51) perform roughly equivalently while (50) is
about 30% smaller than the rest.
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Now we shall analyze our proposed Milstein schemes (52), (53) and (54).
We will proceed identically to in the case of the Euler schemes. In Figure
10 we graph the mean of 10000 trajectories of each of the modified Milstein
schemes. It is notable that in this case, unlike the case of the the Euler

Figure 10: Comparison of the three modified Euler methods.

methods, all three modified Milstein methods have practically identical means.
The mean square error between the means of all the numerical schemes and the
expected value of the exact solution are shown in Figure 11. So the Milstein

Figure 11: Distance between the means of the numerical methods and the CIR
process

methods we proposed have means more similar to that of the CIR process,
although still quite similar to the means given by the Euler methods. Now
let’s compare their empirical distributions. We don’t doing so graphically as
they are indistinguishable, just like with the Euler schemes. Computing the
distance of the empirical distributions to the distribution of the exact solution
at time t = 5 we obtain In Figure 12 it is clear that our Milstein methods have
done substantially better than the others. Let’s take a look at the average
between these distances at times t ∈ {1, 2, 3, 4, 5}. The difference still remains:
with these parameters the square root truncation method is the best of the
modified Euler methods, while all the Milstein methods perform comparably
with an error almost 2 times smaller than the best Euler method. However,
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Figure 12: The distances between the empirical and exact distribution at time
t = 5.

Figure 13: The average distance between the empirical distributions and the
exact distribution.

since it would be unwise to draw any hasty conclusion, in the following we will
vary the parameters s,m, v, h and ξ to see if these early results still hold.

In the next test we increase the mean and the speed of reversions to m = 0.1
and s = 0.5 but this time start slightly below the mean ξ = 0.9. The rest of the
parameters are unchanged. We now proceed as we did previously. The means
of all the numerical methods and the expected value of the exact solution are
shown in Figure 14. Now the trajectories means are increasing as the interest
rate is returning to the parameter m. The full truncation methods have means
larger than the rest of the methods, which have quite similar means. It is
obvious at first sight that the mean of method (51) is quite dissimilar to the
mean to the CIR process whereas the other methods have quite similar means.
This is corroborated by calculating the mean square error, as we did previously,
and which is shown in Figure 15.

Now let’s examine the distance between the empirical and exact distribu-
tions. In Figure 16 we appreciate a very similar pattern to the one we saw in
the first test. The method (50) is still the best of the modified Euler, in this
case even comparing favorably to the modified Milstein method (52). However,
the other two Milstein scheme’s empirical distributions are even closer to the
exact distribution than (50).

In the next test we use as parameters s = 0.44, m = 0.2, v = 0.5, ξ =
0.24, T = [0, 10], h = 2−4 so we’ve essentially made the time interval larger,
decreased the step size and increased by quite a bit the volatility and the mean.
Once more, the mean of method (51) is clearly above the rest. However, this
time the mean of (54) is more in line with the rest, which are, as we’ve seen
previously, very similar. The mean square error between the numerical and
the exact expected value are given in Figure 18.
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Figure 14: Comparison of the modified numerical methods.

Figure 15: The mean square error between the expected values of the exact
and numerical solutions

Figure 16: The average distance between the empirical distributions and exact
distribution.
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Figure 17: Comparison of the means of the modified numerical methods.

Figure 18: The mean square error between the numerical and exact means.

The distance between the distributions is given in Figure 19 Figure 19

Figure 19: The average distance between the empirical distributions and exact
distribution.

shows how the empirical distributions of the Milstein methods are nearly twice
as close to those of the Euler methods. In addition, once again (50) is the best
performing Euler scheme.

There is also a different way to compare these methods: if the parameters
m, s, v verify certain relation then we are able to find the Itô process that solves
equation (43) and use it to contrast the numerical solutions. The idea is to
determine when (43) can be reduced to a linear SDE as in section 5.2. Using
(29) we find that the condition for (43) to be reducible is

v = 2
√
ms

and using (33) we have that the function U(t, y) that transforms (43) into a
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linear equation is
U :T × R+ → R+

(t, y) 7→
exp( ts

2
)
√
y

√
ms

. t ∈ T.

Moreover U is continuously differentiable with respect to t and twice continu-
ously differentiable with respect to y so we may apply Itô’s lemma on U(t, Yt),
where Yt is the CIR process with initial condition ξ. Doing so, we obtain

dU(t, Yt) = e
ts
2 dBt

with exact solution

U(t, Yt) = U(0, ξ) +

∫ t

0

e
ts
2 dBt; t ∈ T. (55)

Applying the inverse transform of U

V :T × R+ → R+

(t, y) 7→ e−tsy2ms.

on (55) to recover the solution of (43) we have that

Yt = V (t, U(t, Yt)) = e−tsms

(
U(0, ξ) +

∫ t

0

e
ts
2 dBt

)2

= e−tsms

(
ξ√
ms

+

∫ t

0

e
ts
2 dBt

)2

(56)
is the CIR process with initial condition ξ. Approximating

Zt :=

∫ t

0

e
ts
2 dBt

with the Euler method {
Z0 = 0

Zn = Zn−1 + e
tns
2 ∆Bn

we obtain the numerical solution

Yn = e−tnsms

(
ξ√
ms

+ Zn

)2

(57)

of (56). In (57) we don’t have the issue we had in (43) where at some point we
could have our numerical solution take complex values. Therefore it is logical
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to choose the numerical solution (57) as a reference point to contrast the
numerical schemes (49)-(54). The comparison we will conduct is the following.
Suppose Ȳn is a numerical approximation of (43), we estimate the absolute
error between Yn and Ȳn at the end of the time interval tf as

E(Ȳ ) =
1

104

104∑
k=1

|Ȳtf ,k − Ytf ,k| (58)

where Ȳtf ,k is the simulation number k of Ȳ at time tf .

For our test we choose as parameters

s = 0.4363; m = 0.06; v = 2
√
ms; ξ = m; T = [0, 10]; h = 2−5.

In Figure 20 and Figure 21 respectively we juxtapose the means of the Euler
and Milstein methods with the mean of (57) Once again the mean of (51)

Figure 20: Means of the modified and exact Euler methods

is greater than the rest and the Milstein methods are almost identical. The
computation of (58) leads to So, as in previous experiments, the proposed
Milstein methods perform the best and the method (51) is the Euler method
with the highest error.

As our final test we choose the parameters

s = 0.6663; m = 0.02; v = 2
√
ms; ξ = 1.3m; T = [0, 10]; h = 2−5.

66



Figure 21: Means of the modified Milstein and exact Euler methods

Figure 22: The absolute error of each numerical method

Which means we’ve increased the speed of reversion, chosen the lowest mean
yet and started at a value greater than the mean. We proceed as in the previous
test. The results are shown in Figures 23-25.

Figure 24: Means of the modified Milstein and exact Euler methods
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Figure 23: Means of the modified and exact Euler methods

Figure 25: The absolute error of each numerical method

The results are the same as in the previous experiments: Milstein methods
have the lowest error and the method (51) is the Euler method with the highest
error.

9 Conclusions

In this paper we have carried out a comparison of three of the most used
schemes to simulate the evolution of interest rates given by the CIR model.
The tests we carried out showed that the absolute value and square root Eu-
ler methods are equally good in the sense that their Euclidean and absolute
distance to the CIR process’s expected value are extremely similar. The full
truncation Euler method performed worse, in this metric, than the other two
modified Euler schemes. In terms of the proximity to the CIR process’s dis-
tribution, the square root truncation Euler method gives the best results out
of the Euler methods, followed by the absolute value Euler method which per-
formed better in turn than the full truncation Euler method.

We also proposed our own Milstein schemes, based on these three Euler meth-
ods and obtained very satisfactory results. In terms of the distance to the
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expected value of the CIR process, the square root and truncation Milstein
methods performed better than the Euler ones in all cases, whereas the full
truncation Milstein method, while better for the most part than the Euler
methods, in one case performed equally well. All three Milstein methods also
are superior to their Euler counterparts when it comes to approximating the
distribution of the CIR process, although in some cases the square root trun-
cation method may perform equally well.

In conclusion, the square root truncation Euler method is the best Euler
method when it comes to simulating the CIR process. In addition, the three
proposed Milstein schemes are better choices to simulate the CIR process than
the existing Euler methods, although in some cases the square root truncation
Euler method may perform just as well.
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10 Appendix A

It is not uncommon for the information we have about a stochastic process be
limited to its finite dimensional distributions. Kolmogorov’s extension theorem
gives us conditions under which these finite dimensional distributions do in fact
induce a stochastic process.

Lemma 10.1. Kolmogorov’s Extension Theorem for Rn-valued stochastic pro-
cesses Let T ⊂ Rn be a real interval, and let n ∈ N . For each k ∈ N and
each finite sequence of distinct times t1, . . . , tk ∈ T let νt1...tk be a probability

measure on (Rn)ksuch that the following two conditions are verified:

1.

νt1...tk (F1 × · · · × Fk) = νt1...tk,tk+1,...,tk+m(F1 × · · · × Fk × Rn × · · · × Rn︸ ︷︷ ︸
m

)

for all m ∈ N.

2.
νtσ(1)...tσ(k)

(
Fσ(1) × · · · × Fσ(k)

)
= νt1...tk (F1 × · · · × Fk)

for all permutations σ ∈ Sk.

Then there exists a probability space (Ω,F , P ) and a stochastic process

X : T × Ω→ Rn

such that

νt1...tk (F1 × · · · × Fk) = P (Xt1 ∈ F1, . . . , Xtk ∈ Fk)

for all k ∈ N, (t1, ..., tk) ∈ Rnk and all (F1, ..., Fk) ∈ B(Rn)k

Kolmogorov also established how to prove the continuity of a stochastic
process by bounding its moments.

Lemma 10.2. Kolmogorov’s Continuity Theorem Let (S, d) be a complete met-
ric space , and let
X : [0,+∞)× Ω 7→ S be a stochastic process. If there exist α, β,K such that

E[d(Xs, Xt)
α] 6 K|t− s|1+β

for all T > 0, 0 6 s, t 6 T then there exists a continuous version of X.
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Gronwall’s integral inequality gives us conditions under which we can bound
a function satisfying an integral inequality by the solution of an appropiate
integral equation.

Lemma 10.3 (Gronwall’s Integral Inequality). Let I denote an interval of the
real line of the form [a,∞) or [a, b] or [a, b) with a < b. Assume φ : I → R
is a bounded nonnegative measurable function, C : I → R is a non negative
integrable function and B : I → R is a non-decreasing integrable function with
the property that

φ(t) 6 B(t) +

∫ t

t1

C(s)φ(s)ds for all t1 6 t ∈ I.

Then

φ(t) 6 B(t) exp

(∫ t

t1

C(s)ds

)
for all t1 6 t ∈ I.

Doob’s martingale inequalities give us bounds on the likelihood that a
martingale will exceed another certain bound and on the expected value of the
martingales supremum.

Lemma 10.4 (Doob’s Martingale Inequality). Suppose that (Ω,F ,P) is a
probability space and T = [t0, tf ] ⊂ R. Let X : T × Ω → Rn be a martingale
which is almost surely pathwise continuous, then

P(sup
t∈T
|Xt| ≥ λ) 6

1

λp
E[|Xtf |p]; E[sup

t∈T
|Xt|p] 6 qpsup

t∈T
E[|Xt|p] 6 qpE[|Xtf |p]

for all p ≥ 1, λ > 0 and where q = p
p−1

.

The Borel-Cantelli lemma is a measure theoretical result that tells us that
if the sum of probabilities of a sequence of events is finite then only a finite
number of them can occur at once.

Lemma 10.5 (Borel-Cantelli Lemma). Let (Ω,F ,P) be a probability space. If
{An}n∈N ⊂ FN is a sequence of measurable sets such that∑

k∈N

P(Ak) <∞

then

P
(

lim sup
n→∞

An

)
= P

(⋂
n∈N

∞⋃
k=n

Ak

)
= 0. (59)

11 Appendix B
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In[ ]:= a[t_, x_] := K1 (K2 - x);

b[t_, x_] := K3 Sqrt[x];

In[ ]:= U[t_, y_] :=
ⅇ

t K1

2 y

K1 K2

;

V[t_, y_] := ⅇ
-t K1 y2 * K1 * K2;

In[ ]:= V[t, U[t, y]] ⩵ y

FullSimplify[U[t, V[t, y]] ⩵ y, Assumptions → {K1 > 0, K2 > 0, c > 0, y > 0, t ∈ Reals}]

In[ ]:= α[t_] := SimplifyD[U[t, y], t] + a[t, y] * D[U[t, y], y] +

1

2
b[t, y]2 * D[U[t, y], {y, 2}] /. K3 → 2 K1 K2 

β[t_] := b[t, y] * D[U[t, y], y] /. K3 → 2 K1 K2 

Parameters

In[ ]:=

tf = 10;

Δ =
1

25
;

niter = tf  Δ;

tra = 10 000;

dist := RandomVariate[NormalDistribution[0, Sqrt[Δ]]];

tabled = Table[dist, {i, 0, tra}, {j, 1, niter}];

In[ ]:= K1 = 0.4363; K2 = 0.06;

K3 = 2 K1 K2 ;

x0 = K2;

In[ ]:=

Modified and Exact Euler

In[ ]:= f[t_, x_] := Exp[-t * K1] Sqrt[x0] + Sqrt[K1 K2] * x2;

Printed by Wolfram Mathematica Student Edition



In[ ]:= trajectoriesE0 = {};

trajectoriesE1 = {};

trajectoriesE2 = {};

trajectoriesE3 = {};

Forj = 1, j ≤ tra, j++,

valuesE0 = {{0, x0}};

valuesE1 = {{0, x0}};

valuesE2 = {{0, x0}};

valuesE3 = {{0, x0}};

xe = 0;

x1 = x0;

x2 = x0;

x3 = x0;

Fori = 1, i ≤ niter, i++,

xe = xe + ExpΔ * i *
K1

2
 tabled[[j, i]] ;

x1 = x1 + K1 K2 - x1 * Δ + K3 Sqrt[Abs[x1]] * tabled[[j, i]];

x2 = x2 + K1 K2 - x2 * Δ + K3 Sqrt[Max [Abs[x2], 0]] * tabled[[j, i]];

x3 = Max0, x3 + K1 K2 - x3 * Δ + K3 Sqrt[x3] * tabled[[j, i]];

AppendTo[valuesE0, {i * Δ, f[i * Δ, xe]}];

AppendTo[valuesE1, {i * Δ, x1}];

AppendTo[valuesE2, {i * Δ, x2}];

AppendTo[valuesE3, {i * Δ, x3}]

;

AppendTo[trajectoriesE0, valuesE0];

AppendTo[trajectoriesE1, valuesE1];

AppendTo[trajectoriesE2, valuesE2];

AppendTo[trajectoriesE3, valuesE3]



In[ ]:= mean[t_] := K2 + x0 - K2 Exp[-K1 * t]

In[ ]:= ListLinePlot[{Mean[trajectoriesE1], Mean[trajectoriesE2], Mean[trajectoriesE3],

Mean[trajectoriesE0], Table[{i * Δ, mean[i * Δ]}, {i, 0, niter}]},

PlotLegends → {"Absolute Value Euler", "Square Root Truncation Euler",

"Full Truncation Euler", "Exact Euler", "Exact"}]

2     CIRMathematica.nb
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Modified Milstein

In[ ]:=

trajectoriesM1 = {};

trajectoriesM2 = {};

trajectoriesM3 = {};

Forj = 1, j ≤ tra, j++,

valuesM1 = {{0, x0}};

valuesM2 = {{0, x0}};

valuesM3 = {{0, x0}};

x1 = x0;

x2 = x0;

x3 = x0;

Fori = 1, i ≤ niter, i++,

x1 = x1 + K1 K2 - x1 * Δ +

K3 Sqrt[Abs[x1]] * tabled[[j, i]] + K3
2
 4 * tabled[[j, i]]2 - Δ;

x2 = x2 + K1 K2 - x2 * Δ + K3 Sqrt[Max [Abs[x2], 0]] * tabled[[j, i]] +

K3
2
 4 * tabled[[j, i]]2 - Δ;

x3 = Max0, x3 + K1 K2 - x3 * Δ + K3 Sqrt[x3] * tabled[[j, i]] +

K3
2
 4 * tabled[[j, i]]2 - Δ;

AppendTo[valuesM1, {i * Δ, x1}];

AppendTo[valuesM2, {i * Δ, x2}];

AppendTo[valuesM3, {i * Δ, x3}]

;

AppendTo[trajectoriesM1, valuesM1];

AppendTo[trajectoriesM2, valuesM2];

AppendTo[trajectoriesM3, valuesM3]



In[ ]:= ListLinePlot[{Mean[trajectoriesM1], Mean[trajectoriesM2], Mean[trajectoriesM3],

Mean[trajectoriesE0], Table[{i * Δ, mean[i * Δ]}, {i, 0, niter}]},

PlotLegends → {"Absolute Value Milstein", "Square Root Truncation Milstein",

"Full Truncation Milstein", "Exact Euler", "Exact"}]

In[ ]:= ListLinePlot[{Mean[trajectoriesE1], Mean[trajectoriesE2], Mean[trajectoriesE3],

Mean[trajectoriesM1], Mean[trajectoriesM2], Mean[trajectoriesM3],

Mean[trajectoriesE0], Table[{i * Δ, mean[i * Δ]}, {i, 0, niter}]}, PlotLegends →

{"Absolute Value Euler", "Square Root Truncation Euler", "Full Truncation Euler",

"Absolute Value Milstein", "Square Root Truncation Milstein",

"Full Truncation Milstein", "Exact Euler", "Exact"}]

Mean square error
In[ ]:= meansquareerror[x_] :=

1

niter
* EuclideanDistance[Table[mean[i * Δ], {i, 0, niter}], x[[All, 2]]]

In[ ]:= means = {Mean[trajectoriesE1], Mean[trajectoriesE2], Mean[trajectoriesE3],

Mean[trajectoriesM1], Mean[trajectoriesM2], Mean[trajectoriesM3]};

In[ ]:= Grid[{Table[meansquareerror[means[[i]]], {i, 1, 6}], {"Absolute Value Euler",

"Square Root Truncation Euler", "Full Truncation Euler", "Absolute Value Milstein",

"Square Root Truncation Milstein", "Full Truncation Milstein"}}, Frame → All]

CIRMathematica.nb     3
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Absolute Error

In[ ]:= Trajectories = {trajectoriesE1, trajectoriesE2, trajectoriesE3,

trajectoriesM1, trajectoriesM2, trajectoriesM3, trajectoriesE0};

In[ ]:= AbsoluteError[traj_] := Mean[Abs[traj[[All, -1, 2]] - trajectoriesE0[[All, -1, 2]]]]

In[ ]:= Grid[{Table[AbsoluteError[Trajectories[[i]]], {i, 1, 6}], {"Absolute Value Euler",

"Square Root Truncation Euler", "Full Truncation Euler", "Absolute Value Milstein",

"Square Root Truncation Milstein", "Full Truncation Milstein"}}, Frame → All]

Distribution Error

The CDF of the CIR process.

In[ ]:= cdf[t_, x1_, x2_] := CDFNoncentralChiSquareDistribution4 K1 * K2  K3
2,

x1 * 4 K1 Exp[-K1 * t]  K3
2
* 1 - Exp[-K1 * t], 4 K1 * x2  K3

2
* 1 - Exp[-K1 * t];

The empirical distribution of methodnumber at time step t.

In[ ]:= ED[methodnumber_, t_] :=

EmpiricalDistribution[Trajectories[[methodnumber]][[All, t, 2]]]

The distribution error at time step t for method.

In[ ]:= CDFError[t_, method_] := .002 Sqrt

TotalTable cdf
5 * t - 1

niter + 1
, x0, x - CDF[ED[method, t], x]

2

, {x, -0.1, 0.6, .002}

In[ ]:= DiscretePlot[

{cdf[10, x0, x], CDF[ED[1, niter], x], CDF[ED[2, niter], x], CDF[ED[3, niter], x],

CDF[ED[4, niter], x], CDF[ED[5, niter], x], CDF[ED[6, niter], x]},

{x, K2 - 0.1, K2 + 0.2, .002}, PlotLegends → {Exact, "Absolute Value Euler",

"Square Root Truncation Euler", "Full Truncation Euler", "Absolute Value Milstein",

"Square Root Truncation Milstein", "Full Truncation Milstein"}]

The distribution error at the end of the time interval.

In[ ]:= Grid[{Table[CDFError[niter, j], {j, 1, 6}], {"Absolute Value Euler",

"Square Root Truncation Euler", "Full Truncation Euler", "Absolute Value Milstein",

"Square Root Truncation Milstein", "Full Truncation Milstein"}}, Frame → All]

The mean distribution error.

In[ ]:= GridTableMeanTableCDFError[i, j], i, niter  5, niter, niter  5, {j, 1, 6},

{"Absolute Value Euler", "Square Root Truncation Euler",

"Full Truncation Euler", "Absolute Value Milstein",

"Square Root Truncation Milstein", "Full Truncation Milstein"}, Frame → All
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