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Abstract .– Standards, such as ICRP 78, give criteria to establish bioassay programs assuming acute and 
chronic intakes. However, in real situations, the individual daily intake for occupational workers are 
usually a random variable. We have studied the daily intake data from workers exposed for a long period 
to UO2 particles. We find that the daily intakes and the concentration values can be fitted to the lognormal 
distributions. We used an improved method on the approximation of a sum of lognormal distributions to a 
lognormal distribution is in order to forecast bioassays and its uncertainties. This method can be useful to 
design and conduct the air control monitoring and the bioassay programs introducing statistical criteria to 
determine when an bioassay is required and how often should be applied.
 

1. INTRODUCTION 

The internal doses for workers exposed to 
intake of radioactive aerosols, e.g. in 
uranium and plutonium processing plants, 
are usually estimated using air samplers. A 
bioassay program is also applied 
periodically to the workers monitored with 
lung counters and urine samplers, and less 
frequent with faecal samplers. The 
biokinetic model can be applied to establish 
a relationship between the individual intake 
and the bioassay program frequency. In 
fact, using the models and criteria of 
ICRPs, lung retention, urine and faecal 
excretion can be evaluated using the well-
known differential equation 
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where A = K – λ I, being K the matrix of 
transfer rates with elements kij representing 
the constant fractional transfer rate from 
compartment j to i, and λ being the 
radioactive decay constant. The vector q(t) 
= {q1(t), …, qi(t), …, qn(t)} represents the 
content in each compartment i of a n-
compartmental system at time t and b(t) = 
{b1(t), …, bi(t), …, bn(t)} represents the 
input in each compartment i of the system 
at time t. 
The solution of eqn (1) is given by eqn (2), 
being q0 = {q1(0), …, qi(0), …, qn(0)} the 
content in each compartment i at time t = 0, 
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The solution of eqn (2) gives that the 
retention in each compartment, qi(t), is a 
sum of exponentials. The lung and whole 
body as well as the daily urine and faecal 
excretion after a time t are sums of contents 
of several compartments, that is, 
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r(t) is called the intake retention function 
and the value of this function at a specific 
time t is known as the Intake Retention 
Fraction (IRF). This pattern can be applied 
for acute and chronic –constant- intakes [1].  
 
IRF values and r(t) for many radioisotopes 
can be obtained using BIOKMOD available 
in the web site 
http://web.usal.es/~guillerm/biokmod.htm. 
Also, they are a web version in 
http://www3.enusa.es/webMathematica/Pub
lic/biokmod.html, (sponsored by ENUSA 
Industrias Avanzadas. S.A). 
IRF values for acute and chronic intakes are 
widely used in bioassay programs. 
However, in real situations, the individual 
daily intake for occupational workers are 
usually a random variable (r.v.), this means 
that b(t) in eqn (1) is a r.v.. These cases has 
been studied by Ketcher and Robinson [2] 
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and others authors [3]. We are interested in 
the case when a random intake can be fitted 
to a known probability distribution function 
(pdf) in order to provide probability bands 
around the function r(t) for planning the 
bioassay program. 

2. WORKERS EXPOSED TO 
RANDOM INTAKES 

Let us consider a worker exposed to an 
environment of radioactive airborne. He 
intakes by inhalation an quantity Ij. each 
day j. Although the intake happens during a 
few hours every day from a practical point 
of view it can be assumed that Ij is an acute 
intake. Then, after a period the worker will 
have been exposed to multi-acute intakes I1, 
…, It. Then the retentions and the 
excretions functions after a time t will be 
the pattern of eqn (4) where the time has 
been discretized in days, where for 
convenience we call sj(t) = r(t – j + 1), 
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We are interested in studying y(t) and its 
uncertainties when Ij is a r.v. as it happens 
in the real situation. If the pdf of this r.v. 
can be fitted to the pdf of a known 
distribution some theoretical tools may be 
provided. With this purpose we have 
analyzed the intake data from a group of 
workers. They work at Juzbado Fuel 
Fabrication Plant and they has been 
exposed during a long period of time 
(usually a few years) to UO2 (<5% 235U) 
radioactive aerosols. The Juzbado factory 
makes uranium fuel assemblies for light 
water reactors. We have found (see a 
previous work [4]) that the daily intake Ij  
for workers performing their activities in 
the same area for a long period of time (> 
400 working days) can be modelized by a 
lognormal distribution LN(μ, σ2), where μ 
and σ2 are the mean and variance of the 
corresponding normal distribution. The pdf 
of the lognormal distribution is given by 
eqn (5), 
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The mean and variance of the lognormal 
distribution are 
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while the mean and variance of the 
associated normal distribution (ln X) are 
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The following estimators derived form the 
transformation to the Normal distribution 
are widely used in practice: 
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where N is the total number of observations 

xi from the lognormal distribution. 

In our case the daily intake for a specific 
worker Ij plays the role of x and it has to be 
taken into account that for non working 
days, Saturdays and Sundays, it is assumed 
to be zero. Thus, in eqn (4) for each j 
corresponding to a working day sj(t) Ij is the 
product of a constant and a r.v. It is well 
known that a r.v. proportional to a 
lognormal distribution is again lognormal. 
Therefore, sj(t) Ij  for working days follows 
a lognormal distribution. The sum of 
lognormal variables is not a known 
distribution, but there are some 
approximations to lognormal distributions. 
In particular, we have used the Fenton-
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Wilkinson’s approximation [5] for y(t) - 
eqn (4) - obtaining a lognormal distribution 
LN(μ, σ2)with mean and variance, 
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where mj(t) = ln[r(t – j +1)]. Replacing mj(t) 
in eqn (9) and eqn (10) it obtained that 
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where μI and  are the mean and variance 
of the lognormal distribution of the intake 
obtained using eqn (6). Thus, the 
approximated lognormal distribution for 
eqn (4) has parameters 
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An approximation of the cumulative 
distribution function (cdf) of y(t) is then 
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where the Normal cdf. Probability curves 
for y(t) can be constructed for a fixed 
probability γ, 
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that is, 2
12

2
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2
1+γz  is the 

2
)1(100 +γ -quantile of the Normal 

distribution. Some kind of probability 
region can be built for the stochastic 
process y(t), 
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We can use these equations to evaluate y(t) 
an its uncertainties for workers exposed to a 
daily intake that can be adjusted for a 
lognormal distribution. 
 

3. APLICATIONS 

In this section the theoretical results given 
above are applied to bioassay programs. All 
examples are referred to workers exposed 
to intakes by inhalation of UO2 (class S) 
with enrichment 4.4 wt % of 235U, AMAD 
= 5 µm, and radioactive decay constant near 
0. The specific activity is 108 kBq/g U with 
3.25% Bq of 235U. The Dose Conversion 
Factor (DCF) for this type of particles is 
6.66 10–3 mSv/Bq. The fact that the 
individual intake could be represented by a 
lognormal distribution led us to study the 
method applied in Juzbado Fuel Fabrication 
Plant to estimate the intake. This method is 
similar to those applied in other uranium 
facilities. 
 
Example 1.- A worker has been exposed 
during the last 2000 days to an intake 
represented by a lognormal distribution 
with mean Iμ̂  = 3.3 Bq U and standard 
deviation Iσ̂  = 5.1 Bq U, estimated with 
the individual working day intakes. We 
wish to know whether the lung retention 
will grow over the Low Level of Detection 
(LLD) given by a lung counter by 92 Bq U. 
The lung counter usually measures the U, 
but 1 Bq U is equivalent to 0.0325 Bq U 
for an enrichment of 4.4%, then 92 Bq U is 
equivalent to 3 Bq U). Also it is assumed 
that there is not intake during the weekends, 
i.e. it will be assumed that I

235

235

235

j = 0 when j = 7 
k  and j = 7 k-1, k = 1, 2,… 
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Here we use the lung intake retention 
function for uranium (238U, 235U, 234U) type 
S and AMAD = 5 μm [1], 
 

r(t) = 0.01009 e–10.0 t + 0.007959 e–2 t + 

0.01031 e–0.0301 t + 0.01614 e–0.0201 t + 

0.03191 e–0.0011 t + 0.004430 e–0.00022 t + 

0.001087 e–0.0001 t. 

 
Eqn (12) and (17) provide the mean and the 
probability region as follows: 
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Then for γ = 0.95 (one tail interval): 
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that is practically the lung counter limit of 
detection (92 Bq U). For this worker the 
lung retention and its uncertainties are 
shown in Fig. 1. It can be observed that he 
reaches the detection limit around 2040 
days after starting the intake.
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FIG. 1. Predicted values for a lognormal random intake ( Iμ̂  = 3.3 Bq and Iσ̂  = 5.1 Bq) and the 
probability bands with probability γ = 0.95 for the lung retention of a worker exposed to a random intake. 
The detection limit for lung counting is also shown in the graph 
 
 
Example 2.- A group of workers has been 
exposed for a long time to an daily, in Bq 
U, intake represented by a lognormal 
distribution with mean μI= 0.43 and σI

2 = 
0.67.  We want to establish the frequency 
with which a urinary sample should be 
taken.  
 
The following criterion established in the 
Regulatory Guide 8.9 (apart 4.3) [6] will be 
applied: “In general, spot samples should be  

collected frequently enough that there is no 
more than a 30% increase in the IRF 
between bioassay measurements”. 
 
Here we use the daily urine excretion 
function for uranium (238U, 235U, 234U) type 
S and AMAD = 5 μm [1], 
 
r(t) = –1.5 e–10 t – 1.7 e–6.0 t + 1.1 e–5.4 t +  

0.00016 e–2.0 t + 2.7 10–6 e–0.34 t + 3.5 10-6 e–0.14 t + 

6.4 10–7 e -0.099 t + 1.6 10–5 e-0.097 t + 
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3.2 10–6 e–0.030 t +2.1 10–6 e-0.020 t +1.0 10–6 e–0.013 t 

+3.1 10–6e-0.0011 t + 4.3 10–7 e–0.00022 t +  

1.2 10–7 e–0.0001 t. 

 
From eqn. (11), (12) and (17) it is obtained  
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at a specific value of t provides the time t + 
T for the next measurement. That is, t is the 
time from the first intake to the moment 
when a measurement is taken with the body 
counter. The time from this moment to the 
time when the next measurement should be 
made is T. The solution of eqn (18) will be 
applied for each worker. For instance, if a 
measurement is made at time t = 2000 the 
next one should be made T = 800 days later 
(Fig. 2). 
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FIG. 2. Probability bands for γ = 0.95 for the urine daily excretion of a worker exposed to a random 
intake. 

4. DISCUSSION 

The standards require that monitoring the 
intake of radioactive material and bioassay 
programs should be applied depending on 
radiological hazards, but they establish 
neither precise criteria of how this 
radiological hazards should be evaluated 
nor how often the bioassay should be 
applied. Standards, such as ICRP 78 [7], 
give criteria to establish bioassay programs 
assuming acute and chronic intakes. 
However, in real situations, the individual 
daily intake for occupational workers are 
usually a random variable. We provide 
formulae to forecast the bioassay 
measurement and its uncertainties taking 

into account random intake. In particular, 
we have found that the daily intake for a 
group of workers can be fitted to a 
lognormal distribution. This method can be 
useful to determine when a bioassay is 
required as well as the frequency in its 
application. 
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