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Abstract

The aim of the R package netCoin is to explore data structures using a number of
statistical techniques that share the handling of interdependent variables. The main ob-
jective of this analysis is to detect events, characters, objects, attributes or characteristics
that tend to appear together within a given set of scenarios. Its most notable feature is
the combination of traditional multivariate statistical analysis and network analysis sup-
ported by topological graph theory. In addition, netCoin produces HTML graphs using
the D3.js visualization library to support the interactive exploration of networked data.
Among its many applications, netCoin can be used for the analysis of multiple responses
in questionnaires to explore relevant associations, for the development of textual networks,
for the study of ecological communities, for audience analysis, for mining large databases
or for basket market analysis.

Keywords: co-occurrence analysis, social network analysis, multivariate analysis, interactive
graphs.

1. Introduction

netCoin (Escobar, Barrios, Prieto, and Martinez-Uribe 2020) is an R package which performs
network coincidence analysis, whose aim is to find out the structure and the degree to which
a series of events (subjects, objects or characteristics) tends to occur together within certain
limits called scenarios. To discover these patterns, this package generates visualizations of
the coincidences through interactive network graphs via a web browser.
Graphs represent elements (nodes) that may or may not be connected (edges). Coinci-
dence graphs consist of two types of information: a set of nodes or vertices (events), N =
(n1, n2, . . . , nJ), and a set of lines, links or edges (coincidences), L = (l1, l2, , . . . , lL) (Wasser-
man and Faust 1994).
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The interactive web graphs produced by netCoin allow modification of their elements and
their features (such as size, color or position). In addition, data about nodes and edges is
displayed below the graph, and both the data and the graphs can be downloaded onto every
computer connected to the graph via an Internet browser.
Among the several interactive elements available, the following are key:

a. The label, size, color and shape of the events or nodes based on their properties. It is
also possible to represent groups of nodes with similar characteristics as well as using
images to depict them.

b. The width, weight, color and any text of the edges that represent the coincidences
between the events based on the edges’ properties, such as their frequency, degree of
coincidence or statistical significance.

c. Nodes can be filtered manually or dynamically by either the value of their attributes or
their connections.

d. Edges can also be filtered dynamically by the value of their attributes.

The starting point for these graphs is the incidence matrix, made up of two dimensions: The
rows that contain the scenarios where the coincidences are to be detected and the columns
which contain the elements whose coincidences are of interest for this particular study.
An application for this analysis arises from the complexity of working with multiple-choice
questionnaires. To illustrate this use, we may consider a simple question about job hunting
strategies that unemployed people might use to find a job. For this question, a survey could
include responses such as family, friends, sending résumés to companies, job ads in newspapers
or job centers. Therefore, what is the best way to code and save this information? One column
is insufficient, as we might be dealing with multiple alternative answers.
However, two solutions might be applied: firstly, using as many columns as there are possible
responses. The question may ask respondents to provide their top three job hunting strategies.
In this case, three columns could be enough, providing a different strategy in each one.
Nonetheless, if the number of responses is open, the number of columns needed could be
codified using the multiple mode (from 1 to 5 in the case of 5 possible responses) or in a
dichotomous fashion using one column for each response and codifying them as one for those
selected and as zero for those not selected.
Another use for the network coincidence analysis is content analysis. A survey, apart from
multiple-choice questions, may also include open-ended questions. The text from the responses
to those open-ended questions may be divided into words or phrases whose coincidences may
also be the subject of analysis. Plenty of specialized software could be used (N-Vivo, Atlas-
Ti, QDA Miner, MaxQDa) whose main objective is to enable the classification of large text
corpora such as transcripts of focus groups and interviews. In addition to this, algorithms are
emerging to perform thematization (Corman, Kuhn, McPhee, and Dooley 2002; Blei, Ng, and
Jordan 2003; Feinerer, Hornik, and Meyer 2008; Van Attenveld 2008; Grimmer and Stewart
2013; Roberts et al. 2014; Lucas, Nielsen, Roberts, Stewart, Storer, and Tingley 2015) and
sentiment analysis (Young and Soroka 2012), which could use graph representation.
Due to netCoin’s core objective to produce graphs, it turns this into a fit-for-purpose method-
ology for the study of bimodal networks, which present two sets not internally connected but
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interconnected between them. One of the typical applications of these structures are affilia-
tion networks, which represent the connections between an actor with a set of social situations
(Wasserman and Faust 1994). For example, bimodal networks could help study the member-
ship of an executive group in a company or the events that the inhabitants of a certain village
attend.
Those relationships can be studied using bipartite graphs or hypergraphs as well as dual
hypergraphs, although in most cases the representation of only one of the sets is of interest
(such as the actors or the inhabitants in the previous examples), and any bimodal network can
be transformed into a unimodal one, which leads to the preference for the co-participation
matrix. Precisely, the main operation behind netCoin is generating a coincidence matrix
(unimodal) from an incidence matrix (bimodal) to convert the former into a graph.
Another application of network coincidence analysis is the study of species within different
ecosystems. The coexistence of bird species in the Galápagos Islands is one highly popular case
among biologists (Sanderson 2000). For this study, a probabilistic co-occurrence method based
on the hypergeometric distribution, which is also included in netCoin, has been developed
(Veech 2013).

2. Similar software
There are a variety of tools within the statistics and data analysis domain that perform similar
operations to netCoin to visually analyze the structure of binary data.
It is also possible to find common ground with machine learning techniques, especially the
association rules (Borgelt 2012) that have binary matrices as their starting point. In contrast,
netCoin focuses on the associations between pairs of events while apriori() and eclat()
procedures seek for higher order connections available through the package arules (Hahsler,
Grün, and Hornik 2005).
The comparative qualitative analysis (QCA; Ragin 1987, 2000) has a similar input, i.e., a
matrix made up of zeros and ones, although it is based on different algorithms using Boolean
logic. Coincidence analysis (Baumgartner 2009) is derived from the QCA and they both have
R packages: QCA (Wickham and Miller 2019) and cna (Baumgartner and Thiem 2015).
It is also worth mentioning some packages associated with text analysis, like tm (Feinerer
2019; Feinerer and Hornik 2019), RTextTools (Jurka, Collingwood, Boydstun, Grossman, and
van Atteveldt 2014), textometry (Loiseau, Vaudor, Decorde, and Heiden 2015), lda (Chang
2015), stm (Roberts, Stewart, and Tingley 2019a,b) and tidytext (Robinson and Silge 2020).
Tools with a specific focus on network analysis and visualization include four major packages:
igraph (Csardi and Nepusz 2006; Csardi 2020), network by Butts (2008, 2019), the graphi-
cal complement networkD3 (Grandrud, Allaire, and Rusell 2016; Allaire, Grandrud, Rusell,
and Yetman 2015) and visNetwork by Almende, Benoit, and Titouan (2019). The first two
are powerful tools for analyzing networks and can represent them in a non-interactive way,
unless they are used in conjunction with tcltk2 (Grosjean 2014), but they lack the analytic
instruments to study coincidences and the ability to create HTML graphs. Another simi-
lar package is RJSplot (Prieto and Barrios 2017), which produces interactive and dynamic
graphics widely used in DNA structure data analysis. The last three are more similar to
netCoin. However, they lack statistical tools to produce the coincidence graphs. Outside of
the R environment, a variety of social network analysis tools exist such as Gephi (Bastian,
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Heymann, and Jacomy 2009), Pajek (Batagelj and Mrvar 1998) or the Phyton (Van Rossum
et al. 2011) package NetworkX (Schult and Swart 2008).
It is important to mention those packages which specialize in co-occurrence in community
structures. Griffith, Veech, and Marsh (2016a) created the cooccur package (Griffith, Veech,
and Marsh 2016b), with incidence matrices similar to those of netCoin, but only using the
hypergeometric distribution. They refer to other packages to detect pairs of species that share
some space with one another such as picante (Kembel et al. 2010), spaa (Zhang 2016) and
vegan (Oksanen et al. 2019).
In terms of similarity and distance calculations, packages like stats (R Core Team 2020), proxy
(Meyer and Buchta 2019) and even parallelDist (Eckert 2018) cover most of the metrics that
netCoin calculates. However, they do not include some of the coincidence analysis metrics
needed, such as frequency, conditional frequency or statistical significance. In addition to
this, netCoin allows the calculation of more than one metric at the same time just by calling
one function. This reduces calculation time and thus improves performance.
A similar package to netCoin is qgraph (Epskamp, Cramer, Waldorp, Schmittmann, and
Borsboom 2012; Epskamp, Costantini, Haslbeck, and Isvoranu 2020), which provides an in-
terface to visualize data through network modeling techniques. However, qgraph is intended
to represent a correlation matrix or a factor analysis statically, while netCoin is specialized
in the representation of qualitative variables transformed into dichotomies and its parameters
can be interactively changed through a web page.
In sum, despite the fact that there are many packages and software tools to analyze binary
metrics and represent networks, netCoin adds value by providing the possibility to efficiently
calculate a series of distance and similarity measures, including their statistical significance,
and allowing the generation of interactive graphic output in HTML.

3. Coincidence analysis
Co-occurrences have been widely studied in many fields, especially in the content analysis
of texts (Carley 1993; Lund and Burgess 1996; Popping 2000, 2003; Matsuo and Ishizuka
2004) and in the study of ecological communities (Diamond and Gilpin 1982; Connor and
Simberloff 1983; Veech 2013). In addition to this, there is extensive literature that focuses
on applications and many R packages that facilitate their analysis as seen in the previous
section.
netCoin focuses on a particular form of dealing with co-occurrences, which is called coincidence
analysis, and whose aim is to detect which people, subjects, objects, attributes or events
tend to appear at the same time in different limited spaces (Diaconis and Mosteller 1989;
Baumgartner 2009; Escobar 2015).
An event (j) is a potential outcome of a random experiment. The set of possible outcomes is
called a sample space and is composed of a series of elementary mutually exclusive events.
A scenario (i) is each one of the results of a complex experiment made up of a set of events
(Xj) with varying degrees of dependence between each other. A scenario can also be defined
as a spatial and temporal set in which the researcher collects information on the events that
take place.
Since the events of the scenarios are not mutually exclusive, they can be represented using
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Scenarios Head Tail
I 1 0
II 1 1
III 1 1
IV 0 1

Table 1: Incidence matrix with 4 scenarios after tossing 2 coins.

Scenarios Head Tail
I 2 0
II 1 1
III 1 1
IV 0 2

Table 2: Occurrence matrix with 4 scenarios after tossing 2 coins.

Head Tail
Head 3
Tail 2 3

Table 3: Coincidence matrix of the 4 scenarios of 2 coins.

dichotomous vectors (they can either occur or not) or vectors containing natural numbers
(number of times each event occurs in a given scenario).
Therefore, the set of observed n scenarios can be represented as an incidence matrix (I =
(xij)). In one dimension (generally the rows) the matrix contains the scenarios (i) and in the
other dimension (commonly the columns) it contains the events (j). This matrix consists of 1s
and 0s indicating if the events occurred or not, respectively, within the scenario. Alternatively,
the occurrence matrix, which records the number of appearances of the event in every scenario,
can be employed.
This distinction will be better understood with this simple example: If two coins are tossed
four times, each toss represents a scenario where the events heads and tails are of interest.
The three possible results for each toss of the two coins are: a) two heads, no tails; b) a head
and a tail, and c) two tails and no head. The incidence matrix can be presented as shown in
Table 1. On the other hand, the occurrence matrix must reflect the two heads or two tails
obtained when the result is not head and tail (see Table 2).
Coincidence and co-occurrence matrices can be calculated from the incidence and occurrence
matrices.

Definition. Two coincident events (j and k) are those which occur together in the same
scenario i.

(xij > 0 ∧ xik > 0)⇒ fijk = 1

Along with the basic coincidence in a given scenario i, when considering whether two events
coincide in a multiple set of scenarios, the total number of coincidences of the events j and k
can be obtained.

fjk =
I∑
i=1

fijk
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In addition, we can distinguish different degrees of coincidences. Thus, the most basic coin-
cidence classification would distinguish between:

a. No coincidence: Two events that never occur in the same scenario, i.e., they are
mutually exclusive (fjk = 0).

b. Simple coincidence: Two events are merely coincident if they occur together in at
least one scenario (fjk > 0).

c. Total coincidence: Two events that always occur together in the same scenarios. If
one of them occurs, then the other does too (fjk = fjj = fkk). A special case is the
subtotal coincidence in which the other event occurs only if the first occurs and not vice
versa (fjk = fjj > fkk), i.e., the occurrence of the more frequent event (k) does not
necessarily imply the occurrence of the less frequent event (j).

From the incidence matrix, the coincidence matrix F = (fij) can be calculated using this
expression: F = I>I. This is an example of how to project a bimodal network to a unimodal
one. The elements of this matrix are either univariate (fjj) or bivariate (fjk) frequencies of
the different events in the set of scenarios (i) contained in the rows of I.
From the coincidence matrix (F) three probabilistic measures can be derived:

a. The marginal probability of Xj , denoted as P(Xj), can be obtained by dividing the
frequencies of each event (fjj) by the total number of scenarios (n) in which it could
have occurred:

P(Xj) = fjj
n
.

b. The joint probability of two events Xj and Xk, expressed as P(Xjk) is given by the
frequency of occurrence in the same scenario divided by the set of scenarios considered
in a given set:

P(Xjk) = fjk
n
.

c. The conditional probability, denoted as P(Xj |Xk), expresses the possibility that a
certain event occurs when the second event has already occurred. It is obtained by
dividing the joint probability by the marginal probability of the conditional event:

P(Xj |Xk) = P(Xjk)
P(Xk)

= fjk
fkk

.

With the conditional probability, we can create a coincidence gradient, the probable coin-
cidence, between two events when their conditional probability is greater than 50%:

P(Xj |Xk) > 0.5.

When working with samples of scenarios instead of the whole universe, the upper limit of
the confidence interval can be estimated under the alternative hypothesis of P(Xj |Xk) < 0.5
using the formula

Lsup = fjk
fkk

+ tα,fkk−1
2
√
fkk

,
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Type of coincidence Definition Asymmetric Statistical test
Null fjk = 0 No No
Simple fjk > 0 No No
Probable fjk/fkk > 0.5 Yes Yes
Conditional fjk > f∗jk No Yes
Subtotal fjk = fjj < fkk Yes No
Total fjk = fjj = fkk No No

Table 4: Types of coincidences.

where tα,fkk−1 is the value of the Student distribution for fkk − 1 degrees of freedom with a
significance level of α.
The conditional coincidence is another coincidence gradient. It is derived from the concept
of independence of events. Two events are independent if Equation 1 is true:

P(Xj) = P(Xj |Xk)⇐⇒
fjj
n

= fjk
fkk

. (1)

Therefore, for that condition to be met, the following condition needs to be verified:

f∗jk = fjjfkk
n

.

From this equation, two events have a conditional coincidence when their frequency is greater
than the expected (f∗jk) under the assumption of independence:

fjk >
fjjfkk
n

= f∗jk.

It is also known (Haberman 1973) that the difference between fjk and f∗jk assumes asymp-
totically a normal distribution with the following standard error:√

f∗jk(1− fjj/n)(1− fkk/n),

which can be used to standardize (rjk) the difference between the empirical frequency of
coincident events (fjk) and the expected frequency (f∗jk) under the assumption of mutual
independence:

rjk =
fjk − f∗jk√

f∗jk(1− fjj/n)(1− fkk/n)
.

For small samples, the one-sided Fisher exact test, which employs the hypergeometric distri-
bution should be used instead (Fisher 1935; Finney 1948).
The degrees of coincidence that can be detected between each pair of events is summarized
in Table 4.

3.1. Coincidence metrics

In addition to classifying coincidences into different types, they can be measured using binary
proximity metrics (Hubálek 1982; Gower 1985). These measures have a maximum value of
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Event Xk

Event Xj Present Absent
Present a b
Absent c d

Table 5: Contingency table.

one when there is total coincidence between two dichotomous events and a value of 0 when
there is total independence between them. Some of them can take negative values, in which
case the minimum value could be −1 when two incompatible events are implied.
For the calculation of these metrics each element (fjk) of the coincidence matrix can be split
into the following system equivalences:

a = fjk

b = fjj − fjk
c = fkk − fjk
d = n− fjj − fkk + fjk

Therefore, for each pair of events, Table 5 can be elaborated. With these four figures (a, b, c, d),
representing the frequencies of the four states of presence/absence of two events in the set of
scenarios studied, binary proximity measures are obtained.
These coefficients or binary proximity metrics can be classified into four types: The first
one includes metrics that are similar to that of matching (Rogers and Tanimoto 1960; also
known as Rogers and Tanimoto). They are the result of divisions with a numerator with both
positive coincidences (the two events occur in the same scenario) and negative coincidences
(the two events are absent in the same scenario), and a denominator where all scenarios are
considered with different weights. The metrics belonging to this category are Rogers (Rogers
and Tanimoto 1960), Sneath (Sneath and Sokal 1962), Anderberg (1973) and Gower (1985).
These measurements should be used when considering coincidence both when two events are
present in the same scenario, as well as when both are not present.

Matching = a+ d

a+ b+ c+ d

Rogers = a+ d

(a+ d) + 2(b+ c)

Sneath = 2(a+ d)
2(a+ d) + (b+ c)

Anderberg = ( a

a+ b
+ a

a+ c
+ d

c+ d
+ d

b+ d
)/4

Gower = ad√
(a+ b)(a+ c)(d+ b)(d+ c)

In the second type of metrics there is Jaccard (1901). Here, scenarios where neither of the two
events whose coincidence degree we intend to measure (d) are excluded. Therefore, neither
the numerator nor the denominator include those scenarios without any of the two events.
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Metrics of this type also include Dice (Jaccard 1901), Antidice (Anderberg 1973), Ochiai
(1957) and Kulczynski (1927). In this case, events that are not present in the same scenario
are not considered to be coincident, and only those scenarios where at least one event has
occurred are coincident.

Jaccard = a

a+ b+ c

Dice = 2a
2a+ b+ c

Antidice = a

2 + 2(b+ c)
Ochiai = a√

(a+ b)(a+ c)
Kulczynski = ( a

a+ b
+ a

a+ c
)/2

The third type of similarity metrics for binary data only includes Russell and Rao (1940). It
only considers those scenarios to be similar in which both events occur. It excludes from the
numerator those in which none of the events occurs, considering that this does not indicate
that the scenarios are similar. However, unlike the similarity metrics such as Jaccard’s, all the
possible scenarios are present in the denominator of the equation. This coincidence measure
only takes into account coincident events and contemplates all scenarios, including those in
which both events are not present. Logically, if there are no scenarios where neither of the
two is present, then both are equal. However, if within an infinite number of scenarios neither
of the two events existed, the value of Russell and Rao would be zero, while Jaccard would
be 1 by convention.

Russell and Rao = a

a+ b+ c+ d

Finally, in the fourth type we may include all metrics in which frequencies of coincidences
(whether the events occur or not) are compared (subtracted) with frequencies of no coin-
cidences (scenarios where an event occurs but the other one does not). Thus, these mea-
surements can be positive if coincident events predominate, or negative otherwise, i.e., when
the scenarios in which the events do not coincide predominate. Metrics of this type include
Pearson (1900), Yule (1900) and Hamann (1961). This modality is similar to the correlation
coefficients and has the advantage of presenting both positive and negative values. Positive
values imply that whenever an event is present, the other is as well; while negative ones
evidence that in most cases, the presence of an event implies the absence of the other.

Pearson = ad− bc√
(a+ b)(a+ c)(b+ d)(c+ d)

Yule = ad− bc
ad+ bc

Hamann = (a+ d)− (b+ c)
a+ b+ c+ d

All the previous expressions are called similarity metrics. To turn them into distance mea-
surements, the following expression can be used distance = 1− similarity. If the metric has a
range between 0 and 1, then these limits are preserved, although with a different meaning, as
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Type Measures (abbreviation for procedures)
Frequencies Frequencies (f), Relative frequencies (x), Conditional frequencies (i, ii)∗
Degrees Coincidence degree (cc), Probable degree (cp)
Expected values Expected (e), Confidence interval (con)
Matching Matching (m), Rogers (t), Gower (g), Sneath (s), Anderberg (and)
Jaccard Jaccard (j), Dice (d), antiDice (a), Ochiai (o), Kulczynski (k)
Russell Russell (r)
Pearson Pearson (p), Haberman (h), Yule (y), Hamann (ham), odds ratio (od)
Probabilistic p value of Haberman (z), hypergeometric p greater value (hyp)

Table 6: Similarity measures (∗ i: conditioned by the source frequency; ii: conditioned by the
target frequency).

the 0 indicates complete coincidence. Nevertheless, if the metric range is between −1 and +1,
the new similarity metric will be between 0 and 2, with 1 indicating complete independence
and higher values meaning that two events coincide less often than by mere chance.
An outline of these measures and the abbreviations to obtain them with netCoin can be found
in Table 6.

3.2. Adjacency matrix

Coincidence and distance matrices have been covered. Both types can be transformed into
adjacency matrices. An adjacency matrix connects each pair of events depending on whether
their coincidence metric is above a certain value. Thus, it is a square matrix with as many rows
and columns as the number of events being studied, and formed by elements representing the
number of coincidences between every pair of events. Using all the previous metrics, adjacency
matrices can be formed in the following ways:

a. With the simple coincidences so that there will be a connection between two events
provided that they have coincided in a single scenario.

Frequency matrix

odd even small large
odd 54
even 0 46
small 41 13 54
large 13 33 0 46

Adjacency matrix

odd even small large
odd −
even 0 −
small 1 1 −
large 1 1 0 −

b. With total or subtotal coincidences so that two completely overlapping events will be
connected. In the first category, it will be a symmetrical connection, and in the case
of subtotal coincidences, it will only connect the less frequent category and the most
frequent ones.
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Conditional frequencies

odd even small large
odd 100.0

even 0.0 100.0
small 75.9 28.3 100.0
large 24.1 71.7 0.0 100.0

Adjacency matrix

odd even small large
odd −
even 0 −
small 0 0 −
large 0 0 0 −

c. With the probable or conditional coincidences, connecting events with more than 50%
probability in the first case and a positive residual (rjk).

Standardized residuals (rjk)

odd even small large
odd 100.0

even −10.0 100.0
small 4.8 −4.8 100.0
large −4.8 4.8 0.0 100.0

Adjacency matrix

odd even small large
odd −
even 0 −
small 1 0 −
large 0 1 0 −

d. With the statistical tests applied to the probable or conditional coincidences, in which
case we could have statistically significant coincidences with different degrees or levels
of significance (0.05, 0.01, 0.001, 0.0001, . . . ).

Significance of rjk

odd even small large
odd −

even 1.0e+00 −
small 3.2e–06 1.0e+00 −
large 1.0e+00 3.2e–06 1.0e+00 −

Adjacency matrix

odd even small large
odd −
even 0 −
small 1 0 −
large 0 1 0 −

e. With the coincidence metrics, in which case one of the 14 possible coincidences must
be chosen, setting a threshold (0.50, for instance) from which it can be considered that
two events are coincident.

Jaccard’s similarity

odd even small large
odd 1.00

even 0.00 1.00
small 0.61 0.15 1.00
large 0.15 0.56 0.00 1.00

Adjacency matrix

odd even small large
odd −
even 0 −
small 1 0 −
large 0 1 0 −

3.3. Layouts

The same way that a series of coincidences can become an adjacency matrix, the latter can be
converted into a graph. As previously said, a graph G consists of “two sets of information: a
set of nodes (events), N= {n1, n2, . . . , ng}, and a set of lines (coincidences), L= {l1, l2, . . . , lL}
between a pair of nodes”(Wasserman and Faust 1994).
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Layout Argument Abbreviation
Random disposition of vertices "layout.random" "ra"
Rectangular grid disposition "layout.grid" "gr"
Circle distributed vertexes "layout.circle" "ci"
Star disposition of vertices "layout.star" "st"
Fruchterman and Reingold "layout.fruchterman.reingold" "fr"
Kamada and Kawai "layout.kamada.kawai" "ka"
Forced directed layout (GEM) "layout.gem" "ge"
Simulated annealing algorithm "layout.davidson.harel" "da"
Multidimensional scaling coordinates "layout.mds" "md"
Tidy arrangement of vertices "layout.reingold.tilford" "re"
Layered directed acyclic graphs "layout.sugiyama" "su"
Large scale graphs "layout.drl" "dr"
Large graph layout "layout.lgl" "lg"

Table 7: Layout algorithms. References: fr, Fruchterman and Reingold (1991); ka, Kamada
and Kawai (1989); ge, Frick et al. (1995); da, Newman (2006); md, Cox and Cox (2001); re,
Reingold and Tilford (1981); su, Sugiyama et al. (1981); dr, Martin et al. (2008); lg, Martin
et al. (2008).

An additional problem is where to draw each node, i.e., the spatial distribution of the nodes.
Thanks to igraph, netCoin can be laid out according to the criteria in Table 7.

If none of these layouts are indicated, netCoin uses a dynamic Fruchterman-Reingold algo-
rithm by default. Alternatively, the user can provide a matrix with two columns indicating
the coordinates of those nodes that are going to be fixed in the representation. Leftover nodes
should be stated as NA and would be placed according to a forced directed mechanism.

3.4. Communities

Cluster analysis is “a set of methods for constructing a (hopefully) sensible and informative
classification of an initially unclassified set of data, using the variable values observed on
each individual” (Everitt 2003). In agglomerative hierarchical clustering methods, there are
various procedures to join cases using dendrograms: single, complete, average, median, Ward,
etc. In the coincidence analysis, clustering could be useful to classify events according to
their concurrences, using the Haberman residuals (rjk) or another distance matrix (geodesic,
matching, Jaccard, . . . ) as inputs to the clustering method.

Events j and k are structurally equivalent if, for all events, l = 1, 2, . . . , g (l 6= j, k), and for
all associations r = 1, 2, . . . , R, event j has a relation to l if and only if k also has a relation
to l. Consequently, structurally equivalent events are those that have identical edges with the
rest of events. Structural equivalence can imply “community”, but it does not have to (e.g.,
if each community consists of a standard set of hierarchical actors), and community does not
have to imply structural equivalence. Events can be partitioned into subsets of structural
equivalence using a hierarchical clustering or a similar algorithm of classification. netCoin
allows us to obtain the igraph procedures listed in Table 8.
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Community Argument Abbreviation
Edge-betweenness "cluster_edge-betweenness" "ed"
Fast-greedy "cluster_fast_greedy" "fa"
Label propagation "cluster_label_prop" "la"
Leading eigenvector "cluster_leading_eigen" "le"
Louvain "cluster_louvain" "lo"
Optimal modularity "cluster_optimal" "op"
Sping glass "cluster_spinglass" "sp"
Walktrap "cluster_walktrap" "wa"

Table 8: Communities algorithms. References: ed, Girvan and Newman (2002); fa, Wakita
and Tsurumi (2007); la, Raghavan et al. (2007); le, Newman (2006); lo, Blondel et al. (2008);
op, Good et al. (2009); sp, Reichardt and Bornholdt (2006); wa, Pons and Latapy (2006).

4. The R package netCoin
Some of netCoin’s statistical and graphical features were originally implemented in Stata
(StataCorp 2019) as the coin ado program (Escobar 2015). This initial Stata program lacked
the graphical interactivity which provides agile data exploratory capabilities. That is the
main reason why R was chosen to generate an extended version of the original coin program.
Firstly, the shiny (Chang, Cheng, Allaire, Xie, and McPherson 2020) and igraph packages
were used to achieve graph results, but what provided the solution to accomplish the desired
interactivity was the integration with the D3.js data visualization library (Bostock, Ogievet-
sky, and Heer 2011). In addition to this, R code has been written to obtain the coincidence
metrics and their significance.

4.1. Installation

The netCoin package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=netCoin and has dependencies on three other R
packages igraph (Csardi and Nepusz 2006), Matrix (Bates and Mächler 2019) and haven
(Dusa and Thiem 2020) which are loaded with netCoin.

R> install.packages("netCoin")
R> library("netCoin")

4.2. Overview with three simple examples

The netCoin package incorporates every coincidence analysis element detailed in Section 3.
The functions included help the analyst convert the data into an incidence matrix that is
suitable for the analysis, produce the coincidence matrix, calculate all the statistical indica-
tors, generate the nodes and edges of the graph, produce interactive network visualizations
and export those networks as ‘igraph’ objects.
The basic input is an incidence binary matrix, which can be obtained with the function
dichotomize() in case of absence. This function can be applied to both character variables
and factor variables. In addition to this, among the former it is able to split fragments
separated by a constant chain, whose default value is the null character ("").

https://CRAN.R-project.org/package=netCoin
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Argument Meaning
sep = "" The separator in case that the variables are composed.
min = 1 Minimum frequency of the value of a variable to be considered as an

event.
length = Inf Maximum number of events to be considered.
values = NULL Events to be converted into dichotomies (not for multiple composed

variables).
sparse = FALSE Produce a sparse matrix instead of a data frame.
add = TRUE Add the new columns to the original data frame.
sort = TRUE Order the new columns by their frequencies.

Table 9: Arguments of function dichotomize.

In addition to the data frame and the variable or variables to be dichotomized, the arguments
of this function are given in Table 9.
The simplest example can be applied to the dice data frame included in the package:

R> data("dice", package = "netCoin")
R> events <- dichotomize(dice, "dice", add = FALSE, sort = FALSE)
R> head(events)

1 2 3 4 5 6 dice:None
V1 1 0 0 0 0 0 0
V2 0 1 0 0 0 0 0
V3 0 0 0 0 1 0 0
V4 0 0 0 1 0 0 0
V5 0 1 0 0 0 0 0
V6 0 0 0 0 1 0 0

Thus, a new data frame with 6 columns corresponding to the six possible events of throwing
a dice would be obtained.
We would have to add the argument sep = in case of factor variables composed of several
events. As a second example, imagine that we tossed two coins in unison ten times into
the air. The results could be "H,H", "T,H", "H,T", "T,T", each with the same probability.
Therefore, to convert the events of each toss into elementary events, we use dichotomize()
with the argument sep = ",".

R> set.seed(10)
R> coins <- data.frame(coin = cut(runif(10), c(0, 0.25, 0.50, 0.75, 1),
+ labels = c("H,H", "T,H", "H,T", "T,T")))
R> events <- dichotomize(coins, "coin", sep = ",")
R> events

coin H T coin:None
V1 H,T 1 1 0
V2 T,H 1 1 0
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V3 T,H 1 1 0
V4 H,T 1 1 0
V5 H,H 1 0 0
V6 H,H 1 0 0
V7 T,H 1 1 0
V8 T,H 1 1 0
V9 H,T 1 1 0
V10 T,H 1 1 0

Once we have an incidence matrix, we obtain a ‘coin’ object, a list composed by the number of
events and the coincidence matrix, with the function coin(). Then, the function edgeList()
converts a ‘coin’ object into a data frame containing an edge list with the similarity measures
stated in the procedure argument. By default, edgeList() produces Haberman residuals with
their p values. The third example considers the presence of three people ("Man", "Woman"
and "Undet.") in four different scenarios.

R> frame <- data.frame(A = c("Man; Woman", "Woman; Woman", "Man; Man",
+ "Undet.; Woman; Man"))
R> data <- dichotomize(frame, "A", sep = "; ")[2:4]
R> coin <- coin(data)
R> coin

n= 4
Man Woman Undet.

Man 3
Woman 2 3
Undet. 1 1 1

R> edges <- edgeList(coin)
R> edges

source target Haberman Z
3 Man Undet. 0.6666667 0.2707349
6 Woman Undet. 0.6666667 0.2707349

Finally, the function netCoin() can mix the nodes (extracted from the ‘coin’ object) with
the edge list data frames in order to produce a ‘netCoin’ object, and if the argument dir =
"directory" is used, a directory will be created with a graph within a web page whose main
file is named index.html.
The ‘netCoin’ object has three methods: print() shows a sample (until 6) of nodes and links
with their attributes, summary() shows the basic statistics of the nodes, and plot() shows
the corresponding graph in the computer’s default browser.

R> nodes <- asNodes(coin)
R> netCoin(nodes, edges)
R> (net <- netCoin(nodes, edges))
R> print(net)
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dichotomize()

coin() edgeList()[coin object] [edges data frame]

asNodes() [nodes data frame]

netCoin()

[data set]

[netCoin]

[igraph object] fromIgraph

[binary matrix] (+ [nodes data frame]) allNet()

[data set] (+ [nodes data frame]) surCoin()

Beginning End

function()[R object] [R object]

Legend

[netCoin]

[netCoin]
[binary matrix]

[netCoin]

Figure 1: netCoin processes to create a graph.

Nodes(3):
name frequency

Man Man 3
Woman Woman 3
Undet. Undet. 1

Links(2):
source target Haberman Z

3 Man Undet. 0.6666667 0.2707349
6 Woman Undet. 0.6666667 0.2707349

R> summary(net)

3 nodes and 2 links.
frequency distribution of nodes:

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 2.333 3.000 3.000

Haberman's distribution of links:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

R> plot(net)

Alternatively, the ‘netCoin’ object could be obtained directly from a binary incidence matrix
with the allNet() function, where more than 40 arguments can be controlled, although the
only required argument is the incidence matrix. However, if we want to obtain the directory
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with the graph, we must add the dir = "directory" argument. Other sources to obtain a
‘netCoin’ object are an ‘igraph’ object with the function fromIgraph, and a data set with
factor variables with the function surCoin(). See the four functions that obtain a ‘netCoin’
object in Figure 1.

R> frame <- data.frame(A = c("Man; Woman", "Woman; Woman", "Man; Man",
+ "Undet.; Woman; Man"))
R> data <- dichotomize(frame, "A", sep = "; ")[2:4]
R> allNet(data)

Using the previous data data frame, a set of coincidence measures and their significance can
be printed with the edgeList function, whose input must be a ‘netCoin’ object.

R> edgeList(coin(data),
+ proc = c("frequency", "Jaccard", "Pearson", "Haberman", "Z", "fisher"),
+ criteria = "fisher", max = 1)

Source Target coincidences Jaccard Pearson Haberman p(Z) p(Fisher)
1 Man Woman 2 0.500000 -0.333333 -0.666667 0.729265 1.00
2 Man Undet. 1 0.333333 0.333333 0.666667 0.270735 0.75
3 Woman Undet. 1 0.333333 0.333333 0.666667 0.270735 0.75

4.3. Other examples

Multigraph coincidence analysis with data of families from Renaissance Italy

The following example uses data about families from Renaissance Italy from Padgett and
Ansell (1993). It consists of a data frame (families) with information about Italian families
of the Renaissance, and another data frame (links) with the marriage and business bonds
between families.

R> data("families", package = "netCoin")
R> data("links", package = "netCoin")

The previous coin(), edgeList(), asNodes() and netCoin() functions can be executed
together with the allNet() function where several arguments can be specified (see Table 10).
Two networks are generated representing the business and marriage bonds between the two
families with the following commands.

R> G <- allNet(incidence = links[links$link == "Marriage", -17],
+ nodes = families, layout = "md", criteria = "f", minL = 1,
+ size = "frequency", color = "seat",
+ main = "Marriage links between Italian families",
+ note = "Data source: Padgett & Ansell (1983)")
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Argument Meaning
incidence A data frame that contains the incidence matrix.
nodes A data frame with at least one vector of names.
layout The algorithm selected for the network topology.
criteria The statistical criteria to be used for the selection of the edges.
minL Minimum value of the statistic to represent the edge in the graph.
size Name of the vector with size in the nodes data frame.
color Name of the vector with color variable in the nodes data frame.
main Upper title of the graph.
note Lower title of the graph.

Table 10: Arguments of function allNet.

Function Description
dichotomize Function to convert factor or character column(s) in a data frame

into a set of dichotomous columns. Their names will correspond to
the labels or text of every category.

coin This function generates a ‘coin’ object from an incidence matrix
data frame. A ‘coin’ object consists of a list with two elements:
the number of scenarios, and a coincidence matrix of events, whose
main diagonal figures are the frequency of events and outside the
said diagonal there are conjoint frequencies of these events

asNodes From a ‘coin’ object, this function generates a data frame of nodes.
edgeList (sim) Function to convert a coincidence matrix into an edge list calculat-

ing a variety of coincidence (proximity) metrics. The sim function
produces the same information, but as a list of proximity matrices
instead.

netCoin The netCoin function produces an interactive ‘netCoin’ object from
two data frames: one including nodes with attributes, and another
one containing edges also with its own attributes.

multigraphCreate This function produces an interactive multinetwork with several
‘netCoin’ objects.

fromIgraph From an ‘igraph’ object, this function generates a ‘netCoin’ object.
toIgraph With this function an ‘igraph’ object is generated from a ‘netCoin’

object.
allNet Produces a ‘netCoin’ object from a data frame or a matrix with

dichotomous values.
surCoin Produces a ‘netCoin’ object from a data frame with factor variables

accepting also a ‘tbl_df’ class (see package haven).

Table 11: netCoin main functions.

R> H <- allNet(incidence = links[links$link == "Business", -17],
+ nodes = families, layout = "md", criteria = "f", minL = 1,
+ size = "frequencb", color = "seat",
+ main = "Marriage links between Italian families",
+ note = "Data source: Padgett & Ansell (1983)")
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Figure 2: Graph of links between Italian families.

R> G

Title: Marriage links between Italian families

Nodes(16):
name f.Marriages f.Business wealth priorates seat

Acciaiuoli 1 0 10 53 Yes
Albizzi 3 0 36 65 Yes

Barbadori 2 4 55 0 No
Bischeri 3 3 44 12 Yes

Castellani 3 3 20 22 Yes
Ginori 1 2 32 0 No

...

Links(20):
source target frequencies

Albizzi Guadagni 1
Albizzi Medici 1
Albizzi Ginori 1

Acciaiuoli Medici 1
Barbadori Castellani 1
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Barbadori Medici 1
...

Data source: Padgett & Ansell (1983)

The ‘netCoin’ object G (as well as the non-shown H) is composed of two data frames. In the
first (nodes) there are the families’ attributes: frequency of marriage links (f.Marriages),
frequency of business links (f.Business), a wealth index (wealth), number of priories held
(priorates) and holding of at least one priorate (seat). In every row of the links data
frame there are two families with a column indicating the existence of a link (coincidence)
between them.
Once the two networks are ready, the function multigraphCreate() generates both graphs
in the specified directory (see Figure 2).

R> multigraphCreate(Marriage = G, Business = H, dir = "italian")

Sanderson’s analysis of species co-occurrences

This section uses one of the most renowned data examples in ecology. Charles Darwin com-
piled data about 13 species of finches and 17 of the Galápagos Islands (Sanderson 2000) on
which they could be found.
We prepare the nodes’ attributes (finches) and their incidences in the islands (Galapagos).
Afterwards, we have to add the images in a specific directory in order to refer to them in the
allNet() function.

R> data("Galapagos", package = "netCoin")
R> data("finches", package = "netCoin")
R> finches$species <- system.file("extdata", finches$species,
+ package = "netCoin")

Here, a few extra features are added to the graph shown in Figure 3:

• criteria = "hyp": The statistical criteria to be used for the strength of the edges.

• maxL = 0.05: Maximum value of the statistic to include the edge in the list.

• lwidth = "Haberman": Name of the vector with width variable in the links data frame.

• lweight = "Haberman": Name of the vector with weight variable in the links data
frame.

• image = "file": Name of the vector with image files in the nodes data frame.

• layout = "mds": The algorithm selected for the network topology.
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Figure 3: Graph of finches coincidences in Galápagos Islands.

R> Net <- allNet(Galapagos,
+ frequency = TRUE, procedures = "frequencies", criteria = "hyp",
+ layout = "mds", nodes = finches, maxL = 0.05, size = "frequency",
+ image = "species", lwidth = "frequencies", cex = 1.35, controls = 2:4,
+ main = "Species coincidences in Galapagos Islands",
+ note = "Data source: Sanderson (2000)")
R> Net

Title: Species coincidences in Galapagos Islands

Nodes(13):
name frequency % type

Geospiza magnirostris 14 82.35294 Geospiza
Geospiza fortis 13 76.47059 Geospiza

Geospiza fuliginosa 14 82.35294 Geospiza
Geospiza difficilis 10 58.82353 Geospiza

Geospiza scandens 12 70.58824 Geospiza
Geospiza conirostris 2 11.76471 Geospiza

...
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Links(14):
Source Target frequencies p(Fisher)

Geospiza magnirostris Platyspiza crassirostris 11 0.029411765
Geospiza fortis Geospiza fuliginosa 13 0.005882353
Geospiza fortis Geospiza scandens 12 0.002100840
Geospiza fortis Camarhynchus psitticula 10 0.014705882
Geospiza fortis Camarhynchus parvulus 10 0.014705882
Geospiza fortis Platyspiza crassirostris 11 0.006302521

...

Data source: Sanderson (2000)

In this example, the only attributes of nodes are frequency, percentage (%) and type. The
column specs has been suppressed because it is used to create the images from the images file
names. More importantly, the links attributes are 1) frequencies, for example the number
of coincidences of source and target finches, and 2) p(Fisher), which is the error probability
of rejecting the one-side alternative hypothesis, in case that it is true that two species are not
coincident on each island (scenario).
Once the ‘netCoin’ object is ready, the function plot() generates its graphical representation
in a temporary directory (see Figure 3), or in the directory specified in the dir argument. In
this way, all the necessary files to be deposited in a web server are saved so that anyone can
view them and interact with them using a browser.

R> plot(Net)

Graphical comparison of two networks

netCoin can also be used to graphically compare networks of co-occurrences. For instance, the
previous graph of the Galápagos Islands finches (Net) can be compared with a random null
model obtained from the same data with the function cooc_null_model() of the EcoSimR
package (Gotelli, Hart, and Ellison 2015). Among the possibilities offered by this program,
we opted for the nullity of co-occurrences and the Sim9 algorithm, which is a sequential swap
(Gotelli 2000; Strona, Nappo, Boccacci, Fattorini, and San-Miguel-Ayanz 2014).
Once the theoretical or null model is randomly obtained (nullData), it could be analyzed
and represented with the command allNet() assessing the significance of its co-occurrence
links. Previously, in order to better compare the empirical data obtained by Darwin with
the random null model data, the positions of the nodes of the null model are set using those
of the empirical model. After using the hypergeometric distribution (criteria = "hyp")
and a level of significance of 0.05 (maxL = 0.05), the new graph (NullNet) only has two
co-occurrences out of the possible 78 (paired combinations of 13 fiches).
To represent these two or more networks at the same time, the function multigraphCreate()
is used with the parallel argument assigned as true. It can be observed (Figure 4) that the
species are located in the same place and have the same size, proportional to their presence
in the islands, but the number of links is much smaller, because they have been randomized
and a filter of significance in the argument of the allNet() function has been set.
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Figure 4: Graph of finches coincidences in Galápagos Islands.

R> library("EcoSimR")
R> layout.Net <- cbind(Net$nodes$fx, Net$nodes$fy)
R> set.seed(2016)
R> nullModel <- cooc_null_model(t(Galapagos), nReps = 1000, burn_in = 500,
+ algo = "sim9", metric = "checker")
R> nullData <- t(nullModel$Randomized.Data)
R> colnames(nullData) <- colnames(Galapagos)
R> NullNet <- allNet(nullData, frequency = TRUE, procedures = "frequencies",
+ criteria = "hyp", maxL = 0.05, layout = layout.Net, nodes = finches,
+ size = "frequency", image = "species", lwidth = "frequencies",
+ cex = 1.4, controls = 2:3, main = "Null model in Galapagos Islands",
+ note = "Produced by EcoSimR")
R> multigraphCreate("Observed" = Net, "Null model" = NullNet,
+ mode = "parallel")

Survey analysis

Another interesting use for netCoin is that of survey analysis applied to explore relation-
ships between variables including those from multiple choice questions. The straightforward
analysis shown below uses the package haven (Dusa and Thiem 2020) to read a SPSS (IBM
Corporation 2017) survey demo file. Three variables are selected for the analysis: gender,
inccat (income category in thousands) and carcat (primary vehicle price category).
The plot() function is applied to the result of the surCoin() function with those three
variables as inputs. This produces the graph in Figure 5 where the male node is connected
to the lowest and highest incomes as well as the economy and luxury vehicle categories. On
the other hand, the female node is linked to income categories in the middle range and either
the standard or the luxury vehicle price category.
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Figure 5: Graph of survey data multiresponse question.

R> library("haven")
R> survey <- read_spss(file = "demo.sav")
R> variables <- c("gender", "inccat", "carcat")
R> plot(surCoin(survey, variables, communities = "Louvain"))

4.4. Performance
To test the netCoin performance, several random datasets were generated with a different
number of cases (1,000 and 50,000) and events (10, 50, 100). Tests were performed with
six datasets: M(1,000× 10), M(1,000×50), M(1,000×100), M(50,000×10), M(50,000×50),
M(50,000 ×100). Calculations for Jaccard were compared using netCoin and parallelDist.
The results show faster times for parallelDist when the number of cases or events is smaller.
But when the number of cells (cases times events) grows, then netCoin offers better results as
shown by Figure 6. As time grows exponentially with the number of cells, time is represented
by its logarithmic values in this figure.
The package produces interactive graphs that work well with up to 1500 edges. Using more
than 1500 edges makes the interaction with the graph slow due to browser memory limitations.

5. Concluding comments
The netCoin package offers an opportunity for the interactive analysis and visualization of
data sets composed of every kind of data insofar as variables are dichotomized. It contains a
large variety of similarity measures to connect the events that co-occur in the same scenarios.
In order to select the relevant coincidences, netCoin incorporates two models of probability:
the normal distribution through the Haberman residuals for a large number of scenarios, and
the hypergeometric model for small data collections. Its main aim is to represent coincidences
through a graph, which is particularly useful when many events are to be analyzed.
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Figure 6: Performance of netCoin compared with parallelDist.

By means of routines from igraph, netCoin can reproduce different types of layouts and
obtain communities with various algorithms, which facilitate the analysis and interpretation
of coincidences. Data are then converted into D3 interactive graphs with controls enabling
an interactive event analysis that can be shared with users online.
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