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a b s t r a c t 

We prove a decomposition theorem for hesitant fuzzy sets, which states that every typical hesitant fuzzy 

set on a set can be represented by a well-structured family of fuzzy sets on that set. This decomposition 

is expressed by the novel concept of hesitant fuzzy set associated with a family of hesitant fuzzy sets, 

in terms of newly defined families of their cuts. Our result supposes the first representation theorem 

of hesitant fuzzy sets in the literature. Other related representation results are proven. We also define 

two novel extension principles that extend crisp functions to functions that map hesitant fuzzy sets into 

hesitant fuzzy sets. 
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1. Introduction 

This paper investigates some decomposition results for hesitant

fuzzy sets that permit to replicate the considerable significance

of classical decomposition theorems for fuzzy sets stated in terms

of their α-cuts. And it provides novel extension principles that

generalize the important principles in fuzzy set theory to hesitant

fuzzy set theory. 

Klir and Yuan [34, Section 2.2] explain that α-cuts and strong

α-cuts of a fuzzy set have an important role in fuzzy set theory

because they are capable of representing fuzzy sets. And by doing

this, one has a tool to extend some properties of crisp sets and

operations on crisp sets to their fuzzy counterparts. The classical

representations by (strong) α-cuts are universally applicable to all

fuzzy sets. Moreover they permit to state decompositions of any

fuzzy set in terms of special fuzzy sets associated with either its

α-cuts or its strong α-cuts (cf., Dubois and Prade [22] , Negoita and

Ralescu [41] ). 

The extension principle is another long-established contribution

to the algebraic theory of fuzzy sets. It was introduced by Zadeh

[58] and further elaborated by Yager [55] , Nguyen [43] or Bzowski

and Urba ́nski [14] among others. Classical mathematical theories

can be fuzzified thanks to this principle (see e.g., Bednar [8] , Gerla

[25] , Gerla and Scarpati [26] or Kaleva and Seikkala [32] ). 
∗ Corresponding author. 
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In our analysis we extend these developments by permitting

esitancy. Our paper complements previous successful contribu-

ions by scholars like the following short sample. Negoita and

alescu [41] actually prove representation theorems for the lattice

f L-sets (cf., Goguen [28] ) of a set, from which they deduce

epresentation theorems for the lattice of fuzzy sets. Couso et al.

18] derive a new interpretation of strong α-cuts of a normalized

uzzy set. Li, Yuan and Lee [36] introduce three-dimensional fuzzy

ets, a special class of L-fuzzy sets for which decomposition and

epresentation theorems are given. These authors also claim that

he cut sets, decomposition theorems and representation theorems

f the left, resp. right interval-valued intuitionistic fuzzy sets can

e easily derived from their results. Li [35] represents intuition-

stic fuzzy sets by level sets and Yuan, Li and Sun [56] prove

ome decomposition theorems and representation theorems on

ntuitionistic fuzzy sets and interval valued fuzzy sets (see also

artinetti, Janiš and Montes [37] for an investigation of cuts of

ntuitionistic fuzzy sets respecting fuzzy connectives, and Rah-

an [45] for a definition of t-norm and t-conorm based cuts of

ntuitionistic fuzzy sets and their generalised intuitionistic fuzzy

perations). Ngan [42] gives a unified representation of intuition-

stic fuzzy sets, hesitant fuzzy sets and generalized hesitant fuzzy

ets based on their u -maps. Mendel, John and Liu [39] prove

hat all discrete type-2 fuzzy sets can be expressed as a union of

impler type-2 fuzzy sets (see also Mendel and John [38] ). Torra

49] or Akram and Nawaz [1] belong to different lines of works.

orra shows that all hesitant fuzzy sets can be represented as

uzzy multisets (Lemma 14) and as type-2 fuzzy sets (Lemma 16),

http://dx.doi.org/10.1016/j.inffus.2017.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/inffus
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hereas Akram and Nawaz provide tabular representations for

uzzy soft graphs. The reader may consult Bustince et al. [13] for a

istorical survey of types of fuzzy sets and their relationships. 

Zadeh’s [57] introduction of fuzzy set theory was subsequently

ollowed by extended theories that attempt to better capture

he possible subjectivity, uncertainty, imprecision of the evalua-

ions, et cetera, that are usual in applications. In particular, Torra

49] introduced hesitant fuzzy sets which coincide with set-valued

uzzy sets in Grattan-Guinness [29] (cf., Bustince et al. [13] ). They

re useful to model imprecise human knowledge (particularly

ollective knowledge, e.g., Alcantud et al. [4] ) which cannot be cor-

ectly captured by fuzzy sets. Relatedly, Zhu et al. [60] define dual

esitant fuzzy sets, and Zhu et al. [59] define extended hesitant

uzzy sets. As to hybridization, Wang, Li and Chen [52] introduced

esitant fuzzy soft sets by combining the notion of hesitancy with

olodtsov’s [40] soft sets. 

In this paper we define hesitant fuzzy sets associated with

possibly infinite) families of hesitant fuzzy sets. Then we intro-

uce uniformly typical hesitant fuzzy sets, an apposite notion that

e relate with existing notions. We define the characteristic of

 hesitant fuzzy set and prove that it is an useful notion for the

urpose of identifying certain special types of hesitant fuzzy sets.

e also define a new notion of cuts for hesitant fuzzy sets that

nables us to prove decomposition theorems for typical hesitant

uzzy sets. In a similar vein, we prove some properties of these

uts in the context of uniformly typical hesitant fuzzy sets. Finally,

e define two new extension principles that extend crisp func-

ions to functions that map (uniformly typical) hesitant fuzzy sets

nto (uniformly typical) hesitant fuzzy sets. We argue that these

xtension principles are generalizations of the standard principles

or fuzzy sets, and we prove some additional properties. 

This paper is organized as follows. Section 2 recalls some

otation and definitions. Here we introduce hesitant fuzzy

ets associated with arbitrary families of hesitant fuzzy sets.

ection 3 presents the main new notions in this paper, namely,

niformly typical hesitant fuzzy soft sets, characteristic of a

esitant fuzzy set, and ( α, k )-cuts. We also prove some useful

undamental properties of these concepts. In Section 4 we present

ur main results, which prove that ( α, k )-cuts are a fitting tool

or providing decompositions of typical hesitant fuzzy sets. Then

e introduce and illustrate our new extension principles as well

s some properties of them. And we also discuss the relationships

f our results with existing literature and their implications for

ecision making. We conclude in Section 5 . 

. Notation and definitions 

For any set X , P 

∗(X ) denotes the set of non-empty subsets of

 , P(X ) denotes the set of all subsets of X . Furthermore, F 

∗(X )

enotes the set of non-empty finite subsets of X and for each

 ∈ N , F 

∗
N (X ) denotes the set of non-empty subsets of X with N or

ewer elements. 

Now we recall concepts from fuzzy sets and hesitant fuzzy

ets. Throughout the remaining of this Section we refer to a fixed

on-empty set of alternatives X . 

.1. Fuzzy and hesitant fuzzy sets 

A fuzzy subset (FS) A of X is characterized by a function μA :

 → [0, 1]. When x ∈ X , the number μA ( x ) ∈ [0, 1] is called the

egree of membership of x in the subset. It represents the degree

f truth of the statement “x belongs to A ”. Zadeh’s fuzzy subsets

f X are denoted by FS ( X ). 

The following notion of hesitant fuzzy element is extensively

sed in this paper: 
efinition 1 (Xia and Xu [53] ). A hesitant fuzzy element (HFE) is

 non-empty, finite subset of [0, 1]. The set of HFEs is denoted by

 

∗([0 , 1]) . 

Generic HFEs are expressed as h = { h 1 , . . . , h l h } , where

 

1 < . . . < h l h and l h = | h | is the cardinality of the HFE h . In

articular, h = { 1 } is usually called the full HFE, and h = { 0 } is

sually called the empty HFE. 

We now recall the definition of hesitant fuzzy set and typical

esitant fuzzy set: 

efinition 2 (Torra [49] ). A hesitant fuzzy set (HFS) on X is a

unction h M 

: X −→ P([0 , 1]) . Henceforth HFS ( X ) means the set of

FSs on X . 

efinition 3 (Bedregal. et al. [9] ) . A typical hesitant fuzzy set

THFS) on X is h M 

: X −→ F 

∗([0 , 1]) . Henceforth HFS t ( X ) denotes

he set of all THFSs on X . 

Clearly, HFS t ( X ) ⊆HFS ( X ). Each HFS on X defines a set of mem-

ership values for each element of X , and in the case that the HFS

s typical such set is always finite and non-empty. 

HFEs represent the set of possible membership values of a

ypical hesitant fuzzy set at an alternative. 

Regarding Definitions 1 and 3 , observe that on each alternative,

t least one assessment must be made because the respective

odomains in these definitions are P 

∗([0 , 1]) and F 

∗([0 , 1]) . 

In formal terms, the notions in Definitions 2 and 3 can be

tated as follows. A THFS is a subset M ⊆ X × F 

∗([0 , 1]) such that

or each x ∈ X , there is exactly one element h M 

(x ) ∈ F 

∗([0 , 1])

ith the property ( x, h M 

( x )) ∈ M . Here h M 

(x ) � = ∅ . And HFSs are

haracterized as subsets M ⊆ X × P([0 , 1]) such that for each x ∈ X ,

here is exactly one element h M 

(x ) ∈ P([0 , 1]) with the property

 x, h M 

( x )) ∈ M , which may be ∅ . 

Therefore for practical purposes, any hesitant fuzzy set h M 

an be represented as M = { (x, h M 

(x )) | x ∈ X} . For example, Torra

49] defines the ideal or full HFS on X by M 

∗ = { (x, { 1 } ) | x ∈ X} ,
nd the anti-ideal or empty HFS on X by M 

− = { (x, { 0 } ) | x ∈ X} . 
emark 1. Any FS on X with membership function μM 

: X −→
0 , 1] such that μM 

(x ) = M x can be identified with the THFS h M 

escribed as M = { (x, h M 

(x )) | x ∈ X, h M 

(x ) = { M x }} . In this fashion

e can naturally embed FS (X ) into HFS t ( X ) and therefore into

FS ( X ). 

In other words, FSs are special THFSs with the natural identifi-

ation explained above. 

For each typical hesitant fuzzy set h M 

on X we let 

 M 

(x ) = { h 

1 
M 

(x ) , . . . , h 

l M (x ) 
M 

(x ) } 
here h 1 

M 

(x ) < . . . < h 
l M (x ) 
M 

(x ) and l M 

(x ) = | h M 

(x ) | is the cardinal-

ty of the HFE h M 

( x ). Since h M 

( x ) is a set, repetitions are excluded

y definition. 

Torra [49, Definition 9] and Torra and Narukawa [50, Defini-

ion 11] define the union of two HFSs h 1 and h 2 on X , denoted

 1 ∪ h 2 , by reference to the “lower bounds” of HFEs. The expression

s: for each x ∈ X , 

(h 1 ∪ h 2 )(x ) = { h ∈ h 1 (x ) ∪ h 2 (x ) : h � max { inf h 1 (x ) , inf h 2 (x ) } }
hen h 1 and h 2 are typical HFSs we obtain 

(h 1 ∪ h 2 )(x ) = { h ∈ h 1 (x ) ∪ h 2 (x ) : h � max { h 

1 
1 (x ) , h 

1 
2 (x ) } } 

nd if h 1 and h 2 are FSs on X then (h 1 ∪ h 2 )(x ) =
 max { h 1 

1 
(x ) , h 1 

2 
(x ) } } which produces the standard union of

uzzy set theory under the identification in Remark 1 . 

Following the usual rationale in set theory, we naturally define

nclusion for HFSs as follows: 
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Definition 4. Let h 1 and h 2 be HFSs on X , then 

h 1 ⊆ h 2 if and only if h 1 ∪ h 2 = h 2 

When we compare two typical hesitant fuzzy sets h 1 and h 2 on

X by inclusion, we deduce h 1 ⊆h 2 implies h 1 1 (x ) � h 1 2 (x ) for all x ∈ X .

In particular, if h 1 and h 2 are fuzzy sets on X then h 1 ⊆h 2 if and

only if h 1 ( x ) ≤ h 2 ( x ) for all x ∈ X . This is the standard subsethood of

fuzzy set theory. 

Remark 2. Equivalently, one can define h 1 ⊆ h 2 if and only if h 1 ∩
h 2 = h 1 where (h 1 ∩ h 2 )(x ) = { h ∈ h 1 (x ) ∪ h 2 (x ) : h �
min { sup h 1 (x ) , sup h 2 (x ) } } and sup h 1 (x ) , sup h 2 (x ) respectively

represent the “upper bounds” of h 1 ( x ), h 2 ( x ), for each x ∈ X . The

definition of intersection of two HFSs is first given by Torra [49,

Definition 10] . When specialized to FSs, it produces the standard

intersection of fuzzy set theory. 

Extensive recent surveys of HFSs and their applications include

Rodríguez et al. [46] , Rodríguez et al. [47] , and Xu [54] , which

justify the importance of hesitant fuzzy elements and sets from

the perspective of theoretical and applied approaches. Alcantud

[2] relates hesitant fuzzy sets with other soft computing models,

and Alcantud and de Andrés [3] suggest a new approach to analyze

projects characterized by hesitant fuzzy sets. 

2.2. HFSs associated with families of hesitant fuzzy sets 

Since [49, Definition 5] , a notion of HFS associated with a finite

family of membership functions or fuzzy sets F = { μ1 , . . . , μn } has

been present in the literature about hesitancy (see also Rodríguez

et al. [46, Definition 2] , Rodríguez et al. [47, Definition 2] ). The novel

Definition 5 below shows that we can generalize this construction

because a similar approach can be used to define HFSs from

possibly infinite families of hesitant fuzzy sets: 

Definition 5. Let F = { h M(i ) } i ∈ J be a family of hesitant fuzzy sets

on X , indexed by the set of indices J . Then the HFS associated with

F , denoted by either h F or 
⋃ 

i ∈ J h M(i ) , is defined as: 

h F : X −→ P([0 , 1]) 

x 
⋃ 

i ∈ J 
h M(i ) (x ) 

Through the standard identification of FSs with special types of

THFSs (cf., Remark 1 ), Definition 5 generalizes [49, Definition 5] . 

Clearly, the HFS associated with a finite family of THFSs is a

THFS too. In particular, the HFS associated with a finite family of

FSs is a THFS. 

3. Some novel concepts related to hesitant fuzzy sets 

In this Section we introduce the main new notions in this

paper, namely, uniformly typical hesitant fuzzy sets, characteristic

of a hesitant fuzzy sets, and ( α, k )-cuts and strong ( α, k )-cuts.

We also prove some particular properties that are needed in our

subsequent decomposition theorems. 

3.1. Uniformly typical hesitant fuzzy sets 

In applications virtually all HFSs verify the following novel

concept: 

Definition 6. A typical hesitant fuzzy set h M 

on X is uniformly typ-

ical if there is N such that l M 

( x ) ≤ N for each x ∈ X . We abbreviate

uniformly typical HFS by UHFS. Henceforth UHFS ( X ) means the set

of UHFSs on X 
We have introduced Definition 6 because typical and uniformly

ypical HFS are related but different notions, as the following

roposition proves: 

roposition 1. Every uniformly typical HFS is a typical HFS, but

he converse is not true. Any typical HFS on a finite set is uniformly

ypical. 

roof. Clearly, UHFSs are THFSs. We proceed by example to prove

hat there are typical HFSs that are not uniformly typical. 

Let I = [0 , 1] and define for each y ∈ I , 

 M 

(y ) = 

{{ 1 
n 
, 1 

n −1 
, . . . , 1 } , if y = 

1 
n 

for some n ∈ N , 

{ 0 } otherwise. 

hen M = { (y, h M 

(y )) such that y ∈ I} defines a typical HFS on I be-

ause each h M 

( y ) is a finite subset of membership values. However

here is no bounding number N with the property that every h M 

( y )

ontains at most N membership values. Hence M is not a UHFS. 

Let us now prove the second assertion. Fix a typical

esitant fuzzy set h M 

on a finite X . Then it is immediate

o check that h M 

is uniformly typical because the number

har(h M 

) = max { l M 

(x ) : x ∈ X} ∈ N is well defined due to finiteness

f X , and it verifies the required property. �

We now introduce the characteristic of a HFS. This is an

lement from N ∪ { + ∞} defined as follows: 

efinition 7. For each hesitant fuzzy set h M 

on X , 

har(h M ) = 

⎧ ⎨ 

⎩ 

min { N ∈ N : | h M (x ) | � N, ∀ x ∈ X} , if there is N ∈ N with 

| h M (x ) | � N for all x ∈ X, 

+ ∞ , otherwise. 

The following straightforward Lemma shows the usefulness of

his new notion in order to identify special classes of hesitant

uzzy sets: 

emma 1. For each hesitant fuzzy set h M 

on X , 

(1) h M 

is a UHFS if and only if char(h M 

) < + ∞ and h M 

is a THFS.

(2) h M 

is a FS if and only if char(h M 

) = 1 and h M 

is a THFS. 

(3) If X is finite then char(h M 

) < + ∞ when h M 

is a THFS. 

In any uniformly typical HFS, there is a number N with the

roperty that every HFE of the form h M 

( x ) has N or fewer ele-

ents. In that case, char ( h M 

) is the smallest number with such

eature. Corollary 1 and Section 4.3 below are additional evidence

f the usefulness of that concept. 

A uniformly typical HFS h M 

with characteristic N = char(h M 

)

an be formally defined as a subset M ⊆ X × F 

∗
N 
([0 , 1]) such that

or each x ∈ X , there is exactly one element h M 

(x ) ∈ F 

∗
N 
([0 , 1]) with

he property ( x, h M 

( x )) ∈ M . 

emark 3. In relation to Definition 5 , we observe that if F =
 h M(i ) } i ∈ J is a finite family of UHFSs on X , then h F associated with

produces a UHFS too. In that case, char(h F ) � 

∑ 

i ∈ J char(h M(i ) ) . 

Therefore in particular, if F = { h M(i ) } i =1 , ... ,N is a finite family of

Ss then h F associated with F produces a UHFS with characteristic

t most N . 

.2. A new notion of cuts for hesitant fuzzy sets 

It is known that α-cuts and strong α-cuts are important no-

ions that draw a bridge between classical and fuzzy set theory.

ere we define new generalized concepts that permit to extend

he decomposition results for fuzzy sets to hesitant fuzzy sets. 

Let us fix a hesitant fuzzy set h M 

on X . Then for any α ∈ [0, 1]

nd any k ∈ { 1 , 2 , . . . , } , let 

,k A = { x ∈ X : |{ a ∈ h M 

(x ) : a � α}| � k } 
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+ ,k A = { x ∈ X : |{ a ∈ h M 

(x ) : a > α}| � k } 
e the ( α, k )-cut, resp. strong ( α, k )-cut associated with h M 

. 

The ( α, k )-cut, resp. strong ( α, k )-cut, associated with h M 

is the

et of elements from X such that at least k membership values of

 M 

at x are higher or equal, resp. strictly higher, than α. Hence the

ollowing properties are immediate: 

roposition 2. Let h M 

be a HFS on X. Fix x ∈ X, and let

 (x ) = | h M 

(x ) | be the cardinality of h M 

( x ), which may be 0 or

 ∞ . Let α ∈ [0, 1] and k ∈ { 1 , 2 , . . . , } . Then: 

(a) If k > L ( x ) then x �∈ α, k A. 

(b) If α � inf h M 

(x ) and k ≤ L ( x ) then x ∈ α, k A. 

(c) If h M 

( x ) is a typical HFE and α � h L (x ) −k 
M 

(x ) then x ∈ α,k +1 A . 

roof. Statement ( a ) follows from |{ a ∈ h M 

( x ): a ≥α}| ≤ L ( x ) < k .

tatement ( b ) follows from |{ a ∈ h M 

(x ) : a � α}| = L (x ) � k .

nd statement ( c ) follows from |{ a ∈ h M 

(x ) : a � α}| �
{ h L (x ) −k 

M 

(x ) , . . . , h L (x ) 
M 

(x ) }| � k + 1 . �

The ( α, k )-cuts, resp. strong ( α, k )-cuts, extend the stan-

ard α-cuts, resp. strong α-cuts, from fuzzy set theory. When

M 

is a fuzzy set on X , Remark 1 and Lemma 1 identifies it

ith a UHFS h M 

with characteristic 1. Then with respect to

he ( α, k )-cuts and strong ( α, k )-cuts of h M 

, we note that

, 1 A = { x ∈ X : |{ a ∈ h M 

(x ) : a � α}| � 1 } returns the α-cut of μM 

.

imilarly, α+ , 1 A returns its strong α-cut. Proposition 2 ( a ) proves

hat α,k A = α+ ,k A = ∅ when k > 1. 

We now introduce a running example that aims at clarifying

he notion of ( α, k )-cut and will be referred to hereafter: 

xample 1. Let Y = { x, y } and h M 

= { (x, { 0 . 2 , 0 . 5 } ) , (y, { 0 . 4 } ) } be

 uniformly typical HFS on Y . Then the characteristic of h M 

is 2

ecause l M 

(x ) = 2 > l M 

(y ) . We can compute 

 . 2 , 1 A = { x, y } = 0 . 4 , 1 A 

 . 2 , 2 A = { x } = 0 . 5 , 1 A 

 . 2 , 3 A = ∅ = 0 . 4 , 2 A = 0 . 5 , 2 A 

These are all distinct ( α, k )-cuts associated with h M 

. In precise

erms: 

, 1 A = 

{ { x, y } , if α � 0 . 4 , 

{ x } , if 0 . 4 < α � 0 . 5 , 

∅ otherwise. 

, 2 A = 

{{ x } , if α � 0 . 2 , 

∅ otherwise. 

, 3 A = ∅ for each α ∈ [0 , 1] . 

The behavior of ( α, k )-cuts in Example 1 derives from the

ollowing universal property, whose proof consists of a direct

hecking: 

emma 2. Let h M 

be a hesitant fuzzy set on X. Then: 

(1) For any α, α′ ∈ [0, 1] and any k, k ′ ∈ { 1 , 2 , . . . , } , if α ≥α′ and

k ≥ k ′ then α,k A ⊆α′ ,k ′ A . 

(2) If h M 

is uniformly typical then α,k A = ∅ for each k > char ( h M 

) . 

Lemma 2 in particular assures that α,k A ⊆α′ ,k A when α ≥α′ 
rrespective of k , and α,k A ⊆α,k ′ A when k ≥ k ′ irrespective of α. 

Proposition 2 and Lemma 2 are concerned with ( α, k )-cuts. It

s trivial to derive related statements for strong ( α, k )-cuts, whose

roofs are closely linked to those that prove these results. 
. Results 

We proceed to prove results of two kinds. In Section 4.1 we

how that we can represent HFSs by either finite or infinite

amilies of membership functions. Then in Section 4.2 we prove

 decomposition theorem for typical HFSs in terms of cut sets as

efined in Section 3.2 , which by contrast with the latter repre-

entation theorem, provides a bridge between crisp and hesitant

uzzy concepts. Finally, Section 4.3 proves that the notion of UHFS

ermits to define a new extension principle in the setting of

esitant fuzzy sets. Such principle can be defined in more general

ettings without effort. 

.1. A direct representation result by membership functions 

Torra [49, Definition 5] defined the HFS associated with a finite

amily of membership functions F = { μ1 , . . . , μn } , which can be

xtended to infinite families (cf., Definition 5 ). The latter construc-

ion enables us to state the following representation result: 

heorem 1. Let h M 

be a hesitant fuzzy set on X. Then h M 

is the

esitant fuzzy set associated with a (possibly infinite) family of

embership functions. 

roof. Consider the family 

 = { μ : X −→ [0 , 1] such that for each x ∈ X,μ(x ) ∈ h M 

(x ) } 
f membership functions. Let us check that h M 

is the hesitant

uzzy set associated with F through Definition 5 . 

It is clear that 
⋃ 

μ∈F μ(x ) ⊆ h M 

(x ) for each x ∈ X , by construc-

ion of F . 

In order to prove h M 

(x ) ⊆ ⋃ 

μ∈F μ(x ) for each x ∈ X , we proceed

o chek that when x ∈ X and α ∈ h M 

( x ) with α ∈ [0, 1] we can assure

he existence of μα
x : X −→ [0 , 1] such that μα

x ∈ F and μα
x (x ) = α.

e accomplish that aim by the recourse of the Axiom of Choice,

hich permits to associate an arbitrary αy ∈ μ( y ) with each y � = x

nd then define 

α
x (y ) = 

{
α, if y = x, 

αy otherwise. 

his proves our claim. �

Theorem 1 bears comparison with representation results for 

ther notions like Mendel, John and Liu [39, Theorem 1] , in that

his result also expresses its focal notion (interval type-2 fuzzy

et) as a union of simpler type-2 fuzzy sets where their secondary

ype-1 membership functions are singletons. 

We have made explicit use of the Axiom of Choice in the

roof of Theorem 1 . Proponents of limited forms of constructive

athematics deny the validity of the Axiom of Choice, even

hough to most mathematicians it seems quite plausible. Thus it

s often pertinent to know whether mathematical statements can

e proven without invoking it (cf., Jech [31, p. 47] ). 

We do not know if Theorem 1 can be proven without the

ecourse to the Axiom of Choice. Nevertheless we do not need to

se it in order to prove the following particular instance: 

orollary 1. Let h M 

be a UHFS on X with characteristic N. Then h M 

s the hesitant fuzzy set associated with a family of N membership

unctions. Furthermore, h M 

is not the hesitant fuzzy set associated

ith any family of fewer than N membership functions. 

roof. The second claim is trivial, since HFSs associated with

amilies of N − 1 membership functions have characteristic at

ost N − 1 (cf., Remark 3 ). 

To prove the first claim, observe that we can describe 

 M 

(x ) = { h 

1 
M 

(x ) , . . . , h 

l M (x ) (x ) } 

M 
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where h 1 M 

(x ) < . . . < h 
l M (x ) 
M 

(x ) and l M 

( x ) ≤ N . For i = 1 , . . . , N we

define μi : X −→ [0 , 1] by the constructive expression 

μi (x ) = 

{
h 

i 
M 

(x ) , if i � l M 

(x ) , 

h 

l M (x ) 
M 

otherwise. 

It is straightforward to check that h M 

is the hesitant fuzzy set

associated with F = { μi } i =1 , ... ,N . �

4.2. A decomposition theorem for typical hesitant fuzzy sets 

Just like α-cuts and strong α-cuts are the main tools to

represent fuzzy sets, we proceed to show that we can benefit

from ( α, k )-cuts to propose a decomposition result for THFSs. To

that purpose, suppose that for a given THFS h M 

, the collection

{ α,k A : α ∈ [0 , 1] , k ∈ { 1 , 2 , . . . , } } of subsets of X is known. Let us

define the fuzzy subsets t H of X ( t = 1 , 2 , . . . , ) by the following

recursive expressions: 

1 H(x ) = max { α ∈ [0 , 1] : x ∈ α, 1 A } = h 
l M (x ) 
M 

(x ) for each x ∈ X . 

If 1 H , . . . , t H are known then: 

+1 H(x ) = 

{
max { α ∈ [0 , 1] : x ∈ α,t+1 A } , if x ∈ α,t+1 A some α ∈ [0 , 1] , 

t H(x ) otherwise. 

Example 2. In the situation of Example 1 , 

1 H : Y −→ [0 , 1] 

x 0 . 5 

y 0 . 4 

2 H : Y −→ [0 , 1] 

x 0 . 2 

y 0 . 4 

and 2 H = 3 H = 4 H = . . . 

The last statement of Example 2 holds for the t H fuzzy subsets

associated with ( α, k )-cuts derived from UHFSs. In such case, the

following Lemma applies: 

Lemma 3. Let h M 

be a uniformly typical hesitant fuzzy set on X and

N = char(h M 

) . Then the t H fuzzy subsets associated with ( α, k ) -cuts

verify: 

(1) For each x ∈ X , l M (x ) H (x ) = h 1 
M 

(x ) . 

(2) N H (x ) = h 1 
M 

(x ) for each x ∈ X. 

(3) If k > N then k H = N H . 

We are ready to prove our first decomposition theorem for

HFSs, where we apply Definition 5 after the standard convention

that regards every FS as a HFS: 

Theorem 2. Let h M 

be a typical hesitant fuzzy set on X. Then h M 

is

the HFS associated with the family of fuzzy sets F = { k H } k ∈ N , i.e., 

h M 

= 

⋃ 

k =1 , 2 , ... 

k H . 

Proof. For every x ∈ X , we proceed to check two set inclusions. 

Let us first prove that α ∈ h M 

( x ) implies α ∈ 

⋃ 

k =1 , 2 , ... k H (x ) , i.e.,

α ∈ k H ( x ) for some k . 

If α = h 
l M (x ) 
M 

(x ) then α ∈ 1 H ( x ) and we are done. 

If α = h 
l M (x ) −1 

M 

(x ) then x ∈ α, 2 A because { a ∈ h M 

(x ) : a � α} =
{ h l M (x ) −1 

M 

(x ) , h 
l M (x ) 
M 

(x ) } has exactly 2 elements. Furthermore, α′ > α

implies that { a ∈ h M 

(x ) : a � α′ } = { h l M (x ) 
M 

(x ) } has only 1 element.

Therefore α ∈ 2 H ( x ) and we are done. 

A direct recursive argument completes this part of the proof:

when α = h 
l M (x ) −t 

M 

(x ) then x ∈ α,t+1 A for t = 2 , . . . , l M 

(x ) − 1 . 

Let us now prove that α ∈ h M 

( x ) when α ∈ 

⋃ 

k =1 , 2 , ... , k H (x ) , i.e.,

when α ∈ k H ( x ) for some k = 1 , 2 , . . . , Hence we assume α ∈ k ′ H (x )

for some k ′ , and we let k be the smallest index with that property.
If k = 1 then we are done because α ∈ 1 H ( x ) means

= h 
l M (x ) 
M 

(x ) . Therefore we proceed with the case k > 1. 

One must conclude that for some α′ ∈ [0, 1], x ∈ α′ ,k A because

therwise α = k H (x ) = k −1 H (x ) which contradicts the choice of

he k index. Therefore α = k H (x ) = max { α′ ∈ [0 , 1] : x ∈ α′ ,k A } . 
Now the latter fact boils down to |{ a ∈ h M 

( x ): a ≥α′ }| < k

f α′ > α, and |{ a ∈ h M 

( x ): a ≥α}| ≥ k . The combination of both

roperties produce the desired conclusion α ∈ h M 

( x ). �

Theorem 2 produces a decomposition of any THFS in terms of

he simplest THFSs, which are the fuzzy sets. 

xample 3. In the situation of Example 1 , h M 

= 

⋃ 

k =1 , 2 , ... k H =
 

H ∪ 2 H because 2 H = 3 H = 4 H = . . . This equality is simple to

heck with our data. 

.3. New extension principles 

Principles for fuzzifying crisp functions are called extension

rinciples (cf., Klir and Yuan [34, Section 2.3] ). Concerning hesitant

uzzy sets, to the best of our knowledge there are no similar

xtension principles in the literature. 

We proceed to define a new principle that extends crisp func-

ions (say, from X to Y ) to functions defined on typical hesitant

uzzy sets. The argument will be more clear if we restrict our-

elves to UHFSs, which are the most relevant cases for possible

pplications. Afterwards we establish properties that prove that

ur principle indeed generalizes the aforementioned extension

rinciple for fuzzy sets. 

Subsequently we define an extended version of the inverse of

hat crisp mapping to functions defined on hesitant fuzzy sets.

nd then we investigate some of its main fudamental properties. 

In the remaining of this section we fix a crisp mapping

f : X −→ Y . Unless otherwise stated, we assume that f is surjective.

.3.1. First extension principle 

The mapping f can be extended to f̄ : UHFS (X ) −→ UHFS (Y )

hrough the following expression. For each h M 

∈ UHFS (X ) with

haracteristic N , we decompose h M 

(x ) = { h 1 
M 

(x ) , . . . , h 
l M (x ) 
M 

(x ) }
here h 1 

M 

(x ) < . . . < h 
l M (x ) 
M 

(x ) and l M 

( x ) ≤ N . There must be x ∈ X

ith l M 

(x ) = N. Then we define 

f̄ (h M 

) : Y −→ F 

∗([0 , 1]) 
y 

⋃ 

i =1 , ... ,N { sup { h 

i 
M 

(x ) : f (x ) = y, x ∈ X } } 
ith the natural convention { sup ∅ } = 0 when there is no x ∈ X

uch that f (x ) = y . Clearly f̄ (h M 

) is another UHFS with charac-

eristic N . Observe that surjectivity of f guarantees the key fact

f̄ (h M 

)(y ) � = ∅ , because { x ∈ X : f (x ) = y } � = ∅ , for each y ∈ Y . 

By notational convenience we also denote the standard decom-

osition of the typical HFE f̄ (h M 

)(y ) as 

f̄ (h M 

)(y ) = { ̄h 

1 
M 

(y ) , . . . , ̄h 

l̄ M (y ) 
M 

(y ) } (1)

nd then h̄ i 
M 

(y ) = sup { h i 
M 

(x ) : f (x ) = y, x ∈ X} for each

 = 1 , . . . , ̄l M 

(y ) . Implicit in this expression is the fact that
¯
 

1 
M 

(y ) = ( ̄f (h M 

)) −(y ) , the lower bound of the HFE f̄ (h M 

)(y )

s defined in Torra and Narukawa [50, Definition 11] . 

The following example illustrates the application of our new

xtension principle. 

xample 4. Let X = { x, y, z, t} and let 

 M 

= { (x, { 0 . 2 , 0 . 5 } ) , (y, { 0 . 4 } ) , (z, { 0 . 2 , 0 . 4 , 0 . 6 } ) , (t, { 0 . 1 , 0 . 3 , 0 . 7 } ) } 
e a UHFS on X . The characteristic of h M 

is 3 because

 M 

(z) = l M 

(t) = 3 > l M 

(x ) = 2 > l M 

(y ) = 1 . 

Define Y = { a, b} and let f : X −→ Y be the surjective mapping

f (x ) = f (y ) = a, f (z) = f (t) = b. 
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We can compute f̄ (h M 

) : Y −→ F 

∗([0 , 1]) as follows. In order

o calculate f̄ (h M 

)(a ) we use 

f̄ (h M 

)(a ) = 

⋃ 

i =1 , 2 , 3 { sup { h i 
M 

( ̄x ) : f ( ̄x ) = a, ̄x ∈ X } 
f̄ (h M 

)(a ) = 

⋃ 

i =1 , 2 , 3 { sup { h i 
M 

(x ) , h i 
M 

(y ) } } 
f̄ (h M 

)(a ) = { sup { h 1 M 

(x ) , h 1 M 

(y ) } } ∪ { sup { h 2 M 

(x ) , h 2 M 

(y ) } } ∪ 

 sup { h 3 
M 

(x ) , h 3 
M 

(y ) } } 
f̄ (h M 

)(a ) = { sup { 0 . 2 , 0 . 4 } } ∪ { sup { 0 . 5 } } ∪ { sup { ∅ } } = 

 0 . 4 , 0 . 5 } . 
In order to calculate f̄ (h M 

)(b) we use a similar methodology,

hich produces f̄ (h M 

)(b) = { 0 . 2 , 0 . 4 , 0 . 7 } . 
In conclusion, f can be extended to f̄ : UHFS (X ) −→ UHFS (Y )

n such way that its application to h M 

is 

f̄ (h M ) : Y −→ F 

∗([0 , 1]) 

a { 0 . 4 , 0 . 5 } = { ̄h 1 M (a ) , ̄h 2 M (a ) } ( ̄l M (a ) = 2) 

b { 0 . 2 , 0 . 4 , 0 . 7 } = { ̄h 1 M (b) , ̄h 2 M (b) , ̄h 3 M (b) } ( ̄l M (b) = 3) 

Fuzzy sets are particular UHFSs with characteristic 1 by

emma 1 . Thus our extension principle generalizes the classical ex-

ension principle for fuzzy sets (cf. Klir and Yuan [34, Section 2.3] ),

n the sense that if h M 

is a FS on X then our formula for f̄ (h M 

)

oils down to 

f̄ (h M 

) : Y −→ P 

∗([0 , 1]) 
y { sup { h M 

(x ) : f (x ) = y, x ∈ X }} 
hich is the classical expression defining the extension principle

n fuzzy set theory. In particular, if h M 

is a FS on X then f̄ (h M 

) is

 FS on Y . 1 

In order for our construction to be fully acceptable, the stan-

ard properties of that extension principle should be preserved.

or expositional purposes here we only prove one key proposition,

hat will be subsequently generalized. 

Klir and Yuan [34, Theorem 2.8 (ii)] demonstrate that if A 1 , A 2 

re fuzzy sets on X with A 1 ⊆A 2 then f ( A 1 ) ⊆f ( A 2 ) when f is defined

y the application of the extension principle for fuzzy sets. Our

ext result proves that this property holds true in our model of

xtension principle for UHFSs too. 

roposition 3. Let f̄ : UHFS (X ) −→ UHFS (Y ) be the extension of

he surjective mapping f : X −→ Y . Then h 1 ⊆h 2 and h 1 , h 2 ∈ FS (X )

mply f̄ (h 1 ) ⊆ f̄ (h 2 ) . 

roof. We use the comments on the application of Definition 4 to

Ss. We know f̄ (h 1 )(y ) = { sup { h 1 (x ) : f (x ) = y, x ∈ X}} and

f̄ (h 2 )(y ) = { sup { h 2 (x ) : f (x ) = y, x ∈ X}} for each y ∈ Y . The

act h 1 ⊆h 2 reduces to h 1 ( x ) ≤ h 2 ( x ) for all x ∈ X . Therefore

f̄ (h 1 )(y ) � f̄ (h 2 )(y ) for each y ∈ Y and we conclude f̄ (h 1 ) ⊆ f̄ (h 2 )

ecause both f̄ (h 1 ) and f̄ (h 2 ) are FSs on Y . �

What further behavior can we assure for the extension princi-

le with respect to inclusion of HFSs? In order to derive a more

eneral property, we next prove a technical lemma that exploits

he structure of the inclusion of HFSs. 

emma 4. Suppose that f̄ : UHFS (X ) −→ UHFS (Y ) is the ex-

ension of the surjective mapping f : X −→ Y . Then h 1 ⊆h 2 and

 1 , h 2 ∈ UHFS (X ) with X finite imply h̄ 1 1 (y ) � h̄ 1 2 (y ) for each y ∈ Y. 

roof. We recall that h̄ 1 
1 
(y ) denotes the lower bound of

f̄ (h 1 )(y ) and h̄ 1 
2 
(y ) is the lower bound of f̄ (h 2 )(y ) . Hence

¯
 

1 
2 (y ) = sup { h 1 2 (x ) : f (x ) = y } . By the finiteness assumption, the

upremum is attained at a point x 0 . Hence there is x 0 ∈ X with

f (x 0 ) = y, h̄ 1 
2 
(y ) = h 1 

2 
(x 0 ) ∈ h 2 (x 0 ) = h 1 (x 0 ) ∪ h 2 (x 0 ) because
1 The reader is reminded that Remark 1 formally identifies FSs with adequate 

FSs. For this reason the codomain here is P ∗([0 , 1]) instead of [0, 1]. We insist 

hat surjectivity of f permits to ensure that the supremum is taken in a non-empty 

et of numbers. 

 

u

 1 ⊆h 2 , and also f (x ) = y implies h 1 
2 
(x 0 ) � h 1 

2 
(x ) whenever x ∈ X . d

imilarly, h̄ 1 1 (y ) = sup { h 1 1 (x ) : f (x ) = y } guarantees the existence of

 

′ 
0 

with f (x ′ 
0 
) = y and h̄ 1 

1 
(y ) = h 1 

1 
(x ′ 

0 
) . 

We deduce from the properties of x 0 that h̄ 1 2 (y ) = h 1 2 (x 0 ) �
 

1 
2 
(x ′ 

0 
) . 

Now the fact h 1 
2 
(x ′ 

0 
) ∈ h 2 (x ′ 

0 
) = h 1 (x ′ 

0 
) ∪ h 2 (x ′ 

0 
) guarantees by

efinition that h 1 2 (x ′ 0 ) � max { h 1 1 (x ′ 0 ) , h 1 2 (x ′ 0 ) } � h 1 1 (x ′ 0 ) . 
These inequalities assure h̄ 1 

2 
(y ) � h 1 

2 
(x ′ 

0 
) � h 1 

1 
(x ′ 

0 
) = h̄ 1 

1 
(y ) . �

Proposition 4 and Example 5 below investigate if

roposition 3 can be extended to general UHFSs. Example 5 shows

hat the answer is negative. Although Proposition 4 applies when

 is finite, the case of a general X is similar but requires a longer

rgument. 

roposition 4. Let f̄ : UHFS (X ) −→ UHFS (Y ) be the extension of the

urjective mapping f : X −→ Y with X finite. Then h 1 ⊆h 2 and h 1 , h 2 ∈
HFS (X ) imply f̄ (h 2 )(y ) ⊆ ( ̄f (h 1 ) ∪ f̄ (h 2 ))(y ) for each y ∈ Y. 

roof. We use that max { ̄h 1 1 (y ) , ̄h 1 2 (y ) } = h̄ 1 2 (y ) by Lemma 4 . As

ecalled in the proof of this Lemma, h̄ 1 1 (y ) and h̄ 1 2 (y ) are the lower

ounds of f̄ (h 1 )(y ) and f̄ (h 2 )(y ) respectively. Fix any y ∈ X . 

Suppose h ∈ f̄ (h 2 )(y ) . Then it is obvious that h ∈
f̄ (h 1 )(y ) ∪ f̄ (h 2 )(y ) . Clearly it is also the case that h �
¯
 

1 
2 
(y ) = max { ̄h 1 

1 
(y ) , ̄h 1 

2 
(y ) } . Hence we have checked the claim

 ∈ ( ̄f (h 1 ) ∪ f̄ (h 2 ))(y ) . �

In order to clarify the definitions and relationships above, the

ollowing example is useful. 

xample 5. In the conditions of Proposition 4 , the property

f̄ (h 1 ) ⊆ f̄ (h 2 ) when h 1 ⊆h 2 is not universally true. 

Consider the situation of Example 4 . Define 

 R = { (x, { 0 . 2 , 0 . 5 } ) , (y, { 0 . 4 , 0 . 6 } ) , (z, { 0 . 2 , 0 . 4 , 0 . 6 } ) , (t, { 0 . 1 , 0 . 3 , 0 . 7 } ) } . 
t is a UHFS on X with characteristic 3 because 3 = l R (z) = l R (t) >

 R (x ) = l R (y ) = 2 . The reader can easily check that h M ⊆h R , i.e., that

 M ∪ h R = h R . 

We can compute f̄ (h R ) : Y −→ F 

∗([0 , 1]) as in Example 4 . We

onclude that the application of f̄ : UHFS (X ) −→ UHFS (Y ) to h R 
s 

f̄ (h R ) : Y −→ F 

∗([0 , 1]) 

a { 0 . 4 , 0 . 6 } = { ̄h 1 R (a ) , ̄h 2 R (a ) } ( ̄l R (a ) = 2) 

b { 0 . 2 , 0 . 4 , 0 . 7 } = { ̄h 1 R (b) , ̄h 2 R (b) , ̄h 3 R (b) } ( ̄l R (b) = 3) 

t is now apparent that f̄ (h M ) ⊆ f̄ (h R ) is false, therefore

f̄ (h M ) ∪ f̄ (h R ) = f̄ (h R ) cannot be proven. 

Nevertheless f̄ (h R )(a ) ⊆ ( ̄f (h M 

) ∪ f̄ (h R ))(a ) and f̄ (h R )(b) =
( ̄f (h M 

) ∪ f̄ (h R ))(b) , in agreement with Proposition 4 . 

.3.2. Second extension principle 

It is also possible to define an extended version of the inverse

f the crisp mapping f that generalizes the standard construction

n Klir and Yuan [34, Equation (2.11)] . This extension should map

FSs on Y into HFSs on X . We proceed to do this and then we

nvestigate its main properties. 

The ( not necessarily surjective ) mapping f : X −→ Y generates

 mapping f̄ −1 : HFS (Y ) −→ HFS (X ) by the expression: for each

 M 

∈ HFS (Y ) , 

f̄ −1 (h M 

) : X −→ P([0 , 1]) 
x h M 

( f (x )) 

Clearly, this construction is the natural generalization of the

sual definition for FSs [34, Equation (2.11)] to HFSs. 
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Remark 4. We have stated that our construction of the second

extension principle is valid when f is not surjective. Nevertheless

the reader should be aware that some of its properties crucially

depend on surjectivity. We are explicit in explaining when we

impose this requirement in the remaining of this section. 

Now we present some immediate properties of our second

extension principle and its relationships with the first extension

principle in Section 4.3.1 . 

1. For each typical h M 

∈ HFS (Y ) , f̄ −1 (h M 

)(x ) is a typical HFS, and 

f̄ −1 (h M 

)(x ) = { h 

1 
M 

( f (x )) , . . . , h 

l M ( f (x )) 
M 

( f (x )) } 
Furthermore, f̄ −1 (h M 

) is a UHFS on X when h M 

is uniformly

typical. 

2. For each h M 

∈ UHFS (Y ) , if f is surjective then f̄ ( ̄f −1 (h M 

)) = h M 

.

In particular, this is true when h M 

is a FS on Y . 

To check this claim we only need to recall that the stan-

dard decomposition of the typical HFE f̄ ( ̄f −1 (h M 

))(y ) =
{ ̃ h 1 

M 

(y ) , . . . , ̃  h 
l M (y ) 
M 

(y ) } verifies ˜ h i 
M 

(y ) = sup { [ ̄f −1 (h M 

)] i (x ) :

f (x ) = y, x ∈ X} . The assumption that f is surjective ensures that

we obtain a number (i.e., we do not take the supremum of a

void set). This figure is h i 
M 

(y ) because [ ̄f −1 (h M 

)] i (x ) = h i 
M 

( f (x ))

for each i by definition. 

3. For each h M 

∈ UHFS (X ) , and each x ∈ X , 

[ ̄f −1 ( ̄f (h M 

))](x ) = { sup { h 1 M 

(x ) : x ∈ X} , . . . , sup { h N M 

(x ) : x ∈ X}} 
because [ ̄f −1 ( ̄f (h M 

))](x ) = [ ̄f (h M 

)]( f (x )) � = ∅ . 

The standard decomposition [ ̄f (h M 

)]( f (x )) =
{ ̂ h 1 

M 

( f (x )) , . . . , ̂  h N 
M 

( f (x )) } is computed by replacing y = f (x ) in

equation (1) , which produces 

ˆ h 

i 
M 

(x ) = sup { h 

i 
M 

(x ) : f (x ) = f (x ) , x ∈ X } . 
This formula gives the expression above, since all x ∈ X verify

the property f (x ) = f (x ) . 

We deduce that when h M 

is a FS on Y then h M 

⊆ f̄ −1 ( ̄f (h M 

)) . 

4. If h 1 , h 2 ∈ HFS (Y ) are typical and h 1 ⊆h 2 then f̄ −1 (h 1 ) ⊆
f̄ −1 (h 2 ) . 

To prove this claim we need to check f̄ −1 (h 1 ) ∪ f̄ −1 (h 2 ) =
f̄ −1 (h 2 ) . Let us fix x ∈ X . We need to verify the equality

[ ̄f −1 (h 1 ) ∪ f̄ −1 (h 2 )](x ) = ( ̄f −1 (h 2 ))(x ) . 

Firstly we observe that h ∈ [ ̄f −1 (h 1 ) ∪ f̄ −1 (h 2 )](x ) implies

h ∈ f̄ −1 (h 2 )(x ) by definition of the union of HFSs. 

Secondly we select an arbitrary h ∈ f̄ −1 (h 2 )(x ) = h 2 ( f (x )) .

Since h 1 , h 2 are typical and h 1 ⊆h 2 we can assure

inf h 1 ( f (x )) = h 1 1 ( f (x )) � h 1 2 ( f (x )) = inf h 2 ( f (x )) . Therefore h ∈
f̄ −1 (h 1 )(x ) ∪ f̄ −1 (h 2 )(x ) , and h � max { h 1 

1 
( f (x )) , h 1 

2 
( f (x )) } =

h 1 
2 
( f (x )) because h ∈ h 2 ( f ( x )). By definition we have stated

that h ∈ [ ̄f −1 (h 1 ) ∪ f̄ −1 (h 2 )](x ) , because h 1 1 ( f (x )) , resp.

h 1 
2 
( f (x )) , is the lower bound of f̄ −1 (h 1 )(x ) = h 1 ( f (x )) , resp.

f̄ −1 (h 2 )(x ) = h 2 ( f (x )) due to Property 1 in this list. 

5. If h 1 , h 2 ∈ HFS (Y ) are typical then f̄ −1 (h 1 ∪ h 2 ) = f̄ −1 (h 1 ) ∪
f̄ −1 (h 2 ) . 

To prove this claim we fix x ∈ X in order to check the set

equality [ ̄f −1 (h 1 ∪ h 2 )](x ) = [ ̄f −1 (h 1 ) ∪ f̄ −1 (h 2 )](x ) . 

By definition, h ∈ f̄ −1 (h 1 ∪ h 2 )(x ) is equivalent to

h ∈ ( h 1 ∪ h 2 )( f ( x )), which is equivalent to h ∈ h 1 ( f ( x )) ∪ h 2 ( f ( x ))

and h � max { h 1 
1 
( f (x )) , h 1 

2 
( f (x )) } by the definition of union of

HFSs. 

This definition also shows that h ∈ [ ̄f −1 (h 1 ) ∪ f̄ −1 (h 2 )](x )

is equivalent to h ∈ f̄ −1 (h 1 )(x ) ∪ f̄ −1 (h 2 )(x ) and h �
max { h 1 1 ( f (x )) , h 1 2 ( f (x )) } . The latter inequality uses Prop-

erty 1 in this list in order to identify the lower bounds of

f̄ −1 (h 1 )(x ) and f̄ −1 (h 2 )(x ) . 

Now we can observe that the respective equivalent statements

coincide. 
Put shortly, we have checked that h ∈ [ ̄f −1 (h 1 ∪ h 2 )](x ) holds if

and only if h ∈ [ ̄f −1 (h 1 ) ∪ f̄ −1 (h 2 )](x ) holds. 

6. If h 1 , h 2 ∈ HFS (Y ) are typical then f̄ −1 (h 1 ∩ h 2 ) = f̄ −1 (h 1 ) ∩
f̄ −1 (h 2 ) . 

The proof of this claim is an immediate modification of the

proof of the previous property. 

.3.3. Relationship with the literature and decision making 

Our novel extension principles are new in the literature on

FSs. Having said that, it is worth mentioning that an altogether

ifferent extension principle had been stated before, and that our

esults are related to existing principles in fuzzy set theory. 

Torra and Narukawa [50, Section IV] already refer to an exten-

ion principle for extending crisp functions to hesitant fuzzy sets.

onetheless their idea originates from a completely independent

otivation. These authors extend operators O : [0 , 1] N −→ [0 , 1]

like the arithmetic mean) in such way that they can operate

n HFSs, by considering all values in such sets and the appli-

ation of O on them. This practical position is unrelated to our

erspective in this paper, which in fact owes to the standard view-

oint on extension principles for fuzzy sets. Let us recap these

evelopments. 

Extension principles were introduced by Zadeh [58] in the fun-

amental theory of fuzzy sets, and their relevance is highlighted

n many textbooks and articles [10,14,34,43,55] . They allow us to

ompute an (approximate) functional dependence among variables

ven when the argument of a given precise mapping is only

pproximately known as a fuzzy set. For example, one may define

rithmetic operations for fuzzy numbers from the application of

he extension principle to the standard operations for real num-

ers. In connection with applications, B ̌elohlávek [10] explains that

[t]he extension principle is used mainly in situations where no

recise description of the input data is available, e.g., if a linguistic

ariable is used to describe the inputs”. Dubois [21, section 4] as-

ures that fuzzy intervals have been widely used in fuzzy decision

nalysis, in a way that comes down to applying the extension

rinciple to existing evaluation tools. Recently de Barros et al.

19, Example 2.10] illustrate this point with a practical transport

ituation. In addition, [19, Chapter 2] concludes with a relationship

f the extension principle and problems with probabilities. Clearly

hese remarks can be exported to our setting too, since our

esults generalize the original statements in fuzzy set theory. Our

xtension principles are therefore directly applicable in decision

aking. 

However the extension principle applied to arithmetic opera-

ors yields an unwieldy nonlinear programming problem hence

t is unfeasible for real time calculation in many applications [5] .

uthors like Kaufmann and Gupta [33] or Giachetti and Young

27] showed that using α-cuts to represent fuzzy numbers by

risp intervals, one can apply interval arithmetic operations (e.g.,

ddition and subtraction, multiplication and division, power) in

rder to perform fuzzy arithmetic in a computationally efficient

anner (see also [23] ). Such parametric representation is easily

nderstood by practitioners, and provides accuracy and efficiency

t a time. The fuzzy arithmetic that arises has been used in

pplications to engineering (e.g., industrial machining processes

20] , classical control design [51] ), experimental measurement

n physics [48] , mining investments [6,7] , management sciences

30,33] , nutrition [11,12] , ... . In addition, Chen and Lu [15,16] use

everal α-cuts of fuzzy numbers in order to incorporate quality

actors for improving decision-making solutions based on fuzzy

umber rankings, which they illustrate with various examples.

uality is defined by a signal/noise ratio which refers to middle-

oint and spread of each α-cut. Therefore the new notion of

-cuts is also at the core of potential applications of HFSs by

ssimilation to the fundamental techniques in fuzzy set theory. 
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. Conclusions 

In this paper we have introduced some new notions in the

undamental theory of hesitant fuzzy sets. The novel notion of

niformly typical HFS simplifies many theoretical and practical

rguments. It is a particular case of typical HFSs which remained

ndefined albeit it is thoroughly used in real world applications,

here both the number of alternatives and attributes are finite

 Proposition 1 ). Uniformly typical HFSs are HFSs for which not

nly all HFEs that define it are typical, but also their cardinality

s bounded by some fixed number. The characteristic of a HFS is

 related operator on HFSs. When a HFS is uniformly typical, its

haracteristic is the smallest integer with the above mentioned

ounding property. Otherwise its characteristic is infinite. This

ovel operator facilitates the analysis of computational complexity

f algorithmic solutions hence it is relevant for the discussion of

easibility and implementability issues in decision making. 

The construction of HFSs from a finite family of membership

unctions has been extended to arbitrary families. This enabled us

o prove a representation result that resembles other approaches

or interval type-2 fuzzy sets (see Section 4.1 ). 

We have also defined ( α, k )-cuts for HFSs. These are the HFS

ounterpart of α-cuts in fuzzy set theory which were missing

n the literature. With these new elements we have proved a

ecomposition theorem for typical HFSs in Section 4.2 . In addition

e have defined two novel extension principles in section 4.3 , the

rst of which applies to uniformly typical HFSs and the second

o generic HFSs. We have proved several properties of these

rinciples. Here some explanatory examples help the reader to un-

erstand their application, which may underlie corresponding de-

ision making mechanisms (cf., section section 4.3.3 ). We have also

tudied their relationships with other methods from the literature 

These results show that the novel notion of uniformly typical

FSs is very promising and deserves careful consideration. They

lso demonstrate that the fundamental theory of hesitant fuzzy

ets is still open to novel contributions. 

Some of the ideas that we present can be developed further.

or example, the interaction of the extension principles with

nions and intersections may be the subject of an additional

nalysis. Their relationship with ( α, k )-cuts can be discussed too. 

In addition, it is plausible to extend the present study to the

ase of Generalized hesitant fuzzy sets (GHF-sets), introduced

n Qian et al. [44] , and subsequently studied e.g., by Farhadinia

24] and N. Chen et al. [17] . 
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