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Abstract 
Analysis of three-phase loads usually assume them to be three impedances in a star or 
triangle connection. This is the reason why obtained results can only be considered 
valid for passive loads, strictly speaking. Analysis leading to the proposal of some static 
compensators is usually performed in this way, which induces to believe that this 
compensators are only valid for passive loads. An analysis procedure, which uses only 
powers to describe loads, is expounded in this paper. If applied to the analysis of static 
compensators, it reveals unequivocally their usefulness with active and passive three-
phase loads. Therefore, this method is more general and, as it will be seen, easier. 
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Introduction 
It is usual to suppose three-phase loads exclusively formed by impedances in a star or 
triangle connection while studying them. For instance, a lot of textbooks do this while 
deducing the active, reactive, and apparent power's formulas of balanced three-phase 
systems[1][2]. This deduction method assures the validity of the results for passive 
loads, but it does not justify their validity for active loads, strictly speaking. 
Every three-phase passive load formed only by impedances connected in any manner is 
equivalent to three impedances in a star or triangle connection. Nevertheless, if the load 
contains motors or generators it is necessary to describe it by means of voltage or 
current sources along with impedances. That is to say, the result is an active load, which 
is not equivalent to a load formed just by three impedances. 
Some solutions, which are obtained only for passive loads, are also valid for active 
loads even though deduction procedures do not justify them. Their apparent limitation is 
due exclusively to the deduction method. For this reason it is important to use analysis 
methods that are capable of clearly showing the scope of the solutions they lead to. One 
of those procedures consists in using relations between the powers of three-phase 
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systems instead of describing the loads by means of impedances. Three advantages of 
this method are: a) all variables involved are external to the load, b) there is no need for 
an assumption concerning the internal connections of the load, its constituting receptors, 
or whether it is a passive or active load, thereby conferring great generality to the 
results, and c) operations tend to be easier than those involving impedances[3]. 
Some procedures have been proposed to balance three-wire three-phase loads, and to 
compensate the reactive power they absorb, using static VAr compensators. Several 
algorithms have been created to obtain the susceptances of the static VAr compensator. 
Those algorithms derive from methods deduced for passive loads consisting only of 
certain impedance connections[4-6]. They are deduced in this paper from power 
relations, thus showing that the solution is unequivocally valid not only for passive but 
also for active loads, whichever their internal connection might be. 

Relation between active and reactive powers delivered by each phase to a 
three-wire three-phase load 
The relation between the active and reactive powers delivered by each phase to a three-
wire three-phase load is the basis of the method shown here. Figure 1 represents a three-
phase load connected to a three-phase line with balanced voltages. If voltage VR  is 
chosen as reference phasor (fig. 1), then 

 
VR = V /0

! , 
 
VS = V / !120

! , 
 
VT = V /120

! , and 

 

0=IR
!
+ IS

!
+ IT

!
=
PR + jQR

V /0!
+
PS + jQS

V / "120!
+
PT + jQT

V /120!
 (1) 
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Fig. 1.- Power delivered to a three-wire three-phase load by each phase. 

Where IR
!  is the conjugate of IR , and PR + jQR = VRIR

!  is the complex power 
delivered to the load through its R-phase. The same applies to the rest of the phases. As 

 
1/120! = !1 2 + j 3 2  and 

 
1/ !120! = !1 2 ! j 3 2 , from (1), two new equations of 

real numbers are obtained: 

2PR ! PS ! 3QS ! PT + 3QT = 0  

2QR !QS + 3PS !QT ! 3PT = 0  (2) 

These are the relations between the powers delivered by each phase looked for. 
Whichever the load connected to a three-wire three-phase line with balanced voltages 
might be, its powers must satisfy the relations given in (2). If 
QR = QS = QT  (3) 
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one derives from (2) that 
PR = PS = PT  (4) 

and the system is balanced. That is to say, it suffices to make the reactive powers 
delivered by the phases equal to each other to attain a balanced three-wire three-phase 
system. This is the basis of the method proposed in this paper, and used to obtain the 
algorithms of the compensator which balances any three-phase load: the method 
consists on a compensator, constituted entirely by reactances, which makes the reactive 
power delivered by the phases equal to each other. Thus, if Q2 is the reactive power 
delivered to the set formed by the compensator and the load, then each phase delivers 
Q = Q2 3 . The active power delivered now by each phase is P, and the active power 
delivered to the compensator-load group is 3P, which is also the active power delivered 
to the load, since no active power is delivered to the compensator as it consists of 
reactances only. 
Thus, the new power factor is 

cos!2 =
3P

3P( )2 + 3Q( )2
=

P

P
2
+Q

2
 (5) 

If Q2 = 0  is achieved, the power factor would be unity. 

Reactive power delivered by each phase to a three-wire purely-reactive 
load connected in triangle 
Let the powers jQRS , jQST , and jQTR , which are absorbed by the mono-phase reactive 
loads that constitute the triangle in figure 2, be known. It is very useful for our purposes 
to find the relation between those powers and the complex powers delivered by each 
phase, which will be designated by SR = PR + jQR , SS = PS + jQS , and ST = PT + jQT . 
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Fig. 2.- By choosing the appropriate value for 

 
QRS , 

 
QST , and 

 
QTR , the 

reactive powers delivered by each phase, 
 
QR , 

 
QS , and 

 
QT , might be fixed 

at any desired value. 

Seeing that IR
!
= I1

!
" I3

! , we have: 

 

IR
!
=
PR + jQR

V /0!
=

jQRS

3V /30!
"

jQTR

3V /150!
=
QRS "QTR

2 3V
+ j

3 QRS +QTR( )
2 3V

 (6) 
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Comparing the second and fourth members of this equation it is clear that 

QR =
QRS +QTR

2
 (7) 

Similarly 

QS =
QST +QRS

2
 (8) 

QT =
QTR +QST

2
 (9) 

The reactive powers delivered by each phase can be fixed at any desired value using 
three appropriate reactances, as shown in these last three equations. For instance, it is 
possible to achieve equal values for the three reactive powers delivered by the phases to 
a load, thus balancing it. Furthermore, all the reactive energy is compensated if those 
three powers are set to zero. This result will be used in a moment. 

Reactance compensator 
Figure 3 shows an unbalanced three-wire three-phase load. QR1, QS1 and QT1 are the 
reactive powers delivered by each phase to the load; thus, the reactive power absorbed 
by the load is Q1 = QR1 +QS1 +QT1 [7]. A reactance compensator is connected in a 
triangle configuration to balance phase currents. In order to do it, it is enough to make 
the reactive powers delivered by each phase to the compensator-load group equal, as 
seen before. That is to say, if Q2 is the reactive power delivered to the compensator-load 
group, each phase must deliver Q2/3 to it. Q2 can be any arbitrary value. 
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Fig. 3.- This compensator, formed by reactances, balances the system. Three 
varmeters measure 

  
QR1

, 
  
QS1

 and 
  
QT1

, and allow to obtain which power 
values the compensator's reactances must absorb. 

The reactive powers of the compensator, QRS
C , QST

C , and QTR
C , which make the reactive 

power delivered by each phase to the compensator-load group equal to Q2/3, will be 
determined. The power delivered to the compensator-load group by each phase is the 
sum of the power delivered to the load by each phase and the power delivered to the 
compensator. Taking into account (7), (8) and (9), this power is: 
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Q2

3
= QR1 +

QRS
C

+QTR
C

2
 

Q2

3
= QS1 +

QST
C

+QRS
C

2
 

Q2

3
= QT1 +

QTR
C

+QST
C

2
 (10) 

The values looked for are obtained from this set of equations: 

QRS
C

=
Q2

3
+QT1 !QR1 !QS1  

QST
C

=
Q2

3
+QR1 !QS1 !QT1  

QTR
C

=
Q2

3
+QS1 !QT1 !QR1  (11) 

These are the reactive power values of the compensator's reactances that balance the 
three-phase system. The reactive power absorbed now is Q2. If the only purpose is to 
balance the system without changing the value of the reactive power delivered to the 
compensator-load group, then we use Q2 = Q1 = QR1 +QS1 +QT1 . But if this reactive 
power, Q2, is intended to be zero, then the powers of the reactances should be 

QRS
C

= QT1 !QR1 !QS1  

QST
C

= QR1 !QS1 !QT1  

QTR
C

= QS1 !QT1 !QR1  (12) 

This are the values which balance the system and make the power factor unity. Under 
this conditions the power lost in the line is minimum. 
The previous formulas constitute a very easy algorithm to deduce the values of the 
reactances of the compensator. The reactive powers delivered to the initial load by each 
phase can be measured using three VAr meters connected as shown in figure 3[7]. 

Knowing that 3V  is the effective value of the voltage between the phases of the load, 
the reactance values of the compensator are 

XRS
C

=
3V

2

QRS
C

, XST
C

=
3V

2

QST
C

, XTR
C

=
3V

2

QTR
C

 (13) 

And susceptances are 

BRS
C

= !
QRS
C

3V
2

, BST
C

= !
QST
C

3V
2

, BTR
C

= !
QTR
C

3V
2

 (14) 

The sign of each reactance is the same as the sign of its corresponding reactive power. 
For that reason, if the reactive power is positive, the corresponding reactance is 
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inductive. If the power is negative, the corresponding reactance is capacitive. The sign 
of each susceptance is the opposite to that of its corresponding reactive power and 
reactance. 

Other algorithms 
Other algorithms can be deduced to obtain the reactive power values of the 
compensator's reactances. For instance, reactive powers of each phase can be obtained 
from the active and reactive powers measured as shown in figure 4[7]. In this figure, 
SRS1 = PRS1 + jQRS1  and STS1 = PTS1 + jQTS1  are the powers acquired by the meters 

represented. As 
 
VR = V /0

! , 
 
VS = V / !120! = V !1 2 ! j 3 2( ) , 

 
VT = V /120! = V !1 2 + j 3 2( ) , IR

L!
= IR

L
/"R , and IT

L!
= IT

L
/ "120° +#T , then 

 

PRS1 + jQRS1 =URSIR
L!

= VR "VS( ) IR
L!

= V /0! "V / "120!( ) IRL /#R =  

=
3

2
PR1 !

3

2
QR1

"

#$
%

&'
+ j

3

2
PR1 +

3

2
QR1

"

#$
%

&'
 (15) 

jQ
ST

C

RS
jQC

TRjQC

Unbalanced
three- phase

load

R

S

T

,Q
TS1P

TS1

,QRS1PRS1

I
T
C

IS
C

I
R
C

IR

I
S

I
T

IR
L

I
S
L

I
T
L

_

_

_

_

_

_

_

_

_

+jQ
R1P

R1

+jQ
S1P

S1

+jQ
T1P

T1

 
Fig. 4.- In order to use the measures from two wattmeters and two varmeters, 

other algorithms could be obtained. 

If the first and last members are compared 

PRS1 =
3

2
PR1 !

3

2
QR1  (16) 

QRS1 =
3

2
PR1 +

3

2
QR1  (17) 

By subtracting the second equation, previously multiplied by 3 , from the first 
equation, PR1  is eliminated and the result is 

QR1 = !
1

2 3
PRS1 +

1

2
QRS1  (18) 

Similarly 
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QT1 =
1

2 3
PTS1 +

1

2
QTS1  (19) 

And, seeing that QR1 +QS1 +QT1 = QRS1 +QTS1 [7], the value for QS1  is 

QS1 =
1

2 3
PRS1 ! PTS1( ) +

1

2
QRS1 +QTS1( )  (20) 

By substituting (18), (19), and (20) in (12), these values are obtained 

QRS
C

=
PTS1

3
!QRS1  

QST
C

= !
PRS1

3
!QTS1  

QTR
C

=
PRS1 ! PTS1

3
 (21) 

These are the powers of the reactances of the compensator which are able to balance the 
currents and fully compensate the reactive power. If (18), (19), and (20) are substituted 
in (11), the compensator reactances, which balance the system, are obtained; 
nevertheless, the reactive energy absorbed in this case by the compensator-load group is 
Q2 , which can be arbitrarily fixed. 

If Q2  is the reactive power delivered to the load, the static compensator does not absorb 
reactive power (nor active power, of course). 

Example 
The meters in figure 4 show the following powers in kW and kVAr: 
SRS1 = PRS1 + jQRS1 = 4 + j3  and STS1 = PTS1 + jQTS1 = 8 + j5 .  V =U 3 = 220V . U  
is the line-to-line voltage. Thus, load currents are 

IR
L
=

SRS1

URS

!

"#
$

%&

'

= 13.12/ ( 6.87°  

IT
L
=

STS1

UTS

!

"#
$

%&

'

= 24.76/57.99°  

IS
L
= !IR

L
! IT

L
= 32.57/ !143.39°  

The reactive power delivered to the load is Q1 = QRS1 +QTS1 = 8kVAr  

If the objective is to balance the system without altering the reactive power it delivers to 
the load, (21) should be used by adding Q2 3 = Q1 3 = 8 !10

3
3  to them: 

QRS
C

=
Q2

3
+
PTS1

3
!QRS1 = 4285.47VAr  
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QST
C

=
Q2

3
!
PRS1

3
!QTS1 = !4642.73VAr  

QTR
C

=
Q2

3
+
PRS1 ! PTS1

3
= 357.27VAr  

(14) gives the values of the susceptances: 

BRS
C

= !
QRS
C

3V
2
= !29.51"10

!3
S  

BST
C

= !
QST
C

3V
2
= 31.97 "10

!3
S  

BTR
C

= !
QTR
C

3V
2
= !2.46 "10

!3
S  

The phase currents of the compensator are 

I
C!

"
#
$ =

IR
C
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C
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C

!

"

%
%
%
%

#
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&
&
&
&

=
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C
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C
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!

"
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%

#

$

&
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&
&
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"

%
%
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!

"

%
%
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#

$

&
&
&

 
Which is a negative-sequence symmetrical current set (more comments on this result 
will come later). The phase currents before the compensator are 

I[ ] =

IR

IS

IT

!

"

#
#
#

$

%

&
&
&

=

IR
L
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L
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!

"

#
#
#
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$
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&
&
&
&

+

IR
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!

"

#
#
#
#
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&
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"

#
#
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Which is a positive-sequence symmetrical current set, as intended. 

If V[ ]
t
= VR ,VS ,VT!" #$ , then the complex power delivered to the compensator-load group 

is[7] 

V[ ]
t
I[ ]
!
= 12000 + j8000  

which is equal to that of the load alone.  
If the objective is to compensate the reactive power, then Q2 = 0 . In that case 

BRS
C

= !11.15 "10
!3
S , BST

C
= 50.34 !10

"3
S , and BTR

C
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"3
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I[ ] =

IR

IS

IT

!

"
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=
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and the complex power delivered to the compensator-load group is 

V[ ]
t
I[ ]
!
= 12000 + j0  

Currents of the compensator 
The previous example showed that the currents of the compensator form a negative-
sequence symmetrical current set, when only the line currents are balanced without 
compensating the reactive power. This is not accidental, for it happens whenever the 
value of the compensator's reactive energy is zero. Indeed, as the phase-neutral voltages 
are balanced, they only have positive-sequence symmetrical component Vd , therefore 
only the currents' positive-sequence symmetrical component of the compensator Id

C  
intervenes in the formula of the power it absorbs. That is to say, the value of the 
complex power supplied to the compensator at all times is 

S
C
= 3VdId

C!
= P

C
+ jQC  

where Id
C!  is the conjugate of Id

C . The value of the active power PC  is always zero, 
due to the compensator being formed only by reactances. If the value of the reactive 
power QC  is also zero, then 

S
C
= 3VdId

C!
= 0  

Seeing that Vd ! 0 , it follows that Id
C!

= 0  and Id
C
= 0 .  

Therefore, if QC = 0 , the compensator's currents lack of positive-sequence symmetrical 
component. Those currents are also lacking zero-sequence symmetrical component, 
seeing that they add up to zero, consequently only the negative-sequence symmetrical 
component cannot be zero. It is concluded that the compensator's currents are a 
negative-sequence symmetrical current set when the value of its reactive power is zero. 

Compensator for four-wire three-phase loads 
Figure 5 shows a procedure to cancel out the current through the neutral wire of any 
four-wire three-phase load. Two reactances, X1  and X2 , are connected between the R 
and S phases, and the neutral wire, respectively, so that 

 !
V /0°

jX1
!
V / !120°

jX2
= IN  (22) 
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2
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N

 is zero, and the four-wire load behaves as a 
three-wire load. 

Voltages of the initial load are not affected by the connection of X1  and X2 . The active 
power is not increased either. Nevertheless, the current through the neutral wire, !IN , is 
canceled out, which, in fact, transforms the load into a three-wire three-phase load. The 
previously seen compensator can now be connected to the three phases, as shown in 
Figure 6. 
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_

jQ
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C

RS
jQC

TR
jQC
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Fig. 6.- Static VAr compensator for a four-wire three-phase load. 

Phasor IN  can be determined by using a watt-varmeter connected as indicated in figure 
5. This meter reads 

 !VR( ) !IN( )
*
= VRIN

*
= PNR + jQNR  

where PNR  and QNR  are the wattmeter and varmeter readings, respectively. From this 
formula it can be seen that 

 IN =
PNR + jQNR

VR

!

"#
$

%&

*

=
PNR

V
' j

QNR

V
 

If this result is substituted in (22), then 

 X1 =
3V

2

PNR ! 3QNR

 

 X2 =
3V

2

2PNR
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which are the reactances that cancel out the current through the neutral wire. 

Load voltage 
So far, the voltages of the load have been supposed to be symetrical. But, if the load 
currents are not balanced, then the voltage drops of the phases, Z LIR  , Z LIS , and 
Z
L
IT , are different, which leads to unbalanced voltages near the load. However, the 

iterative operation of the compensator quickly produces symmetrical voltages, when 
connected. 
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_

_
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Fig. 7.- Simulation network. 

Figure 7 summarizes one of the simulations made. It shows a three-wire three-phase 
system formed by three symmetrical voltage sources VR

S
= 100/0° , VS

S
= 100/ !120° , 

and VT
S
= 100/120° . The impedance of each phase wire is Z L = 1+ j1 . The load is a 

triangle of impedances ZRS = 10 + j15 , ZST = 20 + j25 , and ZTR = 80 + j30 . The 
effective values of the phase currents without the compensator are 
IR = 9.74A , IS = 10.84A , and IT = 5.53A . 

The load voltages are 
VR = 86.70V , VS = 85.42V , and VT = 92.67V . 

Table 1 shows the values of the phase currents and voltages when the compensator is 
connected, which have been obtained from the iterated use of (12) and (13). V has been 
substituted each time by URS 3  in these algorithms. After the fifth iteration of the 
compensator the currents and voltages are balanced. The tendency to balance is fast, 
because right after the second iteration of the algorithm the effective value of the 
currents are very close to each other, as occurs with the effective values of the voltages. 

Experimental test 
An experimental automatic device was designed and built at our laboratory to test the 
results of this paper. Figure 8 shows its block diagram. It consists of a passive load 
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formed by impedances connected between every two phases, which is represented in 
figure 8 by the unbalanced three-phase load block. The connection of impedances can 
be modified manually, thus allowing to obtain balanced or unbalanced loads easily. 
Using a Data Acquisition (DAQ) card and the application LabVIEW running on a 
desktop computer, the instantaneous currents iR and iT, and the instantaneous voltages 
vRS and vTS, are measured before and after the compensator. So, by programming the 
appropriate algorithms in LabVIEW, the values of the reactances of the compensator are 
obtained and the instruction to connected them to the original load is given through a 
digital output card. 

Unbalanced
three- phase

load

R

S

T

Signal
conditioning

network
(B)

I/O Cards
Computer

(LabVIEW)

Static
compensator

Signal
conditioning

network
(A)

 
Fig. 8.- Block diagram of the experimental device. 

Figure 9 is a screenshot from the tests. The upper part of the picture shows the 
unbalanced currents near the load, and the lower part shows the balanced currents 
resulting from using the compensator. 

 
Fig. 9.- Screenshots showing the unbalanced phase currents near the load 

(top) and the balanced currents resulting from using the compensator 
(bottom). 
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Conclusion 
Advantages of the analysis of three-phase loads described by relations between powers, 
instead of impedances, are shown in this paper. When its use is possible, this analysis 
method explicitly indicates if results can, or cannot, be applied to active loads. More 
specifically, the possibility to use it to obtain the static VAr compensators' algorithms is 
shown. Then, it is made clear that the compensators' function is valid whatever kind of 
three-phase load it is connected to, particularly, whether they are active or passive 
loads. It is also shown that, if a compensator does not deliver reactive power, its three 
currents are always a negative-sequence symmetrical current set. 
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