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Alvariño Herrero, Dr. Francisco Javier Aoiz Moleres y Dr. Marcelo
Pessoa de Miranda, a quienes expreso mi más sincero agradecimiento
por su constante ayuda, apoyo y paciencia.
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por su disponibilidad y ayuda durante estos cuatro años.

A David y Cristina, con quienes disfruté de muchos buenos (y no tan
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1. Introduction

Two of the most persistent goals of scientific investigations of the dynamics of
molecular collisions are understanding and control [1, 2]. On the one hand, collision
dynamicists strive for a detailed understanding of collision mechanisms and of the
role of energetic and directional factors in scattering events [3, 4, 5]. On the other
hand, they attempt to devise techniques for the control of molecular collisions and, in
particular, for the selection of desired collision outcomes [6, 7, 8]. Naturally, the two
endeavours go hand in hand. Understanding of collision mechanisms facilitates the
development of control schemes, while analysis of the dynamics of controlled collisions
can offer important clues about collision mechanisms.

Both issues are directly related to the subject matter of this work: to study the
stereodynamics1 of atom-diatom reactions

A + BC → AB + C (1.1)

through the consideration of the role of the BC rotational angular momentum (j)
polarization in the dynamics of the process. This analysis is performed by means of
theoretical tools useful (i) for the analysis of the dependence of reaction mechanisms
on reactant polarization, and (ii) for the selection of optimum reactant polarization
schemes for the control of reaction probabilities and product state distributions.

The techniques and results presented throughout the manuscript contribute to fill
the gap existing between the quite obvious idea that collision geometry can influence
chemical reactivity and the exploration of stereodynamics with rigorous and quan-
titative theory. It is often the case that detailed studies of the stereodynamics of
molecular collisions lead to surprising, counterintuitive results. A particularly strik-
ing example is provided by the Li + HF system. Quantum theoretical studies [17, 18]
of this reaction at zero total angular momentum and with HF in its ground vibra-
tional state have confirmed the earlier predictions of QCT calculations [19], namely
that formation of the LiF product is favoured not only when the Li atom attacks the
F end of HF, as one would intuitively expect, but also (and perhaps more strongly)

1Reaction dynamics explicitly accounting for stereochemical factors [9, 10, 11, 12, 13, 14, 15, 16]
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6 1. Introduction

when the Li atom attacks the H end of HF. Experimental studies of the same reaction
by Loesch and coworkers [20, 21], this time involving HF(v = 1) molecules, have con-
firmed steric effects to be important, but in a rather different manner. The detailed
analysis of their data was carried out in the light of wavepacket [22] and QCT [23]
calculations, and the theoretical studies have lead to the conclusion that steric effects
are actually quite unimportant for the integral reaction cross section summed over
product states, but much more significant for differential properties and for the prod-
uct state distribution, with formation of LiF in its v′ = 0 or v′ = 3 vibrational states
being favoured, respectively, by head-on or side-on Li + HF collisions [23].

Two versions of the method will be presented: one classical, appropriate for use
in conjunction with quasiclassical trajectory (QCT) calculations, the other quan-
tum mechanical, appropriate for use in conjunction with time independent quantum
scattering calculations. Both versions are strongly based on quantum [24, 25] and
classical [25] methods used before for the description of polarization effects in the
dynamics of atom-diatom reactions, which in turn were strongly based on previous
vector correlation theories [26, 27, 28, 29, 30, 31, 32]. The quantum and classical
theories have been stated using analogous formalisms, and revising or extending some
of the definitions used in the past in order to maximize the chemical insight that
can be gained by analysis of the calculable (and observable) quantities, and in order
to facilitate the comparison between (possibly experimental) quantum and classical
results.

With the purpose of encouraging experimental approaches to the problem, a cur-
rently feasible experiment capable of probing the phenomena theoretically addressed
is also described. Such experiment consists of aligning the BC rotational angular
momentum j (and thus the internuclear axis r) perpendicular to (along) a laboratory
fixed axis whose position in the centre of mass reference frame can be controlled so
that different arrangements of the axis will correspond to different collision geometries.
Theoretical predictions for possible outcomes of the experiment are widely employed
throughout the work because, on top of providing with an estimation of the control
achievable through the reactants polarisation, they can be intuitively interpreted in
terms of the reaction mechanism.

The dichotomy of intrinsic and extrinsic reaction properties lies on the basis of the
methods presented. The former describe the reactive process itself and are inherently
determined by the collision dynamics rather than by external circumstances. The
second group of properties describes the experiment employed to study the reaction
and, consequently, they can be externally modified.

In order to further clarify the difference between both kinds of properties, let us
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consider the following analogy. Suppose we are inside a Gothic cathedral. The light
we see depends not only on the quality of light but on the motifs and colours of the
stained-glass windows. Their different pieces filter and alter the sunlight in such a
way that we cannot perceive that light but only the components that can go through
the windows. In a chemical reaction, the intrinsic properties play the role of the
sunlight, the experiment characterised by the extrinsic properties plays the role of
the filter, that is, of the coloured glass pieces and, finally, the light we perceive into
the cathedral represents the experiment output. The intrinsic properties are inherent
to the reaction and they only reveal their presence by means of an experiment, whose
output represents the way in which we perceive them. Of course, the output changes
as we change the experimental conditions (the glass pieces of the window), but this
change does not affect the intrinsic nature of the reaction, it only affects the way in
which we perceive it. Consequently, the observable quantities related to the reaction
are simultaneously determined by both intrinsic and extrinsic properties, that is, by
the nature of the reaction and by the characteristics of the experiment employed to
probe such nature.

Not all the reaction properties are equally useful from the point of view of un-
veiling the stereodynamics of chemical reactions. In particular, it is convenient to
consider the polarisation of the BC rotational angular momentum and to emphasise
the differences between the intrinsic and the extrinsic polarisations. The former rep-
resents the reactants polarisation that gives rise to reaction into a given final state,
at a given scattering angle and, possibly, with a defined polarisation of the products.
The intrinsic polarisation contains the directional preferences of the reaction and can
not be altered by any external procedure. In turn, the extrinsic polarisation corre-
sponds to the actual (and necessarily particular) preparation of the rotational angular
momentum of the reactants when an experiment takes place, and can be externally
determined.

The reaction output is determined by the merging of the intrinsic and extrinsic po-
larisations, being possible to selectively modify the reaction probability by preparing
the reactants prior to collision according to different extrinsic polarisations. As the
effect of a certain experimental polarisation on the reaction probability will depend,
in general, on the products internal state and the products recoil direction, it will
be feasible to control not only the reaction probability but also the products states
distribution and the differential cross section.

Quantification of the extent of this control is based on the consideration of po-
larisation moments [29, 31, 33]. These are numeric parameters that mathematically
represent the polarisation of any angular momentum. In particular, our interest will
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focus on the intrinsic and extrinsic polarisation moments holding for the intrinsic
and the extrinsic reactants polarisations. The intrinsic polarisation moments play a
twofold role: they quantify the directional preferences of the reaction and relate the
j polarisation to reaction probabilities. The extrinsic moments numerically describe
the experimental reactants preparation. It will be found that the reaction cross sec-
tions can be expressed in terms of both sets of moments through expressions that,
when employed, allow for evaluating the change in the observables values caused by
preparing the reactants in a certain manner, that is, allow for quantifying the control
achievable by extrinsically polarising the reactants.

On top of this, the values of the intrinsic moments furnish us with a measurement
of j alignment2 or orientation3 with respect to well defined directions in the space
when the reaction happens. Therefore, the reaction mechanism can be unveiled by
analysing the directional information contained in each of the moments. This proce-
dure, however, poses a difficulty: it is necessary to merge the information contained
in all the intrinsic moments in order to obtain a global view of the mechanism. The
accomplishment of this task involves a considerable mental effort and, if the number of
moments is too high, becomes unattainable. Fortunately, this difficulty can be over-
come by using the stereodynamical portraits: three dimensional distributions which
condense the intrinsic moments information and represent the j and r arrangements
leading to products formation. The employment of stereodynamical portraits will be
proved to supply with the connection between the time independent scattering calcu-
lations and the mechanism language, constituting a powerful visual tool for probing
the reaction mechanism.

The work is organized as follows. The theory presentation starts with Chapters 2
and 3. The former includes the classical and quantum mechanical definitions of the
polarisation moments, together with their main properties. The second is devoted to
scattering theory, providing with a general description of the different procedures used
for tackling with the study of reactive collisions. Working on the basis of Chapters 2
and 3, Chapter 4 completes the theoretical part of the work by including (i) the
introduction of the extrinsic and the intrinsic reactants polarisations and explicit ex-
pressions for the evaluation of the intrinsic moments, (ii) expressions for the reaction
cross sections when the reactants are arbitrarily polarised, (iii) a discussion about
the extent of the reaction control achievable through such polarisation and about the
experimental feasibility of measuring that control, (iv) the presentation of the stere-

2An angular momentum j is said to be aligned when it displays a preference for being directed
along a certain spatial direction

3An angular momentum j is said to be oriented when, beyond displaying a preference for being
directed along an spatial direction (z), it shows as well a bias towards +z or −z
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odynamical portraits and (v) numerical examples that employ the H+D2(v=0,j=2)
reaction to illustrate the former points. The following Chapters make use of the tools
devised in Chapter 4 to cope with different problems: Chapter 5 analyzes the mecha-
nism of the H+D2 reactive collisions through the information contained in the intrinsic
polarisation, Chapter 6 studies the mechanism and control of the F+H2 reaction and
Chapter 7 tackles the control and mechanism of ultracold collisions, proving that
control through the reactants polarisation is feasible in the ultracold limit. Finally,
Chapter 8 closes the work with a summary of the main results and conclusions. In
order to make easier to get the gist of the dissertation, some mathematical derivations
are moved into Appendices placed at the end of the manuscript.
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2. Polarisation moments

To be able of representing mathematically the polarisation of an angular momen-
tum is a “sine qua non” requirement to analyse the directional effects related to
any chemical reaction. The scope of the present Chapter is to provide with a brief
summary of the mathematical tools that make possible to fulfill this goal.

Let us consider a physical system with j angular momentum1. Two alternative
descriptions of the j polarisation will be presented: one based on classical mechanics
and another one based on quantum mechanics. While the former does not set any
constrain to the simultaneous knowledge of the three cartesian components of the
angular momentum, in the quantum mechanical frame it is necessary to consider the
uncertainty principle which sets that only the modulus and one of the components
can be simultaneously determined [34, 35].

This upper limit to the knowledge of the j direction will be the origin of the dissim-
ilarities between both descriptions. They will have in common that the polarisation
features will be expressed by means of a set of quantities called “polarisation mo-
ments” that represent the coefficients of a multipolar expansion [25, 36]. However,
the identity of the expanded function will be different as we use classical or quan-
tum mechanics: in the former case it will be the classical probability density function
(PDF) of finding the angular momentum pointing along a defined spatial direction
while, in the second, the elements of the density matrix describing the state of the
system will be employed.

Although the classical PDF and the density operator contain by themselves all the
information regarding the polarisation of the system angular momentum, the use of
a multipolar expansion will imply some benefits. On the one hand, we split all that
information in small pieces (the polarisation moments) which are (i) easier to “digest”
and interpret than the whole bulk and (ii) experimentally measurable. On the other
hand, we will see that the polarisation moments behave as spherical tensors [37, 38]
under rotations. This will make possible to gain maximum advantage by using the
symmetry properties of the system under study.
1In the present Chapter j will represent a generic angular momentum and not necessarily the

rotational angular momentum of a diatomic molecule, as it will be the case in the rest of the
manuscript
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12 2. Polarisation moments

The classical and quantum mechanical mathematical descriptions of the polarisa-
tion moments are presented in Secs. 2.1 and 2.2 respectively. Both Sections follow a
parallel structure: after introducing the classical PDF or the elements of the density
matrix, the moments are defined as their multipolar expansion coefficients. Sec. 2.3
tackles with the properties of the moments for systems with special symmetry. The
moments physical interpretation is presented in Sec. 2.4. Finally, the relation between
the classical and the quantum mechanical moments will be discussed in Sec. 2.5 by
introducing the “quantum population distribution function” [39, 40]. It represents the
closer the quantum mechanics can get to the probability of finding j along a certain
direction in the space and, in the correspondence limit, coincides with the classical
PDF.

2.1. Probability density function and classical

polarisation moments

2.1.1. Probability density function (classical PDF)

The classical description of a j angular momentum polarisation is based on the
probability density function P (θj , φj) (classical PDF) whose values correspond to the
probability of finding j pointing along the direction given by the polar angles θj and
φj .

From the mathematical point of view, P (θj , φj) is just a function of the polar angles
and, as such, it can be expanded in terms of standard spherical harmonics Ykq(θj , φj)
[37] or, more conveniently [25, 41], in terms of complex conjugates of the Ckq(θj , φj)
modified spherical harmonics

Ckq(θj , φj) =
(

4π

2k + 1

)1/2

Ykq(θj , φj) (2.1)

The concrete expression for the expansion is given by [25]

P (θj , φj) =
∞∑

k=0

k∑

q=−k

(2k + 1)
4π

a(k)
q C∗kq(θj , φj) (2.2)

where the a
(k)
q complex coefficients are the classical polarisation moments.

The PDF integral over the whole space, that represents the probability of finding
j pointing along any spatial direction, can be interpreted as the population of the
system whose angular momentum is j.
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2.1.2. Classical polarisation moments

The orthogonality of the spherical harmonics [37]

∫ 1

−1

∫ 2π

0

C∗k′q′(θj , φj)Ckq(θj , φj)d cos θj dφj =
4π

2k + 1
δkk′δqq′ (2.3)

makes possible to find an explicit expression for the classical polarisation moments
by inverting Eq. (2.2):

a(k)
q =

∫ 1

−1

∫ 2π

0

P (θj , φj)Ckq(θj , φj)d cos θj dφj = 〈Ckq(θj , φj)〉 (2.4)

which shows that each a
(k)
q can be individually interpreted as the average of the

corresponding modified spherical harmonic over the PDF angular distribution.

The P (θj , φj) distribution values must be real. In other words, this means that
the classical PDF must coincide with its complex conjugate. By imposing explicitly
this condition it is found that the classical polarisation moments fulfill the following
relation

a(k)
q = (−1)qa

(k)∗
−q (2.5)

2.2. Density matrix and quantum mechanical

polarisation moments

The limitations coming from the uncertainty principle make impossible to talk
about an angular momentum pointing along a defined spatial directions and to define
a PDF with the same meaning as in the classical case. Because of this, to deal with
the j polarisation in the frame of quantum mechanics it will be necessary to follow a
different strategy.

The starting point for the quantum mechanical treatment will be the density oper-
ator (ρ̂) that represents the state of the physical system under study. This operator
will play the role of the classical PDF. It contains all the information about the sys-
tem and, in particular, that corresponding to the j polarisation. After presenting
its general features in Sec. 2.2.1, the quantum mechanical polarisation moments will
be introduced in Sec. 2.2.2 as the coefficients of the ρ̂ matrix elements multipolar
expansion.
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2.2.1. Density operator and density matrix

Pure states

The set of observables Â, B̂, . . . , L̂ is called a “complete set of commuting observ-
ables” (CSCO) if it possesses an unique common basis system [34]. Given another
observable Q̂ which commutes with all the operators of the set, it will have the same
basis and its eigenvalues q will be a well defined function of the a, b, . . . , l eigenvalues
of Â, B̂, . . . , L̂. If Q̂ does not commute with all the observables of the set, the mea-
surement of its eigenvalues will not be compatible with the simultaneous knowledge
of a, b, . . . , l.

An experiment where the simultaneous measurement of the eigenvalues correspond-
ing to a complete commuting set of observables is performed will be termed a “com-
plete experiment” [26]. After that measurement, the dynamical state of the system
will be given by the |a, b, . . . , l〉 eigenstate of the Â, B̂, . . . , L̂ observables included in
the set.

Any system prepared in this way is said to be in a “pure” state and it has well de-
fined dynamical properties. They are maximum information states (in the sense that
it is possible to find a complete experiment which gives an unique result predictable
with certainty when carried out over the system) and can be represented by a single
state vector |φ〉.

Mixed states. The density operator

In practise, a complete preparation of a system is only seldom achieved and the
observables measured during the preparation process use not to be a complete set.
When this happens the system is not in a pure state as it is not possible to find a
complete experiment that, when performed, provides with an uniquely predetermined
outcome.

These states have been called “mixed states” because they can be represented by
an statistical mixture (an incoherent mixture) [26] of different pure states. In this
case a single state vector can not describe the system (if it were enough it would be a
pure state) but it is necessary to specify the probabilities p1, p2, . . . , pn of finding the
system in each of the |1〉, |2〉, . . . , |n〉 pure states included in the mixture.

That statistical mixture can be completely characterised by means of an Hermitean
operator called density operator and defined as

ρ̂ =
∑

r

pr|r〉〈r| (2.6)
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where the |r〉 kets are normalised but they do not need to be orthogonal. The pr

statistical weights are positive real numbers whose sum is the population of the state.
If only one of these statistical weights were different from zero the system would be
in a pure state and the density operator would be given by ρ̂ = |φ〉〈φ|.

Density matrix

The density matrix (ρ) is the representation of the density operator in an orthonor-
mal basis (|φn〉) of the Hilbert space corresponding to the studied system. To obtain
an expression for its elements we only have to expand the pure states included in the
statistical mixture in terms of the basis vectors

|r〉 =
∑

n

crn|φn〉 〈r| =
∑

n′
c∗rn′〈φn′ | (2.7)

and to substitute these expressions into the equation 2.6

ρ̂ =
∑

n,n′

(∑
r

pr crn c∗rn′

)
|φn〉〈φn′ | =

∑

n,n′
ρn,n′ |φn〉〈φn′ | (2.8)

The numbers
ρn,n′ = 〈φn|ρ̂|φn′〉 =

∑
r

pr crn c∗rn′ (2.9)

are the elements of the density matrix in the |φn〉 basis.

The following properties [42, 43] of the density matrix are necessary for the future
development of theory as they will be repeatedly employed:

� The density matrix is Hermitian.

� The trace of the density matrix is equal to the population of the system

tr(ρ) =
∑

r

pr (2.10)

� Any diagonal element ρn,n of the density matrix in any representation is non-
negative and its value represents the probability of finding the system in the
|φn〉 state.

� The off-diagonal elements of the density matrix express the coherence between
the |φn〉 states. There are three possibilities:
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1. All the density matrix elements are zero except one placed on the diagonal.
This means that the system state can be described by the basis element
corresponding to the non-zero diagonal element or, in other words, that
the system is in the pure state corresponding to that ket.

2. All the off-diagonal elements are zero and several (more than one) diag-
onal elements are different from zero. In this case the system state is an
incoherent superposition of the |φn〉 basis states.

3. Two or more off-diagonal elements are different from zero. In this case the
state of the system is a coherent superposition of the basis kets.

Pure states are a coherent superposition of the elements of any possible basis (in
this sense, the pure states can be considered as fully coherent states). To prove
this, let us suppose a system whose density operator is given by ρ̂ = |φ〉〈φ|. By
expanding |φ〉 in an arbitrary basis |φn〉

|φ〉 =
∑

n

cn|φn〉 〈φ| =
∑

n′
c∗n′〈φn′ | (2.11)

it is found that the density operator can be expressed as

ρ̂ =
∑

n,n′
(cn c∗n′) |φn〉〈φn′ | =

∑

n,n′
ρn,n′ |φn〉〈φn′ | (2.12)

where the elements of the density matrix have now a simple expression

ρn,n′ = cn c∗n′ (2.13)

The ket |φ〉 that represents the system state can coincide or not with one of the
elements of the basis. If it coincides, the situation is trivial because we are in
case 1 (the density matrix is diagonalized by the |φn〉 basis and only one element
of the diagonal is different from zero). On the contrary, if |φ〉 does not belong
to the basis, at least two off-diagonal elements have to be different from zero
and the state of the system will be a coherent superposition of the |φn〉 basis
elements (case 3).

For physical systems which are not in a pure state, the coherent/incoherent
character will depend on the chosen basis, that is, the state corresponding to
the density operator (2.6) can be a coherent superposition of the elements of a
basis and incoherent superposition of the elements of other basis. To clarify this
let us suppose for a moment that the |r〉 kets in (2.6) are part of a basis (that
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is, they are orthonormal) and that more than one takes part in the sum. The
system state would be an incoherent supperposition of the states of this basis
because the ρ̂ operator representation is diagonal with more than one non-zero
diagonal elements (case 2):

(ρ) =




p1

...
p2 . . . 0 . . .

. . .
...

pr

0
... 0

. . . 0 . . . 0
...




(2.14)

However, if the |r〉 kets are expressed in another basis, it can happens that the
corresponding representation of ρ̂ displays non-zero off-diagonal elements (case
3) and the system state would be a coherent superposition of the elements of
this second basis.

� Given a certain density matrix, it is not necessary to diagonalize it to decide
wether it corresponds (only one eigenvalue different from zero) or not (more
than one eigenvalue different from 0) to a pure state. It is enough to evaluate
the trace of the density matrix square and to compare it to the population:

– When the system is in a pure state ρ̂ turns out to be a projection operator
(ρ̂ = ρ̂2 = ρ̂†) and

tr(ρ2) = tr(ρ) (2.15)

– On the contrary, if
tr(ρ2) < tr(ρ) (2.16)

the system state will be a mixed one.

– While the maximum value of tr(ρ2) is given by Eq. (2.15), the minimum
is tr(ρ)2/n (where n is the dimension of the Hilbert space, that is, the
number of basis elements). This represents the furthest than the physical
system can be from a pure state (or the maximum degree of “mixture”)
and it corresponds to a density matrix which, when diagonalized, has all
the eigenvalues equal and different from zero.
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The value of tr(ρ2) is not altered by changes of basis, in such a way that a pure
(mixed) state will be a pure (mixed) state in any basis (the fact of having or
not a pure state is a property of the system and, as such, it can not depend on
the basis selected for its analysis).

� The expectation value of any observable Â is given by the trace of its product
with the density operator ρ̂

〈Â〉 =
∑

r

pr〈r|Â|r〉 =
∑

n,n′
〈φn|ρ̂|φn′〉〈φn′ |Â|φn〉 =

∑

n,n′
ρn,n′An′,n = tr(ρA) (2.17)

(of course, the value of 〈Â〉 is independent of the basis (|φn〉) choice). This
expression can be found as well in this alternative form

〈Â〉 =
∑

r

pr〈r|Â|r〉 =
tr(ρA)
tr(ρ)

(2.18)

differing from Eq. (2.17) in the normalisation factor tr(ρ) (the system popu-
lation). Throughout this work, Eq. (2.17) will be preferred to its normalised
counterpart (2.18) whenever it will be necessary to evaluate expectation values
from the density operator. This is just a matter of convention and, as such, it
has advantages (the polarisation moments definition (Sec. 2.2.2) coincides with
the one employed in [33] and in most of the theoretical works about stereody-
namics) and disadvantages (the information necessary to determine the system
population is included in the density operator and, therefore, the expectation
values determined from (2.17) include that information and will depend on the
population. Prior to compare expectation values corresponding to systems with
different population, they have to be normalised dividing by the population).
This discussion holds the same for the averaged values introduced in Sec. 2.1
(in particular, in Eq. (2.4) we have not divided by 〈1〉, the classical counterpart
of the quantum mechanical population). As it will be indicated in the following
Section, the choice of Eq. (2.17) and the (eventual) necessity of normalising the
expectation values will have consequences on the polarisation moments.

� In the Schrödinger picture of the quantum mechanics the temporal evolution of
the states is determined by the expression

|r; t〉 = Û(t, t0)|r; t0〉 (2.19)

with Û(t, t0) representing the time evolution operator and |r; t〉 (|r; t0〉) a generic
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state at time t (t0).

The time evolution of the density operator (2.6) can be determined by applica-
tion of the former equation to each of the states involved in the mixture

ρ̂(t) =
∑

r

pr|r; t〉〈r; t|

= Û(t, t0)

(∑
r

pr|r; t0〉〈r; t0|
)

Û†(t, t0)

= Û(t, t0) ρ̂(t0) Û†(t, t0) (2.20)

Taking now the first derivative of this expression with respect to time and
substituting

i~
∂Û(t, t0)

∂t
= ĤÛ(t, t0) (2.21)

(and the corresponding one for the adjoint), we obtain the Liouville equation

i~
∂ρ̂(t)
∂t

=
[
Ĥ, ρ̂(t)

]
(2.22)

that can be employed to obtain ρ̂(t).

� An explicit expression for ρ̂2(t) can be derived from 2.20 by using the unitary
character of the time evolution operator

ρ̂2(t) = Û(t, t0) ρ̂2(t0) Û†(t, t◦) (2.23)

This involves that the trace of ρ̂2(t) does not change with time or, in other
words, that if a system is in a pure state it can not evolve into a mixture and
vice versa (if ρ̂2(t0) = ρ̂(t0) at t0 then ρ̂2(t) = ρ̂(t) at any time). The unitary
nature of the evolution operator ensures as well that the trace of ρ̂(t) will not
change with time (Eq.2.20).

2.2.2. Quantum mechanical polarisation moments

Polarisation operators

The quantum mechanical treatment of angular momentum polarisation is based on
the polarisation operators [26, 28, 33, 36, 37, 38]. These operators play the role of the
spherical harmonics employed in the classical treatment and can be defined in several
alternative ways (for a summary see the App. D of reference [36]) which only differ
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by the normalisation and the phase. We will employ here

T̂ (j)kq =
j∑

m,m′=−j

(−1)j−m 〈jm′j −m|kq〉 |jm′〉 〈jm| (2.24)

which corresponds to references [33] and [38] and assumes that our physical system
is characterised by a single value of the j quantum number. The kets |j, m〉 are the
orthonormal eigenvectors of the square angular momentum operator (̂2) and of the
operator representing the angular momentum projection along a certain axis z (̂z)

̂2|j, m〉 = ~2 j(j + 1) |j,m〉 (2.25)

̂z|j, m〉 = ~m |j,m〉 m = −j, . . . , j (2.26)

(if the ̂2 and ̂z operators were not a complete commuting set, the |j,m〉 kets must be
substituted by |τ, j, m〉 (with τ representing the quantum numbers necessary to fully
specify the state of the system). In this case, the following discussion would hold for
physical systems with univocally defined values of τ and j). By means of 〈jm′j−m|kq〉
is represented a Clebsch-Gordan coefficient [37]. Their symmetry properties limit the
number of possible T̂ (j)kq operators to those fulfilling

k = 0, . . . , 2j and q = −k, . . . , k (2.27)

as otherwise the Clebsch-Gordan coefficients vanish.

Given two reference frames xyz and XY Z, the polarisation operators defined in
each system will be related to each other through the expression

T̂ (j)kq =
k∑

Q=−k

T̂ (j)kQD
(k)∗
qQ (α, β, γ) (2.28)

where the indices q (Q) refer to the xyz (XY Z) frame, D(k)(α, β, γ) is a Wigner
rotation matrix [37] and (α, β, γ) are the Euler angles associated with the rotations
that take the xyz frame into the XY Z frame (see App. A for a derivation of the
equation and a brief summary of the concepts and conventions underlying).

Any set of (2k+1) operators that transform under rotations according to Eq. (2.28)
is said to form an spherical tensor operator of rank k. Their matrix elements can
be evaluated by using the Wigner-Eckart theorem [37, 38] that, when applied to
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polarisation operators, allows for writing

〈jm′|T̂ (j)kq|jm〉 = (−1)2k〈jmkq|jm′〉 〈j||T̂ (j)k||j〉√
2j + 1

(2.29)

where the Clebsch-Gordan coefficient represents a geometrical factor that contains all
the information about the coordinate system orientation (through the quantum num-
bers m, m′ and q) and the 〈j||T̂ (j)k||j〉 factor is called the “reduced matrix element”
and concentrates the dynamical (non geometrical) information. Comparing (2.29)
with the value of 〈jm′|T̂ (j)kq|jm〉 that could be directly obtained from Eq. (2.24) it
is possible to obtain an expression for the reduced matrix element

〈j||T̂ (j)k||j〉 = (2k + 1)1/2 (2.30)

which, for every k-rank tensor, is simply a constant. This involves that the polarisation
operators are purely geometrical operators and that their matrix elements are purely
geometrical quantities.

The T̂ (j)kq operator and its adjoint T̂ †(j)kq are connected by

T̂ †(j)kq = (−1)qT̂ (j)k−q (2.31)

This equality makes possible to prove an useful relation between the traces of the
matrix representations (in the |j,m〉 basis) of the polarisation operators and their
adjoints

tr(T (j)kqT
†(j)k′q′) = δkk′δqq′ (2.32)

Fixing on k′ = q′ = 0 in this equation and taking into account that

T̂ (j)00 = T̂ †(j)00 =
1

(2j + 1)1/2
1̂ (2.33)

it is found the following expression for the trace of a single polarisation operator

tr(T (j)kq) = (2j + 1)1/2 δk0δq0 (2.34)

that turns out to be different from 0 only when k and q are equal to 0.

The necessity for this detailed presentation of the T̂ (j)kq operators and their prop-
erties will become clear in next pages, where it will be showed that they serve as
a basis for the multipolar expansion of the density operator and that the quantum
polarisation moments can be expressed as the 〈T̂ †(j)k−q〉 expectation values.
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Quantum polarisation moments

The density operator ρ̂ that represents the state of the system can be written2 as

ρ̂ =
∑

m,m′
〈jm′|ρ̂|jm〉|jm′〉〈jm| (2.35)

The orthogonality of the Clebsch-Gordan coefficients [37] allows for turning around
Eq. (2.24)

|jm′〉〈jm| =
∑

k,q

(−1)j−m〈jm′j −m|kq〉 T̂ (j)kq (2.36)

and, substituting this expression into Eq. (2.35), ρ̂ can be expressed in terms of the
polarisation operators

ρ̂ =
∑

k,q


 ∑

m,m′
(−1)j−m〈jm′|ρ̂|jm〉〈jm′j −m|kq〉


 T̂ (j)kq (2.37)

By multiplying both sides of this equation by T̂ †(j)k′q′ , taking the trace and using
Eq. (2.17) and (2.32), it can be seen that the content of the parenthesis is anything
but 〈T̂ †(j)kq〉. In consequence, the density operator can be expanded as

ρ̂ =
2j∑

k=0

k∑

q=−k

〈T̂ †(j)kq〉 T̂ (j)kq (2.38)

and its matrix elements will be given by

〈jm′|ρ̂|jm〉 =
2j∑

k=0

k∑

q=−k

(−1)j−m 〈jm′j −m|kq〉 〈T̂ †(j)kq〉 (2.39)

The complex expansion coefficients 〈T̂ †(j)kq〉 are called “State multipoles” or “statis-
tical tensor” [33, 44, 45]. They constitute a complete description of the system state,
entirely analogous to that given by the ρ̂ matrix elements.

The Hermitean character of the density operator (in Eq. (2.38)) and of its matrix
representation (in Eq. (2.39)) involves the following relation between the q and −q

state multipoles
〈T̂ †(j)kq〉 = (−1)q〈T̂ †(j)k−q〉∗ (2.40)

The quantum mechanical polarisation moments will be defined in terms of the state

2Employing the |jm〉 basis completeness
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multipoles as

a(k)
q = (−1)q

(
2j + 1
2k + 1

)1/2

〈T̂ †(j)k−q〉 (2.41)

being the complex coefficients of the following expansion of the density matrix ele-
ments

〈jm′|ρ̂|jm〉 =
2j∑

k=0

k∑

q=−k

2k + 1
2j + 1

a(k)
q 〈jm′kq|jm〉 (2.42)

As before, the Clebsch-Gordan orthogonality can be used to invert this equation
obtaining

a(k)
q =

j∑

m,m′=−j

〈jm′|ρ̂|jm〉 〈jm′kq|jm〉 (2.43)

which, given any density matrix, provides with the corresponding polarisation mo-
ments for the system.

Combining the definition (2.41) with the relation (2.40) gives

a(k)
q = (−1)qa

(k)∗
−q (2.44)

which is a direct consequence of the ρ̂ operator hermiticity. This expression is identical
to Eq. (2.5) (found in the classical case and derived using the real character of the
classical PDF function).

2.3. Polarisation moments for special systems

In this Section, special properties of the classical and quantum mechanical polar-
isation moments for systems with axial or reflection symmetry and for unpolarised
systems are obtained.

The two former situations will be important for the later discussion of the atom-
diatom collisions mechanism, as they can display both symmetries. The existence of
an axis or a plane of symmetry will constrain the values that the polarisation moments
can take and, as it is proved now, the mathematical expression for these restrictions
can be simply deduced from the equality

a(k)
q =

k∑

Q=−k

A
(k)
Q D

(k) ∗
qQ (α, β, γ) (2.45)



24 2. Polarisation moments

that describes how the moments behave under rotation and holds regardless of their
classical or quantum mechanical origin (see Apendix A). In this equation, a

(k)
q and

A
(k)
Q correspond to the polarisation moments of our physical system referred to the

xyz and XY Z frames respectively, (α, β, γ) are the Euler angles which take xyz into
XY Z and D

(k) ∗
qQ (α, β, γ) represents a rotation matrix [37].

The Section finishes with a discussion of unpolarised systems, that is, systems whose
angular momentum is randomly distributed. It will be proved that the k = 0 moment
suffices to describe the corresponding j distribution.

2.3.1. Axially symmetric systems

Let us suppose that our system is axially symmetric with respect to the z axis.
This implies that the properties of the system are the same regardless the choice of
the x and y axis perpendicular to z or, alternatively, that the properties of the system
are unchanged as long as they are considered in frames which differ only by a rotation
about the z axis. In the context of the classical mechanics, this means that the PDF
and the classical polarisation moments (univocally related through the Eq. (2.2))
must be identical in all those frames. From the quantum mechanical point of view
the reasoning is slightly more subtle although it takes us to the same conclusion. By
virtue of the axial symmetry any measurement of an observable must be independent
on the x and y definition. The polarisation moments are not observables (because they
are complex numbers defined as the expectation value of a non-hermitian operator)
but, as it will be shown in next Section and in App. B, their real and imaginary
parts do are. This means that, if the system displays axial symmetry, the quantum
mechanical moments will be identical in frames connected by means of a rotation
about the z axis.

Such as a rotation can be represented through the (α, 0, 0) set of Euler angles.
Mathematically, the connection between the moments referred to the xyz and XY Z

frames (related through that z axis rotation) is given by Eq. (2.45)

a(k)
q =

k∑

Q=−k

A
(k)
Q D

(k) ∗
qQ (α, 0, 0, )︸ ︷︷ ︸

δqQeiqα

= A(k)
q eiqα ∀ k, q, α (2.46)

Simultaneously, the axial symmetry implies that the moments in both frames are the
same

a(k)
q = A(k)

q ∀ k, q (2.47)
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Conditions 2.46 and 2.47 only can be simultaneously fulfilled if

a(k)
q = 0 q 6= 0 (2.48)

So, the axially symmetric systems are characterised by q = 0 moments as those with
q 6= 0 are necessarily null.

Next Section will furnish a directional interpretation of the moments. In particular,
it is stated that k even (odd) moments are related to the alignment (orientation) of
the angular momentum. From this point of view, what Eq. (2.48) indicates is that an
axially symmetric system can be aligned and also oriented.

2.3.2. Systems with a plane of symmetry

Let us next suppose that our system is invariant under reflections through a plane
that, for reasons that will become clear in next Chapters, will be identify with the xz

one.
The discussion of Eq. (2.45) and the analysis of systems with axial symmetry have

been presented by assuming that it was the frame of reference who displayed the
consequences of the symmetry transformation while the physical system remained
unchanged. However, this is not the only possibility and it could have been studied
from other point of view: the transformation is undergone by the physical system
while the frame of reference does not change. To choose one or the other is just a
matter of convention as both of them take to identical results (although, once that a
convention is adopted, it is necessary to be consequent with the election).

The effect that a plane of symmetry has on the polarisation moments can be de-
termined by using the fact that the system properties must be the same in frames of
reference related through a reflection about that plane. However, this way of working
is not convenient now because reflections of the frame invert its chirality (take a right
handed frame into a left one and vice versa), complicating the analysis. This difficulty
does not arise if the second of the points of view formerly exposed is considered, that
is, the reflection is assumed to transform the physical system and not the frame of
reference. Therefore, this is the convention that will be employed now.

In this context, the existence of a plane of symmetry involves that the physical
properties of the system must not be altered by its reflection through that plane. This
means that, in particular, the polarisation moments will remain unchanged as neither
the PDF (classical mechanics) nor the observables (quantum mechanics) change under
reflection.

Combination of this invariance with the expression that relates the moments for



26 2. Polarisation moments

the original and the reflected system will allow for establishing how the values of the
moments are conditioned by the reflection symmetry. To work out that expression it
is convenient to remember that the effect of a reflection through the xz plane is equiv-
alent to the effect of the parity (coordinate inversion) followed by a π radians rotation
about the y axis [46]. Let us examine separately the effect of the two operations.

The parity has no effect on the polarisation moments. Classically, this can be
understood by considering the axial nature of the angular momentum vector [47].
This means that its components do not change under parity (the position vectors
and the linear momentums invert simultaneously their sense, leaving the angular
momentum unchanged) and, in consequence, the classical moments are not altered.
Quantum mechanically, the effect of the parity operator on the |j,m〉 basis vectors
consist of multiplying them by an (−1)j phase factor [34] and, as long as the system
under consideration is characterised by an integer value of j (this will always be the
case in the present work), this phase will not modify the 〈jm|ρ̂|jm′〉 matrix elements.
As these elements are related to the polarisation moments through Eq. (2.42), these
will be unchanged too.

Therefore, the relation between the moments of the initial physical system and the
reflected one is exactly the same that exists between the moments of the initial system
and a second one obtained by rotating it π radians about the y axis. This relation can
be obtained from Eq. (2.45) with the proviso that its elements should be interpreted in
a way consistent with the adopted convention (effects of the transformation undergone
by the physical system). The proper interpretation in this case is the following: if
the a

(k)
q set represents the moments of a system that undergoes a rotation described

by the (−γ,−β,−α) Euler angles3, the new moments of the system will be given by
the A

(k)
Q quantities in Eq. (2.45) (watch out with the change of sign and order of the

angles), where both sets of moments are referred to the same xyz frame.

As a π radians rotation of the system about the y axis corresponds to the (0, π, 0)
Euler angles, the moments of the system before and after the reflection are related by

a(k)
q =

k∑

Q=−k

A
(k)
Q D

(k) ∗
qQ (0,−π, 0)

︸ ︷︷ ︸
(−1)k+qδq−Q

= (−1)k+q A
(k)
−q ∀ k, q (2.49)

Beside, as the system is invariant under this reflection, the polarisation moments must

3A rotation of the frame of reference given by the (α, β, γ) set of Euler angles is equivalent to a
rotation of the physical system given by (−γ,−β,−α). See reference [48] for more details
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fulfill simultaneously the condition (2.47). Both equations can be combined to give

a(k)
q = (−1)k+q a

(k)
−q ∀ k, q (2.50)

for the moments of a system with reflection symmetry about the xz plane.
It was proved in Secs. 2.1 and 2.2 that the polarisation moments must always satisfy

the condition
a(k)

q = (−1)qa
(k)∗
−q ∀ k, q (2.51)

that, when merged with Eq. (2.50), provides with the following expression

a(k)
q = (−1)k+q a

(k)
−q = (−1)k a(k)∗

q ∀ k, q (2.52)

Two conclusions can be inferred from this constrain:

� k odd (even) moments must be pure imaginary (real).

� The moments corresponding to odd values of k and q = 0 will vanish.

2.3.3. Unpolarised systems

A physical system is said to be unpolarised if its angular momentum is isotropically
distributed.

Classically, this means that the probability of finding the j vector pointing along
a defined direction in the space is the same for all the directions. Therefore, the
classical PDF function does not depend on the polar angles and has an spherical
shape. The only spherical harmonics that can contribute to the PDF in Eq. (2.2)
is the C00(θj , φj), as any other contribution would distort that sphere, introducing
a preference for a certain direction. In consequence, all the moments but that with
k = 0 must be null.

Quantum mechanically the conclusion is the same. The density operator corre-
sponding to an unpolarised system (of population equal to one) is [33]

ρ̂ =
1

2j + 1

∑
m

|jm〉〈jm| = 1
2j + 1

1̂ (2.53)

which reflects the non preference for any spatial direction (the Eq. (2.53) indicates that
all the angular momentum projections over the z axis are equally probable. As that
density operator is unchanged under rotations4, this holds for any spatial direction
4The unitary character of the rotation operator R̂ determines that, in this case, the rotated density

operator R̂ρ̂R̂† is equal to ρ̂
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and not only for the z axis. So, the angular momentum is not oriented or aligned
along any direction). The insertion of this density matrix (proportional to the unit
matrix) elements into Eq. (2.43) and the usage of the Clebsch-Gordan coefficients
properties allow for proving that, as in the classical case, only the k = 0 moment can
be different from 0.

2.4. Directional interpretation of the polarisation

moments

So far we have presented the polarisation moments as a set of complex numbers
that represent an alternative description of the classical PDF or the density matrix,
depending on whether classical or quantum mechanics is being used. In this Section
it will be shown that their importance does not only lies on this fact but also on their
role in the analysis of the system angular momentum (j) spatial arrangement.

All the directional information about the angular momentum of a physical system
is contained in the a

(k)
q complex polarisation moments (each k 6= 0 moment represents

a particular way of distorting (that is, polarising) an spherical (unpolarised) spatial
distribution of the angular momentum (see 2.3.3)). However, to make this obvious
they have to be combined in a suitable way such that the resulting moments describe
qualitative and quantitatively the alignment or orientation of j along certain directions
in the space. Those combinations, their properties and their interpretation will be
the goal of this Section.

The complex polarisation moments can not be directly related to the Cartesian di-
rections and, in order to have quantities with a defined directional meaning, they have
to be mixed so that the resulting quantities are real: the real polarisation moments
(a{k}q ). The sign of these new moments answers to questions like “is j alignment par-
allel or antiparallel to the z axis?” or “what is the sense of the angular momentum
orientation along the x axis?”.

Real moments are extremely useful when tackling the angular momentum polari-
sation study. However, they do not completely solve the problem because, on top of
knowing the directional preferences of the angular momentum, it is essential to set
how significative are those preferences. This information will be obtained by means
of the renormalised polarisation moments. They answer questions like “what is the
importance of the alignment or orientation related to each moment when compared
to the unpolarised distribution?”, “is that alignment/orientation influence on the j

distribution important or is it insignificant?” or “which of two systems is more po-
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larised?”.
The results included in this Section hold regardless the classical or quantum me-

chanical nature of the moments. A detailed mathematical discussion about their
origin and justification can be found in App. B.

2.4.1. Real polarisation moments

The a
(k)
q moments defined in Sec. 2.1 and 2.2 are complex coefficients which can

not be associated to Cartesian directions [37]. In order to have quantities directly
related to the frame of coordinates, the complex moments have to be combined so
that they form real moments (a{k}q ) tied to well-defined directions in the space. The
relation between these sets of moments is given by [49, 50]

a
{k}
q+ =

1√
2
[(−1)qa(k)

q + a
(k)
−q ] 1 ≤ q ≤ k

a
{k}
0 = a

(k)
0 (2.54)

a
{k}
q− =

1
i
√

2
[(−1)qa(k)

q − a
(k)
−q ] 1 ≤ q ≤ k

Incidentally, these are also the equations that relate real hydrogenic electronic orbitals
such as px and py to the complex spherical harmonics Y1 1±(θ, φ) or the dx2−y2 and
dxy to Y2 2±(θ, φ). These expressions can be simplified by using Eq. (2.5) (or (2.44))

a
{k}
q+ =

√
2(−1)qRe [a(k)

q ] 1 ≤ q ≤ k

a
{k}
0 = a

(k)
0 (2.55)

a
{k}
q− =

√
2(−1)qIm [a(k)

q ] 1 ≤ q ≤ k

where Re and Im represent the real and the imaginary part of the corresponding
complex moment.

The symmetry properties of the system can impose severe restrictions on the real
moments that can be different from zero. For instance,

� All the real moments except those with q = 0 will necessarily vanish for axially
symmetric systems (Sec. 2.3.1).

� All the real moments except

a
{k}
q+ 1 ≤ q ≤ k k even

a
{k}
0 k even (2.56)

a
{k}
q− 1 ≤ q ≤ k k odd
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Directional meaning
k q When positive When negative
1 1– orientation parallel to y orientation antiparallel to ŷ
1 0 orientation parallel to z orientation antiparallel to ẑ
1 1+ orientation parallel to x orientation antiparallel to x̂
2 2– alignment along x + y alignment along x− y
2 1– alignment along y + z alignment along y − z
2 0 alignment along z alignment perpendicular to z
2 1+ alignment along x + z alignment along x− z
2 2+ alignment along x alignment along y

Table 2.1.: Directional meaning of the real polarisation moments for k = 1 and 2.

will necessarily vanish for systems whose xz plane is a plane of symmetry
(Sec. 2.3.2).

2.4.2. Meaning of the real polarisation moments

Classically, the zero rank (k = 0) moment corresponds to the PDF average over all
the directions in the space (See Eq. (2.4))

a
{0}
0 = a

(0)
0 =

∫ 1

−1

∫ 2π

0

P (θj , φj)d cos θj dφj (2.57)

and quantum mechanically it is the trace of the density matrix (Eq. (2.43))

a
{0}
0 = a

(0)
0 = (2j + 1)1/2 〈T̂ †(j)00〉 = tr(ρ) (2.58)

In both cases, it can be considered as a normalization constant whose value coincides
with the system population. As it will be explained in next Section, its value is related
to the maximum and the minimum values than the k 6= 0 moments can take.

The k 6= 0 real moments with k odd (even) rank enlighten us about the sense of
the orientation (alignment) of j with respect to certain directions [25, 33]. Their di-
rectional meaning is summarised in the Table 2.1 for k = 1 and 2. For instance, if
the a

{1}
1− moment had a positive value that would mean that j is preferably oriented

along the positive y axis while if the value of the moment were negative the preferred
orientation would be along the negative y axis. In the same way, a positive (negative)
value of the a

{2}
0 moment would mean that j is preferably aligned parallel (perpendic-

ular) to the z axis. The a
{2}
1+ moment contains information on the j alignment along

the x + z direction (positive values) or along the x − z direction (negative values).



2.4. Directional interpretation of the polarisation moments 31

The zero value corresponds to j contained in the xy or yz planes. The a
{2}
2+ moment

gauges the relative preference for j alignment along the x axis (positive values) with
respect to the y axis (negative values). The real moments corresponding to k values
larger than 2 are more difficult to visualise and, in consequence, the information they
contain is harder to interpret.

It is now evident why for the unpolarised systems only the k = 0 moment can
be different from zero (see Sec. 2.3.3). As the angular momentum does not display
alignment or orientation along any direction (because j does not show preferences for
any direction), all the k 6= 0 real (and complex) moments have to be necessarily null.

It is important to point out that the complex and real moments are not, in essence,
different as they contain the same information although presented in a different way
(there is, however, a subtle difference between them when considered in the quan-
tum mechanical context. In this case, real (complex) moments correspond to the
expectation value of Hermitean (non Hermitean) operators and are (not) observable
quantities (see App. B)). In practise, while the real moments are more appropriate for
discussing directional preferences the complex moments are better for mathematical
manipulations [36]. This is the reason why mathematical derivations will be per-
formed with complex moments and numerical results and figures will be presented in
terms of their real counterparts.

2.4.3. Renormalised polarisation moments

Employing Table 2.1 or others for higher rank values [50] it is possible to interpret
the (k 6= 0) real polarisation moments in terms of j directional preferences. Useful
as this achievement is, it does not suffice to provide with a complete picture of the
angular momentum polarisation because we still do not know how intense are those
preferences.

Both the real and the complex moments contain information not only about the
directions of j but also on the system population, that is, on the a

{0}
0 magnitude (see

[25, 36] and the discussion about the expectation values in Sec. 2.2.1). This means
that the same value of the a

{k}
q (or a

(k)
q ) moments for two systems with different

population corresponds to a j alignment or orientation of different intensity in each
case or, equivalently, that the range of accessible values for the k 6= 0 moments
depends on the population (See App. B for an example). As a consequence, unless
the value of the population is the same, the moments defined so far can not be directly
used to compare the polarisations of two physical systems.

It is the same problem that would appear if we try to measure distances employing
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maps with different scales. The best way of overcoming this difficulty is to choose
and scale, to draw all the maps to that scale and then to compare them. Equally,
the best way of comparing polarisations of systems with different population is to
adopt one value of the population and the corresponding scale and to refer all the
systems polarizations to them. We will choose the scale corresponding to systems
with population equal to one (it can be found in App. B for the quantum mechanical
case). In practise, this means that whenever it will be necessary to set the intensity of
a polarisation or to compare two different polarisations of the system we will employ
the renormalised polarisation moments [25]

a
{k}
q

a
{0}
0

∀ k, q (2.59)

(where the equations holds the same for complex moments). These moments, together
with the corresponding scale, make possible to answer all the questions posed in the
introduction of the Section.

From the physical point of view, our choice is equivalent to use the unpolarised sys-
tem as “polarisation intensity unit of measure” because when we divide every moment
by the population we are measuring the importance of the polarisation with respect
to the unpolarised system (which is completely defined by means of the population).

2.5. Classical and quantum-mechanical moments

comparison. Quantum PDF.

Frequently, classical and quantum mechanical methods are simultaneously used
to study the physical properties of a system (the reaction dynamics is an example
of this duality). If this study includes the angular momentum polarisation, it will
provide with two different sets of polarisation moments: a classical and a quantum
mechanical one. On top of analysing them separately, it is convenient to compare
their characteristics, as this comparison makes possible to distinguish the genuine
quantum effects and it is useful to interpret the meaning of those quantum features
which have a classical counterpart.

By defining the “quantum population distribution function” (quantum PDF) and
by comparing it with the classical PDF it will be showed that the classical and the
quantum mechanical moments can be directly compared. On top of enlightening
about that comparison, the quantum PDF will allow for the rigorous and simple
visualisation of the j distribution corresponding to each set of polarisation moments.
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2.5.1. Quantum population distribution function

The quantum PDF is given by [39, 40]

Q(θj , φj) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

a(k)
q 〈jj k0|jj〉 C∗kq(θj , φj) (2.60)

where a
(k)
q represent the quantum complex polarisation moments, 〈jj k0|jj〉 is a

Clebsch-Gordan coefficient [37] and C∗kq(θj , φj) is the complex conjugate of a modi-
fied spherical harmonic. It describes the angular momentum polarisation in terms of
the continuous spherical angles θj and φj , constituting an exact quantum mechani-
cal representation of the angular momentum distribution (that is, obtained with no
recourse to the vector model or any other approximation, classical or otherwise). In
contrast with the classical PDF (Eq. (2.2)), the values of this distribution do not
represent the probability of finding j pointing along the direction specified by θj and
φj but the population of the minimum uncertainty state (giving a certain direction,
it is the state in which the angular momentum is as localised as possible around it.
It coincides with the |jj〉 state, that is, the state in which the projection of j takes its
maximum value along the considered direction) lying along the direction given by θj

and φj .

The only difference between the expressions for the quantum and the classical PDF
is the appearance of a Clebsch-Gordan coefficient in the quantum mechanical formula
(the difference in the upper limit of the sum over k is just a consequence of its
presence because 〈jj k0|jj〉 is null whenever k > 2j). As it was thoroughly discussed
in reference [39], this coefficient (a real number whose absolute value is lower or
equal than one) expresses the fact that the uncertainty principle places a limit on
how polarised the angular momentum can be by changing the expansion functions
from C∗kq(θj , φj) into 〈jj, k0|jj〉 C∗kq(θj , φj). In the correspondence principle limit
[34], where the uncertainty principle ceases to be significant, the quantum and the
classical PDF become identical since [37, 39]

〈jj k0|jj〉 j→∞−−−→ 1 (2.61)

The fact that the uncertainty principle limitations are taken into account by means
of the Clebsch-Gordan coefficient makes clear the meaning of the polarisation mo-
ments: they contain all the angular momentum distribution symmetries and, dy-
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namical5 effects apart, these symmetries do not depend on whether the uncertainty
principle is being considered for their analysis. Therefore, classical and quantum me-
chanical moments can be directly compared without any “quantum correction” for
the former [39, 40]. The dissimilarities between both sets of moments will be related
to differences between the classical and the quantum dynamics of the system.

Although physically correct, comparing individually every classical and quantum
mechanical moment can be an exhausting task and, beside, it does not use to provide
with a global view of the importance and meaning of the symmetries contained in
each set of moments.

The way of visualising those symmetries in a simple and direct way and of mean-
ingfully performing the comparison is through the corresponding angular momentum
distributions, that is, by comparing and analysing the shapes of the classical and the
quantum mechanical PDFs. However, this comparison must be carefully done, taking
into account that the differences between both PDFs can be divided into two different
groups: (i) those coming from the dynamics (differences in the polarisation moments)
and (ii) those coming from the consideration or not of the uncertainty principle. To
avoid that the differences steaming from the second group “interfere” with those due
to the former (whose analysis uses to be more interesting) is why the procedure pro-
posed to perform the comparison [39, 40] does not employ the classical PDF but a
quasiclassical PDF obtained by substituting the classical moments on the expression
for the quantum PDF (it is quasiclassical because classical mechanics is used to de-
termine the symmetries of the angular momentum distribution (Eq. (2.4) serves to
evaluate the polarisation moments) but the shape associated with those symmetries
is generated using the quantum mechanical expression Eq. (2.60)).

The shape of the quasiclassical PDF takes into account the uncertainty principle
by including the Clebsch-Gordan coefficient, with the subsequent limitation of the
classical moments that contribute to those fulfilling k ≤ 2j (instead of the∞ moments
that are necessary to determine the classical PDF (Eq. (2.2))). In consequence, any
difference between this PDF and the quantum one will be due to differences between
the classical and the quantum dynamical properties of the system (and never to the
uncertainty principle) and their agreement will be as good (or as bad) as the agreement
between the two sets of polarisation moments.

Fig 2.1 illustrates the properties of the quantum and the quasiclassical PDFs with
an example corresponding to a pure |j = 2m = 2〉 state. Quantum mechanically, this

5The molecules whose polarisation will be considered are not static but are taking part of a chemical
reaction. In consequence, the dynamics of this process can influence on the polarisation moments
values
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Fig. 2.1.: Quantum and quasiclassical PDFs associated with a |jm〉 angular momen-
tum with j = 2 and m = 2.

means that the density operator describing the system will be given by

ρ̂ = |22〉〈22| (2.62)

and that the polarisation moments are the following (obtained by inserting that den-
sity operator into Eq. (2.43))

a
(0)
0 = 〈22 00|22〉 = 1

a
(1)
0 = 〈22 10|22〉 = 0.82

a
(2)
0 = 〈22 20|22〉 = 0.53

a
(3)
0 = 〈22 30|22〉 = 0.27

a
(4)
0 = 〈22 40|22〉 = 0.09

The classical PDF associated to a |2 2〉 state is

P (θj , φj) =
1
2π

δ(cos θj − 2√
2(2 + 1)

) (2.63)

which, when substituted in Eq. (2.4), provides us with the following polarisation
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moments

a
(0)
0 = P0(

2√
2(2 + 1)

) = 1

a
(1)
0 = P1(

2√
2(2 + 1)

) = 0.82

a
(2)
0 = P2(

2√
2(2 + 1)

) = 0.50

a
(3)
0 = P3(

2√
2(2 + 1)

) = 0.14

a
(4)
0 = P4(

2√
2(2 + 1)

) = −0.18

with Pk(cos θ) representing a Legendre polynomial (the classical list of moments do
not finish with the k = 4 one but continuous all the way to k = ∞. However, due
to the Clebsch-Gordan coefficient presence, the classical moment with k > 4 will not
contribute to the quasiclassical PDF and, in consequence, they are not included in
the list). In both cases it has been assumed that the system population is equal to
one. Fig. 2.1 shows the result of inserting the quantum mechanical and the classical
moments in Eq. (2.60). The quasiclassical PDF is in excellent agreement with its
quantum counterpart, displaying only an small difference: the quasiclassical PDF is
slightly broader than the quantum one. This feature is found in all cases and comes
from the definition of the quantum PDF as a population distribution instead of as a
probability distribution. 3D plots as Fig. 2.1 will be constantly used in the following
Chapters as they sum up the characteristic of the angular momentum distribution in
just a figure and, when quantum moments are used, they do it exactly.

To conclude the discussion about the quantum and quasiclassical PDFs it is im-
portant to point out two additional properties:

� They do not necessarily have to be prepared from moments corresponding to
states with population one (as we did so far). In particular, if we were interested
in using the PDFs to compare the angular momentum polarisation of systems or
states with different population, it would be convenient to employ renormalised
moments to generate them (see former Section). The role of the renormalised
moments becomes transparent when considering that the PDFs volume coin-
cides with the k = 0 moment (the population). This involves (i) that the PDFs
corresponding to different systems/states with different populations will differ
in the volume and, eventually (if their k 6= 0 moments were different as well),
also in the shape and (ii) that to employ renormalised moments removes the dif-
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ferences due to the population by resizing the PDFs (without being deformed)
in such a way that their new volume is one.

� The correspondence principle limit (j À k) of the Clebsch-Gordan coefficients
involved in Eq. (2.60) is given by [39]

〈jjk0|jj〉 ≈ Pk(
j√

j(j + 1)
) ≈ Pk(1) = 1

It ensues from this expression that the quantum mechanical restriction repre-
sented by the Clebsch-Gordan coefficients vanishes in the classical limit and
that, in consequence, the classical, the quasiclassical and the quantum PDFs
become identical.
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3. Atom-diatom collisions

In any undergraduate book of Physical Chemistry there are several Chapters de-
voted to “Statistical Mechanics”; the area of the Physics which relates the Thermody-
namical properties of a bulk system with the microscopic properties of its elementary
constituents (atoms or molecules). Equally, elementary collisions are behind any
chemical reaction and a detailed knowledge of their characteristics allows for the ex-
planation of the macroscopic behaviour of the reaction and for the evaluation of any
property related to it (in particular, those which will be used to study the reaction
stereodynamics: the polarisation of the atoms and molecules participating in the
reaction).

The aim of this Chapter is to introduce the concepts and methodology related to the
study of (non-relativistic) gas phase collisions between atoms and diatomic molecules

A + BC → AB + C (3.1)

The idea is not to provide with a rigorous discussion of the scattering theory but to
present the tools that will be necessary for the development and understanding of the
theory contained in the following Chapters. It begins with the definition of the cross
section (Sec. 3.1), an observable related to the probability of the reaction and that
constitutes one of the most important pieces of information about it. The analysis of
the elementary collisions and the subsequent evaluation of the cross section (or of any
other reaction observable) can be performed by means of the quasiclassical trajectories
method (Sec. 3.3) or by the quantum molecular scattering theory (Sec. 3.4) (although
they are not the only procedures for theoretically studying chemical reactions, this
work only will make use of them). These two methodologies will be presented from
the adiabatic point of view (that is, considering that just a potential energy surface
(Sec. 3.2)) is involved in the collisions).

39
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Fig. 3.1.: Collision of a beam of incident particles with a target at rest. The solid
angle dω represents the position of the detector, b represents the impact
parameter and p◦ the incident moment of the particles.

3.1. Cross section

Let us consider the arrangement shown in Fig. 3.1, where an incident beam of
particles is directed towards and unit target and the scattered particles are measured
by a detector placed along the direction defined by the dω solid angle. Assuming that
the incidents particles are projected with random impact parameters1 so that it is
possible to speak of an uniform incident flux Iinc (number of particles that, per unit
time, cross an unit area perpendicular to the incident moment of the particles (p◦)),
the number of observed scattered particles into dω per unit time will be given by

dṄsc =
dσ

dω
Iinc dω (3.2)

where dσ/dω is called differential cross section (DCS). The DCS varies with the
orientation of the detector to the incident beam and has dimensions of area per
stereoradian. The detected particles can coincide with those forming the incident
beam (elastic and inelastic scattering) or can be different (reactive scattering).

The integral cross section (ICS) is obtained by integrating the DCS over all the
spatial directions

σ =
∫

dσ

dω
dω (3.3)

It has dimensions of area and represents the constant of proportionality between the

1The distance of closest approach of the colliding particles in the absence of interactions between
them
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Fig. 3.2.: Collision between two particles (1 and 2) in the centre-of-mass frame (the
centre-of-mass is placed on the intersection of the continuous lines) that
leads to formation of the particles 1′ and 2′ (depending on whether the
process is reactive, inelastic or reactive the products will coincide with the
reactants or not). The vectors p1 and p2 (p

1′ and p
2′ ) represent the linear

momenta of the reactants (products), the z axis is parallel to the relative
momentum of the colliding particles, b is the impact parameter and θ is the
scattering angle.

total number of scattered particles per unit time (Ṅsc) and the incident flux (Iinc)

Ṅsc = σ Iinc (3.4)

The former definitions hold regardless the choice of reference frame. For theoretical
purposes, the most convenient one is that where the centre-of-mass is at rest (see
Fig. 3.2); what is called the centre-of-mass (C.M.) frame. However, this is not the
only possibility and one could consider a frame where the target particle is at rest
(Fig. 3.1) or where both particles are moving. The integral cross section value does
not depend on the frame of reference and the transformation of the differential cross
section between different frames is a purely kinematic problem [51]. From now on and
except otherwise stated, all the results will be referred to the centre-of-mass system.

There are several assumptions behind the cross sections definitions. One of them
was previously indicated: the impact parameters are uniformly distributed in the
plane perpendicular to p◦. Fortunately, it is not necessary to send the particles over
an infinite front but over a area that is large compared to the target size (the parti-
cles with sufficiently large impact parameters are not scattered2). Other underlying

2The scattering theory presented in this Chapter holds for potentials fulfilling certain conditions
that can be found in refs. [51, 52, 53]. One of those conditions focuses on the long-distance
behaviour of the potential and, in particular, it sets that the potential must fall off quicker than
r−3 (where r is the distance between the center of mass of the colliding particles). This statement
is fulfilled by the intermolecular forces controlling chemical reactions between neutral species and,
in consequence, it is meaningful to neglect the mutual influence of the collision participants when
the distances are large and to say that collisions with very large impact parameters do not give
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assumptions are the following

� The forward elastic scattering3 is an undefined quantity because one can not
distinguish a particle that is elastically scattered in the forward direction from
a particle that is not scattered at all.

� Multiple scattering is negligible. This means that, for each incident particle,
only two events can happen with a probability significantly different from zero:
the particle can cross the target region without colliding or, alternatively, it can
be scattered off by a single scattering center.

For a fixed energy, the differential cross section is a function of two angles: the
scattering (θ in Fig. 3.2. It is the angle formed by the relative velocity of colliding
and recoiling particles) and the azimuthal (φ, measured with respect to any plane
containing the relative velocity of the colliding particles (the z axis in Fig. 3.2)) angles.
If the interaction potential only depends on the relative position of the particles (and
not on any external parameter or direction) and if the colliding particles are initially
unpolarised, the differential cross section will be function of θ but not of φ [1]. This is
the case of most of the physical problems and, in particular, of the reactions studied
in this work.

Regarding atom-diatom reactions, the state-to-state cross sections correspond to
processes like

A + BC(v, j) → AB(v′, j′) + C (3.5)

that is, collisions where the reactants are prepared in well defined vibrational and
rotational states (represented by the v and j quantum numbers) and the products
are detected only when formed with well defined vibrational and rotational states
(represented by the v′ and j′ quantum numbers). If, instead, the detection does not
discriminate between different final states, the corresponding cross sections will be
termed as total cross sections.

Although the cross section is not an intuitive concept and it could be thought to be
very far from the “test tube” chemistry, the fact is that it allows for the theoretical
evaluation of more “chemical” quantities as the thermal rate coefficients, providing
with the desired connection between elementary collisions and bulk properties of the
reaction. For instance, the state-to-state thermal rate coefficients for reaction 3.5 can

rise to scattered particles
3Scattering is said to be forward (backward) when the final relative velocity of the scattered particles

is parallel (antiparallel) to the initial relative velocity of the colliding particles
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be expressed as [1, 54]

kv′j′,vj(T ) =
∫ ∞

0

vr σv′j′,vj(vr) f(vr) dvr

=
(

µ

2πkBT

)3/2 ∫ ∞

0

vr σv′j′,vj(vr) exp−µv2
r/2kBT 4πv2

rdvr (3.6)

where vr is the relative velocity of the reactants particles, σv′j′,vj(vr) is the integral
cross section for reaction 3.5 (indicating explicitly its dependence on the collision
energy (through the relative velocity)) and f(vr) represents the Maxwell-Boltzman
distribution of relative speeds (its usage is consistent with the thermal equilibrium
of the molecules at each temperature T ). From kv′j′,vj(T ) it is possible to evaluate
state-averaged thermal rate coefficients [1, 54] that can be compared to experimental
measurements.

3.2. Born-Oppenheimer approximation

The Schrödinger equation for a system formed by N electrons and M nuclei is given
by [55]

(Ĥ − E)Ψ(r,R) = 0 (3.7)

where E is the total energy, Ψ(r,R) is the system wavefunction (r represents the
coordinates of the N electrons (r1, . . . , rN ) and R represents the coordinates of the
M nuclei (R1, . . . ,RM )) and Ĥ is the Hamiltonian operator

Ĥ = − ~2

2me

N∑

i

∇2
ri
− ~2

2

M∑

A

1
mA

∇2
RA

+ V̂ (r,R) (3.8)

whose different terms correspond respectively to the electronic kinetic energy (me is
the electron mass), to the nuclear kinetic energy (mA is the mass of the A nucleus) and
to the coulombic interaction between the different particles. The concrete expression
for this potential is the following

V̂ =
e2

4πε◦


−

M∑

A

N∑

i

ZA

rAi
+

N∑

i,j>i

1
rij

+
M∑
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ZAZB

RAB


 (3.9)

where rAi = |RA − ri|, rij = |ri − rj |, RAB = |RA −RB | and the fist double sum
represents the electron−nucleus attraction, the second the electron−electron repulsion
and the third the nucleus−nucleus repulsion.
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All the information regarding the system (including that concerning the scattering
states) is contained in Eq. (3.7). However, the solution of that equation is a com-
plicated task that needs the employment of different approximations, being the most
important one the Born-Oppenheimer (B.O.) approximation [56, 57]. It stems from
the fact that mA À me and that, in consequence, the electrons change their posi-
tion much faster than the nuclei. Based on this difference, the B.O. approximation
provides with a method for solving Eq. (3.7) by assuming that the electrons can be
considered as moving in the field caused by the fixed nuclei and, vice versa, that the
nuclei do not “feel” the instantaneous positions of the electrons but their average.
This involves that the electronic and nuclear movements can be separated and that
the system wavefunction can be written, in its simplest formulation, as

Ψ(r,R) = ψel(r;R) θnuc(R) (3.10)

where ψel(r;R) is the electronic wavefunction (that notation means that it depends
explicitly on the electronic coordinates r and parametrically on the nuclear coordi-
nates R) and θnuc(R) is the nuclear wavefunction. The first describes the electronic
state and it is determined by separately solving the electronic Schrödinger equation
for each nuclear geometry. The eigenvalue of this equation, together with the nuclear
repulsion, is termed as potential energy surface (PES). The PES plays the role of the
potential energy for the nuclear movement, which is described by the wavefunction
θnuc(R) obtained from the nuclear Schrödinger equation. Explicit expressions for this
equation and its electronic counterpart are included in the following paragraphs.

The electronic Schrödinger equation describing the behaviour of the electrons in
the framework of the B.O. approximation is given by

(Ĥel − Eel(R))ψel(r;R) = 0 (3.11)

where Ĥel is the electronic Hamiltonian

Ĥel = − ~2
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It differs from Ĥ (Eq. (3.8)) on two terms: the nuclear kinetic energy (second term in
Eq. (3.8)) and the coulombic interaction between nuclei (third term in Eq. (3.9)). It
is clear that, under the approximation assumptions, both quantities can be neglected
when considering the electrons movement as the first is zero for any fixed nuclear
configuration and the second is just a constant. The electronic energy is represented
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by Eel(R) and, as the electronic wavefunction, depends parametrically on the nuclear
coordinates.

In order to complete the solution of Eq. (3.7), it is still necessary to tackle the
problem of the nuclear motion. The B.O. separation between electronic and nuclear
motions implies that, when considering the nuclear dynamics, the electronic coor-
dinates can be substituted by their averaged values, defining this way the nuclear
Hamiltonian
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where the potential energy role is played by U(R) (the total energy for fixed nuclei)
and the terms consisting of integrals like

〈ψel(r;R)|∇RA |ψel(r;R)〉 =
∫

ψ∗el(r;R)∇RA ψel(r;R) dr (3.14)

and
〈ψel(r;R)|∇2

RA
|ψel(r;R)〉 =

∫
ψ∗el(r;R)∇2

RA
ψel(r;R) dr (3.15)

have been discarded (when working in the context of the B.O. approximation, the
electronic function is expected to change slowly with the nuclear coordinates).

The nuclear Schrödinger equation

(Ĥnuc − E)θnuc(R) = 0 (3.16)

allows for determining the B. O. approach to the total energy E (Eq. (3.7)) and the
nuclear wavefunction θnuc(R) which describes the behaviour of the nuclei and can be
used to study: (i) the rotations, vibrations and displacements of the system and (ii)
the scattering properties (if the system is not a bounded one).

If only the relative motion of the M nuclei is considered (by taking away the
displacements and the rotations of the system as a whole), their geometry can be



46 3. Atom-diatom collisions

specified by means of 3M − 6 independent variables. Therefore, U(R) is a function
which depend on the same variables and whose graphical representation consists of a
3M − 6 dimensional surface; the potential energy surface (PES).

Phenomena and processes such as internal rotational barriers, dissociation, molec-
ular dynamics, molecular scattering and infrared and microwave spectroscopy have
a simple, intuitive and reliable interpretation based on the B.O. approximation and,
in particular, on the PES concept [58], which is absolutely crucial for the Physical
Chemistry.

However, it is necessary to point out that, in spite of this ubiquitous and successful
usage, the B.O. treatment is not always acceptable [59, 60] as there are physical and
chemical phenomena where the separation between the electronic and the nuclear
movements can not be performed because all the particles forming the system are
strongly correlated. Examples of these phenomena are electronically excited states
(Rydberg states), muonic molecules and all those nuclear configurations where two
different PES approach and, eventually, cross (photochemistry is almost exclusively
based on these crossings).

To cope with these situations it is necessary to use alternative techniques. The
adiabatic representation consists of expanding the molecular wave function as

Ψ(r,R) =
∑

n

θnuc,n(R) ψel,n(r;R) (3.17)

where ψel,n represents an electronic eigenfunction and the expansion coefficients θnuc,n

depend on the nuclear coordinates. Alternatively, the diabatic representation employs
as expansion basis the electronic eigenfunctions evaluated at a single nuclear geome-
try (R0)

Ψ(r,R) =
∑

n

θ′nuc,n(R) ψel,n(r;R0) (3.18)

The employment of these series allow for transforming the molecular Schrödinger
equation (3.7) into a set of coupled differential equations for the nuclear functions
θnuc,n(R) and θ′nuc,n(R). The properties of such set depend on the explicit form of the
expansion and are related to the advantages and disadvantages of each representation:

� The set of equations derived from the diabatic expansion include the coupling
terms in the potential energy, in contrast with the adiabatic case, where the
coupling appears in the kinetic energy term. This is a point in favour of the
diabatic representation, as it makes calculations easier.

� The electronic functions employed in the diabatic representation are not eigen-
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functions of the electronic hamiltonian for all the nuclear geometries R but
only for R0. This turns out to be an inconvenience that gives advantage to the
adiabatic representation.

In the daily practise of reaction dynamics, non-adiabatic time independent calcula-
tions use to employ the adiabatic representation and non-adiabatic time dependent
calculations the diabatic one4. To neglect the couplings terms in the system of equa-
tions for the nuclear functions is equivalent to take a single term in the series (3.17)
and (3.18) and leads to the Born-Oppenheimer5 and the diabatic approaches respec-
tively. This last approximation holds for situations where the nuclear kinetic energy
is larger than the electrons-nuclei interaction, in such a way that the electrons can
not “follow” the nuclear motion (it is interesting to point out that these conditions
are opposite to those suitable for the Born-Oppenheimer approximation).

The present work will consider the stereodynamics of chemical reactions from the
point of view of the adiabatic approximation. The first step, prior to any scattering
calculation, consists of determining the PES. Its values are worked out for a set of nu-
clear geometries that covers all the possible nuclear configurations (although treating
with more detail those regions on the surface which will be crucial for the process, that
is, the entrance and output valleys and the transition state region) and the resulting
energies are fitted to an analytic function. There are two different approaches to the
solution of the electronic equation at each nuclear geometry: ab initio and semiempir-
ical methods. The first solves the electronic Schrödinger equation just by making an
assumption for the electronic wavefunction (that will determine the accuracy of the
result) and by using the values of the fundamental constants and the nuclear masses.
Although more accurate, ab initio calculations are too computationally expensive for
large molecular systems and, in practise, they are substituted by semiempirical cal-
culations. This set of methods reduce the computational requirements by employing
simplifications of the Hamiltonian together with some experimental data.

When the PES is known, it is possible to tackle the dynamical problem itself. The
rest of the Chapter will concentrate on this task.

4Switching between both representations is always possible through an unitary transformation,
provided that the basis sets are complete

5Strictly speaking, considering of only one term in Eq. (3.17) leads to the adiabatic approach,
which differs from the Born-Oppenheimer approximation. However, this difference can generally
be disregarded so that “adiabatic approximation” and “Born-Oppenheimer approximation” are
usually employed interchangeably
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3.3. Quasiclassical trajectory method

Theories for the study of reactive molecular collisions can be divided into two
different groups: dynamical and statistical methods. The former require to solve
(exactly or approximately) the nuclear Schrödinger equation (quantum mechanical
dynamics) or the Hamilton equations (classical dynamics). The second avoids the
direct analysis of the collision dynamics by invoking suitable statistical considerations
(the transition state theory [61, 62, 63] is a paradigmatic example of these methods).

Dynamical calculations are necessary for the purposes of this work and, therefore,
our attention will be exclusively focused on them: the general features of the Qua-
siclassical Trajectory (QCT) method [64, 65, 66, 67] are now presented, postponing
the description of quantum mechanical calculations till next Section.

In the QCT context, a trajectory is the set of phase-space points representing the
classical movement of the nuclei (with the potential energy given by the PES in-
troduced in the former Section) taking part in a collision. The calculation of each
trajectory starts by fixing the initial conditions of the system (this is equivalent to
select a defined point in the phase space), continues by integrating the Hamilton
equations which define the temporal trajectory of that point and concludes with the
analysis of the products and the assignation of a quantized internal state to the prod-
ucts fragments. When this procedure is performed for a number of trajectories large
enough to provide convergence, it is possible to obtain the state-to-state magnitudes
which characterise the reaction (for instance, the cross sections defined in Sec. 3.1 or
the polarisation moments introduced in next Chapter).

Given a M particles system, its classical dynamics is given by the Hamilton’s equa-
tions, which consist of a system of 6M coupled equations [68]

q̇i =
∂H

∂pi
i = 1, . . . , 3M (3.19)

ṗi = −∂H

∂qi
i = 1, . . . , 3M (3.20)

where q (p) are the generalised coordinates (generalised moments), the dot indicates
the first derivative with respect to time and H is the Hamiltonian function. For
a conservative system, H is independent on time and its value is equivalent to the
energy (E) of the system

H(q, p) = T (q, p) + V (q, p) = E (3.21)

being T the kinetic and V the potential energy (the PES).
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A

B

C

r

R

Fig. 3.3.: Reactants Jacobi coordinates. The r vector represents the BC internuclear
axis and R is the vector connecting the BC centre-of-mass to A.

The QCT calculations included in this work (see [66, 67] and references therein
for a more exhaustive description regarding all aspects of the theory) concentrate on
state-to-state atom-diatom reactions like (3.5) and employ the following coordinates
and reference frame

� For a three particles system there are eighteen Hamilton’s equations. However,
this number can be reduced to twelve if the translation of the system as a whole
is ignored. We implement such reduction by using Jacobi coordinates (Fig. 3.3),
so that the components of R, r and of the corresponding momenta will play the
role of generalised coordinates and momenta in the resulting twelve equations.

� We adopt a frame of reference such that the origin of coordinates coincides with
the centre-of-mass of the reactants diatomic molecule (BC), the incident atom
is placed on the yz plane and the z value for the incident atom is negative,
indicating that the relative velocity between the colliding particles is parallel to
the positive z axis.

Eqs. (3.19) and (3.20) are first order differential equations and, as such, they need
as many initial conditions as equations in order to be integrated. The first step in
the calculation of a trajectory consists of setting the initial values of the (twelve)
coordinates and momenta. The choice of the frame of reference together with the
conservation of energy (consequence of the time independence of the Hamiltonian)
allows for expressing the initial conditions in terms of five geometric parameters:

� The polar angles (θj and φj) which determine the position of the BC rotational
angular momentum (j) with respect to the reference frame.
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� An angle η whose value sets the position of the BC internuclear axis on the
plane perpendicular to j.

� The impact parameter (b).

� The BC vibrational phase (χ). In order to ensure random selection (see below)
of χ for different trajectories, the normal procedure is to set the initial value
of the BC distance (r0) equal to one of the classical turning points and to add
a random quantity to R0 (the initial modulus of R; its value is such that the
atom-diatom interaction can be neglected). In this way, when the equation in-
tegration begins and the distance between A and the BC centre-of-mass reaches
R0, the vibrational phase of BC will be random. The turning points employed
to determine r0 are those which correspond to the quantum mechanical energy
of the v-j state6. The initial energy value consist of two different contributions:
the collision energy (the relative kinetic energy between the colliding particles)
and the internal energy of the BC molecule. There is no contribution from the
interaction between A and BC because R0 is large enough to neglect it. While
the value of the collision energy is initially fixed for each trajectory, the internal
energy is chosen as the quantum mechanical energy corresponding to the v-j
state. The turning points corresponding to this energy are identified and then
used to set r0.

When the energy and the five parameters are fixed, it is possible to evaluate the ini-
tial values of the variables and the Hamilton’s equations can be integrated by means
of any of the standard procedures developed for solving systems of coupled differential
equations [66, 69]. Integration continues till one of the atom-atom distances exceeds
a certain cut-off value and, when this happens, the trajectory is assumed to be com-
pleted and the products diatomic molecule is identified. At this point it is possible
to determine whether the trajectory is reactive or inelastic/elastic. Differentiation
between these last two types of trajectories will not be possible until completing the
products analysis.

The following (and last) step consists of expressing the positions and momenta of
the atoms in terms of the Jacobi products coordinates (R′ and r′. Defined as their
reactants counterparts: r′ is the AB internuclear axis and R′ the vector joining the
AB centre-of-mass to C) and of the subsequent analysis of the products, that is, the
determination of (i) their relative translational, vibrational and rotational energies,

6Evaluated for each diatomic molecule participating in the reaction (AB, BC, AC) by solving the
Schrödinger equation in the corresponding asymptotes of the PES. These values are calculated
prior to the trajectory analysis and fitted by means of a Dunham expansion
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(ii) the rotational angular momentum of AB and (iii) the scattering angle. With these
data it is possible to check if the energy conservation is being fulfilled and to carry
out the assignment of final quantum numbers (v′ and j′, see reaction (3.5)) by means
of the following equations

j̃′ = −1
2

+
1
2

√
1 +

4 jAB jAB

~2
(3.22)

and

ṽ′ = −1
2

+
1
π~

∫ r+

r−

√
2µAB(Eint(AB)− V (rAB)− jAB jAB

2 µAB r2
AB

) d(rAB) (3.23)

where jAB is the rotational angular momentum of the products diatomic molecule
(AB), Eint(AB) its internal energy, µAB its reduced mass, V (rAB) the potential energy
corresponding to the AB asymptote of the PES and r± the classical turning points
numerically evaluated for Eint(AB). The values of ṽ′ and j̃′ so obtained are real
numbers that, when rounded to the nearest integer, provide with the values of v′ and
j′.

The information derived from a single trajectory does not suitably represent the
chemical reaction because it corresponds to a single set of initial conditions (a point
in the phase space). On the contrary, typical experiments sample a wide range of
initial conditions and, in order to properly simulate them, it will be necessary to
integrate a large number of trajectories. The problem lies in that it is not possible
to have an a priori knowledge of what are the suitable initial conditions that have
to be used and, in consequence, the employment of an statistical sampling becomes
necessary to ensure that the reaction attributes evaluated by means of the trajectories
are representative.

Having calculated an statistically significant sample of trajectories, each one of
them analysed in order to know the relevant quantities (scattering angle, transla-
tional and internal energy of the products, final quantum numbers, position of the
rotational angular momenta of the diatomic molecules involved in the collision, etc),
it is possible to derive the corresponding reaction properties which can be compared
with experimental measurements or with results obtained through QM methods. In
particular, among all the reaction properties that can be evaluated by means of the
QCT method, our attention will be focused now on the state-to-state integral and
differential reactive cross sections. At a well defined value of the energy, the former
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is given by

σv′j′←vj = π b2
max

Nvjv′j′

N
(3.24)

where bmax is the maximum reactive impact parameter (determined prior to the cal-
culations by running an small number of trajectories), N is the total number of
trajectories calculated and Nvjv′j′ is the number of reactive trajectories taking to
products in the v′, j′ state. The error of Eq. (3.24) can be estimated by means of the
expression

∆σv′j′←vj = π b2
max

Nvjv′j′

N

(
N −Nvjv′j′

N Nvjv′j′

)1/2

(3.25)

Regarding the differential cross section, its value in the centre-of-mass frame can be
calculated through an expansion in Legendre polynomials (Pk(cos θ))

dσv′j′←vj

dω
(θ) =

σv′j′←vj

2π

∞∑

k=0

2k + 1
2

sk Pk(cos θ) (3.26)

with θ representing the centre-of-mass scattering angle. The coefficients sk are given
by

sk =
1

Nvjv′j′

Nvjv′j′∑

i=1

Pk(cos θi) (3.27)

where the sum runs over all the reactive trajectories leading to a certain final state
v′,j′ and θi is the scattering angle corresponding to each trajectory.

3.4. Quantum reactive scattering

Channels

A channel is any set of stable (elementary or composite) particles that can enter or
leave a collision [51, 52, 53].

To illustrate this concept, let us suppose a system formed by three particles a, b

and c such that b and c have two bounded states (a ground state (bc) and an excited
state (bc∗)) and a and c have an unique bounded state ac. The four possible channels
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a + b + c a + b + c

bc bc

bc
∗

bc
∗

ac ac

Fig. 3.4.: Schematic representation of a multichannel scattering process.

for any collision involving these particles are

Channel 1 V a + b + c

Channel 2 V a + bc

Channel 3 V a + bc∗

Channel 4 V b + ac

where the first corresponds to the free movement of all particles and the rest of them
to bounded states of the particles taking part in the collision. As it can be noticed,
different channels differentiate not only in the fragments but also in the energy level
of these fragments. It is not necessary to consider bounded states involving a, b and c

simultaneously because these are eigenstates of the system Hamiltonian which remain
bounded at all times.

A multichannel collision could be represented through the flux diagram 3.4. The
colliding particles, whose state can correspond to a superposition of several chan-
nels or (more frequently) to a definite one, undergo the collision (the circle indicates
the interaction region) and the products leave through several channels in definite
proportions.

In principle, the number of channels can be either finite or infinite. However, not
all of them are accessible at each value of the total energy E7: only those channels
such that the internal energy of its constituents is below E can represent states of the
system prior or after the collision. These channels are termed as “opened channels”

7Whenever the potential describing the particles interaction is independent on time, the total energy
has to be conserved during the collision
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and its number increases with the energy.
In this work, states differing in the angular momentum polarisation will be consid-

ered as belonging to the same channel. For instance, let us suppose that bc represents
a diatomic molecule. In this case, states corresponding to different polarisations of
the rotational angular momentum and to the same internal state of the molecule will
be included in the same channel.

Scattering operator

Let us suppose that out purpose is to study a K particles system and, in particular,
the scattering processes involving those particles and/or composite fragments formed
with them. It can be shown [51, 52, 53] that the asymptotic8 state of the system
prior and after any collision can be described through the coherent or incoherent
superposition of state vectors belonging to a Hilbert space H that can be decomposed
as the direct sum

H = H1 ⊕H2 ⊕ . . .⊕HN (3.28)

where N is the number of channels (in practise only opened channels have to be
considered) and each Hi represents the Hilbert space formed by the vectors suitable
for describing the arrangement corresponding to channel i.

To clarify this, let us go back to the former example. If a, b and c were spinless
particles, H1 (channel 1 is that corresponding to the free movement of all particles)
turns out to be L2(R9) (the space of square-integrable functions in R9) and the
coordinate representation of an arbitrary vector |Ψ1〉 of this space is

〈xa,xb,xc|Ψ1〉 = Ψ1(xa,xb,xc) (3.29)

In contrast with this, H2 consist of the subspace of L2(R9) formed by the vectors
whose coordinate representation is given by

〈xa,xb,xc|Ψ2〉 = χ(xa,xbc)φbc(xbc) (3.30)

where χ(xa,xbc) is an arbitrary normalizable function describing the movement of
a (xa) and the bc center of mass (xbc) and φbc(xbc) is the function representing the
internal motion (xbc) of the bc bounded state. This could be extended to channels
3 and 4 in an straightforward way. The space H formed by the vectors describing
8Each collision considered in this work can be divided into three parts: in asymptote, interaction

region and out asymptote. The asymptotes are characterised by the “free” movement of the
system, where “free” indicates now that the interaction between the particles and fragments of
each opened channel can be neglected
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the system state before or after the collision would be obtained from Hi(i = 1, . . . , 4)
according to Eq. (3.28), with the direct sum indicating that a general state of the
colliding (or recoiling) particles would include a certain contribution coming from all
channels.

Having introduced H, it is time now for presenting the most important element of
the quantum mechanical scattering theory: the scattering operator Ŝ. It is

� an unitary operator defined on H, that is, a linear operator whose domain is H,
whose range is H and that conserves the norm (the first two conditions involve
that Ŝ is a one-to-one map and, therefore, that it can be inverted)

� such that if the system state prior to collision is given by |Ψin〉, the state which
describes it when the collision has taken place is

|Ψout〉 = Ŝ|Ψin〉 (3.31)

where both |Ψin〉 and |Ψout〉 belong to H.

Most commonly, the in-state lies in one definite channel i and, hence,

|Ψin〉 = |Ψi〉 (3.32)

However, the out-state will in general include contributions from all the opened chan-
nels even although the in-channel is unique. If this were not so, the inelastic and the
reactive scattering would not be possible and all the collisions would consist of elastic
processes without internal energy transference or particle rearrangement.

Interpretation of the elements of the S matrix. Scattering matrix

The probability amplitude for a process consisting of a collision where the system
enters with state |Ψ〉 and leaves with state |Ψ′〉 is given by

〈Ψ′|Ŝ|Ψ〉 (3.33)

that is, by the overlapping between |Ψ′〉 and Ŝ|Ψ〉. The probability for that process
is nothing but the square of the amplitude

P (Ψ′ ← Ψ) = |〈Ψ′|Ŝ|Ψ〉|2 (3.34)

Complex numbers like (3.33) are the constituents of the scattering matrix9 (S ma-
9Strictly speaking, the scattering matrix would be formed by the 〈n|Ŝ|n′〉 elements, where |n〉 and



56 3. Atom-diatom collisions

trix): an unitary matrix (because the scattering operator is unitary) whose elements
are determined by the dynamics of the collision and that completely characterizes the
scattering process. As it will be showed in the rest of this Section and in the following
Chapter, its knowledge allows for evaluating any collision observable.

Representations of the scattering matrix. Helicity representation

The former formalism can be applied to the theoretical study of atom-diatom re-
actions and, in particular, to state-to-state processes like

A + BC(v, j) → AB(v′, j′) + C (3.35)

The potential controlling the nuclear movement in these reactions is given by a
PES (only adiabatic processes are considered) that accounts for the electronic energy
and the nuclear repulsion and whose nature and properties were presented in Sec. 3.2.
It ensues from those properties that the PES values are independent of time and
invariant under rotations and coordinates inversion (because they only depend on the
relative geometry of the nuclei). In consequence [70],

� the total energy (E),

� the total angular momentum quantum number (J) and its projection along any
space fixed axis (M) and

� the parity (P )

are conserved during a collision and the elements of the S matrix can be represented
as

SEJMP
a′,a (3.36)

where a and a′ label the asymptotic states, that is, the system state prior and after
the collision.

In principle, one could perform this labelling in infinite different manners (one for
each possible basis of H) that determine infinite representations for the scattering
matrix. Among them, the “orbital angular momentum” and the “helicity” repre-
sentations [71, 72, 73] are widely employed, being the second most suitable for the
study of reaction stereodynamics. The elements of the S matrix in the orbital angular
momentum representation read

SEJMP
α′v′j′l′,αvjl (3.37)

|n′〉 are vectors belonging to a basis of H. If those elements are known it is possible to evaluate
any other one corresponding to arbitrary ket and bra in H
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while in the helicity representation they are written as

SEJMP
α′v′j′Ω′,αvjΩ (3.38)

where unprimed and primed quantities refer to entrance and exit channel respectively,
α and α′ represent the initial and final atomic arrangements, v and j (v′ and j′) are
the vibrational and rotational quantum numbers of the diatomic molecule BC (AB),
l (l′) is the orbital angular momentum quantum number for reactants (products) and
Ω (Ω′) is the projection of J or j (j′) on R (R′) (J is the total angular momentum, j

(j′) is the rotational angular momentum of BC (AB) and R (R′) is the Jacobi vector
pointing from the diatom centre-of-mass onto the atom (Fig. 3.3) for the reactants
(products) arrangement).

Conversion of the S matrix between different representations can be performed
through unitary transformations [71, 72]. The explicit expression for the transforma-
tion between orbital angular momentum and helicity representations is

SEJMP
α′v′j′Ω′,αvjΩ =

∑

ll′
GJj

lΩ SEJMP
α′v′j′l′,αvjl GJj′

l′Ω′ (3.39)

where the sum runs over the allowed values of l and l′ for each parity value10 and the
coefficients of the transformation are given by

GJj
lΩ = (−1)j+Ω〈jΩJ − Ω|l0〉

[
2

1 + δΩ0

]1/2

(3.40)

It is important to point out that different authors employ different phase conventions
when define the elements of the S matrix. Correspondingly, it is possible to find
several expressions for the transformation coefficients GJj

lΩ (see for example [74]) that
differ in a phase. This is not problem as long as a coherent criteria for the phase is kept
all along the calculations. In future Sections, only two features of the transformation,
which hold regardless the concrete expression for the coefficients, will be invoked:
its unitary character (that ensures probability conservation) and the presence of the
Clebsch-Gordan coefficients.

In practise, it is possible to do without some of the quantum numbers that label
the S matrix elements. Firstly, they do not depend on M and it is not necessary to
consider the value of this projection. Secondly, the elements of the parity adapted S

10The only possible eigenkets for the parity operator are ±1
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matrix in the helicity representation should be combined according to11

SEJ
n′Ω′,nΩ = SEJ

n′−Ω′,n−Ω =

√
(1 + δΩ′0)(1 + δΩ0)

2

[
SEJ P=+1

n′Ω′,nΩ + SEJ P=−1
n′Ω′,nΩ

]
(3.41)

SEJ
n′Ω′,n−Ω = SEJ

n′−Ω′,nΩ =
(−1)J

√
(1 + δΩ′0)(1 + δΩ0)

2

[
SEJ P=+1

n′Ω′,nΩ − SEJ P=−1
n′Ω′,nΩ

]

(3.42)
before being used for computing reaction observables. In these last equations, n and
n′ represent the quantum numbers not involved in the transformation (that is, α, v,
j and their products counterparts) and it has been employed the following symmetry
of the new S matrix elements

SEJ
α′v′j′Ω′,αvjΩ = SEJ

α′v′j′−Ω′,αvj−Ω and SEJ
α′v′j′−Ω′,αvjΩ = SEJ

α′v′j′Ω′,αvj−Ω (3.43)

that stems from the non chirality of reaction (3.35) and, consequently, of the invari-
ance under reflection through the scattering plane [73]. Turning around and merging
Eqs. (3.41) and (3.42), we obtain

SEJP
n′Ω′,nΩ =

1
[(1 + δΩ0)(1 + δΩ′0)]1/2

[
SEJ

n′Ω′,nΩ + P (−1)JSEJ
n′Ω′,n−Ω

]
(3.44)

Notice that in the above equations Ω and Ω′ values are always defined as positive or
zero values.

Next, it will be showed how the cross sections and the reaction probability can
be evaluated from the SEJ

n′Ω′,nΩ matrix elements. We will concentrate on this repre-
sentation as it will be that employed for the quantum mechanical stereodynamical
calculations.

Differential and integral cross sections

The state-to-state integral cross section for reaction (3.35) can be worked out from
the S matrix elements [74]

σv′j′←vj =
π

k2
vj

(2j + 1)−1
∑

J

(2J + 1)
∑

ΩΩ′
|SEJ

α′v′j′Ω′,αvjΩ|2 (3.45)

11Again, different phase conventions can give rise to the appearance of different phase factors. The
equations presented here are consistent with the convention adopted in the ABC code [75] used
for calculating some of the scattering matrices that will be lately employed
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where kvj is the reactants wavenumber

k2
vj =

2µ

~2
Ecoll =

2µ

~2
(E − ε(v, j)) (3.46)

with E representing the total energy, ε(v, j) the internal energy of the reactants (the
energy corresponding to the (v, j) level of the BC molecule), Ecoll the collision energy
and µ the reduced mass of A and BC.

The differential cross section for the same reaction (in the centre-of-mass system)
can be evaluated through the following expression [74]

dσv′j′←vj

dω
(θ) =

1
4k2

vj

(2j + 1)−1
∑

ΩΩ′
|
∑

J

(2J + 1)dJ
Ω′Ω(θ)SEJ

α′v′j′Ω′,αvjΩ|2 (3.47)

where dJ
Ω′Ω(θ) is a reduced rotation matrix element and θ is the scattering angle.

Total (summed over all final states) or vibrationally resolved (summed over all the
j′ rotational levels for a certain v′ state) cross sections can be obtained by direct sum-
mation of their state-to-state counterparts defined in Eqs. (3.45) and (3.47). They
are often employed in reaction dynamics studies because provide with a general de-
scription of the reactivity that allows for making out its main features and because
it is not always possible to experimentally resolve the reaction products into different
rotational or vibrational levels.

Reaction probability

The reaction probability as a function of the total angular momentum quantum
number (J) is represented as P (J) and given by

Pv′j′←vj(J) =
1

2min(J, j) + 1

∑

ΩΩ′
|SEJ

α′v′j′Ω′,αvjΩ|2 (3.48)

for state-to-state reactions.

If the products were considered regardless its internal state, the total reaction
probability could be worked out

Pvj(J) =
∑

v′j′
Pv′j′←vj(J) =

1
2min(J, j) + 1

∑

Ω

∑

v′j′Ω′
|SEJ

α′v′j′Ω′,αvjΩ|2 (3.49)

The importance of P (J) lies in the relation between J and the impact parameter
value b. On one side, the impact parameter can be evaluated from l (the reactants
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orbital angular momentum quantum number)

b =
~√

2µEcoll

√
l(l + 1) (3.50)

indicating that small (large) values of l correspond to small (large) values of the
impact parameter. On the other side, and assuming that the atom A is spinless,
the total angular momentum comes from the coupling between the orbital angular
momentum and the BC molecule rotational angular momentum. This implies that
the accessible values for J are only those contained in the interval

|l − j| ≤ J ≤ l + j (3.51)

According to this, the values of J and l will not be very different for reactions where
the BC rotational excitation is small (when j = 0 they are equal and P (J) coincides
with P (l) or, in the classical limit, with the opacity function P (b), the probability of
reaction as a function of the impact parameter). This being the case, small (large)
values of J can be related as well to small (large) values of the impact parameter
and P (J) will approximately (the better the smaller is j) represent the reactivity
dependence on b.

Calculation of the scattering matrix elements

Procedures for carrying out quantum mechanical dynamical calculations for tri-
atomic reactions can be divided into time dependent (TD, see [76, 77, 78] and ref-
erences therein) and time independent (TI, see [77, 79, 80] and references therein)
methods depending on whether they are based on the solution of the time depen-
dent or the time independent nuclear Schödinger equation (Eq. (3.16)). Regardless
of the chosen procedure, the aim is to work out the S matrix elements by studying
the scattering properties of the nuclear Hamiltonian Ĥ (to be consistent with most
of the existing literature in scattering theory, it will be represented as Ĥ instead of
Ĥnuc) which consists of two terms: one for the relative kinetic energy of the nuclei
and another one, given by a PES (adiabatic calculations), for their potential energy.

An introduction to TD and TI methods is presented in the following pages. Only
the main features of each technique will be summarized and, in order to simplify the
notation, the quantum numbers related to the total angular momentum (J) and the
parity (P) will be suppressed. This does not mean that real three dimensional scat-
tering calculations do not consider the symmetry properties of the problem and the
corresponding conservation laws but that our schematic presentation of the different
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procedures does not need to consider them.

Time dependent calculations are based on the wavepackets usage and form the sim-
plest group of methods employed to tackle the quantum mechanical study of chemical
reactions. They begin by locating a wavepacket Φ(x, t = 0), that represents the reac-
tants in the state and energies of interest, on the reactants valley. This wavepacket
is propagated by solving the time dependent nuclear Schödinger equation

Φ(x, t) = Û(t)Φ(x, t = 0) = e−iĤt/~Φ(x, t = 0) (3.52)

for a time large enough to describe the studied collisions and, finally, the scattering
properties are determined. In practise, the propagation is performed by setting an
spatial grid (employing, for instance, reactants mass scaled Jacobi coordinates [79]),
representing the wavepacket on the grid and reproducing the effect of the time evolu-
tion operator through different standard techniques [76, 81, 82, 83, 84] for wavepackets
propagation. Due to the wavepacket spreading with time and to the impossibility of
using an infinite grid, the wavepacket has to be absorbed at the grid limits because,
otherwise, it would give rise to nonphysical reflections.

Depending on the calculation goal, it may be convenient to switch between different
coordinates sets as the wavepacket evolves in time. If the aim of the study is to
evaluate total (summed over final states) reaction probabilities, only the flux at the
entrance of the products valley is necessary [85] and no coordinates change should
be performed. On the contrary, determination of state-to-state quantities (including
the elements of the S matrix) requires to stop the propagation process for changing
from reactants to products coordinates in order to avoid the huge computational cost
derived from keeping the reactants coordinates during the whole calculation. This
coordinates switching represents a crucial problem as it has to be performed in the
strong interaction region (where the three atoms are close) and, quite frequently, it
can not be efficiently carried out as the wavepacket enters into the products valley
without having left the reactants valley. A successful way of overcoming this difficulty
is given by the RPD (reactant-product decoupling) method [86, 87], that decouples
the reactants and products dynamics. It propagates the initial wavepacket employing
reactants coordinates till a plane located at the entrance of the products valley, where
it is absorbed through a complex potential. This same potential acts later as a time-
dependent source that re-emits the wavepacket into the products valley in such a way
that the propagation is continued and concluded in terms of products coordinates.

A recent formulation of the quantum mechanical TD methodology, the plane wave
packet (PWP) approach developed by Althorpe (see [78] and references therein),
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allows for obtaining the DCS as a function of time, making possible to determine
what is the atoms motion during the collision. Calculation of state-to-state reactive
differential cross sections can be performed through the PWP approach and also
through the real wavepacket approach of Gray and Balint-Kurti [88, 89].

The S matrix elements as a function of the energy can be extracted from TD state-
to-state calculations through the expression [79, 90, 91]

SE
α′c′,αc = −i~

< Φ′|G+(E)|Φ >

< Φ′|φ+
Eα′c′ >< φ−Eαc|Φ >

(3.53)

that holds for all the energy values for which the denominator is different from zero
and where

G+(E) = lim
ε→0

1
i~

∫ ∞

0

ei(E+iε−Ĥ)t/~dt (3.54)

with α and α′ representing the atomic rearrangements, c and c′ the rest of quantum
numbers necessary to specify the channel, Φ and Φ′ the initial and final wavepack-
ets (that is, the wavepackets describing the reactants (products) before (after) the
beginning (end) of the collision) and φ+

Eα′c′ and φ−Eαc outgoing and incoming asymp-
totic wavefunctions (formed by the product between a plane wave representing the
approaching (incoming) or recoiling (outgoing) movement of the particles involved in
the corresponding channel and a function describing their internal state).

TI calculations focus on the time independent nuclear Schödinger equation

ĤψE(x) = EψE(x) (3.55)

where Ĥ represents the nuclear Hamiltonian operator, E the total energy for which the
collision is studied and ψE(x) the corresponding stationary scattering state. There
is a variety of methods which employ this equation and, among them, the coupled
channel hyperspherical approach and the variational methods have been the most
widely employed for reactive scattering calculations and will be now sketched.

The coordinates problem (coordinates suitable for describing the reactants are not
useful for products and vice versa) is also present in TI calculations. However, the em-
ployment of hyperspherical coordinates (they were initially applied to nuclear physics
problems [92, 93, 94] and then applied to chemical reactions (see [79, 80] and refer-
ences therein)) makes unnecessary to halt the calculations for switching between sets
of coordinates suitable for the different atomic arrangements involved in a reaction.
These coordinates display three interesting features:

� They naturally transform into well behaved coordinates for reactants and prod-
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ucts in the corresponding asymptotic regions.

� Unbounded movement is related to only one degree of freedom, the hyperra-
dius (ρ), which represents a measure of the distance between the particles in-
volved in the collision. The rest of hyperspherical coordinates will be termed as
“bounded” because correspond to bounded motions.

� They provide with simple (compared to other coordinates) expressions for the
kinetic energy operator and the volume element.

which make them very convenient for reactive scattering studies and justify their
employment12. The coupled channel hyperspherical approach (see [79, 80] for more
details and references) makes use of these coordinates for calculating the S matrix
elements and can be outlined as

� The wavefunction ψE is represented through a series

ψE = ρ−1/2
∑

n

dn(ρ)φn(ν) (3.56)

where the expansion coefficients dn depend on the hyperradius and the functions
φn are solutions of Eq. (3.55) at a fixed value of the hyperradius (they depend
on the bounded hyperspherical coordinates (represented generically as ν).

� Substitution of Eq. (3.56) into the time independent Schödinger equation (Eq. (3.55))
provides with a system of coupled ordinary differential equations for the dn co-
efficients that, when solved, completely determines ψE . The integration of the
system is performed from the repulsive region of the PES (small values of ρ),
where the dn coefficients vanish, to a large value of ρ corresponding to points
on the reactants and products valleys where the interaction between the atom
and the diatomic molecule can be neglected.

� The elements of the S matrix can be worked out by applying an asymptotic anal-
ysis to the scattering wavefunction ψE . Assuming that (i) the PES controlling
the nuclear dynamics fits into the conditions regarding short and long-distance
behaviour presented in Sec. 3.1 and (ii) that the reactants state corresponds to
the channel labelled by the quantum numbers α (atomic arrangement) and c

(as before, it includes any other quantum number necessary for the complete

12In view of their properties, the reader could inquire why these coordinates were not mentioned
during the former presentation of TD methods. The reason is that, at the moment, there is
no efficient procedures to incorporate them into wavepacket calculations and, at the same time,
convenient alternatives exist



64 3. Atom-diatom collisions

specification of the channel and, in particular, those corresponding to the in-
ternal state of the diatomic molecule), the asymptotic behaviour of ψE will be
given by the following condition

ψE ∼ φ−Eαc −
∑

c′
φ+

Eαc′S
E
αc′,αc (3.57)

in the reactants valley and by

ψE ∼ −
∑

c′′
φ+

Eα′c′′S
E
α′c′′,αc (3.58)

in the products valley. The sums run for all the possible energetically accessi-
ble reactants (c′) and products (c′′) states and SE

αc′,αc (SE
α′c′′,αc) holds for the

inelastic and elastic (reactive) elements of the S matrix. The interpretation of
the asymptotic conditions is simple; in the reactants valley ψE must coincide
with the sum of an incoming wavefunction φ−Eαc that represents the approach-
ing reactants and outgoing wavefunctions φ+

Eαc′ representing the inelastically
and elastically scattered reactants. Equally, in the products valley, ψE can be
decomposed as the sum of different outgoing wavefunctions φ+

Eα′c′′ that corre-
spond for the reaction products in all the opened channels. According to this,
the S matrix elements will be given by the projection of ψE over the different
asymptotic wavefunctions involved in Eqs. (3.57) and (3.58).

� In practise, the calculation is slightly more complicated. Considering slices of
the PES at fixed values of ρ, their profiles turn out to be completely different
depending on whether ρ is large or small. In consequence, it is not possible to
use a single set of functions φn for the whole range of ρ values but, instead,
these functions will have to depend parametrically on the hyperradius. This
determines that the integration of the equations system obtained by substituting
(3.56) into (3.55) has to be performed through a sector-by-sector procedure
where the potential is divided in many sectors along ρ, the functions φn and
the coefficients dn are determined at the center of each sector and the global
continuity of ψE is ensured by imposing boundary conditions at the sector limits.

The two S matrix evaluation procedures presented so far involve a propagation
with respect to time (TD wavepackets) or to the hyperradius (TI coupled channel
hyperspherical) and, in both cases, the efficiency of the calculation was directly re-
lated to the coordinates employed for the propagation. The last group of methods
that will be presented, the variational methods [95], do not include any propagation
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and, therefore, it is not necessary to rack one’s brain looking for the right coordi-
nates. Variational methods are TI and reduce the scattering calculation to a linear
algebra problem (that involves basis, matrices elements and matrices operations) by
expressing the S matrix elements as a functional13 Sα′c′,αc[ψ̃E ] with the following
characteristics

� The trial functions ψ̃E must fulfill asymptotic conditions similar to Eqs. (3.57)
and (3.58).

� When ψ̃E = ψE (the solution of the time independent Schödinger equation),
the value of the functional coincides with the S matrix element Sα′c′,αc.

� The functional is stationary with respect to variations δψE around ψE or, in
other words

Sα′c′,αc[ψE + δψE ] = Sα′c′,αc + O((δψE)2) (3.59)

These two features determine that Sα′c′,αc can be worked out as if we were solving
an elementary variational problem: (i) the trial function ψ̃E is taken as a linear
combination of the functions of a certain basis (they use to be vibrational-rotational
states of reactants and products) with arbitrary coefficients ci, (ii) ψ̃E is substituted
in the functional and (iii) the coefficients of the expansion are now fixed by imposing
that

∂Sα′c′,αc[ψ̃E ]
∂ci

= 0 ∀i (3.60)

The trial function for these coefficients is the best possible one for the chosen basis
and, when substituted in the functional, it leads to an approximated value for Sα′c′,αc.

Both TD and TI calculations present advantages and disadvantages that can be
summarized as follows

� Implementation of TD methods is closer to their theoretical formulation than
for their TI counterparts. This makes TD calculations easiest to use and un-
derstand.

� TD methods are not feasible at very low collisions energies due to (i) the neces-
sity of large propagation times and to (ii) inaccuracies related to the employment
of absorbing potentials at the grid limits.

� While TD methods provide with one column (that corresponding to the re-
actants channel) of the scattering matrix for all the energies included in the

13Roughly speaking, a functional is a function of functions, that is, a function whose values depend
on other functions and not on real or complex independent variables. For instance, the classical
action is a functional of the Lagrangian [68]
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wavepacket, TI calculations allow for evaluating the whole S matrix for only
one energy.

� The computational effort necessary for carrying out the calculations increases
faster for TI than for TD methods. This makes unfeasible the employment of TI
calculations for high dimensionality problems (for instance, collisions involving
four atoms).

� TD calculations make possible the generation of “films” describing the collision
evolution as time elapses [96]. This films represent a powerful interpretation
tool.

The selection of one method or the other depends on the studied reaction, on the
features of the experiment that is going to be simulated and on the available compu-
tational resources.



4. Reaction control and mechanism

analysis through the reactants

polarisation

In the two preceding Chapters it has been discussed how to mathematically describe
the angular momentum polarisation and to perform classical and quantum mechanical
dynamical calculations for atom-diatom collisions. Using them as starting point,
this Chapter will present a set of theoretical methods to analise the influence of the
reactants rotational angular momentum (j) polarisation on atom-diatom collisions. In
particular, it will be showed that the j polarisation is a suitable tool for (i) probing the
mechanism of the process and for (ii) controlling the reaction probability and products
state distribution. All what is needed to perform this kind of study is the outcome
of the dynamical calculation (the quasiclassical trajectories or the scattering matrix)
and, although the exposition will concentrate on reactive collisions, the methods are
also suitable for application on inelastic or elastic processes.

The properties of chemical reactions can be divided into two categories: intrinsic
and extrinsic properties (Sec. 4.1). The former represent the inherent properties of the
reaction (they can not be modified) while the second describe the experimental setup
(they can be externally controlled). In particular, it can be distinguished between
the intrinsic and the extrinsic reactants polarisations (Sec. 4.2). The intrinsic one is
the j polarisation that gives rise to reaction and it will be the basis for our analysis
of the mechanism. In turn, the extrinsic polarisation represents the actual j polar-
isation when an experiment is carried out. The consideration of different extrinsic
polarisation schemes will allow for controlling the reaction output.

Both polarisations can be described by means of the corresponding polarisation
moments (Chapter 2) whose values contain information about the alignment or ori-
entation of j along defined directions in the space. A presentation of the different
kinds of intrinsic moments, their characteristics and the details of their calculation is
included in Sec. 4.3.

The reaction control can be studied by considering that the output of an experiment

67



68 4 Reaction control and mechanism analysis. . .

depends both on the intrinsic properties of the reaction and on the characteristics of
the experiment (the extrinsic properties) that is being performed. Sec. 4.4 shows that
the reaction cross sections can be expressed as a function of the intrinsic and the
extrinsic polarisations and provides with explicit expressions for that dependence.
These expressions allow for a quantitative and qualitative analysis of the control
reaction that can be achieved by means of the j polarisation.

If what one wants is insight (that is, a rationalisation of reaction mechanism), then
looking at the spatial distributions of molecular axis and rotational angular momen-
tum is likely more useful than analysing a long list of polarisation parameters. This
can be achieved by means of the stereodynamical portraits (Sec. 4.5) that are three
dimensional plots representing the j and r (molecular axis of the reactive diatomic
molecule) distributions related to any intrinsic or extrinsic polarisation.

Sec. 4.6 describes a possible experiment consisting on the reactant diatomic align-
ment along a chosen direction followed by the monitoring of the reaction probability
(cross sections) for that extrinsic preparation. This experiment will fulfill a double
role: it represents a feasible procedure to check the validity of the methods presented
in this Chapter and, due to its simple interpretation, it provides with a detailed and
intuitive panorama of the steric requirements of the reaction.

To end with, Sec. 4.7 shows results that illustrate (i) how the theory can be used
and (ii) the kind of information that can be obtained from the proposed experiment.
The examples employ the H + D2 benchmark reaction and focus on three aspects of
the reaction: the mechanism analysis, the control possibilities and the evaluation of
the control limits.

The electronic and nuclear spins will be ignored, which means that the contain of
the Chapter will be valid only when the BC reactant is a closed shell molecule not
susceptible to fast hyperfine depolarisation [29, 31, 38].

Unless otherwise stated, all the equations, concepts and ideas presented will hold
regardless of the usage of classical or quantum mechanics. Any difference between
both treatments will be explicitly indicated and discussed.

4.1. Intrinsic and extrinsic properties of chemical

reactions

The methods and results included in this Chapter are introduced on the basis of
the distinction between intrinsic and extrinsic properties of chemical reactions. That
differentiation stems from the recognition that, in a sense, chemical reactions exist
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independently from the actual and specific preparation of reacting molecules.

The intrinsic properties are those which describe the reactive process itself, do
not depend on any external circumstance and cannot be controlled. In contrast, the
extrinsic properties are always associated with the specific circumstances under which
the reaction takes place. They represent the experimental setup, depend on external
factors and, at least in principle, can be controlled just by changing the experimental
arrangement. Summarizing, we could say that the intrinsic properties represent “what
the reaction wants” while the extrinsic properties represent “what the reaction gets
from the experiment”.

For instance, the scattering matrix obtained in quantum mechanical reactive scat-
tering calculations is an intrinsic property. As it was discussed in the former Chapter,
its elements represent transition probability amplitudes that tie reactants to products
states. Once that its elements have been worked out they can be employed to work
out reaction observables such as the integral and the differential cross sections or the
polarisation moments that will be defined in Sec. 4.3. However, before of evaluating
these quantities it is necessary to fix the value of certain extrinsic properties such
as the reactants and products internal states, the scattering angle or the reactants
polarisation.

4.2. Intrinsic and extrinsic reactants polarisations

Within the different reaction properties, we will concentrate on the intrinsic and the
extrinsic polarisations of the reactants. The former is the j (rotational angular mo-
mentum of the diatomic reactant molecule) polarisation that leads to formation of the
products. It contains the directional preferences of the reaction and, in consequence,
it will be used for the analysis of the reaction mechanism. In turn, the extrinsic
polarisation corresponds to the actual preparation of the reactants polarisation when
an experiment takes place and (in contrast with its intrinsic counterpart) it can be
externally modified and used to control the output of the reaction. As long as the
reactants polarisation is not extrinsically prepared, the target molecule is completely
unpolarised (see Sec. 2.3.3). This means that the rotational angular momentum and
the internuclear axis of the reactant molecule (r) are isotropically distributed and that
the results obtained from the experiment represent an average over all the possible
polarisations of the reactants. Of course, the experiments could be carried out with
different extrinsic polarisations and it would be found that they influence the outcome
of the experiment (favouring or hindering it). As it will be discussed in Sec. 4.4.4,
the outcome of the reaction always increases when the extrinsic polarisation matches
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the intrinsic one. In some cases, this increment can be the maximum possible and, in
other, be only an improvement with respect to the unpolarised reactants collisions. In
any case, the intrinsic polarisation reflects the reaction directional preferences (“what
the reaction wants”) and, in consequence, it indicates what to do for increasing (or
decreasing) the reaction yield.

The intrinsic moments can be determined either theoretically or experimentally.
Next Section will include the procedure to work out these moments from QCT or
quantum mechanical calculations. To experimentally determine the intrinsic polari-
sation of the reactants [97] it would be necessary to use a variety of extrinsic polarisa-
tions which can be obtained by changing the experimental “geometries” with respect
to an space fixed frame (LAB frame); that is, the direction of the electric field, or
the polarisation vectors corresponding to the lasers used for the preparation of the
reagents, etc. From the analysis of the experimental results obtained under different
extrinsic preparations one can derive the intrinsic polarisation.

4.3. Intrinsic polarisation moments

This Section introduces the different intrinsic polarisation moments, their properties
and the procedure to evaluate them. The calculations always begin by working out
the intrinsic polarisation moments for state-to-state reactions resolved with regard to
scattering angle. These polarisation moments are termed as state-to-state polarisation
dependent differential cross sections (state-to-state PDDCSs) and allow for a very
detailed stereodynamical analysis of the reaction. The state-to-state PDDCSs serves
as well as starting point for the calculation of the intrinsic moments corresponding to
less detailed processes:

� the state-to-state polarisation parameters (state-to-state PPs) will be obtained
by integration over the scattering angle and

� differential and integral polarisation moments averaged over product states (to-
tal PDDCSs and PPs) can be worked out from their state-to-state counterparts.

The structure of this Section reflects the order in which calculations are done. It
begins with the definition of state-to-state PDDCSs, goes through the definitions of
the other moments and finish with a subsection including the explicit procedure for
evaluating the PDDCSs. The reason for presenting the PDDCSs calculation at the
end instead of immediately after their introduction is to show the relation between
the different intrinsic moments in the clearest way, that is, without interferences in
the sequence that goes from more detailed to less detailed moments.
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z ≡ k

k
′

θ

x

y ≡ k × k
′

Fig. 4.1.: Centre-of-mass reference frame. The reactants approach direction (k) is
parallel to the z axis, k′ is the products recoil direction and θ represents the
scattering angle.

Except for (i) the calculation procedure, (ii) the limitation of the number of mo-
ments in the quantum mechanical case and (iii) the upper and lower limits for their
values (see App. B), the PDDCSs (PPs) have the same characteristics and meaning
regardless of their classical or quantum mechanical origin.

The directional information contained in the intrinsic moments will be referred to
the xyz centre-of-mass reference frame1 (sketched in Fig. 4.1) whose z axis coincides
with k (the reactants relative velocity), and whose y axis coincides with k× k′ (k′ is
the products relative velocity). This implies that the scattering plane is xz and that
k′ lies on the x ≥ 0 half of the scattering plane. Operators, moments and vectors
defined in this system will be denoted with low case letters: q will be used to label the
components of the polarisation moments and θj and φj (θr and φr) to represent the
polar and azimuthal angles that describe the direction of j (r) (remember that the
former is the rotational angular momentum of the reactant diatomic molecule while
the second is its internuclear axis).

4.3.1. State-to-state PDDCSs

So far, an state-to-state atom-diatom reaction has been written as

A + BC(v, j)
Ecoll,θ−−−−→ AB(v′, j′) + C (4.1)

1The xyz frame will be named as well ”scattering frame”
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where v and j (v′ and j′) are the vibrational and rotational quantum numbers which
specify the internal state of the reactant (product) diatomic molecule, Ecoll is the
collision energy and θ is the scattering angle. This expression only takes into con-
sideration the internal states of the molecules but not their polarisation. In order
to incorporate such polarisation into the study, it is convenient to think about an
atom-diatom chemical reaction as being described by the process [24, 98]

A + BC(v, j, k, q)
Ecoll,θ−−−−→ AB(v′, j′, k′, q′) + C (4.2)

where the new labels (k, q and their primed counterparts) are associated with the
moments (see Chapter 2 and references therein) that characterise the BC and AB
rotational angular momentum (j and j′) polarisations.

In this and the two following Chapters our interest will lie in reactants rather
than products polarisation and, therefore, the products-polarisation labels will be
fixed at k′ = q′ = 0 (this means that the products are considered regardless of
their polarisation state) and not explicitly mentioned. The state-to-state polarisation
dependent differential cross sections (state-to-state PDDCSs) [25] are the moments
which characterize the intrinsic j polarisation for the resulting process

A + BC(v, j, k, q)
Ecoll,θ−−−−→ AB(v′, j′) + C (4.3)

They represent the j alignment (k even) or orientation (k odd) along defined directions
in the space when the reaction (4.3) takes place (see Sec. 2.4.2 for details), describe
the interplay between molecular polarisation and reactivity at any given scattering
angle (the j− k− k′ three-vector correlations) and quantify

� the probability that the AB(v′, j′) product is found to recoil along the final
relative velocity direction k′...

� ...if the A atom approaches the BC(v, j) molecule along the relative velocity
direction k...

� ...with BC(v, j) having the particular kind of polarisation associated with the
PDDCS labels k (the PDDCS rank) and q (the PDDCS component).

To gain an insight into the PDDCSs definition, it is convenient to remember that the
polarisation moments were introduced as the coefficients of an expansion (Chapter 2).
In this case, the expanded functions are [25, 32]

� Classical mechanics: the probability density function Pr(θ, θj , φj), whose values
give the probability of observing reactive scattering from a given reactants rovi-
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brational state into a given products rovibrational state and at scattering angle
θ when the initial direction of the BC reactant rotational angular momentum is
the one associated with the spherical angles θj and φj (all the angles referred
to the centre-of-mass reference frame).

� Quantum mechanics: the matrix elements 〈jΩ1|ρ̂(cos(θ))|jΩ2〉, where ρ̂(cos(θ))
is the rotational-space density operator of the reactants in the process (4.3).
This operator represents the state of the reacting BC molecules in the space ex-
panded by the |jΩ〉 basis, where j is the rotational angular momentum quantum
number and Ω is the helicity (the projection of j over k). The density matrix
elements take into account the coherences between the different values of the
helicity.

and the explicit form of the expansions (in terms of the complex PDDCSs represented
by S

(k)
q (θ)) is given by [25, 32]

Pr(θ, θj , φj) =
∞∑

k=0

k∑

q=−k

2k + 1
4π

S(k)
q (θ)C∗kq(θj , φj) (4.4)

(compare with Eq. (2.2)) and

〈jΩ1|ρ̂(cos(θ))|jΩ2〉 =
2j∑

k=0

k∑

q=−k

2k + 1
2j + 1

S(k)
q (θ) 〈jΩ1kq|jΩ2〉 (4.5)

(compare with Eq. (2.42)).

Following Sec. 2.4, the PDDCSs can be represented as complex or real moments.
While the first representation is convenient for calculations (because the complex
PDDCSs transform under rotation as the angular momentum eigenstates (see App. A)),
the second is convenient for interpretation purposes because it allows one to consider
molecular polarisations in terms of Cartesian directions. Complex PDDCSs are repre-
sented by S

(k)
±q (θ) or PDDCS(k,±q) and real PDDCSs by S

{k}
q± (θ) or PDDCS{k, q±}.

The transformation between both sets of moments is given by Eq. (2.54) or (2.55).

All the reactions that will be studied are non-chiral reactions, that is, reactions
which are symmetric with respect to the scattering (xz) plane [25]. In other words,
this means that the atomic ensemble which gives rise to reaction can not distinguish
between “up” and “down” with respect to the scattering plane [33]. As it was dis-
cussed in Chapter 2, this symmetry will restrict the values that the PDDCSs can take
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because, on top of the condition

S(k)
q (θ) = (−1)qS

(k)∗
−q (θ) ∀ k, q (4.6)

(general for all the polarisation moments. See Eq. (2.5) (classical mechanics) and
(2.44) (quantum mechanics)) the complex PDDCSs must fulfill Eq. (2.50)

S(k)
q (θ) = (−1)k+q S

(k)
−q (θ) ∀ k, q (4.7)

derived from the invariance through xz plane reflections. It follows from these two
conditions that the complex PDDCSs with k even (odd) are real (pure imaginary)
and that those with k odd and q = 0 vanish. As for the real PDDCSs, it implies that
the only nonvanishing real PDDCSs are

k even: S
{k}
0 (θ) and S

{k}
q+ (θ), 1 ≤ q ≤ k; (4.8a)

k odd: S
{k}
q− (θ), 1 ≤ q ≤ k. (4.8b)

As it will be shown in the next Section, the S
(0)
0 (θ) moment (whose values represent

the population of the reacting BC molecules state) coincides with the angular distri-
bution2 when the reactants are initially unpolarised. The angular distribution is, in
general, a non constant function whose values depend on the scattering angle. This
involves that (see Sec. 2.4.3): (i) the intrinsic polarisation corresponding to different
scattering angles can not be directly compared by means of the PDDCSs because
a certain moment can take the same value at two different angles but representing
different polarisation intensities and, (ii) in order to perform that comparison or to
set in absolute terms the intensity of a polarisation it is necessary to introduce the
real renormalised PDDCSs

S
{k}
q

S
{0}
0

∀ k, q (4.9)

(the equation is equally valid for the complex PDDCSs) that refer the moments to
states of population one (and adopts the corresponding scale).

4.3.2. State-to-state PPs

By correlating reactant polarisation to scattering angle in a state-to-state fashion,
state-to-state PDDCSs provide a very detailed description of polarisation effects in
reaction dynamics.

2The probability of reaction as a function of the scattering angle [1]
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But, is that level of detail always desired? The answer is no. In fact, state-to-state
PDDCSs rarely offer a convenient starting point for stereodynamical analyses. Good
starting points are offered by less detailed quantities, which allow for a more global
view of the problem of interest and for an easier identification of the dominant effects.

There are two natural ways of reducing the level of detail of state-to-state PDDCSs:
integration over the scattering angle and averaging over product states. This Section
deals with the first.

The polarisation parameters (PPs) are the counterparts of the PDDCSs when the
integration over the scatering angle is performed and represent the intrinsic polarisa-
tion of the process

A + BC(v, j, k, q) Ecoll−−−→ AB(v′, j′) + C (4.10)

They inform about the j polarisation when this reaction takes place, describe the
interplay between molecular polarisation and reactivity regardless of the scattering
angle (the j-k two-vector correlation) and quantify:

� the probability that the AB(v′, j′) product is formed...

� ...when the BC(v, j) reactant has the particular kind of polarisation associated
with the PP labels k (the PP rank) and q (the PP component).

The nature of the functions whose expansion coefficients are the PPs and the explicit
expression for the corresponding expansions could be easily deduced [25] from their
PDDCSs counterparts (Eqs. (4.4) and (4.5)) just by considering (i) the integration
over the scattering angle and (ii) the subsequent substitution of the PDDCSs by the
PPs.

Complex PPs are represented by s
(k)
±q or PP(k,±q), and their values can be worked

out from complex PDDCSs by use of the formula [25]

s(k)
q =

∫ 1

−1

S(k)
q (θ) d(cos θ). (4.11)

In particular, the value of the s
(0)
0 moment is calculated integrating the angular dis-

tribution (S(0)
0 (θ)) and, therefore, it always will be equal to one. In consequence,

it is not necessary to renormalise the PPs before to compare the intrinsic polarisa-
tions for different reactants and products states in Eq. (4.10). The application of the
combination scheme given by Eq. (2.54) or (2.55) to the s

(k)
±q moments allows for the

definition of the real PPs. They are represented as s
{k}
q± or PP{k, q±} and have the

same directional meaning as the real PDDCSs.
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4.3.3. Total PDDCSs

The second way of reducing the level of detail of state-to-state PDDCSs consists of
averaging over product states, a procedure that leads to the total PDDCSs.

The average over final states uses the state-to-state integral cross sections as sta-
tistical weights in order to account for the different probabilities of the various state-
to-state processes:

S
(k)
q,tot(θ) =

∑
v′,j′ σ(v′, j′)S(k)

q (θ)∑
v′,j′ σ(v′, j′)

, (4.12)

where the σ(v′, j′) are the state-to-state integral cross sections, and S
(k)
q,tot(θ) the total

PDDCSs. Note that, although our notation does not make it explicit, the state-to-
state PDDCSs, S

(k)
q (θ), do depend on v′ and j′. If the averaging is only over the j′

states corresponding to a given vibrational manifold, then the resulting PDCCS are
S

(k)
q,v′(θ).

Note also that, just like their state-to-state counterparts, total PDDCSs may or
may not require renormalisation [that is, division by S

(0)
0,tot(θ)].

4.3.4. Total PPs

When combined, the integration and averaging procedures described in the last two
pages lead to total PPs. These quantities, related to the state-to-state PPs by

s
(k)
q,tot =

∑
v′,j′ σ(v′, j′)s(k)

q∑
v′,j′ σ(v′, j′)

, (4.13)

provide the best starting points for stereodynamical analyses as they make possible
to obtain the most general perspective of the reaction stereodynamics.

4.3.5. Calculation of the state-to-state PDDCSs

The state-to-state PDDCSs can be worked out from quasiclassical trajectories and
from quantum-mechanical methods.

Quasiclassical trajectories evaluation of the PDDCSs

The quasiclassical trajectories (QCT) calculations (see Sec. 3.3) are carried out
using an uniform distribution of the reactants rotational angular momentum or inter-
nuclear axis, without any polarization bias. Of course, each individual trajectory is
associated with well defined initial and final polarization states, but the ensemble of
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trajectories spans an uniform, isotropic distribution of directions. It is the analysis of
the subset of trajectories tying each initial rovibrational state to each final rovibra-
tional state that allows for the PDDCSs calculation, that is, for the analysis of the
j polarisation when the reaction is giving rise to a particular final state at a given
scattering angle.

The procedure for evaluating the PDDCSs can be summarized as follows [25, 41].
Each particular combination of reactant and product rovibrational states is consid-
ered in turn, along with the corresponding subset of trajectories. This subset contains
Nvjv′j′ trajectories, labelled by the index i. The values of the scattering angle θ(i)

and the polar and azimuthal angles that define the direction of j, θ
(i)
j and φ

(i)
j , are

determined for each of the Nvjv′j′ trajectories. This information is used to calculate
the values of all the modified spherical harmonics of interest for each trajectory (clas-
sically, the polarisation moments were expressed as the expectation value of modified
spherical harmonics (Eq. (2.4))), and then the trajectory-specific values are averaged
over the Nvjv′vj′ reactive trajectories.

The PDDCSs can be written as a series of modified spherical harmonics [25, 41]

S(k)
q (θ) =

1
2

∞∑

k1≥|q|
(2k1 + 1) sk1

kq Ck1−q(θ, 0) (4.14)

where the coefficients sk1
kq are given by

sk1
kq = 〈Ck1−q(θ, 0) Ckq(θj , φj)〉

=
1

Nvjv′j′

Nvjv′j′∑

i=1

Ck1−q(θ(i), 0)Ckq(θ
(i)
j , φ

(i)
j ) (4.15)

and the brackets indicate the averaging over the whole set of trajectories associated
with the chosen rovibrational states of reactants and products.

The PPs can be evaluated by integrating over the scattering angle (Eq. (4.11)) or,
equivalently, as [25, 41]

s(k)
q = 〈Ckq(θj , φj)〉 =

1
Nvjv′j′

Nvjv′j′∑

i=1

Ckq(θ
(i)
j , φ

(i)
j ) (4.16)

Quantum mechanical evaluation of the PDDCSs

The starting point of the derivation of the quantum mechanical expression for the
reactants intrinsic PDDCSs is the scattering matrix in the helicity representation
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(Sec. 3.4 and ref. [73]) , the one most naturally adapted for the description of the
j-k-k′ vectors correlation [24, 98].

Complete specification of a particular element of this matrix requires a notation
such as SEJ

a′v′j′Ω′,avjΩ, with the various indices indicating the total energy (E), total
angular momentum (J) and arrangement, vibrational, rotational and helicity quan-
tum numbers for reactants (a, v, j and Ω) and products (a′, v′, j′ and Ω′). As the
following equations only require implicit use of the energy, arrangement and vibra-
tional labels, the notation will be simplified to SJ

j′Ω′,jΩ.
Once that the S matrix elements are known, the following expression allows for

evaluating the PDDCSs [25]:

[
S(k)

q (θ)
]∗ =

∑

Ω′Ω1Ω2

f̄Ω′Ω1(θ)f̄
∗
Ω′Ω2

(θ)〈jΩ1, kq|jΩ2〉, (4.17)

where the f̄ functions denote “scaled” scattering amplitudes [74] given by

f̄Ω′Ω(θ) =

∑
J(2J + 1)dJ

Ω′Ω(θ)SJ
j′Ω′,jΩ[

2
∑

JΩ′Ω(2J + 1)|SJ
j′Ω′,jΩ|2

]1/2
. (4.18)

(the number dJ
Ω′Ω(θ) represents a reduced rotation matrix element [37]). The formulae

above justify the choice of notation for the intrinsic reactants PDDCSs (S(k)
q (θ)).

These are obtained by nothing more than a transformation of the scattering matrix
and, therefore, they can be interpreted as visualizable versions of the S matrix that
make the stereodynamical information explicit.

4.4. Reaction observables dependence on the j

polarisation

The previous Section introduced the intrinsic moments and, in particular, it pointed
out their two key properties:

� the intrinsic moments represent the BC polarisation when the reaction takes
place and

� quantify the reaction probability for any extrinsic polarisation of the reactants.

While the former characteristic allows for studying the collisions mechanism, the
second makes possible to analyse the feasibility of controlling the reaction output
through the reactants polarisation.
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This Section will be focused on developing the theoretical tools necessary to judge
the magnitude and the limits of that control. These tools will consist of expressions
for the reaction cross sections as a function of the extrinsic BC polarisation.

4.4.1. Observable state-to-state differential cross section

When dealing with reaction observables and, in consequence, with possible exper-
imental situations, it will be necessary to consider a second frame of reference: the
laboratory (or space fixed) frame (XY Z), whose origin coincides with the xyz center-
of-mass frame. Upper case letters will be used to represent vectors and moments
defined with respect to the XY Z frame: Q will label the polarisation moment com-
ponents and upper case Θj and Φj will represent the polar and azimuthal angles that
describe the direction of the rotational angular momentum vector j.

Let us suppose that (as it is done in this work) one wants to study the reaction
dynamics in the scattering frame xyz, and that all intrinsic properties are referred to
xyz. If reactants are produced in the laboratory with complex polarization moments
A

(k)
Q referred to the space fixed frame XYZ, then a frame transformation is required:

one must use the values of the laboratory polarization moments A
(k)
Q to determine the

values of the center-of-mass frame polarization moments a
(k)
q . This transformation is

given by (App. A)

a(k)
q =

k∑

Q=−k

Dk∗
qQ(α, β, γ)A(k)

Q (4.19)

where Dk(α, β, γ) is a Wigner rotation matrix [37] and α, β and γ are the Euler
angles associated with the rotations that take the xyz frame into the XYZ one (β
and α are the polar and azimuthal angles that describe the orientation of Z in the
center-of-mass frame (see Fig. 4.2)).

The formula required for evaluating the state-to-state differential cross section
(DCS) when the reactants are extrinsically polarised is (a derivation can be found
in App. C)

dσ

dω
=

σiso

2π

∑

kq

(2k + 1)
[
S(k)

q (θ)
]∗

a(k)
q (4.20)

where dσ/dω is the DCS, σiso is the integral cross section of the reaction involving
unpolarized reactants (in other words, the reaction in which the experimental spa-
tial distributions of the rotational angular momentum and internuclear axis of the
BC molecule are isotropic), S

(k)
q (θ) are the state-to-state PDDCSs and a

(k)
q are the
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z ≡ k

k
′

k
′

θ

x

y ≡ k × k
′

Z

β

α

Fig. 4.2.: Relation between the laboratory frame Z axis and the xyz center-of-mass
frame. Both frames are related through the (α, β, γ) Euler angles.

extrinsic moments3 (that is, the polarisation moments that describe the BC experi-
mental polarisation in the center-of-mass frame of reference). This expression holds
the same for classical or quantum mechanics with just a minimal difference: the upper
limit of the sum is ∞ in the classical case and 2j in the quantum mechanical case.

In general, the DCS given by Eq. (4.20) is not axially symmetric with respect to the
z (k) axis because it depends on the α, β and γ angles (through the a

(k)
q moments),

that is, on the relative position of the laboratory frame with respect to the center-of-
mass frame.

Eq. (4.20) makes possible to gain additional insight into the PDDCSs meaning:

� It sets explicitly how they quantify the probability of forming the AB molecule
with scattering angle θ when the BC molecule extrinsic polarisation is given by
the k, q moment.

� In most of the experiments the reactants are unpolarised (they are not extrin-
sically prepared prior to reaction). This implies that the extrinsic polarisation
moments must fulfill the condition (see subsection 2.3.3)

a(k)
q = δk0δq0 (4.21)

and, in consequence, that the only nonzero moment is the a
(0)
0 one (its value

represents the population of the state describing the experimental preparation

3In Chapter 2, the a
(k)
q symbol was employed to represent a generic polarisation moment. From

now on, it will represent the extrinsic moments
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of the reactants. In general, it will be assumed to be equal to one). The substi-
tution of these moments into Eq. (4.20) provides with the following expression
for the S

(0)
0 (θ) PDDCS

S
(0)
0 (θ) =

2π

σiso

dσiso

dω
(θ) (4.22)

where dσiso

dω is the isotropic DCS, that only depends on the scattering angle (it
is axially symmetric (see below)). This expression coincides [1] with that for
the angular distribution (the reaction probability as a function of the scattering
angle) when the reactants are unpolarised. By integrating over the scattering
angle, it is trivial to confirm that (as anticipated) the s

(0)
0 polarisation parameter

will always be equal to one.

4.4.2. Observable state-to-state integral cross section

The evaluation of the integral cross section (ICS) in the center-of-mass frame in-
volves the sum of the DCS along all the directions in the space, that is, integration
over the scattering angle θ and the azimuthal angle φ (Chapter 3). When the reactants
are initially unpolarised or their extrinsic polarisation is such that the initial prepa-
ration is axially symmetric with respect to the k direction, the DCS is independent
on φ and the corresponding integration is equivalent to multiply by 2π. Whenever
this is not truth it is firstly necessary to answer the question “who is exactly φ?” and
then to perform the integration. Fortunately the response for the question is simple:
φ is the angle between the scattering and the zZ plane, that is, α (see Fig. 4.2). In
consequence, the integral cross section for an arbitrary reactants polarisation can be
directly determined from the expression 4.20 by integrating over θ and α, obtaining
the formula

σ = σiso

∑

k

(2k + 1)s(k)
0 a

(k)
0 (4.23)

where the complex conjugate symbol has been dropped because the PPs with q = 0
(s(k)

0 ) are real, the ICS dependence on the angles β and γ is not explicitly indicated
and the upper limit of the sum is again 2j (∞) in the quantum mechanical (classical)
case. According to this expression, the polarisation moments with q 6= 0 do not
contribute to the ICS. This can be mathematically justified by having a look at the
explicit dependence on the Euler angles of the rotation matrix involved in the LAB
to center-of-mass moments transformation (Eq. (4.19)) [37]

Dk∗
qQ(α, β, γ) = eiqαdk

qQ(β)eiQγ (4.24)
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It is evident that integration of the first complex exponential over the α range of values
([0, 2π]) cancels unless q = 0. Physically, the no contribution of the q 6= 0 moments
to the ICS can be rationalised by thinking about their relation to the cartesian axis
(Sec. 2.4 and references therein): the q = 0 moments do not depend on the location
of the scattering plane (for instance, the k = 2, q = 0 moment determines the angular
momentum alignment with respect to the z axis) while those corresponding to q 6= 0
assume known of the location of that plane. The determination of the ICS involves
integration over the scattering and azimuthal angles or, in other words, it includes to
sum over all the possible positions of the scattering plane. Therefore, after performing
such integration it becomes completely meaningless to talk about the scattering plane
and the ICS cannot depend on moments which are referred to it.

Of course, the range of observable quantities is not completely made up by the
DCS and the ICS. In particular, it is possible to conceive an “special” cross section
(σ̃) obtained by integration only over the scattering angle and whose value would be
given by

σ̃ = σiso

∑

kq

(2k + 1)[s(k)
q ]∗a(k)

q (4.25)

In contrast with σ, the special ICS depends on all the polarisation moments. The
reason for this difference lies in that σ̃ determination does not involve integration
over α but, on the contrary, it requires specification of the location of the scattering
plane. Therefore, its values will depend on the angles β and γ (as σ) but also on
the azimuthal angle α. Experimentally, the special ICS can only be indirectly mea-
sured, by integration of a (directly measurable) differential cross section. It cannot
be determined when product detection does not discriminate between different recoil
directions k′.

4.4.3. Total observables

The state-to-state control expressions formerly introduced can be generalised to
deal with observables corresponding to a well defined set of final states. In particular,
the combination of Eq. (4.20), (4.23) and (4.25) with the definitions of the total
PDDCSs S

(k)
q,tot(θ) (Eq. (4.12)) and the total PPs s

(k)
q,tot (Eq. (4.13)) provides with the

following formulas for the total DCS, ICS and special ICS respectively

dσtot

dω
=

σiso,tot

2π

∑

kq

(2k + 1)
[
S

(k)
q,tot(θ)

]∗
a(k)

q (4.26)
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σtot = σiso,tot

∑

k

(2k + 1)s(k)
0,tot a

(k)
0 (4.27)

σ̃tot = σiso,tot

∑

kq

(2k + 1)[s(k)
q,tot]

∗a(k)
q , (4.28)

where
σiso,tot =

∑

v′,j′
σiso(v′, j′) (4.29)

(for the sake of clarity, the dependence of σiso on the final state has been explicitly
indicated). The analysis of the total observables dependence on the extrinsic j polar-
isation gives the most general overview of the reaction control possibilities and it is a
suitable starting point for this kind of studies.

4.4.4. Enhancement numbers

Equations introduced so far allow for quantifying the extent to which reactivity
is affected by reactants extrinsic polarisation. The definition of the reactivity en-
hancement number (or suppression number if the extrinsic polarisation diminishes
the reactivity)

n = ln
(
Apol/Aiso

)
. (4.30)

(where A represents any of the considered reaction observables (DCS, ICS or special
ICS) when the reactants are initially polarised (Apol) or unpolarised Aiso) facilitates
the analysis of the results as it leads to a single scale for the reactivity change.

The reason for using ln in the enhancement number definition is to ensure that
positive (negative) values of n will correspond to increases (decreases) of the reaction
observable magnitude and that changes of the same relative importance will always
take to n values with the same absolute value. This can be illustrated through an
example based on supposing two different experimental polarisations such that one of
them leads to a 5-fold increment in the reaction DCS and the other to 5-fold decrease.
In the fist case the n number will be ln(5) and in the second − ln(5), that is, the same
absolute value but different sign. On the contrary, if ln were not used, the n values
related to both polarisations would be 5 and 0.2.

Theoretical quantum mechanical limits for the enhancement number

When the A + BC reaction is studied from the quantum mechanical point of view
it is possible to determine the theoretical limits of the n values before performing any
calculation.
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The largest and the smallest accessible values of the enhancement number must
correspond to pure states of the reactants, that is, to extrinsic polarisations of the
reactants which correspond4 to states that are fully described by a single ket:

|φmax〉 =
j∑

Ω=−j

cΩ|jΩ〉 (4.31)

for the pure state taken to the largest value of the observable and

|φmin〉 =
j∑

Ω=−j

c′Ω|jΩ〉 (4.32)

for the pure state taken to the smallest value of the observable. For the purpose
of proving this statement, let us analyse the situation if the largest/smallest cross
section value were associated to the reactants mixed state represented by the density
operator

ρ̂ =
1
N

(|φ1〉〈φ1|+ |φ2〉〈φ2|+ . . . + |φN 〉〈φN |) (4.33)

instead of corresponding to a pure state. In this case, two possibilities open up:

� The reactants extrinsic preparation corresponding to each pure state (|φr〉)
which takes part in the mixture does not lead to the same cross section. This
situation can never occur because it is not compatible with the assumption
that the extreme values of the reaction observable correspond to mixed reac-
tants states. Labelling the pure state of the mixture which takes to the largest
(smallest) cross section as |φmax〉 (|φmin〉), it is evident that a preparation of the
reactants according exclusively to |φmax〉 (|φmin〉) will take to a larger (smaller)
reaction output than the preparation according to the mixture.

� Although extremely improbable, it could be found that the cross section corre-
sponding to the extrinsic polarisation related to each of the pure states taking
part in the mixture (|φr〉) is the same. If this were the case, the preparation
of the reactants according to one of those pure states instead of according to
the mixture also takes to the extreme value of the reaction observable. In
consequence, in order to quantify the extreme observable value it is enough
to determine one of such pure states and to evaluate the corresponding cross
section.

As the first possibility can not happen because it leads to a contradiction and the
4Eq. (2.43) provides with the connection between the state and the polarisation moments
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second is equivalent to consider a pure state, it is concluded that the limit values of
the cross section only can be reached by extrinsically preparing the reactants in a
pure state (which will necessarily evolve into a pure products state (see discussion in
Sec. 2.2)).

Therefore, in order to evaluate the largest possible enhancement and suppression
of the cross section by reactants polarisation, the generation of a pure, completely
coherent products state is considered. This situation is realised, for instance, by the

A + BC(v, j) → AB(v′, j′ = 0) + C (4.34)

reaction when product detection specifies a particular scattering angle. The values of
the v, j and v′ quantum numbers, although left unspecified, are assumed to be fixed;
the only controllable parameters are those specifying the polarisation of the reactants
rotational angular momentum, j. The AB + C state in reaction (4.34) is pure and it
can be represented by the ket |j′ = 0 Ω′ = 0〉. As a pure state only can evolve to or
being evolved from a pure state, the A + BC reactants should be in a pure state as
well. This pure state is a linear combination of the |jΩ〉 kets and it will be represented
by |1〉. While |1〉 is an eigenstate of ̂2, this is not necessarily true for ̂z. The other
elements of an orthonormal basis formed by ̂2 eigenstates and containing |1〉 will be
denoted as |p〉, p = 2, 3, 4, . . . , 2j + 1.

The importance of the |p〉, p = 1, 2, 3, . . . , 2j + 1 basis lies in that:

� The reactants polarisation that maximizes the DCS of reaction (4.34) at a par-
ticular θ is the one corresponding to |1〉 (the reaction must proceed necessarily
through this pure state and the closer to it is the reactants preparation the
higher will be the reactivity). This maximal DCS value will be indicated as
dσ1/dω.

� The minimal DCS is the one associated with reactants in any linear combination
of the ̂2 eigenstates orthogonal to |1〉, and its value is zero. This is because,
by definition, the overlap between |1〉 and each of the |p〉, p = 2, 3, 4, . . . , 2j + 1
states is zero.

The “isotropic” DCS is obtained with unpolarised reactants. In other terms, with
a completely incoherent superposition of the 2j + 1 polarisation states (|p〉, p =
1, 2, 3, . . . , 2j + 1). As the DCS associated with the first of those is dσ1/dω and the



86 4 Reaction control and mechanism analysis. . .

others are all zero, the isotropic DCS is given by

dσiso

dω
=

1
2j + 1

2j+1∑
p=1

dσp

dω
=

1
2j + 1

dσ1

dω
(4.35)

which establishes the minimum and maximum values of the reactivity enhancement
number for pure state reactions (those connecting a defined pure state of the reactants
with a pure state of the products):

dσmax/dω

dσiso/dω
= 2j + 1 ⇒ nmax = ln(2j + 1), (4.36a)

dσmin/dω

dσiso/dω
= 0 ⇒ nmin = ln 0 = −∞ (4.36b)

It will be proved as follows that these limits hold indeed for A + BC pure reactions
where j′ is different from zero and also for reactions where the reactants and products
are in mixed states. The differences with the j′ = 0 case will not lie in the value of
the theoretical limits but in the almost null probability of approaching them (while
for j′ = 0 “all” what has to be done to reach the largest or smaller value of n is to
determine the j polarisation corresponding to the |p〉 states and to prepare the reac-
tants according to them, in the rest of the cases it will be necessary to determine the
suitable reactants polarisation and also to wait for the fulfilling of several additional
conditions that make it extremely improbable).

If j′ 6= 0 in reaction (4.34), the isotropic DCS can be expressed as a sum of
2 min(j, j′) + 1 DCSs (Eq. (4.35) is an special case of this decomposition)

dσiso

dω
=

1
2j + 1

2 min(j,j′)+1∑
p=1

dσp

dω
(4.37)

where each one of them corresponds to a pure state reaction and, in contrast with the
j′ = 0 case, it is in general different from 0. The largest one represents the maximum
accessible DCS for the reaction and, at most, it can be equal to 2j + 1 times the
isotropic DCS. However, for this value to be reached it is not only necessary to prepare
the reactants in the pure state taking to that maximum DCS but to find that all the
other pure state reaction DCSs in Eq. (4.37) cancels simultaneously. As this is quite
improbable, this limit will be very rarely approached. Regarding the minimum value
of the DCS, it is necessary to differentiate between two possible situations

� j ≤ j′ Ã The minimum reaction DCS is that corresponding to the smallest
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term in the sum (4.37). In general it will be different from zero.

� j > j′ Ã The minimum reaction DCS is necessarily zero. The 2j′ + 1 reactants
pure states corresponding to the 2j′ + 1 pure state reactions participating in
decomposition (4.37) form a subspace of the reactants states space. Any state
contained in the orthogonal complement to that subspace represents a possible
reactants state (and therefore a reactants polarisation) which does not leads to
products formation.

It is necessary as well to consider products mixed states originated by incoherent
superpositions. The possible sources of incoherence are:

� Integration over the scattering angle (this leads to incoherent superposition of
the different partial waves associated with different values of the total angular
momentum).

� Neglect of other coherences between product rotational or vibrational states
(this arises when products are detected regardless of their rotational or vibra-
tional state and the results therefore correspond to a simple sum over such
states).

All of these are likely (as a matter of fact, practically guaranteed) to reduce the
extent to which reactant polarisation can enhance or suppress (except when j > j′,
see above) reactivity. The reason is that the reactant polarisation that maximises or
minimises reactivity into a given pure state is unlikely to have the same effect on all
of the other pure states taking part in the incoherent superposition.

It therefore holds that, in general,

−∞ ≤ n ≤ ln(2j + 1) (4.38)

and that is it practically impossible to obtain the equalities in measurements involving
mixed states.

To end with, it is convenient to analyse what is the relation between the intrinsic
quantum mechanical moments (PPs and PDDCSs) and the upper limits of the en-
hancement numbers. As was pointed out in Sec. 4.3, the intrinsic moments represent
the reactants polarisation when the reaction takes place. However, this does not mean
that by extrinsically preparing the reactants according to the intrinsic polarisation
the reaction output will be automatically maximised. In fact, two different cases can
be found:
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� The reaction must be necessarily a pure state reaction (what only happens when
the products are detected at a defined scattering angle and j′ = 0 (Eq. (4.34))
or when, by pure chance, only one of the pure states that can participate in the
process turns out to be reactive). In this case the intrinsic polarisation (given
by the corresponding intrinsic moments) must coincide with the polarisation of
the pure state which gives rise to reaction (|1〉 in the notation previously used)
and it will maximise the reaction observable.

� The reaction can take place through more than one pure state. In this case, the
intrinsic moments (state-to-state PDDCSs for j′ 6= 0, total PDDCSs or PPs)
do not coincide with the reactants polarisation corresponding to the pure state
leading to the highest value of the reaction observable but they represent an
average of the reactants polarisations related to each one of the pure state reac-
tions participating in the process. In consequence, the intrinsic polarisation will
not maximise the reaction observable. The reason for the non correspondence
between the intrinsic moments and the “best” pure state polarisation comes
from the fact that, intrinsically, the reaction can not have a bias towards any
of the reactive pure states. However, it is possible to extrinsically force the
reaction to happens through a certain pure state just by suitably preparing the
reactants. Eventually, this could take to a larger value of the reaction observable
than the preparation according to the intrinsic polarisation.

Regardless of whether it takes to a maximum value or not, the extrinsic preparation
of the reactants according to the intrinsic polarisation will always take to values of
the observables larger than the isotropic ones, that for the state-to-state reactions
are:

dσ

dω
=

σiso

2π

∑

kq

(2k + 1)|S(k)
q (θ)|2 (4.39)

σ = σiso

∑

k

(2k + 1)|s(k)
0 |2 (4.40)

and
σ̃ = σiso

∑

kq

(2k + 1)|s(k)
q |2 (4.41)

Quantum mechanical determination of the largest and smallest accessible values

of the enhancement number

Last pages discussion has proved than the values of the enhancement quantum
number are comprised into the [−∞, ln(2j + 1)] interval. In practise, the extremes of
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the interval are reached in only a few special cases. Whenever this does not happens,
it is necessary to have a procedure to establish how close to the limits it is possible
to get by controlling the extrinsic reactants polarisation. To expose such a procedure
is the goal of this Section.

The calculation will be facilitated by the fact that, regardless of wether they reach
the interval limits or not, the maximum and the minimum values of the cross section
must always correspond to pure states of the reactants. In other words, the reactants
extrinsic preparation when the extreme values of the cross section are reached will be
that corresponding to a single |ψ〉 ket or, equivalently, to the density operator

ρ̂ = |ψ〉〈ψ| (4.42)

By using the |ψ〉 expansion in terms of the |jΩ〉 basis

|ψ〉 =
j∑

Ω1=−j

cΩ1 |jΩ1〉

〈ψ| =

j∑

Ω2=−j

c∗Ω2
〈jΩ2|


 (4.43)

(remember that Ω represents the reactants helicity) the density operator can be rewrit-
ten as

ρ̂ =
j∑

Ω1=−j

j∑

Ω2=−j

cΩ1c
∗
Ω2
|jΩ1〉〈jΩ2| (4.44)

The extrinsic reactants preparation given by Eq. (4.44) corresponds to the polari-
sation moments

a(k)
q =

j∑

Ω1,Ω2=−j

cΩ1c
∗
Ω2
〈jΩ1kq|jΩ2〉 (4.45)

(see Eq. (2.43)). The substitution of these moments in Eq. (4.20), Eq. (4.23) and
Eq. (4.25) (or in their “total” counterparts) provides with expressions for the reactions
observables in terms of the cΩ expansion coefficients (more specifically, in terms of
their real (RΩ) and imaginary (IΩ) parts). For instance, the state-to-state integral
cross section can be written as

σ = σiso

j∑

Ω1=−j

[
2j∑

k=0

((2k + 1)s{k}0 < jΩ1k0|jΩ1 >)] (R2
Ω1

+ I2
Ω1

) (4.46)

where the s
{k}
0 coefficients represent the real state-to-state polarisation parameters.

Thanks to equations like that, the problem of evaluating the limit values of the
cross section has been transformed into an extreme calculation problem in 2(2j + 1)
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dimensions (the space of the RΩ and IΩ coefficients) which can be tackled by means
of the “Multidimensional Downhill Simplex Method” algorithm [69]. The algorithm
is useful for the quest of minima and works by moving the vertices of a “simplex” (a
geometrical figure consisting, in N dimensions, of N+1 vertices) over the hypersurface
corresponding to the function whose minimum is being searched until that extreme
is enclosed into the simplex. The calculation ends when the differences between the
values of the cross section in the vertices is smaller than a certain parameter whose
value can be externally controlled. If the target function is multiplied by minus one,
its maxima transform in minima and vice versa. This way, the same algorithm can
be applied as well to the search of maxima.

The method application needs to be slightly modified because the variables are not
independent but related through the equation

j∑

Ω=−j

(R2
Ω + I2

Ω) = 1 (4.47)

that represents the |ψ〉 normalisation (and it corresponds to a reactants population
equal to one). The fulfilling of this condition can be ensured by normalizing the
variables according to it prior to each call of the function (the function whose extremes
are being calculated) by the algorithm subroutine.

4.5. Stereodynamical portraits

The former Section has been focused on reaction control through the polarisation
of the reactants and on how to quantify that control by using the intrinsic moments
(PPs and PDDCSs). However, the utility of these moments goes beyond the control
analysis as they represent the reactants polarisation when the reaction takes place
(Section 4.3) and, therefore, they express the directional preferences of the reaction.
This means that the study of the information contained in the intrinsic moments (in
particular in the real renormalised PDDCSs and the real PPs) can provide with a
description of the reaction mechanism. The problem is how to extract such a de-
scription. One could consider separately each polarisation moment (symmetry and
intensity of the polarisation). However, this procedure is not convenient as it re-
quires a considerable mental gymnastic (the distortions of the unpolarised (spherical)
distribution associated with the various polarisation moments are not trivial) to vi-
sualise the information contained in the moments. Instead of considering separately
the meaning of every single moment it would be more convenient to obtain a global
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picture that combine all their contributions. This can be achieved by means of the
stereodynamical portraits, which condense the information contained in all the mo-
ments (making unnecessary to analyse individually every polarisation moment) and
provide with “pictures” of the mechanism; that is, with visual representations of the
reaction dynamics dependence on the directions in the space.

The present Section will be devoted to the presentation of the stereodynamical por-
traits. Although they will be introduced employing quantum mechanical (Sec. 4.5.1)
and classical (Sec. 4.5.2) intrinsic polarisation moments (because, in this work, the
portraits will be generally used in conjunction with them), it is necessary to point
out that, given any set of polarisation moments (not necessarily intrinsic), it is possi-
ble to use the portraits to visualise the directional effects of the angular momentum
polarisation. For instance, if extrinsic moments were employed, the corresponding
portraits would represent the BC molecule experimental preparation.

4.5.1. Quantum mechanical portraits

Assuming that the whole set of quantum mechanical intrinsic polarisation moments
is known, two different kinds of portraits can be defined. One of them (the molec-
ular axis portraits) represents the molecular axis distribution leading to products
formation in well resolved states, partially or totally summed over final states and/or
integrated over scattering angles depending on the particular set of moments em-
ployed. Complementary, it also can be defined portraits referring to the distribution
of the BC molecule rotational angular momentum (rotational portraits) giving rise to
reaction.

The molecular axis portraits related to a set of PPs are given by the probability
density function (see App. D for a derivation)

Pr(θr, φr) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

s(k)
q 〈j0, k0|j0〉C∗kq(θr, φr) (4.48)

where θr and φr are the polar and azimuthal angles that describe the position of
r in the centre-of-mass reference frame, 〈j0, k0|j0〉 is a Clebsch-Gordan coefficient,
C∗kq(θr, φr) are the complex conjugates modified spherical harmonics and s

(k)
q rep-

resent the set of PPs (state-to-state or total). The portrait gives us the reaction
probability when r lyes along the direction given by θr, φr or, in other words, the in-
ternuclear axis distribution when the reaction (whose intrinsic moments are the s

(k)
q

set) takes place.
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Similarly, the molecular axis portraits corresponding to reaction into a given scat-
tering angle can be defined

Pr(θr, φr| cos θ) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

S
(k)
q (θ)

S
(0)
0 (θ)

〈j0, k0|j0〉C∗kq(θr, φr) (4.49)

where in this case the renormalised PDDCSs have been used. Eq. (4.49) represents the
conditional reaction probability at a given scattering angle θ when the internuclear
axis points along θr, φr. If, instead, the joint reaction probability as a function of θr,
φr and θ would be considered, the S

(k)
q (θ) PDDCSs had to be used

Pr(θr, φr, cos θ) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

S(k)
q (θ)〈j0, k0|j0〉C∗kq(θr, φr) (4.50)

To clarify the difference between using or not renormalised PDDCSs to generate the
portraits it is convenient to remember the discussion about the necessity of renormal-
ising the moments before comparing the polarisation of physical systems with different
population (Sec. 2.4.3). Through the renormalisation the information regarding the
population is eliminated from the moments and all of them are referred to the same
scale (the scale corresponding to systems with population equal to one), allowing for
their direct comparison. In the present case, the population is given by the S

(0)
0 (θ)

moment and the orthogonality of the spherical harmonics allows for proving that the
volume of the portraits5 coincides with the k = 0 moment or, in other words, that
it is equal to 1 when renormalised PDDCSs are used (Eq. 4.49) and equal to S

(0)
0 (θ)

otherwise (Eq. 4.50). So, to renormalise the PDDCSs is equivalent to transform the
portraits in figures with volume equal to one. This transformation does not distort
the shape of the figures but refers their features to the same volume, in such a way
that the portraits for different values of θ can be meaningfully compared. This is the
reason why, in the future, renormalised PDDCSs will always be employed to generate
the portraits corresponding to defined values of the scattering angle.

In an analogous way, the rotational angular momentum portraits are given by the
quantum PDFs defined in Sec. 2.5

Qr(θj , φj) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

s(k)
q 〈jj, k0|jj〉C∗kq(θj , φj) (4.51)

5The volume of the portraits is defined as their integral over all the values of θr and φr. Remember
that when a function f(x, y) is integrated over a (x, y) region, the result corresponds to the
volume contained under the function in that region
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As it was pointed out in Chapter 2, Q(θj , φj) is not a probability density function but
a population distribution. Strictly speaking, the values of the rotational portraits are
not the reaction probabilities when the vector j is pointing along the direction specified
by θj and φj (defined in the centre-of-mass frame) but they give the population of the
minimum uncertainty state (the state in which the projection of j takes the maximum
value, that is, j) lying along the direction given by θj and φj when the reaction
happens. In the correspondence limit of high j values the Qr can be considered as
probability density functions. As in the case of the molecular axis portraits, if the
rotational portraits are meant to represent the polarisation taken to reaction at a
given scattering angle, the renormalised PDDCSs must be used instead of the PPs.

Whereas the molecular axis portraits give a more intuitive description of the col-
lision geometry (they describe it in terms of the relative position of the atoms), ro-
tational portraits give a description that is more complete. This is so because orien-
tation moments (polarisation moments with odd k) do not contribute to molecular
axis distributions. Mathematically this ensues from the fact that whereas 〈j0, k0|j0〉
(the Clebsch-Gordan coefficient in the molecular axis portraits) vanishes whenever k

is odd, 〈jj, k0|jj〉 (the Clebsch-Gordan coefficient in the rotational portraits) does
not. The physical explanation is that angular momentum orientation does not in-
duce molecular axis orientation. Thinking in classical terms, the r rotation around j

averages out any orientation of the axis even when the angular momentum is oriented.
It is necessary to point out that the former paragraph discussion does not mean

that the internuclear axis can not be oriented. In fact, it can be oriented by employing
pendular states6 generated by means of external electric fields [99, 100, 101]. How-
ever, the preparation of pendular states requires coherence between different j states
and, in (rovibrational) state-to-state reactions (whose stereodynamical study is the
goal of this work), that is not possible. (Rovibrational) state-to-state reactions only
allow for coherence between helicity eigenstates. This can lead to angular momentum
orientation and alignment, and also to molecular axis alignment, but not to molecular
axis orientation.

4.5.2. Quasiclassical portraits

When one does not have a set of quantum mechanical moments but a classical one
it is also possible to generate the corresponding stereodynamical portraits. Following
the discussion presented in Sec. 2.5, the right procedure to visualise the symme-
tries contained in the classical moments consist of substituting them in the quantum
6Directional hybrids of the field-free rotational states, in which the molecular axis librates about

the electric field vector
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mechanical expressions for the portraits, instead of employing purely classic infinite
series like Eq. (2.2) (and its counterpart for the internuclear axis). This provides with
quasiclassical portraits, where the classical results have been turned into quasiclassi-
cal by forcing onto them a quantum mechanical restriction whose effect is to restrict
the extent to which the exact direction of the angular momentum can be specified
[39, 40]. This way, the non-dynamical information related to the consideration or not
of the uncertainty principle is removed (the quasiclassical portraits can be compared
with their quantum mechanical counterparts and the differences will be exclusively
due to dynamical differences and not to the consideration or not of the uncertainty
principle).

4.6. Experimental feasibility of the proposed

measurements

This section describes a currently feasible crossed-beam experiment that could be
used to test the theoretical predictions obtained through the tools introduced in the
previous Sections. The experiment presentation will be particularized for the

H + D2(v = 0, j = 2) → D + HD (4.52)

reaction. There are several reasons for selecting this particular example:

� Calculations for the H + D2 system are feasible and reliable.

� The parameters necessary for planning the experiment (susceptibility to stimu-
lated Raman excitation, depolarisation constants, etc) are known.

� In Sec. 4.7 it will be shown that theory predicts D2 alignment to have a dra-
matic effect on the collision outcome, and that this effect will be clearly visible
in differential cross sections, integral cross sections and product state distribu-
tions. As the proposed experiment can lead to the measurement of all of these
quantities, it will be capable of unambiguously demonstrating those theoretical
predictions.

However, it has to be pointed out that the H3 system is by no means the only system
that can be examined with the proposed experiment. On the contrary, it allows for the
study of many reactions. The only essential requirement will be that the molecule to
be polarised must be amenable to stimulated Raman excitation. Its collision partner
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Fig. 4.3.: Spatial (extrinsic) distributions of the interatomic axis, r, and the rotational
angular momentum, j, of a diatomic molecule in a |j = 2,m = 0〉 state
referred to the laboratory frame, XY Z. The centre of the figure coincides
with the origin of the frame. However, the last has been displaced in order
to facilitate the figure visualisation.

does not even need to be an atom, although if comparisons to theory are to be made,
atom-diatom reactions are the systems of choice.

As it will be made clear below, the experiment utility goes beyond checking the
validity of the theoretical predictions. Its conceptual simplicity and the intuitive
interpretation of the extrinsic preparations in terms of different kinds of collisions
allow as well for its employment as a modelling tool.

In simple terms, the experiment consists in the following: to place the molecules in
the D2 beam in the |v = 0, j = 2,m = 0〉 state, where the magnetic quantum number
is determined with regard to a laboratory-fixed quantization axis Z whose direction
can be chosen. This extrinsic preparation provides with D2(v = 0, j = 2) molecules
whose interatomic axis is aligned parallel/antiparallel to Z (positive axial alignment)
and whose rotational angular momentum is aligned perpendicular to Z (negative
rotational alignment), see Fig. 4.3 (these figures are the quantum mechanical portraits
corresponding to the |v = 0, j = 2, m = 0〉 state and referred to the laboratory frame).
By varying the direction of the laboratory axis Z, one varies its direction with regard
to the scattering-frame vector k and, if the experiment involves angle-resolved product
detection, also with regard to k′ and therefore with regard to the scattering plane
(the plane containing k and k′). Given that the laboratory axis Z is also the axis
with regard to which the D2 molecules are aligned, changing the direction of Z with
regard to k and possibly k′ amounts to changing the D2 alignment in the centre-of-
mass frame (xyz, see Fig. 4.2), and this is the basic idea of the experiment. Some
of the technicalities are discussed further below, but first it will briefly reconsidered
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the problem of how to express the laboratory r and j distributions in the scattering
frame.

The axial and rotational D2 polarizations are both completely described by the
extrinsic molecular polarization moments. Following the notation used in Sec. 4.4.1,
these moments will be represented by A

(k)
Q when referred to the XYZ laboratory

frame. In the case considered here the only nonvanishing moments are those with
k = 0, 2 or 4 and Q = 0 (the distributions are axially symmetric with respect to the
Z axis), and they take the values7

A
(0)
0 = 1, A

(2)
0 = −

√
2
7
, A

(4)
0 = +

√
2
7

(4.53)

(As appropriate for an experiment, the values above are quantum mechanical. The
corresponding classical values are A

(0)
0 = 1, A

(2)
0 = −1/2 and A

(4)
0 = 3/8.)

In order to obtain the extrinsic reactants polarization moments in the xyz scattering
frame, all one has to do is to use Eq. (4.19). It leads to

a(k)
q = Dk∗

q0 (α, β, γ)A(k)
0 = Ckq(β, α)A(k)

0 . (4.54)

Where, as usual, α, β and γ are the Euler angles corresponding to the rotation which
transform the xyz frame into the XYZ one. Note that, as the considered distributions
have cylindrical symmetry around Z and therefore all nonvanishing A

(k)
Q moments

have Q = 0, the Euler angle γ does not play any role in the transformation and can
be arbitrarily chosen. The only Euler angles required are α and β, the azimuthal and
polar angles that specify the direction of the laboratory axis Z in the scattering frame
(Figs. 4.1 and 4.2 present a graphical illustration of how these angles are defined).

In order to make easier the visualisation of the axis preparations that can be
achieved by means of this procedure, some examples for significant values of β and
α are included in Fig. 4.4. The distributions are worked out by combining the por-
traits expressions (Eqs. 4.48 and 4.51) with the a

(k)
q moments introduced in Eq. 4.54

(except for the couple of figures labeled as “isotropic” (unpolarised reactants), which
correspond to a

(k)
q = δk0δq0) and, therefore, all the distributions will be referred to

the xyz scattering frame. It is useful to remember that the xyz frame is such that
the reactants approach direction is along z and that the products recoil direction lies
on the xz, x ≥ 0 half-plane (that is, xz is the scattering plane). This involves that

7Obtained by substituting the density operator which describes the extrinsic preparation

ρ̂ = |j = 2, m = 0〉〈j = 2, m = 0|
into Eq. (2.43)
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Fig. 4.4.: Spatial (extrinsic) distributions of the r and j axis corresponding to unpo-
larised (isotropic) and aligned (including the β and α values used to generate
molecular alignment) reactants. All the figures are referred to the centre-of-
mass frame (xyz) and the axis have been displaced from the center of each
figure as in Fig. 4.3.
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� β = 0◦ amounts to head-on collisions (it is equivalent to prepare the reactants
in the |j = 2, Ω = 0〉 state).

� β = 90◦ amounts to side-on collisions.

� β = 54.74◦ (this is the value of the “magic angle”, that is, the angle which
makes zero the second Legendre polynomial) represents an intermediate situa-
tion between the two previous cases.

and that

� α = 0 and 180◦ amounts to collisions where the internuclear is initially on the
scattering plane.

� α = 90◦ corresponds to collisions where the axis was prepared perpendicular to
the scattering plane.

The distributions for β = 0◦, β = 54.74◦ (α = all) and β = 90◦ (α = all) display
axial symmetry with respect to the z axis (only the a

(k)
q=0 moments contribute to their

shape). They are examples of extrinsic preparations when the integral cross section is
measured and integration over all the spatial directions is performed. The symmetry
stems from the fact that, as a consequence of the integration over the azimuthal angle
values, the scattering plane is completely undefined (Sec. 4.4.2) and, therefore, the axis
preparations can not depend on α. Mathematically, the moments that characterise
the distributions in this case are obtained by averaging the a

(k)
q set over the α values

� β 6= 0◦ → the moments averaged over α are obtained through the integral

1
2π

∫ 2π

0

a(k)
q dα =

Ckq(β, 0)A(k)
0

2π

∫ 2π

0

eiqα dα

︸ ︷︷ ︸
2πδq0

(4.55)

and it is found that only the a
(k)
q=0 moments “survive” to the average process.

� β = 0◦ → the average would not be necessary in this case because Ckq(0, α) ∝
δq0 and only the a

(k)
q=0 moments can be different from zero.

The preparation of the |j = 2,m = 0〉 state can be achieved by pure rotational
Raman scattering by selecting the right pump and Stokes laser frequencies for stim-
ulated Raman scattering in a cell of D2. By excitation via the S(0) transition from
D2(v = 0, j = 0), a considerable population of D2(v = 0, j = 2,m = 0) can be pro-
duced quite effectively by setting the polarizations of the stimulated Raman pump
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and Stokes lasers parallel to each other. The procedure proposed here is very similar
to that used by Kandel et al. [97] in their study of the Cl+HD(v = 1, j = 2) reaction.
Sitz and coworkers have used a similar procedure to produce aligned N2 in the v = 1
state [102].

Associated with the j = 2 rotational state of D2 are nuclear states with to-
tal spin T = 0 and T = 2, which can in principle lead to very strong hyperfine
depolarization[29, 31, 38]. This effect, however, is not expected to be significant un-
der the experimental conditions considered here. The reason is that collisions will
occur within nanoseconds of reactants preparation but hyperfine depolarization will
only occur in a microseconds time scale. Justification of this claim requires considera-
tion of the largest separation between D2(j = 2) hyperfine energy levels (185 kHz, see
ref [103]) and of the fact that the time scale for hyperfine depolarization [31, 104, 105]
can not be shorter than the reciprocal of that value, that is, no shorter than 5 µs.
This result is confirmed by detailed calculations [106, 107].

In order to minimize the presence of unpolarized D2(v = 0, j = 2) in the beam, one
can expand pure o-D2 through a nozzle cooled to liquid nitrogen temperature. This is
known to produce more than 95% of D2 molecules in the v = 0, j = 0 state. Although,
at best, only 50% of the D2 molecules can be excited into |j = 2,m = 0〉, the data
acquisition can be done on a shot-to-shot basis with the excitation laser on/off or
varying the polarizations of the pump and Stokes lasers to be either perpendicular or
parallel.

Ideally, the experiment will be carried out in a high resolution crossed molecular
beam apparatus, similar to those used by Welge and coworkers [108] and by Yang and
coworkers [109], with a well defined scattering plane. By varying the direction of the
polarization vector E (which plays the role of the Z axis) with respect to the relative
velocity vector in β and the scattering plane in α, different reactant polarizations in
the xyz frame can be achieved. Results from time-of-flight detection of the products
at different laboratory scattering angles can be transformed into the center-of-mass
system to obtain state resolved differential cross sections and angle-recoil velocity
polar maps. Moreover, by integrating the triple DCS (polar maps) in scattering angle
and velocity, the special integral cross section could be determined for each geometry
with different β and α angles.

This section is concluded by noting that the formulae necessary for the theoretical
calculation of the state-to-state cross sections that can be measured in this experiment
are

dσβ
α

dω
=

σiso

2π

∑

kq

(2k + 1)
[
S(k)

q (θ)
]∗

Ckq(β, α)A(k)
0 , (4.56)
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σβ = σiso

∑

k

(2k + 1)s(k)
0 Ck0(β, 0)A(k)

0 . (4.57)

σ̃β
α = σiso

∑

kq

(2k + 1)[s(k)
q ]∗Ckq(β, α)A(k)

0 , (4.58)

These formulae are obtained by insertion of Eq. (4.54) in Eqs. (4.20), (4.23) and (4.25),
respectively. Note that, contrary to the special ICS σ̃β

α, the ICS σβ is independent
of α. The mathematical reason for this is that the value of Ck0(β, α) is independent
of α; the physical reason was outlined in connection with the Fig. 4.4 distributions
and thoroughly discussed in Sec. 4.4.2. Note also that, as this experiment involves
D2 alignment but not orientation, one can restrict the β and α ranges to

0◦ ≤ β ≤ 180◦, (4.59a)

0◦ ≤ α ≤ 180◦, (4.59b)

and that the β range can be further reduced to

0◦ ≤ β ≤ 90◦ (4.60)

when the α-dependence is averaged out.

4.7. Illustrative examples

There are three ways in which one can use the theory described in the previous
Sections. For reasons explained below, they will be called as “intrinsic,” “practical”
and “min-max” approaches. Each one of them has its own particular advantages, and
the stereodynamical analyses will be easiest when all three are combined.

The H + D2 reaction will be now used to illustrate the potential of each of those
approaches. As “the simplest of chemical reactions”, the H3 system has been regarded
as the benchmark system in chemical reactions dynamics and as the first choice for
tests of new approaches to the problem. This has led to an impressive number of
accurate theoretical and experimental results allowing for thorough descriptions of
many aspects of its dynamics (described in a recent review [110]). However, very few
of these works [25, 98] have considered the reaction stereodynamics. The examples
presented in this Section, together with the contents of next Chapter, are expected
to shed light on that reaction facet.

In particular, both quantum and quasiclassical numerical results have been obtained
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for the
H + D2(v = 0, j = 2) → HD(v′, j′) + D (4.61)

process at collision energies up to Ecoll = 1.7 eV. The dynamical calculations — time-
independent quantum reactive scattering and quasiclassical trajectories (the general
characteristics of both methodologies can be found in Chapter 3) — were ran on
the BKMP2 potential energy surface [111]. The scattering matrices employed on the
quantum mechanical analysis were worked out by Dr. Brian Kendrick, from “Los
Alamos National Laboratory” (New Mexico, USA) [112].

Besides choosing a particular reaction, the examples have been selected so that they
highlight what can be achieved with the possible experiment described in the former
Section.

It is necessary to stress, however, that the main purpose of this presentation is not
to allow for a detailed analysis of the experiment or even of the role of D2 polarization
in reaction (4.61). Instead, the main purpose here is to provide illustrative examples
of the kind of chemical information one can obtain by using the reactants polarization
theory that has been described.

4.7.1. The intrinsic approach: insight and understanding

When one wants to focus on the reaction stereodynamics itself rather than on a
particular reactive process, the most natural way to tackle the problem is to use the
intrinsic approach described here. This approach ignores completely the extrinsic fac-
tor (the actual polarization of reactants) and concentrates exclusively on the detailed
inspection of the intrinsic reactants polarisation. In the terms of the metaphor used
in Sec. 4.2, the intrinsic approach analyses what the reaction wants (intrinsic polari-
sation) rather than what it gets (extrinsic polarisation). By means of this analysis of
the reaction preferences one can answer the following questions

� what is the sensitivity of the reaction to reactants polarization?

� what polarizations give rise to reaction?

� how anisotropic is the reaction dynamics?

� what is the correlation between reactants polarization and reactivity?.

The key idea which sustains this approach has already been discussed: intrinsic
moments (PDDCSs and PPs) represent the reactants polarisation when the reaction
happens or, in other words, they are the polarization moments of the reaction itself,
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rather than the polarization moments of actually existing reactants. If we know these
intrinsic polarization moments, we can combine them with the “stereodynamical por-
traits” to plot the corresponding internuclear axis and rotational angular momentum
distributions (this leads to clear pictures of the reaction mechanism itself, some of
them of a rather intuitive nature) or to analyse them individually (to perform a more
quantitative study).

Figs. 4.5 and 4.6 show some of these portraits, obtained with quantum polarisation
moments. In each of them, the left column shows molecular axis portraits, while the
right column shows rotational portraits8. Fig. 4.5 shows results integrated over the
scattering angle for the

H + D2(v = 0, j = 2) → HD(v′ = 0, j′) + D (4.62)

reaction with j′ = 5 or j′ = 10 and at Ecoll = 1.306 eV, while Fig. 4.6 shows θ-
dependent results for the

H + D2(v = 0, j = 2) θ−→ HD(v′ = 0, j′ = 0) + D (4.63)

reaction obtained with θ = 4◦, 8◦ or 11◦ and at the same collision energy. In other
words, Fig. 4.5 shows the P (θr, φr) and Q(θj , φj) functions obtained through use of
the intrinsic PPs [the s

(k)
q ’s], while Fig. 4.6 shows the same functions obtained through

use of the intrinsic renormalized PDDCSs [the S
(k)
q (θ)/S

(0)
0 (θ)’s].

Pictures such as those in Figs. 4.5 and 4.6 give the best possible representations of
what back in 1990 Levine [113] called the “chemical shape” (as opposed to “physical
shape”) of a chemical reaction, and as such fulfill one of the goals of chemical reaction
stereodynamics: to determine the “shapes” of atoms and molecules as perceived by
each other when they take part in a reactive collision.

Figs. 4.5 and 4.6 also justify the use of the words “insight” and “understanding”
in the heading of this section. A brief consideration of each of them does give sig-
nificant insight of the reaction stereochemistry, and also facilitates understanding of
its mechanism. For instance, Fig. 4.5 leads very naturally to the hypothesis that the
amount of rotational energy of the HD product in reaction (4.62) is related to the
collision geometry, with head-on reactive collisions leading to little product rotational
excitation (cf. the j′ = 5, top row of Fig. 4.5) and side-on reactive collisions leading
to larger product rotational excitation (cf. the j′ = 10, bottom row of Fig. 4.5). A
detailed discussion of this reaction feature will be included in next Chapter (devoted

8The portraits, as the corresponding intrinsic moments, are referred to the center of mass frame
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Fig. 4.5.: Stereodynamical portraits revealing the “chemical shape” of reaction (4.62)
at Ecoll = 1.306 eV with j′ = 5 (top) or j′ = 10 (bottom). The portraits
on the left (right) column show the distributions of the D2 interatomic axis
(rotational angular momentum) when reaction (4.62) happens. For the sake
of clarity, the axes have been displaced from the center of each of the figures.

to the analysis of the H + D2 mechanism through this approach). Anticipating some
results, it will be found that this effect has to do with the amount of bending energy
of the collision complex in the transition state region.

Ideal as they are in terms of qualitative understanding, the stereodynamical por-
traits presented above are not suitable for quantitative analyses. In quantitative
terms, the key ingredients of the intrinsic approach to reaction stereodynamics are
the intrinsic polarization-dependent differential cross sections (PDDCSs) and polar-
ization parameters (PPs) introduced in Sec. 4.3, which are the numerical parameters
behind the stereodynamical portraits presented above.

Figs. 4.7 and 4.8 show PPs and renormalized PDDCSs calculated again at the
Ecoll = 1.306 eV collision energy. Each of these pictures includes both quantum and
quasiclassical data, which allows for a quantitative assessment of the level of agreement
between the two calculations.

Fig. 4.7 show real PPs of rank k = 1 and 2 (these are the real moments whose
directional information is easier to visualise (see Sec. 2.4) and, in consequence, the
most suitable for direct analysis) obtained for reaction (4.62) as a function of the
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(bottom). The portraits on the left (right) column show the distribu-
tions of the D2 interatomic axis (rotational angular momentum) when reac-
tion (4.63) happens. The scattering angle θ between the reactant-approach
and product-recoil directions is the angle between the vectors k ≡ z and k′.
For the sake of clarity, the axes have been displaced from the center of each
of the figures.

HD product rotational state. As can be seen, the agreement between the quantum
and quasiclassical PPs is impressive. Furthermore, these figures show that the po-
larization parameter s

{2}
0 is the most relevant one for the differences found between

the stereodynamical portraits of reactions leading to HD(j′ = 5) or HD(j′ = 10) (see
Fig. 4.5). The s

{2}
0 parameter is the one whose value changes the most between j′ = 5

and j′ = 10, going from rather negative at j′ = 5 (its quantum value is −0.18, while
the negative limit for j = 2 is −0.53 (see App. B)) to rather positive at j′ = 10 (its
quantum value is 0.16, while the positive limit for j = 2 is +0.53 (see App. B)). As
moments with k = 2 and q = 0 are indicative of alignment of the rotational angu-
lar momentum vector with respect to the quantization axis z, the observation that
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axes coincide with the allowed quantum ranges of these parameters for j = 2.

the s
{2}
0 parameter is so important for the reaction dynamics strongly suggests that

experiments involving reactant rotational alignment are likely to shed considerable
light on the reaction dynamics. The possible experiment we described in Sec. 4.6 is
precisely of this kind, and we will further explore the impact of reactant rotational
alignment on measurable quantities.

Fig. 4.8 shows intrinsic renormalized PDDCSs of rank k = 2 and component q = 0
as a function of the scattering angle for selected HD(v′ = 0, j′) product states. Before
commenting on these results one must remember that these renormalized PDDCCs are
not indicative of reaction probability, but rather of the preferred reactant polarization
at each scattering angle. As the reaction probability itself does change with scattering
angle, one must take the product angular distributions into account when analyzing
the renormalized PDDCSs.

Formation of HD(v′ = 0, j′ = 1) is dominated by backward scattering, but there
is also significant forward scattering. Consideration of Fig. 4.8 shows that the agree-
ment between quantum and quasiclassical data, while quite good in the backward
scattering region, is not so good in the forward scattering region, where the QCT cal-
culations fail to reproduce the pronounced oscillations of the quantum PDDCS. This
information is interesting, and suggests a purely quantum origin for the observed os-
cillation, which is also seen in the stereodynamical portraits of Fig. 4.6 (the shape
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of the portraits changes very broadly for values of the angle which differ in just a
few degrees). An exhaustive analysis of the oscillations will be postponed until next
Chapter, where they will be attributed to an interference effect, as that found by Al-
thorpe and coworkers [96, 114] in their plane wavepacket analysis of this reaction; the
interference might be between near-side and far-side reaction mechanisms [115, 116].

In the case of the other product states included in Fig. 4.8, the dynamics is dom-
inated by backward and/or sideways scattering. In these regions the agreement be-
tween quantum and quasiclassical data is generally good, although not as quantitative
as the one found for the polarization parameters. As one might expect, the more
detailed reaction properties (the PDDCSs) constitute a more stringent test of the
accuracy of the calculations than the less detailed ones (the PPs).

4.7.2. The practical approach: experimental control possibilities

Sec. 4.7.1 focused on the analysis of intrinsic stereodynamical properties, obtained
without consideration of actual reactants polarizations. While that method can give
understanding and insight into the reaction stereodynamics, it cannot predict the
outcome of practical situations and actual experiments. In order to deal with these,
one needs the practical approach which is now described.

The “practical approach” is largely a trial-and-error procedure, in which reaction
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outcomes are determined with different reactants polarizations, and the corresponding
results compared. The idea is to examine the extent to which the reaction outcome
(say, its cross section or the product state distribution) can be influenced by actual
reactants polarization schemes, and the extent to which one can use such polarization
to (passively) control the reaction.

As described in Sec. 4.6, the proposed experiment involves D2 alignment with regard
to the reactants approach direction k and possibly the products recoil direction as
well. With this in mind, the examples have been restricted to alignment effects. It
should be noted, however, that this is not a necessary restriction and orientation
effects could be easily included in the theoretical examples.

In the experiment that has been proposed, the alignment direction is determined by
β and α, the polar and azimuthal angles specifying the direction of the electric field
vector in xyz (the scattering frame of reference, see Secs. 4.3 and 4.6). Two different
possibilities will be considered here

� cases in which both of these angles are specified (this is appropriate for exper-
iments involving angularly-resolved product detection, and therefore for mea-
surements of DCSs and special ICSs) and

� cases in which only β is determined, while α is averaged out (this is appropriate
for measurements of ordinary ICSs).

The values considered for the polar and the azimuthal angle are

β = 0◦, 54.74◦ (magic angle)or 90◦.

and
α = 0◦, 45◦, 90◦ or 180◦.

When analyzing the data presented below, it will be useful to remember that the D2

interatomic axis r and rotational angular momentum j are respectively aligned along
or perpendicular to the direction specified by β and α (see Fig. 4.4).

Fig. 4.9 shows quantum data illustrating the effect of the polar angle β on the
excitation function (the integral cross section σβ , summed over all product states, as
a function of the collision energy). The solid line corresponds to the usual excitation
function (isotropic case, no D2 polarization), while the others include the effect of
D2 alignment. The dependence of the reaction cross section on reactant alignment
is clear: reactivity is enhanced by head-on, collinear collisions (β = 0◦, r and j

respectively parallel and perpendicular to k), diminished by side-on collisions (β =
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Fig. 4.9.: Excitation function of the H + D2(v = 0, j = 2) reaction for different D2

alignment directions. The curve labelled as “iso” corresponds to the situ-
ation in which D2 is unpolarized and the initial j vector is therefore ran-
dom. The borders between the white and gray areas represent the maxi-
mum and minimum possible values of σβ , and were obtained with the min-
maximization procedure that will be described in Sec. 4.7.3.

90◦, r and j respectively perpendicular and parallel to k), and largely unaffected by
alignment along the magic angle. While this is not exactly an unexpected result for
the reaction we are considering here (the H + D2 reaction has long been known to be
collinearly-constrained), one should note that Fig. 4.9, besides revealing a preference
for collinear collisions, also quantifies it, showing the extent to which the reactivity
can be controlled by selective reactant polarization.

The effect of D2 alignment on product rotational state distributions at Ecoll =
1.306 eV (the HD vibrational state is v′ = 0) is clearly seen in Fig. 4.10, which shows
quasiclassical (top) and quantum (bottom) data, obtained with the same β values
considered above. The two data sets are in very good agreement, indicating a clear
effect: collinear collisions (β = 0◦) lead to a colder product rotational state distri-
bution, while side-on collisions (β = 90◦) make it hotter, and magic-angle alignment
again leads to results similar to those obtained without reactant polarization. Consid-
eration of these results, along with the stereodynamical portraits of Fig. 4.5, suggests
that low/high j′ values are associated with collisions with low/high impact param-
eters, and thus with transition states with lower/higher bending vibrational energy
(more solids arguments on favour of this connection will be presented in next Chap-
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Fig. 4.10.: Integral cross section of reaction (4.62) at Ecoll = 1.306 eV as a function
of the product rotational state for different D2 alignment directions. Top
panel shows quasiclassical results, bottom panel quantum mechanical ones.

ter). Note that the qualitative behaviour of the cross sections corresponding to j′ = 5
and 10 could be predicted without any calculation, just by comparing the intrinsic
portraits of Fig. 4.5 with their extrinsic counterparts in Fig. 4.4. The reason is that
the extrinsic preparations which bear more resemblance to the intrinsic portraits will
be more reactive (because what the reaction “receives” is closer to what the reac-
tion “wants”) and vice versa. In this case, the experimental distributions for β = 0◦

(β = 90◦) are more similar to the intrinsic portraits for j′ = 5 (j′ = 10) than to those
for j′ = 10 (j′ = 5).

Comparison of the rotational distributions of Fig. 4.10 with the polarization param-
eters of Figs. 4.7 is also illustrative. The first thing to note is that, as the product recoil
direction is not specified, we have cylindrical symmetry around the reactant-approach
direction k: as shown by Eqs. (4.23) and (4.57), the only polarization parameters that
contribute to the integral cross section are s

{0}
0 , s

{2}
0 and s

{4}
0 ; of these, s

{2}
0 is the
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(Å
2

/
sr

)

scattering angle (degrees)

QCT

v’=0

QM

β=54.74◦ α=180◦

β=54.74◦ α=180◦

β=0◦

β=0◦

Iso

Iso

β=90◦ α=0◦

β=90◦ α=0◦

β=54.74◦ α=45◦

β=54.74◦ α=45◦

Fig. 4.11.: Differential cross section, summed over product rotational states, of reac-
tion (4.62) at Ecoll = 1.306 eV and for different D2 alignment directions.
Top panel shows quasiclassical results, bottom panel quantum mechanical
ones.

one that is largely responsible for the polarization effects (the s
{4}
0 , whose values were

not presented before, is only slightly different from zero for most of the j′ levels).
As shown in Fig. 4.7, this PP is quite negative for j′ ≤ 5 and quite positive for
j′ ≥ 10, changing sign around j′ = 8. No surprise, then, that preparation of reac-
tants with a

{2}
0 = −0.535, 0 or 0.267 (these are the quantum values of the extrinsic

polarization moments corresponding to reactant alignment along β = 0◦, 54.74◦ or
90◦, respectively) lead to increasingly hot product rotational state distributions.

The effect of reactant polarization on differential cross sections, which requires to
also consider specific values for the azimuthal angle α, is now analysed. This further
increases the stereospecificity of the experiment and can have a dramatic effect on
the ability to control the system reactivity.

Fig. 4.11 shows quasiclassical (top) and quantum (bottom) differential cross sections
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for reactions leading to HD(v′ = 0, j′ = all) at Ecoll = 1.306 eV, considering selected
combinations of values for β and α as well as reactions without reactant polarization
(labelled as “iso” in the picture). Given the level of detail of the property being
considered, the agreement between quantum and QCT data is indeed remarkable, as
is the variety of shapes one can obtain for the angular distributions by varying the
direction along which the reactant molecule is aligned (i.e., by selecting specific values
for β and α).

Inspection of Fig. 4.11 shows that head-on collisions (those favored by β = 0◦)
lead to an angular distribution that, compared to the one obtained in the isotropic
case (that is, when the collision involves unpolarized reactants), is more focused on
the backward scattering region. On the other hand, side-on collisions (those favored
by β = 90◦) enhance sideways scattering, while alignment along the magic angle
(β = 54.74◦) leads to an intermediate result.

Also quite evident on Fig. 4.11 is the importance of the azimuthal angle α, whose
value can have a dramatic effect on the observed results. This is illustrated by the
curves obtained with β = 54.74◦, α = 45◦ or with β = 54.74◦, α = 180◦: while
the former polarization direction leads to a DCS that has a similar shape to but
is less intense than the DCS obtained with isotropic reactants, the latter leads to
a very significant enhancement of the DCS, which is particularly pronounced near
θ = 115◦. Note that α = 0◦ and α = 180◦ both correspond to situations in which
the internuclear axis is on or near the scattering plane containing k and k′, but that
the respective collision geometries differ, with the D2 interatomic axis being tilted
along the quadrants of the scattering frame where the rxrz product is either positive
or negative (see Fig. 4.4). Values of α in the 45◦ ≤ α ≤ 135◦ range, on the other
hand, indicate predominance of collisions in which the D2 interatomic axis is close to
perpendicular to the scattering plane. The fact that a large increase in the DCS is
observed for α = 180◦ indicates that the reaction may be predominantly coplanar;
i.e., the scattering plane and that containing the three atoms remain coincident in
the course of the reaction (again, this will be more exhaustively discussed in next
Chapter).

We present further illustration of the importance of the azimuthal angle α for the
observed differential cross section on Fig. 4.12. It contains quantum state-to-state
results for reactions leading to HD(v′ = 0, j′ = 0) scattering in the backward (top) and
forward (bottom) scattering regions (the DCS of such reactions in the 30◦ ≤ θ ≤ 120◦

region is invariably very small); the combinations of β and α values are the same
ones used in Fig. 4.11. Besides confirming the sensitivity of the product angular
distribution to the value of the azimuthal angle α, Fig. 4.12 shows that the variation
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Fig. 4.12.: Quantum differential cross section of reaction (4.63) at Ecoll = 1.306 eV and
for different D2 alignment directions. Top and bottom panel show back-
ward and forward scattering region, respectively. The border between the
white and gray areas represents the maximum possible values of dσβ

α/dω.
The minimum possible values lie at the horizontal, dσβ

α/dω = 0 axis. Mini-
mum and maximum values were obtained with the min-maximization pro-
cedure described in Sec. 4.7.3.

can be significant even within strikingly small scattering angle intervals (something
that, from the point of view of intrinsic properties, was illustrated by the strongly
contrasting stereodynamical portraits of Fig. 4.6). Let us compare, for instance,
β = 0◦ to β = 54.74◦, α = 180◦: the first polarization direction leads to DCS maxima
at θ = 0◦ and θ = 180◦ and to scattering nodes near θ = 6◦ and θ = 160◦, while the
second polarization direction leads a DCS with scattering nodes where the first had
maxima and with local maxima where the first had nodes. It is truly remarkable that
such contrasts can be observed within such small scattering angle intervals.

Another way of visualizing the effect of the D2 alignment direction on the reaction
we are considering here is by using scattering angle-recoil velocity polar maps such
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Fig. 4.13.: Quantum triple (angle-velocity) differential cross section of the H+D2(v =
0, j = 2) reaction at Ecoll = 1.306 eV and for different D2 alignment direc-
tions.

as the ones on Fig. 4.13, which were plotted using quantum data obtained with
Ecoll = 1.306 eV. These polar maps show the value of the DCS over a plane in which
the polar angle represents the scattering angle θ, while the radial distance to the
center is a measure of the product recoil energy (the larger the distance the larger
the recoil energy and the smaller the internal energy of the products. The outer ring
corresponds to v′ = 0, j′ = 0, and v′ and j′ increase towards the center). Previous
observations are also visible in these plots: collinear collisions (D2 alignment along
β = 0◦) lead to a pronounced enhancement of backward scattering with regard to the
isotropic case, while side-on collisions (45◦ ≤ β ≤ 135◦) lead to an enhancement of
sideways scattering, with the shapes and magnitudes of the polar maps also depending
on whether the side-on collisions are coplanar or not. It becomes also clear from these
representations that side-on collisions give rise to an appreciable rotational excitation
especially manifest in the sideways scattering.

A further example of the effect of the D2 alignment on the reactivity can be ob-
tained as follows: suppose that each of the previous polar maps is integrated over
the scattering angle and the recoil velocity (this last integration is equivalent to sum
over all the products states). The resulting quantity, the total special ICS, obviously
depends on both β and α. Note that in this case the position of the scattering plane
is well defined with respect to the direction of the polarization vector of the excitation
laser in spite of the integration over the scattering angle θ. The results obtained as a
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and minimum possible values of σ̃β

α, and were obtained with the min-
maximization procedure described in Sec. 4.7.3.

function of the collision energy are represented in Fig. 4.14 for different combinations
of β and α. As will be explained in Sec. 4.7.3, the magnitude of the special ICS is
bounded within the range indicated by the white area of the figure for a laboratory
preparation of |j = 2,m = 0〉. At low collision energies the highest and lowest values
of σ̃β

α are obtained with β = 0◦ and with β = 90◦, α = 0◦, respectively. However, with
increasing Ecoll, the alignments that maximize and minimize the special ICS tend to
be those with β equal to the magic angle and α = 180◦ and α = 0◦, respectively.
This indicates that side-on attack with the internuclear axis in the scattering plane
can lead to maximal as well as minimal values for the special ICS, depending on the
value of α. This azimuthal angle is thus shown to be a very relevant stereodynamical
parameter.

4.7.3. The min-max approach: theoretical control limits

The results just presented show that D2 polarization, and D2 alignment in partic-
ular, can have a dramatic effect on the outcome of the H + D2 collision. By selecting
specific directions for the D2 alignment, starkly contrasting reactive cross sections as
well as starkly contrasting product state distributions have been obtained.
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The question that follows is this: is it possible to improve those results? Can one
make the contrasts even starker? If one wants to increase or decrease the reactive
cross sections, how far can one go? This is where the min-max approach steps in.

In other words, the question asked in the previous paragraph was, “can one deter-
mine the (extrinsic) reactant polarization moments that lead to minimal and maximal
reactive cross sections?” The answer is that this is not only possible, but (theoreti-
cally at least) rather straightforward. All one has to do is, having determined intrin-
sic PPs and PDDCSs, to apply standard computational minimization/maximization
techniques [69] using the cross section formulae (In the most general case, these are
Eqs. (4.20), (4.23) and (4.25) and the details of the calculation were described in
Section 4.4.4. If the goal is to determine what is achievable with the experimental
setup described above, the required formulae are those of Eqs. (4.56–4.58)).

Results from two “min-max” calculations applied to the cross sections correspond-
ing to the proposed experiment were shown in Figs. 4.9 and 4.14. The goal of these
two examples was the determination of the direction of D2(v = 0, j = 2) alignment
that would lead to the largest or smallest possible values for the total ICS (Fig. 4.9)
and for the total special ICS (Fig. 4.14).

In the case of the total ICSs of Fig. 4.9 the only adjustable parameter is the angle
β, see Eq. (4.57). Its determination has lead to the minimal and maximal ICSs
depicted in Fig. 4.9 as the borders between the experimentally accessible (white) and
experimentally forbidden (gray) regions for σβ . Fig. 4.15 further illustrates the results
obtained, showing on its left panel the β values leading to minimal and maximal ICSs
at the collision energies considered; note that as the azimuthal angle α plays no role
here (it is averaged out, as discussed in Sec. 4.4.2), one does not need to consider β

values outside the 0 ≤ β ≤ 90◦ range.

Fig. 4.15 shows that the β values that maximize σβ are invariably close to zero.
This explains why the β = 0◦ curve is invariably at or very close to the upper limit
of the allowed σβ region in Fig. 4.9, and is further evidence that collinear H + D2

collisions lead to an increased reactivity. As for the β values that minimize σβ , they
are invariably close to β = 90◦. This explains why the β = 90◦ curve is invariably at or
very close to the lower limit of the allowed σβ region in Fig. 4.9, and complements the
maximization information, showing that side-on H+D2 collisions lead to a decreased
reactivity.

Min-maximization of the special ICS of Fig. 4.14 involves two adjustable parameters
(β and α) rather than only one, see Eq. (4.58). Their determination has lead to the
minimal and maximal special ICSs depicted in Fig. 4.14 as the borders between the
experimentally allowed (white) and experimentally forbidden (gray) regions for σ̃β

α.
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Fig. 4.15 again further illustrates the results obtained, showing on its right panel the
β and α values leading to minimal and maximal special ICSs at the collision energies
considered.

Fig. 4.15 shows that the β and α values that maximize σ̃β
α satisfy β < 90◦, α = 180◦:

reactivity is enhanced by coplanar collisions in which the D2 interatomic axis is tilted
towards the incoming H atom rather than away from it. It also shows that, when
a more detailed analysis is carried out, one finds that the best collision geometry
is actually not collinear (as far as reactivity is concerned). Indeed, none of the σ̃β

α

maximizations has lead to zero as the optimum β value. Instead, it has been found
that this optimum value steadily increases from β ≈ 15◦ near the reaction threshold
to β ≈ 60◦ at the highest collision energies considered. At the high collision energies
the optimum collision geometry is not even approximately collinear as suggested by
the σβ values, but rather coplanar and approximately side-on. This explains why the
β = 0◦ curve is close to the upper limit of the allowed σ̃β

α region in Fig. 4.14 only
at very low collision energies, and also why at higher collision energies it is coplanar,
magic-angle collisions that lead to special ICSs approaching their maximum possible
values. As shown by Fig. 4.14, selection of the azimuthal angle allows one to double
the system reactivity.

As for the β and α values that minimize σ̃β
α, they invariably indicate that side-on

collisions in which the D2 axis is perpendicular to the scattering plane are those that
most reduce reactivity. Consideration of Fig. 4.14, however, leads to an interesting



4.7. Illustrative examples 117

observation: coplanar, magic-angle collisions in which the D2 interatomic axis is tilted
the “wrong” way (away from the incoming H atom rather than towards it) can lead
to a similar reactivity reduction, in particular at the higher collision energies at which
the “right” coplanar, magic-angle collisions lead to almost maximum σ̃β

α values.

The Section will be closed with three remarks about application of the min-max
approach. The first is that, although the reported min-max calculations have been
constrained (the scattering-frame extrinsic reactant polarization moments were ob-
tained by rotation of laboratory-frame moments, and the values of these were fixed),
they do not have to be limited in this way: the values of the extrinsic reactants
polarization moments, the a

(k)
q ’s, can be chosen freely. Unconstrained min-max cal-

culations were presented in Section 4.4.4. They are not not significantly harder than
the constrained ones, and when performed, they can eventually lead to significantly
larger maximal cross sections and to virtually zero minimal cross sections.

Fig. 4.16 serves to illustrate the differences between both kinds of calculations.
It presents the quantum mechanical enhancement and suppression numbers9 for the
total integral cross section of reaction H+D2(v = 0, j = 2). Continuous lines cor-
respond to unconstrained calculations and dashed lines to constrained calculations.
While suppression numbers derived from unconstrained calculations (red continuous
line) always “improve” their constrained counterparts (dashed red line), enhancement
numbers for unconstrained (blue continuous line) and constrained (dashed blue line)
calculations are almost identical in this case. The analysis of the Figure shows two
additional features of the reaction: (i) the reactants polarisation is more effective for
hindering than for spurring the reaction (the largest value of the enhancement number
is 1.5, the smallest of the suppression number is around -3.5) and (ii) the achievable
control dramatically decreases as the collision energy increases. Anticipating results
included in the next Chapter, this last feature can be interpreted in terms of access
to the transition state region of the PES. For the BKMP2 PES, such transition state
has a linear geometry and turns out to be quite stiff, that is, small deviations from
the linear geometry give rise to noticeable increases of energy. While at low collision
energy the access to the TS region of the PES is limited to collisions whose geom-
etry is close to collinear, an increasing number of geometries allow for reaching the
PES region as the collision energy rises and, in consequence, a lower improvement is
expected from suitably preparing the reactants prior to reaction.

The second remark is that, although only min-max results for integral cross sections
have been discussed, the approach can also be applied to other reaction properties,
e.g. differential cross sections and product state distributions. Indeed, Fig. 4.12 shows

9Remember that these numbers must be compressed in the interval [−∞, ln(2j + 1)]



118 4 Reaction control and mechanism analysis. . .

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
-4

-3

-2

-1

0

1

2

 

 

 

 

Ecoll(eV)

n
(E

co
ll
)

QM

Fig. 4.16.: Quantum mechanical enhancement (positive quantities) and suppression
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mization of the total integral cross section for reaction H+D2(v = 0, j = 2).
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data presented in Fig. 4.9).

min-max results for a differential cross section: the maximization results are shown
as the border between the theoretically allowed (white) and theoretically forbidden
(gray) regions, while the minimization results (which have lead to a vanishing DCS
for every scattering angle) lie along the horizontal, dσβ

α/dω = 0 axis.

The final remark is that in general the results from min-max calculations will be
better represented by extrinsic stereodynamical portraits (or, equivalently, by a com-
plete set of extrinsic polarization moments) than by a single direction along which
reactants are to be oriented or aligned. In the case of the constrained results pre-
sented above the distinction was unnecessary, as the calculations were done with the
experimental setup described in Sec. 4.6 in mind, and the β and α values uniquely de-
termined the extrinsic reactants portraits and polarization moments, see Fig. 4.4 and
Eq. (4.54). However, when unconstrained min-maximizations are performed this is
certainly not the case and the set of polarisation moments can not be studied in terms
of an smaller group of parameters. In general, it is comparison between the actual (ex-
trinsic) reactants polarization portraits and their intrinsic counterparts that will allow
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one to obtain the full picture. Production of pure states can be used as an example.
If the DCS of reaction (4.63) at Ecoll = 1.306 eV and θ = 4◦ is studied, the discussion
of Sec. 4.4.4 anticipates what the result of an unconstrained maximization must be:
the extrinsic portraits corresponding to the reactants polarisation that maximize the
reactivity must be identical to the intrinsic portraits shown of the top row of Fig. 4.6
(this is because in the case of production of pure states it is possible to create a pure
reactant polarization state that, in terms of the metaphor introduced earlier, gives
to the reaction exactly what it wants). Considering the stereodynamical portraits on
Fig. 4.6 one can see that they are not defined simply by a particular direction in space,
as their shapes can also change. In order to fully understand the stereochemistry of
a reactive collision, one must consider the full picture (directions and shapes of the
spatial distributions of molecular axes and rotational angular momenta) rather than
a single spatial direction.
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5. Mechanism of the H + D2 reactive

collisions

Examples in Sec. 4.7 were divided into three different categories corresponding to
different (and complementary) ways of analysing the reaction stereodynamics through
the reactants polarisation: (i) “Intrinsic approach” (Sec. 4.7.1), (ii) “Practical ap-
proach” (Sec. 4.7.2) and (iii) “The min-max approach” (Sec. 4.7.3), where the former
was specially suitable for the reaction mechanism analysis and the other two for the
study of the control possibilities. Although those examples paid more attention to the
control problem than to unravel the reaction mechanism, they allowed for extracting
some information regarding the way in which H + D2 reactive collisions happen:

� The internuclear axis of the D2 molecule is preferably placed on the scattering
plane, suggesting that the reaction is coplanar.

� There is a relation between the collision geometry and the rotational excita-
tion of the products (head-on (side-on) reactive collisions take to little (large)
rotational excitation of the products).

� The intrinsic PDDCSs in the forward region display very fast oscillations that
could be attributed to an interference effect.

Confirmation and explanation of these three points, together with the unveiling of
new reaction features, is provided by this Chapter contents, devoted to rationalisation
and understanding of H + D2 reaction mechanism. The strategy chosen to tackle the
problem follows that sketched in Sec. 4.7.1: the reaction mechanism is studied by
means of the intrinsic polarisation moments (they contain the reaction directional
preferences). Such moments were worked out from the scattering matrices in the
helicity representation1 (only quantum mechanical results are presented) for

� the total energy range 0.50–1.75 eV and

1The calculation of the S matrix was performed by Dr. Brian Kendrick with previously re-
ported [112] time independent calculation on the BKMP2 surface [111]
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� the initial states D2(v = 0− 1, j = 1− 2).

As no major distinctions were found between the four D2 states, the presentation is
restricted to results for the

H + D2(v = 0, j = 2) → HD(v′, j′) + D (5.1)

reaction, for which the range of collision energies is 0.29–1.54 eV. The reader should
bear in mind, however, that the conclusions are valid for all four rovibrational states.

The Chapter begins with a brief summary (Sec. 5.1) of some significative findings
about the reaction mechanism presented in earliest works. Next, the intrinsic mo-
ments are analysed going from less detailed to more detailed quantities: it starts from
total PPs (Sec. 5.2), goes through state-to-state PPs (Sec. 5.3) and total PDDCSs
(Sec. 5.4) and finishes with the consideration of the state-to-state PDDCSs (Sec. 5.5),
which offer the more exhaustive description of the reaction mechanism.

The two notations introduced in Chapter 4 for representing the intrinsic moments
will be combined: the real PDDCSs (PPs) will be represented either as PDDCS{k, q±}
(PP{k, q±}) or as S

{k}
q± (θ) (s{k}q± ).

5.1. Direct and delayed mechanisms

At this range of energies, two basic types of reactive collisions have been invoked
to explain the H + D2 reaction mechanism [110]:

� The first, which is held to proceed without formation of a short-lived reaction
complex, has been dubbed the “direct” mechanism. To a first approximation,
this mechanism is due to low to medium impact parameter collisions that lead
to backward or sideways product scattering [67, 96, 110, 114, 117].

� In contrast, the second mechanism proposed for the H+D2 reaction does involve
formation of a short-lived reaction complex, which in turn leads to a time delay
in product formation. It has been dubbed the “delayed” mechanism. This mech-
anism is largely due to high impact parameter collisions that lead to forward
scattering of HD products in low rotational states [67, 96, 110, 114, 117].

As it will be shown below, the stereodynamical analysis of the problem allows for
further characterisation of the direct and delayed mechanisms (although our study is
time-independent, we still refer to the two mechanisms by their established names).

Characterisation of the direct mechanism is relatively easy. This is in part because
the direct mechanism is usually dominant, and in part because its stereodynamics is
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not only distinctive but also relatively well-behaved, changing smoothly with energy
and scattering angle.

Characterisation of the delayed mechanism, on the other hand, is more challenging.
This is so because the delayed mechanism is rarely dominant, but also because its
stereodynamics can oscillate strongly, in particular with scattering angle (an analysis
of the causes of these oscillations will be presented).

The differences just mentioned should be kept in mind throughout this Chapter. As
our presentation proceeds from general aspects (total PPs) to specific details (state-
to-state PDDCSs) of the H+D2 reaction stereodynamics, the results we will encounter
first largely reflect the direct mechanism, with only small hints about the delayed one.
Only when the state-to-state PDDCSs are considered, it will be feasible to analyse in
depth the delayed mechanism.

5.2. Total integral results

In this section we consider total PPs and the associated stereodynamical portraits.
The question with which this section is concerned is this: what reactant polarisation
does lead to reaction?

In order to completely characterise (quantum-mechanically) the polarisation of a
j = 2 state, one needs to determine the values of twenty-four real polarisation mo-
ments: the ones whose rank satisfies 1 ≤ k ≤ 4. Symmetry constraints (see Eqs. 4.8)
imply that twelve of them must vanish, which leaves us with twelve real polarisation
moments to consider.

Fig. 5.1 shows how the values of four of the twelve nonvanishing total PPs (those
with k = 1–2) change with collision energy.

What the Figure is telling about the results is that most total PPs show little
variation with collision energy (notice that in Fig. 5.1 the ranges of the vertical axes
match the allowed ranges of the PPs). The major exception is PP{2, 0}, whose value
changes quite noticeably: it is close to the negative limit at low collision energies, and
close to zero at high collision energies.

Polarisation moments with k = 2 and q = 0 quantify alignment with regard to the
z axis, which in our case corresponds to k, the reactant-approach direction: negative
values imply a preference for j ⊥ k and r ‖ k. This information, along with the results
in Fig. 5.1, leads to the following conclusion: as the collision energy increases, the
major change in the intrinsic reactants polarisation must be a loss of preference for
head-on, r ‖ k collisions.

It is necessary to recall that, in order to figure out how exactly the intrinsic D2(v =
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Fig. 5.1.: Dependence of nonvanishing total polarisation parameters (total, averaged
over final states PPs) of rank k = 1–2 on collision energy. The ranges of the
vertical axes match the allowed ranges of these PPs for j = 2.

0, j = 2) polarisation changes with collision energy, one must simultaneously consider
the directional meanings and value variations of all PPs: not only the four shown
on Fig. 5.1, but also the eight others. This, as already mentioned, is a task which
needs the employment of the stereodynamical portraits: direct visualisation of the
intrinsic D2 polarisation is made possible by inspection of Fig. 5.2, which shows
D2(v = 0, j = 2) molecular axis and rotational stereodynamical portraits2 at low,
intermediate and high collision energy values (respectively, 0.501, 0.998 and 1.506 eV).

These portraits neatly summarise the information contained in figure 5.1 and give
an straightforward answer to the question in the opening paragraph of this Section,
thus allowing for immediate insight into the overall reaction mechanism. The rota-
tional portrait corresponding to the lowest energy (right upper panel) displays a clear
orientation along the −y axis (that is, a preference for D2 rotation parallel to the scat-
tering plane and in a clockwise sense when seen from the y > 0 side of the scattering
plane) and is approximately perpendicular to the z axis. As the energy increases

2For the sake of clarity, the axis will be henceforth displaced from the center of the portraits as in
Chapter 4
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Fig. 5.2.: Molecular axis and rotational D2(v = 0, j = 2) stereodynamical portraits
prepared using total PPs at Ecoll = 0.501, 0.998 and 1.506 eV. See Sec. 4.3
for a definition of the xyz scattering frame.

that orientation and the alignment perpendicular to the z axis decrease and, finally,
almost disappears. Globally, the change in the values of the moments gives rise to
a tilting with respect to the z axis. This tilting is the most remarkable modification
of the portraits and is related to the diminishing value of the PP{2,0} moment as
the energy increases while the PP{2,1+} moment has a consistently positive value (j
preferably aligned along x + z instead of along x− z).

The molecular axis portraits (left column in figure 5.2), although based on the
same polarisation moments as their rotational counterparts, provide us with an even
more pictorial description, this time in terms of the internuclear axis distribution that
yields the reaction. As mentioned above, these distributions are insensitive to the odd
polarisation moments. For the lowest collision energy, the distribution giving rise to
reaction clearly shows a preference for the D2 molecular axis to be approximately
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Fig. 5.3.: Reaction probability as a function of the total angular momentum quantum
number (J) for reaction H + D2(v = 0, j = 2) → D + HD(v′ = all, j′ = all)
at Ecoll = 0.501, 0.998 and 1.506 eV.

aligned along the relative velocity k, with a light tilting so that the “first” D atom
(the one closest to the H atom approaching the D2 molecule along the z ≡ k direction)
lies towards the x > 0 half of the xz plane. As the collision energy increases it becomes
apparent that the angle between the molecular axis portrait and k increases.

At this point it is already interesting to try to relate the shapes of the portraits to
the global mechanism of the reaction into all final states at these collision energies.
One of the main features revealed by these portraits is the fact that the internuclear
axis tends to be aligned along a direction contained on the xz plane, i.e., the scattering
plane. The second aspect is that at low collisions energies the internuclear axis are
much more aligned along the relative velocity than at high energies.

These results are consistent with a direct, rebound-type mechanism and can be
rationalised by taking into account that the H+D2 reaction is collinearly constrained
and has a linear transition state [111]. Let us consider what would happen when a
collision takes place. The atom approaches the molecule from the region of negative
z values with a direction that is parallel to z and a distance on the xy plane from
the center of the mass equal to the impact parameter. At low collision energies, when
only small impact parameters contribute (see Fig. 5.3), the reaction is constrained to
geometries close to that of the transition state. Small deviations from it (small tilts
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of the D2 interatomic axis, nonzero impact parameter), lead to product scattering in
the plane containing the three atoms, and in the half of that plane flagged by the H
and “first D” atoms. D2 rotation also plays a part in the selection of the half-plane
containing k′; the direction of motion of the first D atom is roughly preserved upon
transfer from the D2 reactant to the HD product.

As the collision energy increases, the H–D–D complex can take increasingly bent
configurations. On one hand, this opens the door for contributions from higher impact
parameters (see Fig. 5.3); on the other, this leads to the shift of preference (from r

near z to r near x) seen on Fig. 5.2.
As for rotational orientation, at high collision energies its effect is seen to be minor

compared to those associated with tilting of the D2 axis. While it may play a role in
determining exactly what product state is scattered into what scattering angle (we
will later show that it indeed does), it does not significantly alter the overall reaction
probability.

5.3. State-to-state integral results

The state-to-state PPs and the associated stereodynamical portraits will be now
considered. The question with which this Section is concerned is this: what reactant
polarisation does lead to formation of products in a given state?

Analysis of the data has showed that, under the conditions considered in this Chap-
ter, the stereodynamics of the H+D2 reaction is largely insensitive to the HD product
vibrational state, but quite sensitive to its rotational state. Furthermore, it was found
that although the balance between the various stereodynamical effects does depend
on the system’s energy, their nature and relative contributions are best rationalised by
consideration of results involving a large number of contributing product rotational
states, that is, results obtained with a high collision energy and a low v′ value.

Fig. 5.4 shows the integral cross section of the H + D2(v = 0, j = 2) → HD(v′ =
0, j′) + D reaction at Ecoll = 1.506 eV as a function of j′, as well as molecular axis
and rotational D2 stereodynamical portraits prepared using state-to-state PPs for
selected j′ values, namely j′ = 2, 9 and 13. These rotational states have been chosen
to clearly illustrate the effect of the rotational polarisation on the product’s rotational
excitation.

Exam of the D2 molecular axis portraits (those on the top of Fig. 5.4) shows (i) that
all state-to-state reactions are favoured by placement of the D2 interatomic axis on
the scattering plane, and (ii) that the extents of product rotational excitation and
reactant axis tilt are correlated; reactions leading to low (high) j′ values are favoured
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Fig. 5.4.: Integral cross section of the H + D2(v = 0, j = 2) → HD(v′ = 0, j′) + D
reaction at Ecoll = 1.506 eV as a function of j′, and molecular axis and
rotational D2 stereodynamical portraits prepared using state-to-state PPs
for the same reaction and selected j′ values.

by D2 polarisations in which the molecular axis is less (more) tilted.

These observations can be rationalised as those in the previous Section: by consid-
eration of the extent of bending of the H–D–D complex around its linear minimum-
energy geometry, and also of the impact parameters contributing to reaction. Less
(more) H–D–D bending is associated with less (more) D2 axis tilting, smaller (larger)
impact parameters3, and less (more) product rotational excitation. This latter, prod-
uct rotational excitation effect, is associated with an HDD bending-to-HD rotation
energy transfer that will be discussed in a moment.

Exam of the D2 rotational portraits (those on the middle of Fig. 5.4) reveals an

3The state-to-state probability functions P (J) (not included here), show that less (more) rotation-
ally excited products come from reactions characterised by smaller (larger) impact parameters
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Fig. 5.5.: Cartoon illustrating the influence of D2 rotational orientation on HD rota-
tional excitation. If j orientation is parallel (antiparallel) to y ≡ k×k′, then
the H and D atoms collide while moving along roughly opposite (similar)
directions. This leads to more (less) HDD bending vibration, which in turn
leads to more (less) HD rotation.

additional feature: the extents of product rotational excitation and reactant rotational
orientation are correlated; reactions leading to high (low) j′ values are favoured by j

orientation parallel (antiparallel) to the y axis.
The cartoon shown on Fig. 5.5 provides a rationale for this effect: if j orientation

is parallel (antiparallel) to y ≡ k× k′, then the H and D atoms collide while moving
along roughly opposite (similar) directions. This leads to more (less) HDD bending
vibration, which in turn leads to more (less) HD rotation.

Note also that our cartoon implicitly assumes that the reaction takes place with all
molecular axes on the scattering plane. This assumption, is justified not only by our
own results, but also by those from a previous, quantum and quasiclassical trajectory
studies of the title reaction [118]. It has been shown there a tendency for the orbital
and rotational angular momenta to be either parallel or antiparallel to each other, a
finding that corroborates the coplanarity assumption [118].

At this point, however, a note of caution is needed: Fig. 5.5 accounts for the
dominant reaction mechanism, but not for all reaction mechanisms. As will be seen in
Sec. 5.5, differential state-to-state results suggest that other, possibly quite different
mechanisms, can also contribute to the reaction dynamics. In particular, a more
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detailed analysis reveals that the coplanarity condition is not always fulfilled.
A final remark is that Fig. 5.5 suggests that formation of HD in a high-lying rota-

tional state should be associated with strong product rotational orientation: j′ should
be strongly oriented along −y. Previous studies have found this to be indeed the case
[25, 98].

5.4. Total differential results

Thus far, only results integrated over scattering angles have been considered. That
restriction is now lifted, and our attention turn to the investigation of the correlation
between reactant polarisation and scattering angle. This will allow to distinguish
between mechanisms associated with forward, sideways and backward scattering.

In this Section renormalised total PDDCSs and the associated stereodynamical
portraits will be considered. The question with which this Section is concerned is
this: what reactant polarisation does lead to scattering of products into a given
scattering angle?

Fig. 5.6 shows the total DCS (top) and the renormalised total PDDCS{2, 0} (bot-
tom) at low, intermediate and high values of the collision energy (respectively, 0.501,
0.998 and 1.506 eV).

The first observation concerns the range of scattering angles. At the lowest collision
energy, the DCS is confined to the backward hemisphere; product scattering at θ < 90◦

is unlikely. As the collision energy increases, the situation changes somewhat, with
scattering angles in the sideways and forward scattering regions becoming, if not
dominant, at least not negligible. Note also the appearance of a clear peak in the
forward scattering region of the DCS at Ecoll = 1.506 eV.

As in the case of total integral results (Sec. 5.2), we have found that the polarisation
moment giving most direct information about the major variations in the stereody-
namics (here, with scattering angle as well as collision energy) is the one quantifying
alignment with regard to the z ≡ k axis. In other words, the renormalised total
PDDCS{2, 0} in the bottom panel of Fig. 5.6.

At the lowest collision energy, the PDDCS{2, 0} is invariably negative, but the less
so the further away from 180◦ the scattering angle is. The negative values indicate a
preference for j ⊥ k and r ‖ k that becomes less pronounced as one moves away from
backward, θ = 180◦ scattering.

As the collision energy increases, in the backward (120◦ ≤ θ ≤ 180◦) scattering
region one finds a weakening of the preference for negative PDDCS{2, 0} values. In
the sideways and forward (θ ≤ 120◦) scattering regions, the shift is from mildly
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Fig. 5.6.: Total DCS (top) and renormalised total PDDCS{2, 0} (bottom) at Ecoll =
0.501, 0.998 and 1.506 eV. In the bottom panel, the range of the vertical
axis matches the allowed range of the renormalised PDDCS{2, 0} for j = 2.

negative to mildly positive PDDCS{2, 0} values — a shift from mild preference for
j ⊥ k and r ‖ k towards mild preference for j ‖ k and r ⊥ k.

Although the discussion of PDDCS values could be taken further, it is now clear that
stereodynamical portraits provide a much less cumbersome description of the problem.
We therefore turn to those, selecting as before a case that allows for maximum clarity
in the analysis of the various effects: the highest of the three energies in Fig. 5.6
(Ecoll = 1.506 eV), and scattering angles of 0, 90 and 180◦. The corresponding D2

molecular axis and rotational portraits are shown on Fig. 5.7.

Let us first examine the results for the two limiting values of the scattering angle,
θ = 0◦ and 180◦. At these angles, the shapes that stereodynamical portraits can
possibly take are severely restricted. This is due to the initial and final relative
velocity vectors being parallel or antiparallel: the scattering plane is undefined, and
as a consequence all portraits must show cylindrical symmetry around the k axis (in
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Fig. 5.7.: Molecular axis and rotational D2(v = 0, j = 2) stereodynamical portraits
prepared using renormalised total PDDCSs at Ecoll = 1.506 eV and for three
different values of the scattering angle: θ = 0, 90 and 180◦.

other terms, the only PDDCSs whose value can change are those with k = 2 or 4 and
q = 0; PDDCSs with k odd or q 6= 0 must vanish. See Secs. 2.3 and 4.3 for more
details).

And yet, despite the very restrictive conditions, the stereodynamical portraits at
θ = 0◦ are strikingly different from those at θ = 180◦.

The portraits at θ = 180◦ are very similar to those corresponding to a pure
|j = 2,Ω = 0〉 state (see Sec. 4.6). Their strong anisotropy is indicative of a di-
rect mechanism favoured by small impact parameter, collinear, head-on collisions.
We also note that stereodynamical portraits corresponding to other backward-region
scattering angles, θ = 150–180◦, are very similar to the ones presented here.

The situation at θ = 0◦ is rather different; the D2 stereodynamical portraits are
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close to isotropic. Interestingly, the D2 stereodynamical portraits at nearby angles,
while also largely isotropic, clearly differ from those obtained at exactly 0◦. This is
indicative of either a lack of steric constraints, or else a mixture of mechanisms with
different stereochemical requirements. Resolution of differential results with regard
to product rovibrational states (the subject of the next Section) will show the latter
to be the case.

The D2 stereodynamical portraits corresponding to sideways scattering (middle
row of Fig. 5.7) are quite similar to others already discussed. Namely, those in the
bottom row of Fig. 5.2 (total, integral results at high collision energy), and also those
corresponding to j′ = 9 in Fig. 5.4 (state-to-state, integral results at high collision
energy). The conclusion here is the same reached there, except that here it concerns a
shift that is observed with a change of scattering angle rather than collision energy or
product state. In going from backward to sideways scattering, the D2 molecular axis,
while remaining on the scattering plane, tilts with respect to the reactant-approach
direction; reactive collisions change from head-on to side-on; the side-on collisions
are largely insensitive to rotational orientation. This effect, which is prominent at
high collision energies, can be rationalised by consideration of access to relatively
bent collision complex configurations and contributions from large impact parameter
collisions, see Secs. 5.2 and 5.3. As in the case of integral results, the tilt of molecular
axis takes place in order to make the linear transition state more accessible.

5.5. State-to-state differential results

We now turn to the deepest and most detailed results to be considered in this
Chapter: those concerning state-to-state reactions resolved with regard to scattering
angle. Here we address the following question: given a certain scattering angle, what
reactant polarisation does lead to scattering of products in a particular state into it?

The chief limitation of the results in the previous Sections is that they largely
reflect the main characteristics of the dominant, direct reaction mechanism. Exam
of state-to-state results with scattering angle resolution allows for a more detailed
characterisation of the dominant mechanism, but also for separate consideration of at
least one minor mechanism, namely the time-delayed one.

For space and clarity reasons, we will restrict ourselves here to the highest collision
energy (1.506 eV) and, unless otherwise stated, to the lowest product vibrational state
(v′ = 0). We would like to point out, however, that the results show little change
with v′, and that although the probabilities of the effects considered here change with
collision energy, their nature does not. The conclusions drawn from the data below
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Fig. 5.8.: DCS (top), renormalised PDDCS{1, 1−} (middle) and renormalised
PDDCS{2, 0} (bottom) for the H+D2(v = 0, j = 2) → HD(v′ = 0, j′)+D re-
action at Ecoll = 1.506 eV. The solid, dashed and dotted curves correspond,
respectively, to j′ = 2, j′ = 7 and j′ = 13. In each of the PDDCS panels,
the range of the vertical axis matches the allowed range of the PDDCS for
j = 2.

can also be drawn from results at other collision energies or v′ values for this reaction.

Fig. 5.8 shows the DCS and the renormalised PDDCS{1, 1−} and PDDCS{2, 0},
for reactions leading to HD in the j′ = 2, 7 or 13 rotational state.

Let us first consider the DCSs (top panel of Fig. 5.8). It is clear that most of the
reaction probability is associated with reactions leading to backward and/or sideways
scattering, and that the higher the j′ value, the more the DCS is shifted away from
strictly backward, θ = 180◦ scattering.

Note, however, that for j′ = 2 forward scattering is not negligible: the correspond-
ing DCS features a sharp peak in the θ < 30◦ region.

As for the PDDCSs, their most striking characteristic is something that cannot
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be seen in results summed over product states (e.g., those in Fig. 5.6): they exhibit
numerous oscillations. We divide these oscillations in two classes.

The first class comprises the relatively broad oscillations observed for j′ = 13, j′ = 7
and backward-scattered j′ = 2 products. These oscillations are general (they appear
for virtually every product state and collision energy), and are fairly well accounted
for by quasiclassical trajectory calculations (see Fig. 4.8 and reference [25]). They
reflect attributes of the dominant, direct mechanism, and their rationalisation does
not require invocation of quantum effects.

The second class comprises the fast oscillations observed for forward-scattered j′ =
2 products. These oscillations, which are only found for very low j′ states, are not
accounted for by quasiclassical trajectory calculations (see Fig. 4.8 and reference [25]).
They are associated with the minor, “delayed” mechanism, and their rationalisation
does require invocation of quantum effects.

In order to provide some rationalisation of the PDDCS of Fig. 5.8, we focus first on
the direct mechanism and, in particular, on the θ values where the dominant peaks
of the DCSs have maxima (θ = 174, 122 and 72◦ for j′ = 2, 7 and 13, respectively).

The PDDCS{2, 0} value is negative for j′=2 for backward and sideways scattering.
As j′ increases this situation varies: it first become smaller, almost vanishing for inter-
mediate j′, and becomes positive for j′=13. In particular, at the angles corresponding
to their DCS maxima and nearby angles, the PDDCS{2, 0} value shifts from negative
(j′ = 2 around θ = 174◦) to nearly vanishing (j′ = 7 around θ = 122◦) to positive
(j′ = 13 around θ = 72◦). As this value quantifies the D2 alignment with regard
to the reactant-approach direction (PDDCS{2, 0} < 0 implies preference for j ⊥ k

and r ‖ k, PDDCS{2, 0} > 0 implies preference for j ‖ k and r ⊥ k), what is seen
here can be explained again in terms of the search of a linear transition state. The
physical justification for this relationship between reactant alignment and product
rotational excitation has been presented above (see discussion of the molecular axis
portraits of Fig. 5.4 in Sec. 5.3). As sideways scattering comes from larger impact
parameters than backward, the molecule tilts in order to facilitate the adoption of
the linear geometry. Consequently, this moment is negative at all scattering angles
for low j′ and positive for the highest j′.

The PDDCS{1, 1−} changes in a different way: it undergoes a sign inversion at
the θ value where the DCS has a maximum. Consider, for example, the j′ = 13
case, for which the DCS peaks at θ = 72◦. The PDDCS{1, 1−} takes positive values
at θ ' 72◦, and negative values at θ / 72◦. The same happens for j′ = 7 around
θ ≈ 122◦, and for j′ = 2 around θ ≈ 174◦.

In order to rationalise the effects described in the previous paragraph, we take
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Fig. 5.9.: D2(v = 0, j = 2) molecular axis portraits prepared using renormalised PDD-
CSs for Ecoll = 1.506 eV reactions into v′ = 0 and j′ = 2, 7 or 13. The
scattering angles considered here are those associated with maxima of the
DCSs on the top panel of Fig. 5.8.

into account the fact that the PDDCS{1, 1−} quantifies rotational orientation with
regard to the y ≡ k× k′ axis (PDDCS{1, 1−} > 0 implies preference for j along +y,
PDDCS{1, 1−} < 0 implies preference for j along −y). We also take into account the
cartoon on Fig. 5.5. Using j′ = 13 as an example, the rationalisation is as follows. The
DCS maximum appears at θ = 72◦, the PDDCS{1, 1−} = 0. At θ ' 72◦ the reaction
probability shifts towards lower j′ values, and as a consequence formation of HD(j′ =
13) requires positive j orientation (that is, PDDCS{1, 1−} > 0). At θ / 72◦ the
reaction probability shifts towards higher j′ values, and as a consequence formation
of HD(j′ = 13) correlates with negative j orientation (that is, PDDCS{1, 1−} < 0).

As always, the information content of the polarisation moments (all of them, not
only the ones on Fig. 5.8) is best conveyed by stereodynamical portraits. Some of
these, which have been selected so that details of the direct mechanism are depicted
as clearly as possible, are shown on Figs. 5.9 and 5.10. As above, the results presented
are for reactions into v′ = 0 at Ecoll = 1.506 eV.

Fig. 5.9 presents D2(v = 0, j = 2) molecular axis portraits associated with different
combinations of product rotational state and scattering angle; the combinations of
θ and j′ values are those associated with maxima of the DCSs on the top panel of
Fig. 5.8. What this figure most clearly illustrates is the correlation between the tilt
of the D2 axis and the product rotational state and scattering angle. Larger tilts,
associated as already discussed with larger impact parameters and more HDD bend-
ing around its linear equilibrium geometry, correlate with higher product rotational
excitation and with smaller scattering angles.
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Fig. 5.10.: D2(v = 0, j = 2) rotational portraits prepared using renormalised PDDCSs
for Ecoll = 1.506 eV reactions leading to HD(v′ = 0, j′ = 13). The θ values
used span the scattering angle region where the reaction DCS (dotted line
on the top panel of Fig. 5.8) has its maximum.

As for Fig. 5.10, it shows D2(v = 0, j = 2) rotational portraits meant to illustrate
the correlation between D2 rotational polarisation and scattering angle. The portraits
included are for reactions into HD(v′ = 0, j′ = 13) at scattering angles in the region
where the DCS of this reaction has its maximum, see top panel of Fig. 5.8. In this case,
it turns out that the most important effect (inversion of the D2 rotational orientation
upon passage through the scattering angle where the DCS hits its maximum) is clearly
described by one polarisation moment only, the one we have separately discussed:
PDDCS{1, 1−}. The other noticeable effect (preference for j to lie in the yz plane)
results from the combined effect of all PDDCSs, and is represented in a more telling
way by the preference for the D2 interatomic axis to lie near the x direction, see right
panel of Fig. 5.9.
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Fig. 5.11.: Differential cross section, in the forward scattering region, of the H+D2(v =
0, j = 2) → HD(v′ = 1, j′ = 0) + D reaction at Ecoll = 1.506 eV. The solid
line represents the full result; the other lines represent partial contributions
from selected D2 helicities.

Having discussed the dominant, direct reaction mechanism, we now turn to the
delayed mechanism responsible for forward scattering of products in low rotational
states. As illustrated by the polarisation moments associated with j′ = 2 in Fig. 5.8,
delayed collisions are characterised by PDDCSs that oscillate very fast with scattering
angle. These oscillations are found for all PDDCSs, not only those included in Fig. 5.8.

Fig. 5.11 shows a close-up of the oscillations of the DCS in the forward scatter-
ing region. The results in the figure are for reaction into HD(v′ = 1, j′ = 0) at
Ecoll = 1.506 eV, and include not only the full DCS, but also partial contributions
from selected absolute values of the D2 helicity, namely |Ω| = 0, |Ω| = 1 and |Ω| = 2.

It is clear that the partial DCSs oscillate more markedly than the full DCS, and
that the oscillations that survive in the full results can be attributed to particular |Ω|
values. The peak labelled as A in Fig. 5.11 is associated with |Ω| = 0, while peaks
B, C and D are mostly due to |Ω| = 2 (in fact, summation of the contributions from
|Ω| = 0 and |Ω| = 1 results in a partial DCS that, apart from the sharp peak at θ = 0,
shows no prominent maxima or minima in the θ < 40◦ region; this “oscillation-free”
partial DCS is not shown on the figure).

It already remains the problem of determining the origin of the oscillations for each
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|Ω| resolved DCS. A partial wave analysis4 of the forward scattering oscillations shows
that the various DCS peaks are due to various groups of high-J partial waves (note,
however, that no peak can be attributed to a particular total angular momentum;
angular features such as these come from interference between different partial waves).

Although the discussion in the last two paragraphs is based on consideration of
the DCS, the conclusion is also valid for PDDCSs. Their oscillations are due to
interference between (that is, coherent summation of) particular groups of large-J
partial waves. In the case of PDDCSs with q = 0 (the only case when the PDDCSs
are separable into different |Ω| contributions), the oscillations can furthermore be
attributed to incoherent contributions from separate |Ω| values.

From the point of view of the mechanism, these interferences between different
J values and the corresponding moments oscillations can be explained in terms of
the nearside-farside (NF) analysis of the DCS developed by Connor and co-workers
[115, 116]. They related the forward oscillations of the DCS at small values of j′ to
the interferences between NF reactive collisions. Taking into account the previous
discussion, it would be reasonable to attribute the PDDCSs oscillations to the same
effect, that is, to the NF interferences. This fact, that has been demonstrated in
several cases [115, 116, 119], also appears in QCT calculations. It is possible to show
that for forward scattering there are two kind of collisions: those with a positive de-
flection angle (near 0◦) corresponding to nearside collisions, and those with a negative
deflection angle, and thus farside collisions. Of course, in classical mechanics there are
not interferences between trajectories ending in the same scattering angle (absolute
value of the deflection angle) and the oscillations of the PDDCS in the forward region
do not show up.

In any case, the PDDCS oscillations dramatically affect the D2 rotational portraits,
which illustrate very eloquently the extent to which the stereodynamics of the delayed
reaction can change within a very narrow scattering angle range. Proof of this is given
by Fig. 5.12, which shows molecular axis and rotational D2 stereodynamical portraits
for reaction into HD(v′ = 1, j′ = 0) at Ecoll = 1.506 eV. Although the scattering
angles considered in the figure (θ = 5, 10 and 13◦) are very close to each other, the
intrinsic r and j distributions contrast strongly. What is more, they can take rather
odd shapes (consider, for example, the results at θ = 5◦).

Comparison between the stereodynamical portraits shown on Fig. 5.12 and those
presented earlier shows that the unusual chemistry of the delayed mechanism cannot
be perceived in its full variety unless the reaction properties are considered at a state-
to-state level and with scattering angle resolution. Summation over only a few product

4An analysis consisting of to consider separately the reactivity due to different intervals of J values
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prepared using renormalised state-to-state PDDCSs for forward-scattering
reactions into HD(v′ = 1, j′ = 0) at Ecoll = 1.506 eV.

states, or else integration over a small scattering angle range in the close vicinity of
θ = 0◦, results in fairly isotropic stereodynamical portraits.



6. Control and mechanism of the

F + H2 reactive collisions

If chemical reactions were classified according to the attention and effort historically
devoted to each of them, the F+H2 reaction and its isotopical variants would occupy
the second position, just behind the H3 system. This statement suggests that the
study of the F + H2 process is the natural continuation of the work presented so far
and, in fact, it will constitute the goal of this Chapter.

After presenting a brief overview of the reaction features that will be significant for
our study (Sec. 6.1) and of the quantum mechanical calculations performed (Sec. 6.2),
the effect of j (the H2 rotational angular momentum) polarisation on the reaction

F + H2(v = 0, j = 2) → HF + H (6.1)

outcome at Ecoll=0.079, 0.119 and 0.148 eV (the energies correspond to the crossed
beams experiments performed by Lee and co-workers [120]) will be thoroughly anal-
ysed (Secs. 6.3, 6.4, 6.5 and 6.6) in order (i) to estimate the extension of the control
that can be obtained and (ii) to shed light on the mechanism of the collisions.

The rationalisation of the results in terms of the mechanism will share some char-
acteristics with the analysis performed for the H + D2 collisions:

� Two different mechanisms have to be invoked in order to explain the results. A
detailed consideration of their features will show that they are nothing but the
counterparts of the direct and delayed mechanisms introduced in connection to
the H + D2 reactive collisions. We will continue, therefore, referring to them
with the same names.

� The direct mechanism is responsible for products scattered in the backward-
sideways region, mainly through low to medium impact parameter collisions. In
practise, this includes most of the reaction probability.

� The delayed mechanism is related to high impact parameter collisions leading
to forward scattering (concentrated on v′ = 2 and 3 and low-medium j′ values).

141



142 6. Control and mechanism of the F + H2 reactive collisions

The existence of this mechanism only becomes evident when angle resolved
state-to-state quantities are considered and, because of this, its analysis will
not be tackled till Sec. 6.6.

These similarities between the F + H2 and the H + D2 reactions do not involve,
however, that neither the direct nor the delayed mechanisms are exactly identical for
both reactions.

As in the former Chapter, the presentation of the results will proceed from general to
detailed quantities. It is now convenient, however, to consider separately the reactive
collisions leading to each vibrational level of the HF product molecule. Therefore, no
total (averaged over all final states) but vibrationally resolved (averaged only over
rotational levels) quantities will be considered.

6.1. Reaction general features

The F+H2 reaction is the prototypical exothermic exchange reaction. Its study has
been the subject of a large number of experimental and theoretical works (see [77, 121]
and references therein) that furnish with a thorough description of the reaction.

Among the experimental works, those due to Neumark and co-workers (they studied
the FH−2 photoelectron spectra [122, 123, 124]) and Lee and co-workers (a F + H2

crossed beams experiment [120]) have to be pointed out. The former provided with a
description of the F + H2 reaction in the transition state (TS) region and the second
proved two interesting characteristics of the same process:

� The most populated vibrational levels of the HF product molecules are v′ = 2
and 3. In other words, the products vibrational population is inverted.

� The HF(v′ = 0, 1, 2) molecules are predominantly formed in the backward-
sideways directions. On the contrary, the DCS for HF(v′ = 3) displays a no-
ticeable forward peak that sticks up out of the backward-sideways DCS.

Several fruitless attempts to theoretically reproduce the experimental results cul-
minated with the development of the Stark and Werner PES (SW) [125]. Calculations
ran on the surface were able to reproduce (i) the FH−2 photoelectron spectra [126] and
(ii) most of the features of the crossed beams experiments (including the two features
formerly indicated1) [127, 128, 129, 130]. These good results have determined that,
1Not all the reaction observables were reproduced with the same exactitude. In particular, the

amount of the forward scattering in v′ = 3 is not properly reproduced neither by QCT nor
quantum mechanical calculations. While the former underestimate the magnitude of the peak,
the second overestimate it [121]
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Fig. 6.1.: Transition state for the SW PES (l1=1.55 Å, l2=0.77 Å and θ = 61◦).

until now, the SW PES is the benchmark for the theoretical study of the reaction
and, as such, it will be employed for our calculations.

The transition state of the SW PES [125] is bent (its geometry is presented in
Fig. 6.1), “early” (located at the end of the reactants valley) and the bending poten-
tial is fairly flat. The surface possesses two Van-der-Walls wells, one on the reactants
valley (T-shaped) and the other on the products valley (linear). The barrier height
is 0.066 eV (1.53 kcal/mol) for the TS and 0.083 eV (1.92 kcal/mol) for the collinear
barrier (the insertion is energetically disfavored as the corresponding barrier is re-
markably higher).

The existence of reactive resonances for the F+H2 reaction had been predicted
during the 1970s [131] and no effort has been spared ever since in order to search
evidences supporting those predictions. The forward HF(v′ = 3) peak found in Lee
and co-workers experiments [120] was initially attributed to one of such resonances,
although later QCT [127, 128] and QM [129] calculations over the SW PES did not
support this statement, indicating that the HF(v′ = 3) forward scattering is probably
not due to the existence of a resonance. However, Skodje and co-workers unequivocally
characterised the effect of a reactive resonance [132] on the F+HD(v = 0, j = 0)
isotopic variant of the reaction at collision energies well below those employed in Lee’s
experiments (the resonance appears at 0.021 eV (0.5 kcal/mol)) and suggested [133]
that the same behaviour should be found for the F+H2 variant in the same range of
energies. Two very recent works [134, 135] have confirmed2 this suggestion by proving

2Using a modified version of the SW PES
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that the v′=2 forward scattering3 is related to the presence of reactive resonances (the
resonances correspond to quasi-bound states over the vibrationally adiabatic potential
correlating with v′=3 which, however, decay into the v′=2 channel).

This is not the fist study directly on indirectly focused on the F+H2 reaction stere-
odynamics. Previous works furnish with some hints about the process mechanism:

� The influence of the T-shaped Van-der-Walls well on the reaction depends on
the reactants rotational excitation [128]: while it has an orientational effect
on the F + H2(v = 0, j = 0) reaction, its role becomes less important as the
reactants get rotationally excited (it diminishes for j = 1 and is expected to
disappear for larger j values).

� Reactive collisions leading to vibrationally excited products (specially HF(v′ =
3)) tend to be coplanar [136]. As v′ decreases this tendency becomes less marked.

� The TS influence manifests in a preference (a higher reactivity) for those collision
geometries that resembles the TS geometry [72].

that will be useful to interpret our results.

6.2. Reactive scattering calculations

The quantum mechanical intrinsic moments have been the starting point for our
study. These moments were worked out from the scattering matrices in the helicity
representation obtained through time independent quantum mechanical calculations
carried out with the ABC code [75] on the Stark and Werner PES [125] at the collision
energies considered in this Chapter: 0.079, 0.119 and 0.148 eV.

The ABC code employs a coupled channel hyperspherical coordinate method to
solve the nuclear Schrödinger equation on a single potential energy surface. Prior to
perform the calculations, the values of certain execution parameters have to be set in
such a way that results convergence is ensured. In order to set the suitable values of
these parameters, the total reaction probabilities and product rotational populations
obtained with different parameters sets and for zero total angular momentum reaction
were compared, concluding that: the optimum cutoff energy for the rovibrational
basis set is 1.75 eV, the suitable maximum rotational angular momentum and helicity
quantum numbers are 21 and 7 respectively and the integration has to be performed
till a maximum hyperradius value of 15 a◦ (a◦ represents the Borh radius). The
number of partial waves necessary to obtain convergence was 25.
3Owing to experimental limitations, the forward scattering for v′=2 was not detected by Lee’s

experiments
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Fig. 6.2.: Integral cross section of the F + H2(v = 0, j = 2) → HF(v′, j′ = all) + H
reaction at Ecoll = 0.148 eV as a function of v′ for different H2 alignment
directions, and molecular axis and rotational H2 stereodynamical portraits
prepared using vibrationally resolved PPs for the same reaction.

6.3. Vibrationally resolved integral results

The aim of this Section is to study the mechanism and control of reactive collisions
(6.1) leading to HF formation into a given vibrational state.

A detailed analysis of the reaction stereodynamics for the three considered energies
(0.079, 0.119 and 0.148 eV) did not show significant differences between the results
corresponding to each of them. In order to present the results in the clearest way,
we will concentrate on the analysis of the largest one because it possesses the largest
number of open products channels and, therefore, it allows for the optimum char-
acterisation of those mechanism features depending on the products internal state.
However, it should be borne in mind that the conclusions hold for the three energies.
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The Section goal can be achieved by means of the information contained in Fig. 6.2:
the vibrationally resolved (v′ = 1, 2 and 3) integral cross section for unpolarised (Iso)
and polarised4 (β = 0 and 90◦) reactants and the corresponding intrinsic portraits
showing j and r (H2 internuclear axis) distributions when the reaction happens.

Exam of the bottom panel of Fig. 6.2 shows that the vibrationally resolved integral
cross section is relatively insensitive to the reactants polarisation:

� For v′ = 1 and 2, head-on (β = 0◦) collisions reduce the cross section and
side-on (β = 90◦) collisions slightly increase it.

� For v′ = 3 the cross section is almost independent of the reactants preparation.

As it will be proved in next Section, this lack of control for the overall reaction
does not correspond to absence of steric requirements but it is the consequence of a
cancellation due to the the summation over j′.

More information is provided by the molecular axis (top panel of Fig. 6.2) and
rotational (middle panel of Fig. 6.2) portraits. The former show that collisions leading
to HF(v′ = 3) formation happen with r preferably placed on the scattering plane and
tilted approximately 45◦ with respect to the z ≡ k axis (this tilting is such that the
“first” H atom5 lies towards the x > 0 half of the scattering xz plane). As the products
vibrational excitation decreases, the portraits become progressively more isotropic,
their tilting increases and the r propensity for being placed on the scattering plane
vanishes. These findings are consistent with reference [136] and confirm that, at least
for reactions leading to vibrationally excited products, the collisions are essentially
coplanar.

Regarding the rotational portraits, their shape display two remarkable changes as
v′ increases: (i) the portraits tilt with respect to the z axis and (ii) show an increasing
(decreasing) preference for being aligned along the y (x) axis. While the former change
is due to the PP{2, 0} moment passage from slightly positive (v′ = 1) to almost zero
(v′ = 3) values, the second is related to PP{2, 2+}, whose values change from almost
zero6 for v′ = 1 to fairly negative7 for v′ = 3.

4Results for the preparation corresponding to the magic angle (β = 54.74◦) are not displayed as
this preparation leads to cross sections that are almost indistinguishable from their isotropic
counterparts

5The one closest to the F atom approaching along the k direction
6Regarding alignment perpendicular to k, j does not differentiate between the x and y directions
7j preferably aligned along the y axis instead of along x
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6.4. State-to-state integral results

The mechanism and control of F+H2(v = 0, j = 2) reactive collisions leading to
formation of HF molecules in well defined rovibrational states is now considered.

Figs. 6.3 and 6.4 will be the starting point for the discussion. They illustrate the
effect of H2 rotational angular momentum (j) polarisation on the

F + H2(v = 0, j = 2) → HF(v′ = 2− 3, j′) + H (6.2)

reactive state-to-state integral cross sections and provide with the intrinsic portraits
for selected values of j′. Results for reactive collisions whose product is HF(v′ = 1)
are not presented because they do not significatively differ from those for v′ = 2 (the
main divergences will be related to the diminishing coplanar character of the collisions
as v′ decreases. This fact determines that the v′=1 state-to-state internuclear axis
portraits are less concentrated on the scattering plane than their v′=2 counterparts).

Collisions leading to v′ = 2 (Fig. 6.3) and v′ = 3 (Fig. 6.4) are distinctly affected
by the reactants polarisation

� Formation of low rotationally excited HF(v′ = 2) molecules is favoured by side-
on (β = 90◦) collisions and disfavoured by head-on collisions (β = 0◦) (see
Fig. 6.3). This behaviour gets inverted when the HF molecules are rotationally
excited so that the cross section decreases (increases) for side-on (head-on) col-
lisions. Reactants preparation corresponding to β = 54.74◦ (magic angle) leave
the cross section almost unchanged.

� When the reaction outcome consist of HF(v′ = 3) molecules (see Fig. 6.4), the
situation turns out to be slightly more complicated. In general, the cross section
is less sensitive to reactants alignment than when HF(v′ = 2) is formed. The
most significant changes are related to head-on collisions, which augment the
cross section for low and high j′ values and reduce it for medium j′ values. Side-
on collisions effect is approximately the contrary (although its effectiveness on
changing the reaction probability is lower): the cross section decreases when the
products rotational excitation is low and increases when it has medium values.
As for the magic angle preparation, it does not significantly modify the reaction
probability (only for medium j′ values the changes are noticeable).

As in the former Section, this information is complemented by the analysis of the
internuclear axis and rotational portraits. Regarding the former (top row on Figs. 6.3
and 6.4), two features are important: their tilting with respect to the z axis (k) and
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Fig. 6.3.: Integral cross section of the F + H2(v = 0, j = 2) → HF(v′ = 2, j′) + H
reaction at Ecoll = 0.148 eV as a function of j′ for different H2 alignment
directions, and molecular axis and rotational H2 stereodynamical portraits
prepared using state-to-state PPs for the same reaction.

their propensity for being placed (or not) on the scattering plane. Both characteristics
largely change with v′ and j′:

� for v′ = 2 collisions, the internuclear axis (r) tend to be perpendicular (parallel)
to k when the products rotational excitation is low (high). Large and small
values of j′ correlate with collisions where r prefers to be located on the scat-
tering plane while, on the contrary, collisions leading to medium j′ values do
not display such preference.

� for v′ = 3 collisions, r tend to be 45◦ tilted with respect to k when the prod-
ucts rotational excitation is low and perpendicular when the excitation is high.
The internuclear axis portraits is highly concentrated on the scattering plane
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Fig. 6.4.: Integral cross section of the F + H2(v = 0, j = 2) → HF(v′ = 3, j′) + H
reaction at Ecoll = 0.148 eV as a function of j′ for different H2 alignment
directions, and molecular axis and rotational H2 stereodynamical portraits
prepared using state-to-state PPs for the same reaction.

regardless j′.

This results can be rationalised by considering that the reaction happens to a
large extent through direct collisions8 where no formation of any short-lived complex
happens and whose features are highly determined by the necessity of making easier
the access to the TS region. This last statement, supported by (i) the former Chapter
analysis, (ii) the early character of the TS for the F+H2 reaction and (iii) the contains
of reference [72], will be the basis of a simple model that accounts very well for the
tilting changes displayed by the state-to-state portraits.

The model is based on the three cartoons included in Fig. 6.5. By assuming that

8We will see later (Sec. 6.6) that a second mechanism is necessary to fully account for all the results
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the incoming direction k. The “optimum” impact parameters for side-on
(≈ 0.75 l1) and head-on (≈ 0.9 l1) collisions have been estimated from the
TS geometry (Fig. 6.1) in terms of l1 (1.55Å, the shortest F-H distance in
the TS).

reactive collisions are near-side9, they show the impact parameter range that facil-
itates10 the system access to the TS geometry for coplanar collisions where the H2

molecule is initially perpendicular (top panel), 45◦ tilted (medium panel) and parallel
(bottom panel) to the reactants approach direction k. Working on the hypothesis that
the direct mechanism highly reflects the steric requirements for the system to acquire
the TS geometry, Fig. 6.5 shows the expected correlation between impact parameter
and collision geometry for reactions dominated by that mechanism:

9Justification of this statement will be provided in Sec. 6.6
10The model completely neglects any orientational effect due to the PES (in particular, those due to

the reactants Van-der-Walls well). As it was pointed out in Sec. 6.1, this assumption is expected
to be valid for rotationally excited reactants like H2(v = 0, j = 2)



6.4. State-to-state integral results 151

� small impact parameters correlate with collisions where the internuclear axis is
tilted with respect to k,

� medium impact parameters with side-on collisions and

� large impact parameters with head-on collisions. The centrifugal barrier be-
comes important for these collisions, determining that they will be prone to
look for the minimum energy to cross the TS.

These relations can be easily extended to reactions that are not fully coplanar just
by considering how the the range of suitable impact parameters for each collision
geometry in Fig. 6.5 is modified by (i) moderate rotations of the F-H-H complex
around the H-H axis (getting the F atom out of the scattering plane, that continues
being represented by the paper surface) and (ii) moderate displacements of the H-H
axis out of the scattering plane. This leads to the following conclusions:

� Collisions where the internuclear axis is tilted with respect to k will correlate
with small-medium impact parameters.

� Side-on collisions with medium-large impact parameters.

� Head-on collisions with large impact parameter.

It will be next proved that these relations reflect fairly good the connection between
the reaction probability as a function of J (total angular momentum quantum num-
ber) and the portraits tilting found for the state-to-state integer results. However,
their employment requires to bear in mind that, in contrast to the H3 system (where
the topology of the PES determines that, specially at low collision energies, the TS
access is limited to few geometries around the linear minimum-energy geometry), the
Stark and Werner PES is relatively flat in the TS region, involving that the F + H2

reaction is less stereoselective with regard to the TS access and that our model can
not be expected to work as properly as for the H+D2 reaction.

Fig. 6.6 presents the reaction probability dependence on the total angular momen-
tum quantum number for the F + H2(v = 0, j = 2) reaction at Ecoll=0.148 eV and
for different products states resolutions. The reaction probability functions P (J) for
state-to-state collisions are included in the middle (v′ = 2) and bottom (v′ = 3) panels
of Fig. 6.6 and show that

� Reaction into low rotationally excited HF(v′ = 2) molecules corresponds to a
wide range of impact parameters where medium values predominate. As j′

increases and the products get rotationally excited, the contribution from the
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is assumed to be initially unpolarised.

low impact parameters diminishes and the reaction goes mainly through large
impact parameter collisions.

� The situation for v′ = 3 collisions is slightly different. Low rotationally excited
products are formed through collisions where the small-medium impact param-
eters contribution predominates. As j′ increases this bias disappears and the
reaction probability mainly concentrates at medium-large impact parameters.

According to this, the model predicts that collisions leading to HF(v′ = 2) (HF(v′ =
3)) will correlate with side-on (tilted) collisions when the products rotational excita-
tion is low and for head-on (side-on) collisions when the rotational excitation of the
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products is high. This forecast is in good accordance with Figs. 6.3 and 6.4 internu-
clear axis portraits evolution, supporting the validity of the assumptions (access to
TS geometry largely influences the collision geometry) underlying the model.

The change in the tendency for the internuclear axis to be located on the scat-
tering plane is related to the reaction coplanarity: while F+H2 reactive collisions
leading to v′ = 3 can be considered coplanar, this characteristic diminishes as v′ de-
creases. Consistently, the state-to-state internuclear axis portraits always concentrate
on the scattering plane when HF(v′ = 3) is formed (Fig. 6.4) and display an increas-
ing propensity toward out-of-plane geometries when the vibrational excitation of the
products becomes lower (when v′ = 2, this effect concentrates at medium values of j′

(Fig. 6.3)).
To conclude this Section, the rotational portraits as a function of the products

rotational excitation (middle of Figs. 6.3 and 6.4) will be considered. Their shape
displays changes that can be classified into two groups: changes due to the k even
moments and already analysed by means of the internuclear axis portraits and changes
related to the k odd moments. In this last group, shape modifications resulting from
PP{1, 1−} sign inversion (indicating a switching of the j orientation along the y axis)
turns out to be particularly important: regardless HF vibrational excitation, low
(high) values of j′ correlate with fairly negative (positive) values of the moment, that
is, with a noticeably rotational angular momentum orientation along the negative
(positive) y axis. This behaviour coincides with that found for the H+D2 reaction
and can be rationalised in the same way (see Fig. 5.5 and discussion therein): low
(high) rotational excitation of the products correlates with collisions where the F and
H atoms collide while moving along similar (opposite) direction, leading to less (more)
vibrational excitation of the reaction complex which, in turn, leads to less (more) HF
rotation.

6.5. Vibrationally resolved differential results

Explicit consideration of the scattering angle allows for determining how the mech-
anism changes with the products recoil direction and the extent of the DCS control
that can be achieved through reactants polarisation. This Section copes with both
issues for F+H2(v = 0, j = 2) reactive collisions where the products are detected
without discriminating between different rotational states.

Figs. 6.7 and 6.8 consist of the differential cross section (summed over the final
rotational levels) for v′=2 and 3 together with internuclear axis portraits for selected
values of the scattering angle in the backward and sideways regions (the analysis
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Fig. 6.7.: Differential cross section of the F + H2(v = 0, j = 2) → HF(v′ = 2, j′ =
all) + H reaction at Ecoll = 0.148 eV and H2 internuclear axis stereodynam-
ical portraits prepared using vibrationally resolved PDDCSs for the same
reaction.

of the forward scattering will be separately performed). It is not worthy in this
case to include rotational portraits as they do not provide with any information not
contained in their internuclear axis counterparts, mainly because the vibrationally
resolved renormalised PDDCS{1, 1−} cancels out.

It is interesting to point out that, in Fig. 7 of [121], the author presents v′ resolved
DCSs for the reaction of F with n-H2 at the three Lee’s energies. All the DCSs (but
in particular those corresponding to v′ = 2 and Ecoll = 0.148 eV) present oscillations
in the sideways region that are not reproduced by the DCSs in Figs. 6.7 and 6.8. This
divergence can be attributed to the different maximum helicity quantum number used
for the calculations (too small in [121]) and not to a physical effect.
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Fig. 6.8.: Differential cross section of the F + H2(v = 0, j = 2) → HF(v′ = 3, j′ =
all) + H reaction at Ecoll = 0.148 eV and H2 internuclear axis stereodynam-
ical portraits prepared using vibrationally resolved PDDCSs for the same
reaction.

As expected, Fig. 6.7 shows that the DCS for v′=2 concentrates on the backward-
sideways region, displaying an small forward peak. It stems from the portraits analysis
that:

� From θ ≈ 70 to 180◦ the portraits tend to lie on the scattering plane, suggesting
that the reaction happens through an approximately coplanar mechanism. For
angles below ≈ 70◦, the contribution from geometries where the axis is perpen-
dicular to the scattering plane increases and the reaction can not be further
described as coplanar.

� Backward scattering comes from head-on collisions. As θ decreases, the axis
tilts in a progressive way, becoming perpendicular to k (preference for side-on
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Fig. 6.9.: Building up of the F+H2(v = 0, j = 2) → HF(v′ = 2, 3, j′ = all)+H reaction
differential cross sections at Ecoll = 0.148 eV. Top panel corresponds to
v′ = 2 and bottom panel to v′ = 3.

colisions) at θ ≈ 100◦.

Fig. 6.8 displays the famous v′ = 3 forward peak that sticks out over the approxi-
mately constant sideways-backward DCS. The analysis of the portraits shows that:

� The portraits are slimmer and more concentrated on the scattering plane than
their v′ = 2 counterparts, indicating a larger specificity of the directional re-
quirements for reaction. Consistently with its coplanar nature, reactive colli-
sions leading to HF(v′=3) tend to happen with the internuclear axis located on
the scattering plane for the whole θ interval considered (backward-sideways).

� Backward scattering comes again from head-on collisions. As θ decreases, the
angle between r and k increases progressively (rotation of the portrait as the



6.5. Vibrationally resolved differential results 157

scattering angle changes is slower than for v′ = 2), with r becoming perpendic-
ular to k at θ ≈ 40◦.

It is necessary now to ascertain whether these findings can be rationalised through
the model used for the integral state-to-state results or not. To this purpose, we
performed a building-up analysis of the v′=2 and 3 DCSs (Fig. 6.9) that furnished us
with the following information

� The largest contribution to the backward DCS comes from the small-medium
(small predominate when v′=3 and medium when v′=2) J values. However, to
fully converge the backward scattering it is necessary to take into account most
of the partial waves (20 at least).

� Sideways DCS comes from medium-large J values. As the scattering angle gets
closer to the backward (forward) region, medium (large) impact parameters
become predominant.

� Most of the forward scattering proceed from the largest values of J(17-25) (al-
though not all the reaction probability corresponding to these J values ends up
as forward scattering).

Considering the contribution of the different partial waves, the model predictions
do not fully agree with the portraits behaviour in Figs. 6.7 and 6.8. According to
the model, the most favourable collision geometry would change with the scattering
angle as follows: r will display a preference for being ≈ 45◦ tilted with respect to k

for scattering angles close to 180◦ (small impact parameters are important), changing
into a preference for side-on collisions when the scattering angle starts decreasing
(medium impact parameters predominate) and finishing with a tendency toward head-
on collisions for the sideways region closer to forward scattering (products formed at
these scattering angles arise from large impact parameter collisions). It is evident that
there is a noticeable disagreement between this forecast and the evolution displayed
by the portraits in Figs. 6.7 and 6.8.

Two reasons can be put forward in order to justify such difference:

� Scattering at 0 and 180◦ displays axial symmetry around k and, in consequence,
the stereodynamical portraits must display such symmetry as well. The direct
(responsible for the backward-sideways scattering) mechanism is characterised
by gradual changes of the intrinsic polarisation moments and of the correspond-
ing portraits, involving that the shapes of the portraits for scattering angles in
the backward region will be constrained by the “compulsory” axial symmetry
at 180◦.
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Fig. 6.10.: Differential cross section of the F + H2(v = 0, j = 2) → HF(v′ = 2, j′ =
all) + H reaction at Ecoll = 0.148 eV for unpolarised reactants (Iso) and
different H2 alignment directions.

� The TS region of the SW PES has a relatively flat character, giving rise to
a lack of stereoselectivity for accessing that part of the surface. This fact re-
mained concealed during the integral results discussion and, only through the
explicit consideration of the scattering angle in the differential results, it has
been unveiled.

The intrinsic internuclear axis portraits for v′=2 and 3 in the backward region
(Figs. 6.7 and 6.8) are quite similar to the extrinsic axis preparation corresponding
to β = 0◦ (see Fig. 4.4). As the scattering angle decreases, the intrinsic portraits
tilt without noticeable shape distortions (except in the sideways v′=2 region). This
two facts suggest that one can control the backward and sideways DCS through the
experiment proposed in Chapter 4 just by moving the alignment direction in the
(0◦, 120◦) β-interval with α=180◦. The control will manifest through the raising of a
DCS peak whose center (corresponding to the scattering angle where the intrinsic and
the extrinsic portraits are more similar) can be shifted at one’s discretion by changing
the tilting of the alignment direction with respect to k.

Such effect can be illustrated through Figs. 6.10 and 6.11, which present the v′=2
and 3 DCSs for unpolarised and polarised reactants. The extrinsic preparations em-
ployed to generate those Figures can be classified into two different groups:
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Fig. 6.11.: Differential cross section of the F + H2(v = 0, j = 2) → HF(v′ = 3, j′ =
all) + H reaction at Ecoll = 0.148 eV for unpolarised reactants (Iso) and
different H2 alignment directions.

� Preparations where the internuclear axis is on the scattering plane: β=0◦,
β=54.74◦ α=180◦, β=90◦ α=0◦ and β=54.74◦ α=0◦ (the corresponding in-
ternuclear axis and rotational extrinsic portraits are included in Fig. 4.4).

� Preparation where the internuclear axis is out of the scattering plane: β=54.74◦

α=45◦.

Regarding v′=3 (Fig. 6.11), head-on (β=0◦) collisions completely modify the DCS
shape. This extrinsic preparation slightly reduces the forward DCS, reduces the
sideways DCS and triples the backward DCS, giving rise to a noticeable peak at 180◦.
This peak shifts to the left as we tilt the axis preparation: for β=54.74◦, α=180◦

the peak appear at θ=100◦ and for β=90◦, α=0◦ appears at θ ≈ 50◦. Preparations
where the internuclear axis is out of the scattering plane (for instance β=54.74◦,
α=45◦) provoke a general reduction of the DCS. In contrast to the backward-sideways
DCS, the forward peak turns out to be quite insensitive to this kind of preparations.
Discussion of Fig. 6.10 can be (grosso modo) performed in the same terms: head-on
collisions reduce the forward and the sideways DCSs and increases the backward DCS,
giving rise to a 180◦ peak which shifts to the left as its v′=3 counterpart. There are,
however, three differences between the results for both vibrational levels:



160 6. Control and mechanism of the F + H2 reactive collisions

y
x

z

y
x

z

y
x

z

y
x

z

Molecular axis portrait Rotational portrait

v
′

=
2

v
′

=
3

Fig. 6.12.: Intrinsic H2 stereodynamical portraits representing the r and j distri-
butions giving rise to v′=2 (top) and 3 (bottom) forward scattering at
Ecoll=0.148 eV.

� Forward scattering is, in relative terms, more sensitive to the extrinsic prepara-
tion of the reactants when v′ = 2 than when v′=3.

� The intrinsic portraits for v′=3 are more similar to the extrinsic distributions
than their v′=2 counterparts. This explains why the control of the DCS that
can be achieved by extrinsically aligning j is larger for v′=3 than for v′=2.

� While preparations where the internuclear axis is not located on the scattering
plane hinder the v′=3 scattering all along the backward-sideways region, this
is not the case for v′=2 as such preparations slightly favour the reaction at
scattering angles around 65◦. The analysis of the intrinsic portraits in Fig. 6.7
justifies this feature because the portraits corresponding to those scattering
angles do not concentrate on the scattering plane but stick out from it.

The nature of the mechanism leading to forward scattering, whose analysis has
been skipped so far, will be discussed in the following Section, devoted to the state-
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to-state differential results. It is possible, however, to perform now a first approach to
its study by considering the polarisation moments obtained by averaging11 the v′=2
and 3 PDDCSs in the forward region (from 0 to 20◦) and the corresponding portraits
(Fig. 6.12), which show that

� There are noticeable differences between the mechanism leading to v′=2 and 3
forward scattering.

� For v′=2, both portraits almost display azimuthal symmetry around k. The
internuclear axis portrait shows that side-on collisions are preferred.

� For v′ = 3, collisions leading to forward scattering are more stereoselective. The
internuclear axis distribution is fairly flat (its plane coincides with the scattering
plane) and perpendicular to k (preference for side-on collisions). The rotational
angular momentum is strongly aligned along k and slightly oriented along -ŷ.

Attentive readers can put forward that the shapes of these portraits are not a surprise
but the natural evolution of those included in Figs. 6.7 and 6.8 and, therefore, they
do not support the fact that the mechanism giving rise to forward scattering differs
from that responsible for sideways and backward reaction. This point will be next
clarified.

6.6. State-to-state differential results

A comprehensive and very illustrative way of visualising the influence of the reac-
tants polarisation on the DCS is provided by the polar maps included in Fig. 6.13. In
particular, they make possible to ascertain (up to a limit given by the resolution of
the figure and by the number and population of the opened products channels) how
that influence manifests for the different HF internal states:

� The isotropic polar map (unpolarised reactants) displays four groups of rings,
although the inner two (v′=2 and 3) concentrate most of the reaction probabil-
ity. As expected, the v′=2 rings mainly correspond to sideways and backward
scattering and the v′=3 rings show the well known forward peak (together with
an approximately constant sideways-backward DCS).

11Intrinsic polarisation moments corresponding to a well defined interval of scattering angles
[θmin, θmax] can be defined as follows

s
{k}
q [θmin, θmax] =

R θmax
θmin

S
{k}
q (θ) sin θdθ

R θmax
θmin

S
{0}
0 (θ) sin θdθ

The polarisation parameters are nothing but an special case of this expression: s
{k}
q [0, π]
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Fig. 6.13.: Quantum triple (angle-velocity) differential cross section (polar maps) of
the F+H2(v=0,j=2) reaction at Ecoll=0.148 eV and for different H2 align-
ment directions.

� Head-on collisions (β=0◦ preparation) have been found to boost (reduce) back-
ward (sideways) scattering. The analysis of the corresponding polar map fur-
nishes with a deeper insight into this reaction feature: for collisions leading to
v′ = 2, such increment in the backward DCS is mainly due to formation of
products characterised by medium-high values of j′.

� Regarding β=54.74◦, α=0◦ and β=90◦, α=180◦ preparations, they originate a
noticeable augment of sideways scattering (with the differences indicated in the
former Section). When β=54.74◦, α=0◦ and v′=2, this increment distributes
over all values of j′, giving rise in each case to formation of a peak that shifts
into smaller scattering angle regions as j′ increases. On the contrary, when
β=90◦, α=0◦ and v′=2, the increment concentrates on low rotationally excited
products, which triple their isotropic DCS value.

To perform an exhaustive analysis of the state-to-state reaction stereodynamics in
the backward-sideways region is extremely cumbersome and does not shed additional
light on the corresponding reaction mechanism. On the contrary, its consideration
on the forward region unveils the real nature of the collisions mechanism leading to
forward scattering.
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(Å

2
/
sr

)

scattering angle (degrees)

Fig. 6.14.: Differential cross sections, in the forward scattering region, of the
F+H2(v = 0, j = 2) → HF(v′ = 3, j′ = 0, 2)+H reactions at Ecoll =0.148
eV. The solid line represents the full result; the other lines represent partial
contributions from selected H2 helicities.

With this purpose, let us select the following two state-to-state processes

F + H2(v = 0, j = 2) → HF(v′ = 3, j′ = 0, 2) + H (6.3)

whose forward DCS, together with the decomposition into partial contributions from
absolute values of the H2 helicity, are presented in Fig. 6.14 and whose k=1 and 2
renormalised PDDCSs are plotted in Fig. 6.15.

The nearside-farside analysis of F+H2(v = 0, j = 1) collisions performed by Connor
and co-workers [115] showed that

� The main contribution to sideways and backward scattering comes from nearside
collisions.
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Fig. 6.15.: k=1 and 2 renormalised state-to-state PDDCSs for the F+H2(v = 0, j =
2) → HF(v′ = 3, j′ = 0, 2)+H reactions at Ecoll =0.148 eV. Results for
v′=3, j′=0 include moments evaluated using QM (thick continuous line)
and QCT (thin continuous line), while for v′=3, j′=2 only QM (dotted
line) calculations are presented.

� Forward (θ between 0 and 30◦) comes from the interference between nearside
and farside scattering (the magnitude of farside is comparable to that of nearside
only for the angles closer to 0◦).

These findings suggest that the results included in Figs. 6.14 and 6.15 will not cualita-
tively differ from their H+D2 counterparts (see Chapter 5), displaying oscillations in
the forward region caused by nearside-farside interferences, and justify why the model
proposed to rationalise the state-to-state results (Sec. 6.4) was devised in terms of
nearside collisions.

The analysis of Fig. 6.14 is in accordance with Fig. 5.11 for the H+D2 reaction.
As expected, we find the same oscillations in the |Ω| resolved DCSs. The existence of
such oscillations is not concealed by summation over the helicity values and, in fact,
they are responsible for the appearance of a succession of peaks in the “whole” DCS
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� v′=3 j′=0 → peak A comes from |Ω|=0 (there is no other chance in this case),
peak B from |Ω|=2 and peaks C, D and E from |Ω|=1 and 2 (where the con-
tribution of |Ω|=1 (2) becomes predominant (vanishes) as θ moves away from
0◦).

� v′=3 j′=2 → peak F can be attributed to |Ω|=2 (and in some extent also to 1)
and peaks G, H and I to |Ω|=1 oscillations.

The amplitude of the |Ω| resolved DCSs oscillations diminishes as j′ increases and, if a
partial wave decomposition is performed, they are found to arise from the interference
between partial waves corresponding to large values of J (it is not possible to set a
one-to-one correspondence between peaks and partial waves but, on the contrary, all
large J values contribute to all forward peaks).

The renormalised PDDCSs (Fig. 6.15), with the familiar QM oscillations in the
forward region, turn out to be more interesting than the DCS. A fleeting glance at
the plots shows that

� The origin of the oscillations is unequivocally quantum mechanical, as it can
be seen by comparing the QM PDDCSs for (v′=3,j′=0) with its QCT counter-
part. This is not a surprise, as there is no room for undulatory effects (like the
nearside-farside interferences) in classical mechanics.

� The amplitude of the oscillations decreases as j′ increases and, at a fixed value of
j′, such amplitude is always smaller than for the H+D2 reaction (see Fig. 5.8).
In fact, the plots of the QM PDDCSs reminds the kinematics studied dur-
ing the high school and, in particular, the superposition of two perpendicular
movements: an oscillatory movement of small amplitude and another “prin-
cipal” (large amplitude) movement whose trajectory is perturbed by the first
one in such a way that the resultant trajectory displays oscillations. In terms
of the mechanism, the principal movement is tantamount to the nearside col-
lisions and the secondary one to the farside collisions, which do not play any
role at all for backward scattering and become more and more significant as the
scattering angle goes through the sideways region and get closer to 0◦. This
could be interpreted by saying that the delayed mechanism, responsible for the
forward scattering, is nothing but the nearside collisions mechanism (the direct
mechanism) perturbed by the appearance of reactive farside collisions.

� This perturbation is not, however, as important as for the H+D2 reaction. One
consequence of the relatively small amplitude of the PDDCSs oscillations is that,
if the F+H2 PDDCSs are integrated over the scattering angle in the forward
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Fig. 6.16.: Stereodynamical portraits of reaction F+H2(v = 0, j = 2) → HF(v′ =
3, j′ = 0)+H at Ecoll = 0.148 eV, and with θ = 4◦ (top), θ = 8◦ (middle),
or θ = 11◦ (bottom). The portraits on the left (right) column show the
distributions of the H2 interatomic axis (rotational angular momentum)
when the reaction happens. The scattering angle θ between the reactant-
approach and product-recoil directions is the angle between the vectors
k ≡ z and k′.

region, the results would mainly represent the characteristics of the nearside
collisions because, in a large extent, the farside contributions cancel out (see
Fig. 6.12 and the comments therein).

� The interval of scattering angles where the oscillations can be distinguished is
broader than for the H+D2 reaction. This could indicate that the complex
formed immediately after the collision survives for longer and has more time
to rotate before breaking, taking to larger time delays in QCT or wavepacket
studies (the results included in ref [137], although for the F+HD isotopic variant
of the reaction, seem to support this statement).
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The effect of the PDDCSs oscillations on the reaction stereodynamics can be ap-
preciated as well through consideration of the scattering angle resolved portraits pre-
sented in Fig. 6.16. We found again that, due to such oscillations, small variations in
the scattering angle largely modifies the shape of the portraits. However, important
as these changes are, their extent is smaller than that found for the H+D2 reaction
(compare with Fig. 4.6) and concentrates at angles closer to 0◦, where the importance
of farside collisions is larger and the PDDCSs oscillations are more intense.
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7. Mechanism and control of

atom-diatom reactions at low and

ultralow collision energies

The dependence on stereodynamical factors of the mechanism and reactivity of
the atom-diatom reactions at low and ultralow collision energies is now studied. The
results will be illustrated by means of examples corresponding to the benchmark F+H2

reaction, where the impact of polarisation of the H2 rotational angular momentum
on total and state-to-state integral and differential cross sections is analysed, leading
to:

� Detailed pictures of the reaction mechanism in the cold and ultracold regimes,
accounting in particular for distinctions associated with the various product
states and scattering angles.

� Assessment of the extent to which selection of reactant polarisation allows for
external control of the reactivity. This reveals that even the simplest of reactant
polarisation schemes allows for fine, product state-selective control of differential
and (for reactions involving more than a single, zero orbital angular momentum
partial wave) integral cross sections.

The reasons for the interest in ultracold chemical reactions have been discussed in
recent reviews [138, 139]. The usage of electric and magnetic fields open the door
for interesting control possibilities [138, 140, 141, 142, 143, 144, 145, 146] that would
not be possible at larger temperatures. The basic idea is that, at very low collision
energies, the perturbation induced by the external field is larger than the collision
energy and can be used to control the collision output. For instance, it is possible (i)
to alter the effect upon the reaction of centrifugal barriers in the final reaction channels
[140], (ii) to modify the intermolecular forces between polar molecules [141, 144], in
such a way that the stability of complexes formed by these molecules can be controlled,
(iii) to study collisions coupling electronic states which, if the spherical symmetry of

169
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the problem were not broken by the external field, would be uncoupled [143] and (iv)
to open or to close reaction channels [146].

The Chapter begins by defining cold and ultracold reactions and by characterising
their scattering properties in the zero collision energy limit (Sec. 7.1). It continues
with a survey of the intrinsic moments behaviour in the ultracold regime, providing us
with a general overview of the ultracold atom-diatom reactions control possibilities
(Sec. 7.2). These results will be illustrated by studying the stereodynamics of the
F+H2(v = 0, j = 2) reaction at low and ultralow collision energies (Sec. 7.3): after
briefly describing how the scattering matrices for the selected energies were worked
out (Sec. 7.3.1), we will analyse the reaction mechanism (Sec. 7.3.2) and the extent
of the control achievable by suitably polarising the H2 molecule (Sec. 7.3.2).

7.1. Cold and ultracold reactions

Some authors (see [147]) define ultracold molecules as those whose translational
energy is no larger than 1 cm−1 ≈ 120 µeV. Others define ultracold molecules as those
whose translational temperature is below 1mK (see [138]), which implies Etrans ≤
0.1 µeV. Therefore, whether the considered energies of interest qualify a collision
as ultracold or not is, to some extent, a matter of opinion. In what follows, we
shall restrict the “ultracold” qualifier to collision energies at which scattering cross
sections are entirely due to s-wave scattering1. While generally accepted [138, 139],
this definition suffers from the disadvantage that the ultracold threshold must be
determined theoretically and changes from system to system. Cold collision energies
will be those which, although small, involve contributions to reactivity from a few
l 6=0 partial waves.

The chemical reactions rate coefficient is independent of temperature and finite in
the limit Ecoll → 0, where only reactive collisions with l=0 give rise to products for-
mation. The justification for this assertion ensues from the behaviour of the reactive
cross section in the zero collision energy limit which, according to Wigner [148], is
given by

lim
Ecoll→0

(σ) ∝ E
−1/2
coll (7.1)

When Eq. (3.6) (linking rate coefficients with reactive cross section values) is combined
with this expression, it becomes simple to prove that the rate coefficient becomes

1Only the l (orbital angular momentum quantum number) zero partial wave contributes to the
process
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independent on the temperature

k(T ) =
(

µ

2πkBT

)3/2 ∫ ∞

0

vr σ(vr) exp−µv2
r/2kBT 4πv2

rdvr

Ecoll→0∝ 1
(kBT )3/2

∫ ∞

0

Ecoll

Eq(.7.1)︷ ︸︸ ︷
σ(Ecoll) exp−Ecoll/kBT dEcoll

︸ ︷︷ ︸
(kBT )3/2

︸ ︷︷ ︸
T independent

(7.2)

where Ecoll=µv2
r/2, the relationship between collision energy and reactants relative

velocity, has been employed. The constant value of the ultracold rate coefficient
can eventually take significatively large values (this happens, for instance, for F+H2

[147, 149]).

7.2. Control of ` = 0 reactions

7.2.1. Ultracold reactions and S matrix

The transformation between the orbital angular momentum (l) and helicity (Ω)
representations of the scattering matrix is given by Eqs. (3.39) and (3.40), which can
be combined into the expression

SJP
j′Ω′,jΩ =

2
(1 + δΩ,0)1/2(1 + δΩ′,0)1/2

∑

l′,l

[l, l′]
[J ]2

〈j′Ω′, l′0|JΩ′〉SJP
j′l′,jl〈jΩ, l0|JΩ〉 (7.3)

where conservation of parity implies that P = (−1)l+j = (−1)l′+j′ ,

[a, b, . . . , z] =
√

(2a + 1)(2b + 1) · · · (2z + 1) (7.4)

and some labels of the scattering matrix elements (representing quantities which are
not affected by the transformation: total energy, vibrational quantum numbers, ar-
rangement indices) have been omitted for simplicity.

In the ultracold limit, where only the l=0 collisions are reactive, the scattering
matrix elements in the orbital angular momentum representation fulfill

SJP
j′l′,jl = 0 if l 6= 0 (7.5)
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and the transformation (7.3) reads

SJP
j′Ω′,jΩ =

2
(1 + δΩ,0)1/2(1 + δΩ′,0)1/2

∑

l′

[l′]
[J ]2

〈j′Ω′, l′0|JΩ′〉SJP
j′l′,j0 〈jΩ, 00|JΩ〉︸ ︷︷ ︸

δjJ

=
2δjJ

(1 + δΩ,0)1/2(1 + δΩ′,0)1/2

∑

l′

[l′]
[J ]2

〈j′Ω′, l′0|JΩ′〉SJP
j′l′,j0 (7.6)

showing that the only nonvanishing elements of the helicity-representation scattering
matrix are those with J = j and that they depend on the reactants helicity (Ω)
through the (1 + δΩ,0)1/2 factor.

When SjP=+1
j′Ω′,jΩ and SjP=−1

j′Ω′,jΩ (given by Eq. (7.6)) are combined according to Eqs. (3.41)
and (3.42) in order to form the elements Sj

j′Ω′,jΩ that represent the starting point for
the intrinsic moments calculations, it is found that the factors containing the depen-
dence on Ω cancel out and that, therefore,

Sj
j′Ω′,jΩ = Sj

j′Ω′,j (7.7)

is independent on the reactants helicity value. The explicit expression for these ele-
ments is given by

Sj
j′Ω′,j =

∑

l′

[l′]
[j]2

〈j′Ω′, l′0|jΩ′〉
[
SjP=+1

j′l′,j0 + SjP=−1
j′l′,j0

]
(7.8)

where, depending on the value of j, only one of these terms appears

If j=even → j′ + l′ has to be even (P = +1) (7.9)

If j=odd → j′ + l′ has to be odd (P = −1) (7.10)

7.2.2. PPs and PDDCSs for ultracold reactions

The state-to-state PDDCSs can be worked out from the parity adapted elements
of the scattering matrix in the helicity representation as follows (Eq. (4.17))

[
S(k)

q (θ)
]∗ =

∑

Ω′Ω1Ω2

f̄Ω′Ω1(θ)f̄
∗
Ω′Ω2

(θ)〈jΩ1, kq|jΩ2〉 (7.11)

where the scattering amplitudes f̄Ω′Ω(θ) are given by Eq. (4.18)

f̄Ω′Ω(θ) =

∑
J(2J + 1)dJ

Ω′Ω(θ)SJ
j′Ω′,jΩ

N
(7.12)
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and the factor N is
N =

[
2

∑

JΩ′Ω

(2J + 1)|SJ
j′Ω′,jΩ|2

]1/2

(7.13)

Let us assume that we are in the ultracold limit and only l=0 collisions are reactive.
The first consequence of this assumption is that only the J=j partial wave has to be
taken into account and that Eq. (7.11) can be written as

[
S(k)

q (θ)
]∗ =

∑

Ω′Ω1Ω2

A dj
Ω′Ω1(θ) Sj

j′Ω′,jΩ1
dj
Ω′Ω2

(θ) Sj ∗
j′Ω′,jΩ2

〈jΩ1, kq|jΩ2〉 (7.14)

where J has been substituted by j and A holds for

A =
[j]4

N2
(7.15)

with N given by

N =
[
2(2j + 1)2(|Sj

j′0,j |2 + 2
∑

Ω′>0

|Sj
j′Ω′,j |2)

]1/2

(7.16)

Expression (7.14) can be further simplified because the scattering matrix elements do
no depend on Ω

S(k)
q (θ) = A

∑

Ω′
|Sj

j′Ω′,j |2
∑

Ω1Ω2

dj
Ω′Ω1

(θ) dj
Ω′Ω2

(θ) 〈jΩ1, kq jΩ2〉 (7.17)

The asterisk has been suppressed because the PDDCSs are obviously real (all the
quantities involved in the different sums are real).

The following relationship between reduced matrix elements and Clebsch-Gordan
coefficients

∑

N1N2

dJ1
M1N1

(θ) dJ2
M2N2

(θ) 〈J1N1J
′N ′|J2N2〉 =

∑

M

〈J1M1J
′M |J2M2〉 dJ′

MN ′(θ) (7.18)

is proved in Appendix E. Setting J1 = J2 = j, N1 = Ω1, J ′ = k, M1 = M2 = Ω′,
N2 = Ω2 and N ′ = q, the left hand term of Eq. (7.18) coincides with the double sum
to the right of Eq. (7.17), which can be rewritten as

S(k)
q (θ) = A dk

0q(θ)
∑

Ω′
〈jΩ′, k0|jΩ′〉 |Sj

j′Ω′,j |2 (7.19)

Expanding this sum and employing the symmetries of the Clebsch-Gordan coefficients
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[37] and the scattering matrix (Eq. (3.43)), we obtain the following expression for the
state-to-state PDDCSs in the ultracold limit

S(k)
q (θ) =

[j]4

N2
dk
0q(θ) { |Sj

j′0,j |2 〈j0, k0|j0〉+

[1 + (−1)k]
∑

Ω′>0

(|Sj
j′Ω′,j |2 〈jΩ′, k0|jΩ′〉) } (7.20)

A detailed analysis of this Equation shows that

� The k=0 moment is independent on the scattering angle: S
(0)
0 (θ) = 1/2. This

is the mathematical expression for the fact that, in the absence of reactant
polarisation, ` = 0 differential cross sections are isotropic. This statement
can be proved from Eq. (7.20) by employing Eq. (7.16), d0

00(θ)=1 [37] and
〈jΩ′, 00|jΩ′〉=1 [37].

� All the PDDCSs with k odd vanish 2.

Integration of the PDDCSs over the scattering angle provides us with the polarisa-
tion parameters (Eq. (4.11)). The k odd polarisation parameters in the ultracold limit
must be necessarily zero because the corresponding PDDCSs are zero as well. Re-
garding the k even polarisation parameters, their evaluation will involve the following
integral

sk
q ∝

∫ π

0

dk
0q(θ) sin θdθ

[38]
= (−1)q

[
(k − q)!
(k + q)!

]1/2 ∫ 1

−1

Pkq(cos θ)d(cos θ) (7.21)

where Pkq(cos(θ)) represents an associated Legendre polynomial. These polynomials
display the following properties [150]

∫ 1

−1

Pk0(cos θ)d(cos θ) ∝ δk,0 (7.22)

and

Pkq(cos θ) = −Pkq(− cos θ) if k+q is odd (7.23)

Pkq(cos θ) = Pkq(− cos θ) if k+q is even (7.24)

that, when combined with Eq. (7.21), allow for stating that, in the Ecoll → 0 limit,
2The Clebsch-Gordan coefficient 〈j0, k0|j0〉 is zero for k odd [37]
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only the polarisation parameters s0
0 and sk even

q even (with q 6= 0) can be different from
zero.

It is convenient to stress that, while the k odd polarisation parameters vanish be-
cause the corresponding PDDCS are zero, the sk even

0 (k 6= 0) and sk even
q odd polarisation

parameters cancel out because, although the corresponding PDDCSs can be different
from zero, their symmetry is such that the integral over the scattering angle vanishes.

7.2.3. Reaction control in the ultracold limit

As shown in Chapter 4, stereodynamical control of integral cross section is only pos-
sible in the presence of nonvanishing intrinsic PPs with k > 0 and q = 0 (Eq. (4.23)).
This implies that, when only the l = 0 partial wave contributes to reactivity, selection
of reactants polarisation cannot have any effect on the reaction ICS.

On the other hand, and as also shown in Chapter 4, all that stereodynamical control
of the product recoil direction requires is nonvanishing intrinsic PPs with k > 0 (for
the special integral cross section, Eq. (4.25)) or nonvanishing intrinsic PDDCSs with
k > 0 (for the differential cross section, Eq. (4.20)). As in the l = 0 case PDDCSs
(PPs) with k even (with both k and q even) can, and in general do, have nonzero
values, selection of reactants polarisation does influence the reaction differential cross
section (special integral cross section).

7.3. F+H2 reaction stereodynamics at low and ultralow

collision energies

We illustrate the results presented in the former Section by analysing the

F + H2(v = 0, j = 2) → HF(v′, j′) + H (7.25)

reaction mechanism and control in the cold and ultracold regime.

The F+H2 ultracold reactive collisions [147] and its isotopic variants [151, 152]
have been already studied in order to determine the effect of reactants excitation with
one quantum of vibration or two quanta of rotation on the reaction. Surprisingly3,
reactant vibrational excitation was found to decrease the reaction cross section by as
much as four orders of magnitude [147]. The consequences of rotational excitation

3When the collision energy is very low, even a mundane reaction barrier is, in relative terms,
very high. Under such conditions, internal excitation of reactants may provide enough energy
for the reactants to overcome, or at least facilitate their tunnelling through, the reaction barrier.
Therefore, one could reasonably expect a reactivity increase as the reactants get internally excited
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were less clear-cut. While reaction cross sections changed little [147], de-excitation
cross sections were found to be sensitive to isotopic composition; for the F + D2

reaction, rotational quenching was predicted to be more efficient than reaction [147,
151].

7.3.1. Reactive scattering calculations

Calculation of the intrinsic moments requires, as input data, scattering matrices in
the helicity representation. The ones used here were obtained with the ABC code [75]
and the Stark-Werner potential energy surface [125]. The collision energies considered
were in the 1 µeV–43meV range.

Some of the ABC execution parameters were the same for all calculations: the cutoff
energy for the rovibrational basis sets was fixed at 2.5 eV, and the maximum rotational
angular momentum and helicity quantum numbers at jmax = 22 and Ωmax = 7.

Other parameters had to be changed according to the energy. The maximum hy-
perradius and integration step ranged from ρmax = 200 a0 (a0 represents the Borh
radius) and ∆ρ = 0.005 a0 for the calculations at Ecoll = 1µeV to ρmax = 15 a0 and
∆ρ = 0.08 a0 for the calculations at Ecoll = 43 meV.

The suitability of the execution parameters was verified by analysing the total
reaction probabilities and product rotational populations obtained with different pa-
rameter sets and for zero total angular momentum. The parameters used to generate
the final results were such as to ensure full convergence of the calculation.

7.3.2. Results

We start the presentation of our results with Fig. 7.1, which shows the collision
energy dependence of the integral cross section (ICS) of reaction (7.25) summed over
product states and in the absence of reactant polarisation; note that both axes of the
figure use a logarithmic scale.

The ICS features a minimum at Ecoll ≈ 5meV and increases steadily with de-
creasing collision energy; at Ecoll ≈ 5 µeV, it is larger than at the relatively high
energies (the three highest of Fig. 7.1) used in the 1985 measurements by the Yuan
Lee group [120]. In particular, the lowest-energy reaction cross section we have cal-
culated (Ecoll = 1 µeV) is about three times as large as the ones obtained in those
experiments.

The remarkably high F + H2 reactivity at ultralow energies was first noted by
Balakrishnan and Dalgarno [149], and further analysed by Bodo and coworkers [145,
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Fig. 7.1.: Collision energy dependence of the integral cross section of the F + H2(v =
0, j = 2) → HF(v′, j′) + H reaction summed over product states and in the
absence of reactant polarisation. The points are the calculated results; the
line simply joins them. The three largest energies correspond to those of
Lee and co-workers experiment (see Chapter 6).

147], who attributed it to coupling to a virtual state associated with the van der
Waals well in the reactants valley.

We also note that, to the left of the Ecoll ≈ 5meV minimum, the slope of the ICS
is approximately −1/2. This seems to indicate that the Wigner limit [148], where the
reaction cross section satisfies Eq. (7.1) and reactivity is due to zero orbital angular
momentum collisions, is reached very quickly. This, however, is not strictly correct,
as evidenced by the plots of the total reaction probability as a function of the total
angular momentum quantum number included in Fig. 7.2; the plots shown are for
collision energies in the 1–100 µeV range and for unpolarised reactants.

Since the reaction under consideration here involves the H2 molecule in a j = 2
state, the l = 0 condition implies J = 2. As the results in Fig. 7.2 demonstrate, only
at the very lowest collision energies, Ecoll . 5 µeV, does reactivity become due to the
J = 2 partial wave only. For higher collision energies, convergence of the calculated
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Fig. 7.2.: Reaction probability as a function of the total angular momentum quantum
number for the F + H2(v = 0, j = 2) → HF(v′ = all, j′ = all) + H reaction
at collision energies between 1 and 100 µeV and in the absence of reactant
polarisation.

cross sections requires consideration of other partial waves.
Other interesting aspects of the dependence of the F + H2(v = 0, j = 2) reactivity

on the reactants orbital angular momentum are revealed by the vibrationally-resolved
probability functions included in Fig. 7.3; the results shown are for v′ = 2 (top panel)
or v′ = 3 (bottom panel).

Comparison between the two panels of Fig. 7.3 shows that at Ecoll = 100 µeV (when
the reaction is clearly above the Wigner threshold) orientation of the reactants orbital
angular momentum correlates with the product vibrational state. Reactions forming
HF(v′ = 2) are favoured by J ≥ 2 and, therefore, ` ‖ +j. In contrast, reactions
forming HF(v′ = 3) are favoured by J ≤ 2 and, therefore, ` ‖ −j. This effect, which
is clearly visible here, provides further evidence of the j orientation importance for
chemical reactions.

The reaction probability functions at Ecoll = 5 µeV deserve an additional comment.
When they are vibrationally resolved, a small J = 1 contribution is found to remain
and to be most relevant for reactions into the v′ = 3 products state. This indicates
that the rate at which the reaction approaches the Wigner threshold depends not only
on the collision energy, but also on the product state.



7.3. F+H2 reaction stereodynamics at low and ultralow collision energies 179

 0

 2

 4

 6

 0  1  2  3  4  5

 

 

 

 

100 µeV

13 µeV

5 µeV

1 µeV

P
v
′

=
2
(J

)
×

10
3

 0

 2

 4

 6

 0  1  2  3  4  5

P
v
′

=
3
(J

)
×

10
4

J

Fig. 7.3.: Reaction probability as a function of the total angular momentum quantum
number for the F + H2(v = 0, j = 2) → HF(v′, j′ = all) + H reaction
at collision energies between 1 and 100 µeV, for v′ = 2 (top) or v′ = 3
(bottom) and in the absence of reactant polarisation.

We now turn to state-to-state results, starting with those in Fig. 7.4: product
rotational state distributions associated with reaction into HF(v′ = 2) at Ecoll =
100 µeV and various reactant polarisations. The intrinsic portraits representing the
H2(v = 0, j = 2) polarisation leading to products formation into selected rotational
states are shown on the top of Fig. 7.4. Their extrinsic counterparts (those associated
with the various β values) are shown on Fig. 4.4.

The results on Fig. 7.4 provide a first illustration of the reaction control possibilities
at collision energies that, while low, are above those at which the reaction follows the
Wigner threshold laws.

In this case, it is clear that appropriate selection of reactant polarisation can have
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Fig. 7.4.: Product rotational state distributions associated with the F+H2(v = 0, j =
2) → HF(v′ = 2, j′) + H reaction at Ecoll = 100 µeV and various reactant
polarisations. The stereodynamical portraits on the top show the intrinsic
H2(v = 0, j = 2) polarisations for selected product rotational states.

a large impact on the reaction cross section. Side-on, β = 90◦, collisions considerably
enhance reactivity, whereas head-on, β = 0◦ collisions largely suppress it. Comparison
between the intrinsic and extrinsic stereodynamical portraits shows why: preparation
of H2 molecules with β = 90◦ polarisation gives to the reaction something quite close
to what the reaction “wants,” whereas preparation of H2 molecules with β = 0◦

polarisation does the opposite.

Consideration of the intrinsic stereodynamical portraits on Fig. 7.4 also shows why
the selection of different β values for the H2 polarisation allows for considerable control
of the total reactivity, but not of the product state distribution. The intrinsic stere-
odynamical portraits hardly differ. In other terms, the reaction’s steric requirements
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Fig. 7.5.: Product rotational state distributions associated with the F+H2(v = 0, j =
2) → HF(v′ = 3, j′) + H reaction at Ecoll = 100 µeV and various reactant
polarisations. The stereodynamical portraits on the top show the intrinsic
H2(v = 0, j = 2) polarisations for the two opened rotational states.

are largely independent of the product rotational state.

Intrinsic H2(v = 0, j = 2) stereodynamical portraits and product rotational state
distributions for reaction into HF(v′ = 3, j′) at the same collision energy and with
the same extrinsic reactant polarisations are shown on Fig. 7.5.

The stereodynamical portraits on Fig. 7.5 provide striking illustrations of the dis-
tinctiveness of the mechanism of reactions into v′ = 3 products: they reveal steric
requirements that are very different from those obtained for v′ = 2 (the portraits ob-
tained for v′ < 2, not shown here, are very similar to the ones for v′ = 2). Reactivity
into v′ = 3 requires the H2 reactant to have its interatomic axis on the scattering
plane, and can involve rotational orientation effects. Note, however, that the extent
to which reactivity can be controlled is rather limited. This is so because manipula-
tion of the reactivity would require selection of values for both β and α. Reactant
polarisation along β = 90◦, α = 0◦ would increase the reactivity, while reactant po-
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α=0◦

x2

β=90◦
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Fig. 7.6.: Quantum triple (angle-velocity) differential cross section (polar maps) of
the F + H2(v = 0, j = 2) reaction at Ecoll = 100 µeV for selected extrinsic
reactant polarisations. “F” and “B” denote forward and backward scatter-
ing scattering angles, θ = 0◦ and 180◦. The figure for β = 0◦ has been
multiplied by two.

larisation along β = α = 90◦ would decrease it. Selection of α values, however, is
not possible when the property being manipulated is the integral cross section (see
Sec. 4.6).

Differential cross sections (DCSs) also calculated at Ecoll = 100 µeV and for selected
extrinsic reactant polarisations are presented on Fig. 7.6. It provides further illustra-
tion of the sensitivity of the reaction to reactant polarisation and of the distinctive
dynamics of reactions into HF(v′ = 3) products.

In the absence of reactant polarisation (“Iso” polar map), v′ = 2 products (most
intense set of rings in all panels) are scattered mostly in backward and sideways
directions, while v′ = 3 products (innermost rings in all panels) recoil along sideways
and forward directions.

The effect of head-on collisions (β = 0◦ reactant polarisation) is to depress the
v′ = 2 DCS at all scattering directions, and to sharply focus the v′ = 3 DCS around
θ = 0◦.
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Coplanar, magic angle collisions β = 54.74◦, α = 0◦ have a very different effect:
reactivity into HF(v′ = 2) is shifted to different scattering angles (sideways scattering
becomes dominant and forward scattering gets enhanced). And so is reactivity into
HF(v′ = 3), albeit in a different way. The v′ = 3 DCS is again sharply focused at
forward scattering angles, but not at θ = 0◦. Instead, reactivity into v′ = 3 and
θ = 0◦ is completely suppressed.

Coplanar, side-on collisions β = 90◦, α = 0◦ influence the reaction in yet another
way. The v′ = 2 DCS is magnified without being overly distorted, whereas the v′ = 3
DCS is again focused, but this time around θ = 0◦ as well as around other, close-to-
sideways scattering angles.

In short, the integral and differential cross sections presented above show that at low
collision energies the F+H2(v = 0, j = 2) reaction has a very sensitive stereodynamics,
and is largely amenable to external control.

We now turn to the ultracold regime, under which the reaction mostly follows the
Wigner laws. From this point on, our results will refer to reactions at Ecoll = 1 µeV.

Product rotational state distributions associated with reactions into HF(v′ = 2)
and various reactant polarisations are shown on Fig. 7.7. As the figure clearly indi-
cates, and despite the clear anisotropy of the intrinsic stereodynamical portraits, in
the ultracold regime one cannot control integral cross sections by selecting extrinsic
reactant polarisations.

Intrinsic H2(v = 0, j = 2) stereodynamical portraits and product rotational state
distributions for reaction into HF(v′ = 3, j′) at the same collision energy and with the
same extrinsic reactant polarisations are shown on Fig. 7.8. Although the intrinsic
stereodynamical portraits are even more anisotropic than the ones obtained in the
v′ = 2 case, the end result is the same: stereodynamical control of the reaction ICS
is not possible.

It is also interesting to note that although reactions into both HF(v′ = 2) and
HF(v′ = 3) display an intrinsic preference for a certain rotational orientation of the
H2 reactant, the preferred sense of H2 rotation gets inverted in going from v′ = 2 to
v′ = 3. The former shows a preference for what, as viewed from the y > 0 side of the
scattering plane, is clockwise H2 rotation; the latter for anticlockwise H2 rotation.

Having considered a reaction property (the ICS) that under ultracold conditions is
not amenable to stereodynamical control, we now turn to a property that, even at
the lowest of collision energies, still depends on the collision geometry: the product
angular distribution. Differential cross sections (DCSs) calculated at Ecoll = 1 µeV
and for selected extrinsic reactant polarisations are presented on Fig. 7.9.

The DCSs of Fig. 7.9 feature three remarkable characteristics: they have very varied
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Fig. 7.7.: Product rotational state distributions associated with the F+H2(v = 0, j =
2) → HF(v′ = 2, j′) + H reaction at Ecoll = 1 µeV and various reactant po-
larisations. The curves obtained with the different polarisation conditions
are practically indistinguishable. The stereodynamical portraits on the top
show the intrinsic H2(v = 0, j = 2) polarisations for selected product rota-
tional states.

shapes, all are highly symmetrical, and the angular distributions of the v′ = 2 and
v′ = 3 products can be independently controlled.

In the absence of extrinsic reactant polarisation, the reaction DCS is just what one
would expect for ` = 0 collisions: it has the perfectly isotropic shape of Yorkshire
pudding.

In the presence of extrinsic reactant polarisation, the DCS changes. The resulting
shapes, while far from isotropic, are highly symmetric. This is a consequence of the
fact that, in the ultracold regime, stereodynamical control of the product angular
distribution is due not only to dynamics, but also to pure geometry.

From a chemical point of view, the most interesting observation is that the recoil
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Fig. 7.8.: Product rotational state distributions associated with the F+H2(v = 0, j =
2) → HF(v′ = 3, j′) + H reaction at Ecoll = 1 µeV and various reactant
polarisations. The curves obtained with the different polarisation condi-
tions are practically indistinguishable. The stereodynamical portraits on
the top show the intrinsic H2(v = 0, j = 2) polarisations for the two opened
rotational states.

directions of HF(v′ = 2) and HF(v′ = 3) products can be independently manipulated.

If the extrinsic reactant polarisation is the β = 0◦ one leading to head-on collisions,
v′ = 3 products are mostly scattered into θ = 0 or 180◦, while v′ = 2 products
are mostly scattered into θ = 45 or 135◦ (note, however, that there is also some
probability of HF(v′ = 3) scattering into θ = 90◦, and that the angular distribution
of high HF(v′ = 2) rotational states follows a pattern that is the opposite of the one
followed by the dominant, lower HF(v′ = 2) rotational states).

If the extrinsic reactant polarisation is the β = 90◦, α = 0◦ one leading to side-on
collisions, the HF(v′ = 3) angular distribution gets “inverted” (it peaks at θ = 90◦

rather than at θ = 0 and 180◦), whereas the HF(v′ = 2) angular distribution remains
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Iso β=0◦

F

B

β=54.74◦

α=0◦
β=90◦

α=0◦

Fig. 7.9.: Quantum triple (angle-velocity) differential cross section (polar maps) of
the F + H2(v = 0, j = 2) reaction at Ecoll = 1 µeV for selected extrinsic re-
actant polarisations. “F” and “B” denote forward and backward scattering
scattering angles, θ = 0◦ and 180◦.

largely unchanged (this statement is true for low HF(v′ = 2) rotational states; high
HF(v′ = 2) rotational states follow, as in the previous case, the HF(v′ = 3) pattern).

If the collision geometry changes from side-on to one involving “tilted” H2 molecules
(this is the case for β = 54.74◦, α = 0◦ collisions), then the opposite happens: the
angular distribution of the HF(v′ = 2) products gets inverted, whereas the HF(v′ =
3) angular distribution hardly budges at all (curiously, here the high HF(v′ = 2)
rotational states, while retaining a differentiated angular distribution, do change in
much the same way as their low-j′ counterparts. They have their DCS rings rotated
by 45◦).



8. Conclusions

� Motivated by the possibility of contributing to an increased understanding of
molecular collisions and to a better assessment of experimental control possi-
bilities, it has been presented a theoretical method and proposed a currently
feasible experiment for the study of the effect of reactants polarization on the
dynamics of atom-diatom collisions.

� The theoretical formalism was stated in general terms, allowing to deal with
arbitrary reactant polarization schemes, and to be used in conjunction with both
quantum reactive scattering and quasiclassical trajectory calculations. Two
aspects of the theory deserve to be pointed out:

– The separation of intrinsic reactant polarizations from their extrinsic coun-
terparts. This splitting makes possible to analyze the collision stereody-
namics per se, without consideration of external factors that, while indis-
pensable in practical situations, can be restrictive with regard to analyses
of reaction mechanisms. That does not imply, however, that extrinsic po-
larizations and practical situations cannot be considered: they can, and
have been, in a straightforward and flexible way.

– The whole directional information is contained in the scattering matrix,
from which it is extracted as a set of intrinsic polarisation moments (PPs
and PDDCSs). Each one of these moments is related to the alignment or
orientation of j in the scattering frame when the reaction happens and, all
together, they completely describe the intrinsic j polarisation. However,
if we want to use these moments for studying the reaction mechanism,
it is essential to obtain a global view that simultaneously takes into con-
sideration the contributions of all the moments. This problem is solved
using the ’stereodynamical portraits’. By means of them it is possible to
reduce the directional information contained in the intrinsic polarisation
to “pictures” that allow the interpretation of polarisation in terms of the
mechanism. Because of their interpretative power, the portraits have been
the basis of our analysis of the mechanism and, without a doubt, they are
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the most important tool employed in this work, representing the materiali-
sation of the “chemical shape of colliding molecules” introduced by Levine
[113] in the early 90’s.

� In terms of experimental control possibilities, this work describes an experiment
that, besides allowing for stringent tests of theoretical predictions, is feasible
with current technology, requiring only certain modifications of already-existing
experimental apparatuses.

� Quantum and quasiclassical results for the benchmark H + D2 reaction were
firstly employed to illustrate how the theoretical methods can be used and what
can be achieved in the proposed experiment. In so doing, it was found that
D2 polarization, and alignment in particular, has (theoretically at least) a large
influence on reaction cross sections, products state distributions and products
recoiling direction.

� An exhaustive consideration of the H + D2 reactive collisions allowed for char-
acterisation of two mechanisms that other authors have identified as main ones
in the dynamics of this system: the “dominant” direct mechanism and also the
minor but very interesting “delayed” mechanism.

The direct collisions (responsible for the backward and sideways scattering)
have been found to take place in a way that is mainly influenced by the range of
impact parameters. The r portraits clearly illustrate the participation of impact
parameters and indicate a clear tilt of the internuclear axis with respect to the
incoming atom-diatom direction so that the adoption of the linear geometry
of the transition state is facilitated. The rotation sense of the D2 molecule is
either related to the rotational excitation of the products or to the direction in
which the products are formed. The connection with the rotational excitation
of the products is more relevant for the reaction mechanism and, in fact, it
dominates the integral results. On the contrary, the relation between the D2

molecule rotation and the direction in which the products are formed only can
be appreciated in the differential results, when each value of the scattering angle
is considered separately.

The delayed collisions (responsible for the forward scattering) are characterised
by swift oscillations on the intrinsic moments that give rise to sudden changes in
the shape of the portraits. They are originated by the different |Ω| contributions
and the interference between different partial waves. Regarding the mechanism,
the PDDCSs oscillations can be interpreted as a consequence of the existence
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of nearside and farside collisions that interfere with each other. As one or the
other kind of collisions prevail, the directional preferences of the reaction and
the shape of the portraits change.

� The same techniques were next applied to the F+H2 reaction, with the finding
that the process is highly sensitive to the H2 molecule polarisation and identi-
fying two main mechanisms as responsible for the products formation. These
mechanisms were termed as direct and delayed, in clear correspondence with
their H + D2 counterparts, with whom they share most of the features. The
importance of the transition state access on the direct mechanisms was, how-
ever, less clear-cut than for the H+D2 reaction. This difference stems from the
different PES topologies; while for the BKMP2 PES the access to the transition
state is limited to a few geometries around the linear minimum, the relative flat
character of the transition state for the SW PES makes such access easier and
less sterically demanding, in such a way that other factors can become more
decisive in order to determine the mechanism features.

The analysis of the integer state-to-state results confirmed that collisions lead-
ing to HF(v′ = 3) molecules take place through a different mechanism than
those leading to HF(v′ = 1 and 2) and proved the feasibility of controlling the
products distribution through H2 polarisation. Important as this control is, it
is largely outstripped by the predicted backward-sideways DCS control: suit-
able internuclear axis preparations on the scattering plane allow for drastically
changing the DCS shape.

� It has been demonstrated that stereodynamics can be used to probe and manip-
ulate cold and ultracold reactive collisions. Employing the benchmark F + H2

reaction as a test case, the results have shown enormous promise in both re-
gards. On the one hand, very fine details of the reaction dynamics were in-
vestigated. Several particulars of the correlation between collision geometry,
collision energy, reactivity and product formation have been examined, yield-
ing much insight into the reaction mechanism. On the other hand, selection
of reactant polarisation proved to be an useful way of controlling the reaction
outcome. The reactant polarisations used in the simulations allowed for fine,
product state-selective control of reaction differential and (in the cases of re-
actions involving a few partial waves other than the ` = 0 one) integral cross
sections.

� The description of the reaction mechanisms presented in this work do not ex-
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haust all the possibilities. On the contrary, it constitutes a reduced sample. In
particular, future work will have to cope with the following open questions:

– We only have considered the products regardless of their polarisation. How-
ever, we could imagine an experiment where only the products formed with
a defined polarisation were detected. Of course, the corresponding descrip-
tion of the mechanism obtained will change, providing us with new details
about how the reactions happen. The method presented in this work is
suitable to deal with any polarisation of the products and, in the future,
it will be applied to analyse the features of the mechanisms related to the
products polarisation.

– Understanding of chemical reactions requires appreciation of when, why
and how molecules react, but also of when, why and how they do not.
The non-reactive (elastic and inelastic) collision mechanisms also can be
studied by means of the intrinsic polarisation, thus completing the results
obtained for reactive collisions.

– The processes considered are, in general, not pure. To a certain extent,
they are statistical averages of completely independent (pure) processes
whose results add up incoherently. Disentanglement of the pure processes
taking part in a chemical reaction is another of the goals yet to achieve.



A. Rotations in quantum mechanics

This Appendix provides with an introduction to the quantum mechanical treat-
ment of rotations. After briefly presenting some key concepts related to the subject,
they will be employed to determine the behaviour under rotations of the polarisation
moments.

The reference [37] is an unbeatable handbook about angular momentum quantum
theory. All the sketched ideas about the Euler angles, the rotation operator and the
rotation matrix together with the symmetry statements and the relations used in the
derivations are included and broadened there. In order to avoid annoying repetitions,
no citations to this book will be performed in the Appendix, assuming that all the
non justified statements and steps can be “filled” by means of it.

As it is always the case with angular momentum algebra, one must be careful with
the conventions and definitions used. In the present case, those corresponding to the
reference [37] have been chosen (for an illuminating discussion about the different
conventions and their connection see [48]).

Euler angles

Let us consider a R3 reference frame named as xyz. Any rotation of that frame
gives rise to a second one that will be represented as XY Z. It is always possible to
parameterize that rotation by means of the Euler angles (α, β, γ) which define a three
steps prescription for the transformation xyz → XY Z

1. Rotate through an angle γ (0 ≤ γ < 2π) about the z axis.

2. Rotate through an angle β (0 ≤ β ≤ π) about the y axis.

3. Rotate through an angle α (0 ≤ α < 2π) about the z axis.

When the rotation has taken place, β (α) is the polar (azimuthal) angle of the Z axis
in the xyz frame.
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Rotation operator and rotation matrix

The rotations of a physical system in the R3 space correspond to rotations in the
Hilbert space defined by the system states. These rotations are carried out by means
of an unitary operator called rotation operator and defined as

R̂(α, β, γ) = R̂z(α) R̂y(β) R̂z(γ) = exp(−iα̂z) exp(−iβ̂y) exp(−iγ̂z) (A.1)

where ̂ is the system angular momentum operator and ̂i (i = x, y, z) are the angular
momentum projection operators over the xyz axis.

If our system state corresponds to a vector state |φ〉, after the rotation it will be
described by R̂|φ〉. Equally, any observable Q̂ transforms under rotation as

Q̂ → R̂Q̂R̂† (A.2)

The representation of the rotation operator on the |jm〉 basis (eigenvectors of the
̂2 and ̂z operators) is given by the rotation matrix

D
(j)
mm′(α, β, γ) = 〈jm|R̂(α, β, γ)|jm′〉 = e−imαd

(j)
mm′(β)e−im′γ (A.3)

where d
(j)
mm′(β) is the reduced rotation matrix. From the physical point of view, the

rotation matrix describes the transformation between |jm〉 basis corresponding to
different frames of reference. To clarify this, let us consider the effect of an arbitrary
rotation over the |jm〉 ket. Making use of the completeness condition for the basis, it
can be found that the rotated state will be

R̂(α, β, γ)|jm〉 =
∑

m′
D

(j)
m′m(α, β, γ)|jm′〉 (A.4)

It continues being a ̂2 eigenvector (as [̂2, R̂] = 0) but not of ̂z (as [̂z, R̂] 6= 0).
However, it is straightforward to show that it is an eigenvector of the ̂Z operator1

(the angular momentum projection over the Z axis of the frame obtained by rotating
xyz through α, β, γ). So, the former equation can be rewritten as

|jm〉Z = R̂(α, β, γ)|jm〉z =
∑

m′
D

(j)
m′m(α, β, γ)|jm′〉z (A.5)

and the D
(j)
m′m(α, β, γ) numbers turn out to be the elements of the unitary transfor-

1The ̂Z operator is given by (see Eq. (A.2)) ̂Z = R̂ ̂z R̂†. Employing the unitary character of

the rotation operator it is found that: ̂Z R̂ |jm〉 = R̂ ̂z R̂† R̂ |jm〉 = R̂ ̂z |jm〉 = ~m R̂ |jm〉
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mation matrix between the |jm〉z and the |jm〉Z basis.

Quantum mechanical polarisation moments behaviour under

rotations

The polarisation operators T̂ (j)kq and T̂ (j)kQ corresponding to the xyz and XY Z

reference frames previously defined are given by

T̂ (j)kq =
j∑

m,m′=−j

(−1)j−m 〈jm′j −m|kq〉 |jm′〉z z〈jm| (A.6)

and

T̂ (j)kQ =
j∑

m,m′=−j

(−1)j−m 〈jm′j −m|kQ〉 |jm′〉Z Z〈jm| (A.7)

respectively.

To relate both sets of operators the Eq. (A.5) is substituted in (A.7)

T̂ (j)kQ =
∑

m,m′

∑
m1,m2

(−1)j−m〈jm′j −m|kQ〉D
(j)
m1,m′(α, β, γ)

D(j) ∗
m2,m(α, β, γ) |jm1〉z z〈jm2|

(A.8)

Employing the symmetry of the rotation matrix elements, the Clebsch-Gordan series,
the orthogonality of the Clebsch-Gordan coefficients and Eq. (A.6) this cumbersome
expression can be transformed into something as simple as

T̂ (j)kQ =
k∑

q=−k

T̂ (j)kq D
(k)
qQ (α, β, γ) (A.9)

which sets that the polarisation operators behave as irreducible tensors. The unitarity
of the rotation matrix makes possible to invert (A.9) obtaining

T̂ (j)kq =
k∑

Q=−k

T̂ (j)kQ D
(k) ∗
qQ (α, β, γ) (A.10)

It is now quite straightforward to determine the transformation properties of the
quantum polarisation moments. Taking the adjoint of (A.10), multiplying both sides
by the density operator ρ̂, taking the trace and using the Eq. (2.17) we find the
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relation between the statistical tensors in both frames

〈T̂ †(j)kq〉 =
k∑

Q=−k

〈T̂ †(j)kQ〉D
(k)
qQ (α, β, γ) (A.11)

As the statistical tensors are related to the quantum polarisation moments (see
Eq. (2.41)), this expression can be rewritten as

a(k)
q =

k∑

Q=−k

A
(k)
Q D

(k) ∗
qQ (α, β, γ) (A.12)

providing us with the desired connection between the xyz and the XY Z moments
and showing that they also transform as irreducible tensors.

Classical polarisation moments behaviour under rotations

The incorporation of any classical moments property in this Appendix, whose title
is “Rotations in quantum mechanics”, could seem incongruous. The justification for
this inclusion stems from the moments definitions as the average of the modified
spherical harmonics over the classical PDF

a(k)
q = 〈Ckq(θj , φj)〉 (A.13)

As this equation suggests, to analyse the connection between the classical moments
defined in two different frames it will be necessary to know previously what is the
relation between the corresponding modified spherical harmonics. These functions
are (except a constant factor) the spatial coordinates representation of the |jm〉 kets2

and, in consequence, that relation can be immediately derived from Eq. (A.5)

Ckq(θj , φj) =
k∑

Q=−k

CkQ(Θj , Φj) D
(k) ∗
qQ (α, β, γ) (A.14)

where Ckq(θj , φj) and CkQ(Θj , Φj) represent the modified spherical harmonics in the
customary xyz and XY Z reference frames, (θj , φj) are the polar angles of an unitary
vector −→u in the xyz frame and (Θj , Φj) are the polar angles of the same unitary
vector in the XY Z frame.

Multiplying both sides of Eq. (A.14) by the PDF function and by the corresponding

2For integer values of j
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volume elements3 (sin θj dθj dφj in the xyz frame and sin Θj dΘj dΦj in the XY Z

frame), integrating over all the spatial directions and using Eq. (2.4) it is obtained
the expression

a(k)
q =

k∑

Q=−k

A
(k)
Q D

(k) ∗
qQ (α, β, γ) (A.15)

for the connection between the classical polarisation moments in both frames. As
in the quantum mechanical case, the classical moments transform under rotation as
irreducible tensors.

3The Jacobian corresponding to the coordinates change caused by a rotation of Euler angles (α, β, γ)
is always one regardless the definite values of the angles. This is so because the coordinates
transformation matrix, whose determinant is the Jacobian, is the product of three orthogonal
matrices
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B. Real polarisation moments

The mathematical justification for the results included in Sec. 2.4 are now presented.
In particular, the discussion will be focused in two points:

� The directional interpretation of the real moments is proved by expressing the
classical (quantum mechanical) real moments as the average (expectation value)
of a real spherical harmonic (Hermitean operator) directly related to the coor-
dinate system.

� The procedure to calculate the range of accessible values for every real moment
is also shown. The limits of these intervals are found to depend on the system
population, supporting the necessity for the renormalised moments introduction.

Classical moments

The explicit expression for the modified spherical harmonics is given by [37]

Ckq(θ, φ) = eiqφ

√
(k − q)!
(k + q)!

Pkq(cos θ) (B.1)

where Pkq(cos(θ)) represents an associated Legendre polynomial. These polynomials
are real functions of the polar angle θ which solve the associated Legendre differential
equation [150].

As was showed in Sec. 2.1, the classical complex polarisation moments can be
calculated by averaging the modified spherical harmonics over the polarisation density
function (PDF)

a(k)
q =

∫ 1

−1

∫ 2π

0

P (θj , φj)Ckq(θj , φj)d cos θj dφj = 〈Ckq(θj , φj)〉 (B.2)

Combining this expression with Eq. (B.1) and (2.55) and taking into account the
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complex exponential definition, the real classical moments can be written as

a
{k}
q+ =

√
2 (−1)q

√
(k − q)!
(k + q)!

〈cos(qφj)Pkq(cos θj)〉 1 ≤ q ≤ k

a
{k}
0 = 〈Pk0(cos θj)〉 (B.3)

a
{k}
q− =

√
2 (−1)q

√
(k − q)!
(k + q)!

〈sin(qφj)Pkq(cos θj)〉 1 ≤ q ≤ k

To find the directional meaning corresponding to each moment is now an straight-
forward task. It is only necessary to remember that the cartesian components (x, y

and z) of an unitary vector (~) pointing along the j direction are given by

x = sin θj cos φj

y = sin θj sin φj

z = cos θj

and to know the explicit form of the associated Legendre polynomials [150]. For
instance, the k = 1 polynomials are given by

P10(cos θj) = cos θj

P11(cos θj) = − sin θj

which, when substituted in Eq. (B.3) provide us with the following expression for the
corresponding real moments

a
{1}
1+ = 〈cosφj sin θj〉 = 〈~x〉

a
{1}
0 = 〈cos θj〉 = 〈~z〉 (B.4)

a
{1}
1− = 〈sin φj sin θj〉 = 〈~y〉

corroborating that the positive (negative) values of the a
{1}
1+ , a

{1}
0 or a

{1}
1− moments

are related to the j orientation along the positive (negative) x, z or y axis respectively
(see Table 2.1). Selecting the corresponding Legendre polynomial it is possible to
extend this procedure to higher values of k.

The range of accessible values for every real moment can be simply determined from
Eq. (B.3) by substituting the Legendre polynomial and the sine and cosine functions
by their maximum or minimum values. As before, the k = 1 moments are used to
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illustrate the process. In this case

− 1 ≤ P1q(cos θj) ≤ 1 (B.5)

and
− 〈1〉 ≤ a

{1}
1±,0 ≤ 〈1〉 (B.6)

where 〈1〉 represents the a
{0}
0 moment (P00(cos θj) = 1)

〈1〉 =
∫ 1

−1

∫ 2π

0

P (θj , φj)d cos θj dφj (B.7)

that is, the system population. Its value uses to be chosen as one (the PDF is
normalised to unity). In such a case the k = 1 moments values will be contained
in the [−1, 1] interval. Otherwise the longitude of this interval will depend on the
population according to (B.6). This procedure for setting the interval limits (and the
limits dependence on the population) holds for all the moments.

Quantum mechanical moments

The starting point for the quantum mechanical analysis of the real moments are
the Ĵ

(k)
q spherical operators [33, 38]. For k = 0 and k = 1 rank they are defined as

[38]
Ĵ

(0)
0 = 1̂ (B.8)

and
Ĵ

(1)
1 = − 1√

2
(Ĵx + iĴy) = − 1√

2
Ĵ+

Ĵ
(1)
0 = Ĵz (B.9)

Ĵ
(1)
−1 =

1√
2
(Ĵx − iĴy) =

1√
2
Ĵ−

while those corresponding to k ≥ 2 can be obtained by contracting two operators of
lower range

Ĵ (k)
q = [Ĵ (k−1) ⊗ Ĵ (1)](k)

q =
k−1∑

q1=−(k−1)

〈(k − 1) q1 1 q2|k q〉Ĵ (k−1)
q1

Ĵ (1)
q2

(B.10)

The following relation for the adjoint of the Ĵ
(k)
q operators

Ĵ (k)†
q = (−1)qĴ

(k)
−q (B.11)
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can be demonstrated employing mathematical induction (the equality holds for the
k = 1 operators (see Eq. (B.9)) and, supposing that it is valid when the rank is k− 1,
the Eq. (B.10) can be used to prove that it also holds for rank k). This expression
implies that, unless q = 0, Ĵ

(k)
q is not Hermitean.

The importance of these operators lies in their relation to the quantum mechanical
polarisation moments. Applying Eq. (2.17) and the completeness of the |jm〉 basis it
is possible to express their expectation values as

〈Ĵ (k)
q 〉 = tr(ρJ (k)

q ) =
j∑

m,m′=−j

〈jm′|ρ|jm〉〈jm|Ĵ (k)
q |jm′〉 (B.12)

As the Ĵ
(k)
q operators behave as irreducible tensors, the second term in the sum can

be evaluated by means of the Wigner-Eckart theorem [37, 38]

〈jm|Ĵ (k)
q |jm′〉 = (−1)2k〈j m′ k q|j m〉 〈j||Ĵ

k||j〉√
2j + 1

(B.13)

where the fraction numerator represents the reduced matrix element which depends
exclusively on k and on the quantum number j (explicit expressions for different k
values can be found in [38]). Substituting this expression in Eq. (B.12) and comparing
with Eq. (2.43) it is obtained the following expression

〈Ĵ (k)
q 〉 =

〈j||Ĵk||j〉√
2j + 1

j∑

m,m′=−j

〈jm′|ρ|jm〉〈j m′ k q|j m〉

=
〈j||Ĵk||j〉√

2j + 1︸ ︷︷ ︸
depends on k and j

a(k)
q

(B.14)

that relates the complex quantum mechanical moments with the expectation values
of the Ĵ

(k)
q operators.

Combining Eq. (B.14) with Eq. (2.54) it is possible to express the real moments in
terms of the spherical Ĵ

(k)
q operators

a
{k}
q+ = ck,j 〈Ĵ{k}q+ 〉 1 ≤ q ≤ k

a
{k}
0 = ck,j 〈Ĵ{k}0 〉 (B.15)

a
{k}
q− = ck,j 〈Ĵ{k}q− 〉 1 ≤ q ≤ k
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where ck,j represents the factor √
2j + 1

〈j||Ĵk||j〉 (B.16)

and a new set of operators have been defined

Ĵ
{k}
q+ =

1√
2
[(−1)qĴ (k)

q + Ĵ
(k)
−q ] 1 ≤ q ≤ k

Ĵ
{k}
0 = Ĵ

(k)
0 (B.17)

Ĵ
{k}
q− =

1
i
√

2
[(−1)qĴ (k)

q − Ĵ
(k)
−q ] 1 ≤ q ≤ k

which are all of them Hermitean.

The directional meaning of the real moments can now be determined. As in the
classical case, we will use the k = 1 rank moments to illustrate the procedure (it can
be immediately extended to higher values of the rank). Eqs. (B.9) and (B.17) show
that, in this case

Ĵ
{1}
1+ = Ĵx Ĵ

{1}
0 = Ĵz Ĵ

{1}
1− = Ĵy (B.18)

and from [38]

c1,j =
1√

j(j + 1)
(B.19)

In consequence,

a
{1}
1+ =

〈Ĵx〉√
j(j + 1)

a
{1}
0 =

〈Ĵz〉√
j(j + 1)

(B.20)

a
{1}
1− =

〈Ĵy〉√
j(j + 1)

As expected, the relation between directions and moments that stems from this equa-
tions coincides with that obtained in the classical case: positive (negative) values of
the a

{1}
1+ , a

{1}
0 or a

{1}
1− moments represent a j orientation along the positive (negative)

x, z or y axis respectively.

One strategy to evaluate the upper and lower limits of the accessible range of values
for each real moment is based on (i) determining the extreme values for 〈Ĵ{k}q±,0〉 and
(ii) substituting them into Eq. (B.15). For instance, the expectation value of the Ĵ

{1}
1±,0

operators fulfill
|〈Ĵ{1}1±,0〉| ≤ j〈1̂〉 (B.21)
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where 〈1̂〉 = tr(ρ) is the system population. Therefore,

− j√
j(j + 1)

〈1̂〉 = −(j c1,j) 〈1̂〉 ≤ a
{1}
1±,0 ≤ j c1,j 〈1̂〉 =

j√
j(j + 1)

〈1̂〉 (B.22)

As expected, depending on wether the population is normalised to unity or not, the
length of the interval will change.

This procedure for determining the limits of the real moments becomes cumbersome
and difficult to apply as j increases. A more practical approach to the problem consists
of employing the fact that the real moments are defined as the expectation values of
Hermitean operators whose explicit expression can be obtained through combination
of Eqs. (2.41) and (2.54):

(−1)q

(
2j + 1

2(2k + 1)

)1/2

((−1)qT̂ †(j)k−q + T̂ †(j)kq) for a
{k}
q+ moments

(
2j + 1
2k + 1

)1/2

T̂ †(j)k0 for a
{k}
0 moments (B.23)

(−1)q

i

(
2j + 1

2(2k + 1)

)1/2

((−1)qT̂ †(j)k−q − T̂ †(j)kq) for a
{k}
q− moments

The maximum and minimum eigenvalues of each of these operators will coincide with
the limit values of the corresponding real moment (assuming that the system popu-
lation is one). Such eigenvalues can be evaluated by diagonalising the representation
of the operators in the |jm〉 basis:

(−1)q

�
2j + 1

2(2k + 1)

�1/2

(−1)j−m1((−1)q〈jm2j −m1|k − q〉+ 〈jm2j −m1|kq〉)| {z }
Am1m2

(a
{k}
q+ )

�
2j + 1

2k + 1

�1/2

(−1)j−m1〈jm2j −m1|k0〉| {z }
A′m1m2

(a
{k}
0 )

(−1)q

i

�
2j + 1

2(2k + 1)

�1/2

(−1)j−m1((−1)q〈jm2j −m1|k − q〉 − 〈jm2j −m1|kq〉)| {z }
A′′m1m2

(a
{k}
q− )

where Eq. (2.24) (the definition of the T̂ (j)kq operators) has been used. The elements
Am1,m2 correspond to an hermitic matrix, A′m1,m2 to a diagonal matrix and A′′m1,m2

to an anti-hermitic matrix. Diagonalisation of these three matrices1, selection of
the maximum/minimum eigenvalue and consideration of the additional phases and

1A discussion about how to perform such diagonalisation, together with suitable fortran77 subrou-
tines, can be found in reference [69]
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j a1
0 a1

1± a2
0 a2

1± a2
2± a3

0 a3
1± a3

2± a3
3±

1/2 0.577 0.577 - - - - - - -
1 0.707 0.707 0.316 0.548 0.548 - - - -

3/2 0.775 0.775 0.447 0.447 0.447 0.507 0.523 0.378 0.535
2 0.816 0.816 0.535 0.535 0.535 0.535 0.500 0.598 0.423

5/2 0.845 0.845 0.598 0.548 0.548 0.483 0.448 0.463 0.436
3 0.866 0.866 0.645 0.589 0.589 0.408 0.408 0.408 0.408

7/2 0.882 0.882 0.683 0.612 0.612 0.461 0.458 0.441 0.446
4 0.894 0.894 0.714 0.637 0.637 0.505 0.479 0.483 0.477

9/2 0.905 0.905 0.739 0.655 0.655 0.542 0.496 0.464 0.489
5 0.913 0.913 0.760 0.672 0.672 0.574 0.518 0.461 0.506

Table B.1.: Upper limit of the k = 1-3 real polarisation moments for j values com-
prised in the interval going from 1

2 to 5.

j a1
0 a1

1± a2
0 a2

1± a2
2± a3

0 a3
1± a3

2± a3
3±

1/2 -0.577 -0.577 - - - - - - -
1 -0.707 -0.707 -0.632 -0.548 -0.548 - - - -

3/2 -0.775 -0.775 -0.447 -0.447 -0.447 -0.507 -0.523 -0.378 -0.535
2 -0.816 -0.816 -0.535 -0.535 -0.535 -0.535 -0.500 -0.598 -0.423

5/2 -0.845 -0.845 -0.478 -0.548 -0.548 -0.483 -0.448 -0.463 -0.436
3 -0.866 -0.866 -0.516 -0.589 -0.589 -0.408 -0.408 -0.408 -0.408

7/2 -0.882 -0.882 -0.488 -0.612 -0.612 -0.461 -0.458 -0.441 -0.446
4 -0.894 -0.894 -0.510 -0.637 -0.637 -0.505 -0.479 -0.483 -0.477

9/2 -0.905 -0.905 -0.492 -0.655 -0.655 -0.542 -0.496 -0.464 -0.489
5 -0.913 -0.913 -0.506 -0.672 -0.672 -0.574 -0.518 -0.461 -0.506

Table B.2.: Lower limit of the k = 1-3 real polarisation moments for j values com-
prised in the interval going from 1

2 to 5.

constant factors included in the former Equations lead us to Tables B.1 and B.2,
which contain the limits for the k = 1 − 3 moments when the value of j goes from
one half to five. It is necessary to point out that these Tables hold for systems with
population one.

The quantum mechanical introduction of the real moments could not finish without
pointing out a subtle characteristic which does not appear in the classical case. The
complex quantum mechanical a

(k)
q moments are defined as the expectation value of

a non Hermitean operator and, for that reason, they are not observable quantities
(except when q = 0). On the contrary, their real counterparts correspond to the
expectation value of an Hermitean operator and, therefore, they are experimentally
measurable.
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C. Observable DCS

Eq. (4.20) was the basis for the analysis of reaction control through the reactants
polarisation. This Appendix provides with its derivation, both in the classical and in
the quantum mechanical frame.

Classical mechanics

The classical proof of Eq. (4.20) stars with the classical probability density function
Pr(θ, θj , φj) introduced in Sec. 4.3. This PDF (an intrinsic reaction property) gives the
probability of observing reactive scattering from a given reactants rovibrational state
into a given products rovibrational state and at scattering angle θ when the initial
direction of the BC reactant rotational angular momentum is the one associated with
the spherical angles θj and φj . The classical reaction PDF can be expanded as a
series of modified spherical harmonics [37] in the form

Pr(θ, θj , φj) =
∞∑

k=0

k∑

q=−k

2k + 1
4π

S(k)
q (θ)C∗kq(θj , φj) (C.1)

where the S
(k)
q (θ)’s θ-dependent expansion coefficients are the intrinsic reactants

PDDCSs (Sec. 4.3.1). This PDF will be assumed to be normalized to unity

∫ 1

−1

∫ 2π

0

∫ 1

−1

Pr(θ, θj , φj) d cos θj dφj d cos θ =
∫ 1

−1

S
(0)
0 (θ)d cos θ = 1 (C.2)

(the orthogonality of the spherical harmonics (Eq. (2.3)) has been used to perform
the integration over θj and φj).

The classical PDF (C.1) represents the reactants polarisation when the reaction
takes place, irrespective of the initial preparation of the directions of j. However,
when the directions of the angular momentum are prepared prior to the collision,
one must consider the actual polarisation of reactants. This is an extrinsic property:
instead of depending on the reaction dynamics it depends on external intervention.
The extrinsic polarisation of the BC molecule can be described by a PDF (the extrinsic

205



206 C. Observable DCS

reactants PDF) that can be expanded in a multipolar series entirely similar to C.1

ρ(θj , φj) =
∞∑

k=0

k∑

q=−k

2k + 1
4π

a(k)
q C∗kq(θj , φj) (C.3)

where a
(k)
q are the extrinsic polarisation moments. As its intrinsic counterpart, the

extrinsic PDF will also be normalised to unity

∫ 1

−1

∫ 2π

0

ρ(θj , φj) d cos θj dφj = a
(0)
0 = 1 (C.4)

The reaction differential cross section must take into account the actual, extrinsic
reactant preparation scheme as well as the intrinsic properties of the reaction. The
suitable way of performing this combination of extrinsic and intrinsic information is
based on the joint PDF obtained by multiplying Eq. ((C.1) and Eq. ((C.3)

Pr(θ, θj , φj , α, β, γ) =
∑

k,q,k′,q′

(2k + 1)(2k′ + 1)
(4π)2

S(k)∗
q (θ) a

(k′)
q′ Ckq(θj , φj) C∗k′q′(θj , φj)

(C.5)
which gives the probability that the reaction products appear at an scattering angle
θ, when j points in the direction given by θj and φj and the extrinsic polarisation of
the BC molecule is that corresponding to the a

(k)
q moments (as it was discussed in

Sec. 4.4, their concrete values depend on the α, β and γ Euler angles which determine
the LAB frame position with respect to the center-of-mass frame). By integrating
the reaction probability for all the possible directions of j (and employing again the
modified spherical harmonics orthogonality) it is obtained a second joint PDF

Pr(θ, α, β, γ) =
∞∑

k=0

k∑

q=−k

(2k + 1)
(4π)

S(k)∗
q (θ) a(k)

q (C.6)

representing the probability of forming the products with scattering angle θ when the
extrinsic polarisation of the reactants is given by the a

(k)
q moments.

The differential cross section can be expressed in terms of Pr(θ, α, β, γ) as

dσ

dω
=

σiso

2π

Pr(θ, α, β, γ)
1/4π

=
σiso

2π

∞∑

k=0

k∑

q=−k

(2k + 1) S(k)∗
q (θ) a(k)

q (C.7)

where σiso is the integral cross section of the reaction involving unpolarized reactants
(which must be divided by 2π in order to take into account the fact that the isotropic
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differential cross section is independent of the azimuthal angle) and the 4π factor in
the denominator ensures its correct normalisation (its origin is the following: if the
reactants are unpolarised prior to reaction the differential cross section can be written
as [1]

dσ

dω
=

dσiso

dω
=

σiso

2π
S

(0)
0 (θ) (C.8)

(remember that S
(0)
0 (θ) coincides with the angular distribution for unpolarised reac-

tants). On the other side, the polarisation moments fulfill a
(k)
q = δk0δq0 (see Sec. 2.3.3)

and, from this fact, it ensues that: (i) Pr(θ, α, β, γ) will only depend on θ, (ii) it can
be written as

S
(0)
0 (θ)
4π

(C.9)

and (iii) its integral over the scattering angle is 1/(4π) (see Eq. (C.2)). So, dividing
Pr(θ, α, β, γ) by 1/(4π) ensures that it is normalised to unity when the reactants are
unpolarised and that Eq. (C.7) provides with the right value of the DCS).

Quantum mechanics

The starting point for the quantum mechanical prove of Eq. (4.20) is the expression
[24]

dσ

dω
=

∑

Ω′Ω1Ω2

fΩ′Ω1(θ)f
∗
Ω′Ω2

(θ)〈jΩ1|ρ̂|jΩ2〉 (C.10)

which represents the state-to-state differential cross section for an arbitrary polariza-
tion of the reactants (and therefore arbitrary coherence between the possible reactant
helicities (Ω)). The density operator ρ̂ describes the extrinsic preparation of the re-
actants and 〈jΩ1|ρ̂|jΩ2〉 is an element of its matrix representation in the |jΩ〉 basis.
The fΩ′Ω(θ) function represents the scattering amplitude. It can be written in terms
of the scattering matrix in the helicity representation as [74]

fΩ′Ω(θ) =
1

2ikin

∑

J

(2J + 1)dJ
Ω′Ω(θ)SJ

j′Ω′,jΩ (C.11)

where dJ
Ω′Ω(θ) is a reduced rotation matrix element [37], kin the wavenumber asso-

ciated with the incoming (reactants) plane wave and SJ
j′Ω′,jΩ is an element of the

S matrix in the helicity representation (for a discussion about the meaning of the
different labels see Sec. 3.4 or Sec. 4.3.5).

It is necessary to point out three characteristics of this formula, namely (i) that the
product polarization is being disregarded (the DCS is summed over product helicities),
(ii) that the reactants are being assumed to be in a well-defined rotational energy
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level, so that the only coherences playing any role are those among different helicity
substates, and (iii) that the DCS formula mixes intrinsic (scattering amplitudes) and
extrinsic (reactants density matrix) properties.

The matrix elements of the extrinsic ρ̂ operator can be written as (Eq. (2.42))

〈jΩ1|ρ|jΩ2〉 =
2j∑

k=0

q∑

q=−k

2k + 1
2j + 1

a(k)
q 〈jΩ1, kq|jΩ2〉 (C.12)

where a
(k)
q are the quantum mechanical moments describing the extrinsic polarisation

of the reactants.
Inserting C.12 into Eq. (C.10), multiplying the right hand side of the resulting

expression by
σiso

2pi

2pi

σiso
= 1 (C.13)

(σiso is again the state-to-state integral cross section when the reactants are initially
unpolarised) and taking into account that σiso is given by [74]

σiso =
π

(2j + 1)k2
in

∑

JΩ′Ω

(2J + 1)|SJ
j′Ω′,jΩ|2, (C.14)

allows for obtaining the desired expression for the differential cross section

dσ

dω
=

σiso

2π

2j∑

k=0

k∑

q=−k

(2k + 1) S(k)∗
q (θ) a(k)

q (C.15)

with the quantum mechanical PDDCSs given by Eq. (4.17).



D. Molecular axis portraits

Let us suppose that the state of a diatomic molecule is represented by the density
operator ρ̂. All the information regarding the molecule is contained in this operator.
In particular: (i) Eq. 2.43 can be used to determine the moments which describe the
polarisation of the molecule rotational angular momentum (j) and (ii) the j spatial
distribution corresponding to these moments can be determined by means of the
quantum PDF introduced in Sec. 2.5.

The position of the molecule internuclear axis (r) is not independent on j position
(thinking in classical terms, r is rotating perpendicularly to j) and, therefore, any non-
isotropic j distribution will give rise to a non-isotropic distribution of the internuclear
axis. The goal of this Appendix is to obtain an explicit expression for the internuclear
axis distribution when the diatomic molecule is in a defined rotational state. In this
case, ρ̂ can be written as

ρ̂ =
j∑

Ω1,Ω2=−j

〈jΩ1|ρ̂|jΩ2〉|jΩ1〉〈jΩ2| (D.1)

where Ω labels the reactants helicity and the completeness of the |jΩ〉 basis has been
used.

Assuming that the trace of the density matrix is equal to one

tr(ρ) = 1 (D.2)

and representing by |θrφr〉 an state with fixed internuclear axis pointing along the
direction given by the polar angle θr and the azimuthal angle φr

1, the diagonal element

〈θrφr|ρ̂|θrφr〉 (D.3)

is the probability of finding r pointing along the direction given by θr and φr when

1As usual, both angles will be considered as referred to the centre-of-mass frame. However, this
restriction is not esential for the reasoning and the only condition that they must necessary fulfill
is that they are defined in the same frame that the polarisation moments employed to generate
the portrait
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the state of the molecule is given by ρ̂.
By combining Eqs. (D.1) and (D.3) with the definition of the modified spherical

harmonics and with Eq. (2.42) it is found the following expression for the portrait

Pr(θr, φr) = 〈θrφr|ρ̂|θrφr〉
=

∑

Ω1,Ω2

〈jΩ1|ρ̂|jΩ2〉 〈θrφr|jΩ1〉〈jΩ2|θrφr〉

=
∑

Ω1,Ω2

〈jΩ1|ρ̂|jΩ2〉YjΩ1(θrφr)Y ∗
jΩ2

(θrφr)

= 4π
∑

kq

∑

Ω1,Ω2

(2k + 1)b(k)
q 〈jΩ1kq|jΩ2〉CjΩ1(θrφr)C∗jΩ2

(θrφr) (D.4)

where b
(k)
q label the polarisation moments. This equation can be further simplified by

means of the Clebsch-Gordan series and the Clebsch-Gordan properties (symmetry
and orthogonality) [37], obtaining

Pr(θr, φr) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

b(k)
q 〈j0, k0|j0〉C∗kq(θr, φr) (D.5)

which is the desired expression.
The molecular axis portraits can be used to visualise the r distributions corre-

sponding to any set of polarisation moments. When employed in combination with
the intrinsic moments the portraits will represent the axis distributions when the re-
action takes place and, when generated from extrinsic moments, they will describe
the experimental preparation of the reactants.



E. Derivation of Eq.(7.18)

The present Appendix provides with a derivation of Eq. (7.18). For the sake of
simplicity, we will assume that all the angular momenta quantum numbers are integer.
Our starting point will be the Clebsch-Gordan series [37]:

DJ1
M1N1

(αβγ)DJ2
M2N2

(αβγ) =
J1+J2∑

J=|J1−J2|

∑

MN

CJM
J1M1J2M2

DJ
MN (αβγ)CJN

J1N1J2N2
(E.1)

where the following notation for the Clebsch-Gordan coefficients has been used

CJM
J1M1J2M2

= 〈J1M1J2M2|JM〉 (E.2)

in order to reduce the room occupied by the different Equations.

Multiplying both sides of Eq. (E.1) by CJ′N ′
J1N1J2N2

, summing over N1 and N2 and
employing the orthogonality of the Clebsch-Gordan coefficients [37] we obtain

∑

N1N2

DJ1
M1N1

(αβγ)DJ2
M2N2

(αβγ)CJN
J1N1J2N2

=
∑

M

CJM
J1M1J2M2

DJ
MN (αβγ) (E.3)

If the Euler angles α and γ are fixed as 0, Eq. (E.3) reduces to

∑

N1N2

dJ1
M1N1

(β)dJ2
M2N2

(β)CJN
J1N1J2N2

=
∑

M

CJM
J1M1J2M2

dJ
MN (β) (E.4)

The symmetry of the Clebsch-Gordan coefficients [37]

CJN
J1N1J2N2

= (−1)J1−N1

√
2J + 1
2J2 + 1

CJ2−N2
J1N1J−N

= (−1)J−N1−J2

√
2J + 1
2J2 + 1

CJ2N2
J1−N1JN (E.5)

CJM
J1M1J2M2

= (−1)J1−M1

√
2J + 1
2J2 + 1

CJ2−M2
J1M1J−M

= (−1)J−M1−J2

√
2J + 1
2J2 + 1

CJ2M2
J1−M1JM (E.6)
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can be used to rewrite Eq. (E.4) as

∑

N1N2

dJ1
M1N1

(β)dJ2
M2N2

(β)(−1)N1CJ2N2
J1−N1JN = (−1)M1

∑

M

CJ2M2
J1−M1JMdJ

MN (β) (E.7)

As N1 is a dump index, it can be substituted by −N1 in the first term of the
previous equation. This change leads us to

∑

N1N2

dJ1
M1−N1

(β)dJ2
M2N2

(β)(−1)N1CJ2N2
J1N1JN = (−1)M1

∑

M

CJ2M2
J1−M1JMdJ

MN (β) (E.8)

that, after using the reduced rotation matrices symmetry [37]

dJ1
M1−N1

(β) = (−1)M1−N1dJ1
−M1N1

(β) (E.9)

transforms into

∑

N1N2

dJ1
−M1N1

(β)dJ2
M2N2

(β)CJ2N2
J1N1JN =

∑

M

CJ2M2
J1−M1JMdJ

MN (β) (E.10)

By writing −M1 instead of M1 in this last expression we recover Eq. (7.18)

∑

N1N2

dJ1
M1N1

(β)dJ2
M2N2

(β)CJ2N2
J1N1JN =

∑

M

CJ2M2
J1M1JMdJ

MN (β),

completing the derivation.



F. Estereodinámica de reacciones

elementales: efecto de la

polarización del momento angular

rotacional de los reactivos

F.1. Introducción

El conocimiento detallado de la influencia de los efectos direccionales sobre las
magnitudes observables de una reacción qúımica tiene una importancia fundamental
a la hora de comprender el mecanismo del proceso y las fuerzas que dan lugar al mismo.
Además, la consideración expĺıcita de tales efectos permite desarrollar técnicas para
el control de las colisiones moleculares.

Existen, sin embargo, pocos estudios que proporcionen un marco teórico general
para el estudio de la dependencia direccional de las reacciones qúımicas [71, 72]. El
presente trabajo contribuye a llenar ese hueco mediante la presentación de una serie
de herramientas teóricas que, basándose en la consideración de la polarización del
momento angular rotacional (j) en reacciones átomo-diátomo, permiten analizar el
mecanismo del proceso y determinar el control experimental obtenible mediante tal
polarización.

La técnica se basa en la distinción entre momentos de polarización [25, 33] “intŕın-
secos” y “extŕınsecos”. Los primeros describen el proceso reactivo en si mismo, per-
miten cuantificar cómo dependen las secciones eficaces de las distribuciones espaciales
correspondientes tanto al momento angular rotacional como al eje internuclear (r) y
están exclusivamente determinados por la dinámica de las colisiones y no por circuns-
tancias externas. Por su parte, los momentos de polarización extŕınsecos representan
la preparación de reactivos experimental: cuantifican las anisotroṕıas de las distribu-
ciones experimentales de j y r y, al menos en principio, pueden ser determinados por
el experimentador.
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El procedimento se ilustrará en primer lugar mediante ejemplos correspondientes a
la reacción

H + D2(v = 0, j = 2) → HD + D (F.1)

Se demostrará que, en condiciones experimentales accesibles [97], el alineamiento de
la molécula D2 tiene un notable efecto sobre los distintos observables de la reacción
(distribución de estados de los productos y secciones eficaces diferencial (DCS) e in-
tegral (ICS)), de tal manera que, seleccionando la dirección del laser empleado para
el bombeo Raman (“Raman pumping”) estimulado, es posible controlar la eficacia de
las colisiones reactivas (F.1). El análisis de dicho control nos proporcionará, además,
información detallada acerca del mecanismo del proceso. En segundo lugar, se re-
sumirán los resultados de aplicar estas técnicas al estudio del mecanismo y control de
la reacción

F + H2(v = 0, j = 2) → HF + D (F.2)

en un amplio intervalo de enerǵıas de colisión (incluyendo la región ultrafŕıa (“ultra-
cold”)).

Los ejemplos se basarán tanto en cálculos de trajectorias como en cálculos mecano-
cuánticos independientes del tiempo, encontrandose que el acuerdo entre ambos re-
sultados es excelente.

F.2. Teoŕıa

F.2.1. Método clásico

Supongamos la reacción átomo-diátomo

A + BC(v, j) → AB(v′, j′) + C (F.3)

El punto de partida para la presentación clásica del método es la definición de la
función de densidad de probabilidad (PDF) clásica Pr(θ, θj , φj). Esta PDF, que es
una propiedad intŕınseca, representa la probabilidad de observar scattering reactivo a
un cierto ángulo θ y con los productos en un estado final bien definido (v′, j′) cuando
la dirección de j (el momento angular rotacional de BC) está dada por los ángulos
esféricos θj y φj . Todas las direcciones se refieren al sistema de scattering1, xyz, en
el que el eje z es paralelo a la dirección de aproximación de los reactivos (k), el plano
xz es el plano de scattering (el plano conteniendo a k y k′, la dirección de alejamiento

1Este sistema de referencia se denomina también sistema de centro de masa
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de los productos) y el eje y es paralelo a k×k′. Mientras que, como se ha dicho, θj y
φj son el ángulo polar y azimutal que describen la dirección de j, la posición del eje
internuclear de BC (r) vendrá dada por θr y φr.

La PDF clásica está normalizada

∫ 1

−1

∫ 2π

0

∫ 1

−1

Pr(θ, θj , φj) d cos θj dφj d cos θ = 1 (F.4)

y puede desarrollarse en serie de armónicos esféricos modificados [25, 37] según

Pr(θ, θj , φj) =
∞∑

k=0

k∑

q=−k

2k + 1
4π

S(k)
q (θ)C∗kq(θj , φj) (F.5)

donde los coeficientes S
(k)
q (θ) (dependientes del ángulo de scattering) se denominan

“polarisation dependent differential cross sections” (PDDCSs) y son los momentos
de polarización intŕınsecos del proceso (F.3) cuando los productos se detectan a un
cierto ángulo de scattering θ.

Usando la ortogonalidad de los armónicos esféricos [37] para invertir el desar-
rollo (F.5) se llega a la siguiente expresion para las PDDCSs

S(k)
q (θ) =

∫ 2π

0

∫ 1

−1

Pr(θ, θj , φj) Ckq(θj , φj) d cos θj dφj (F.6)

que, cuando k=q=0, se reduce a:

S
(0)
0 (θ) =

∫ 2π

0

∫ 1

−1

Pr(θ, θj , φj) d cos θj dφj = Pr(cos θ) =
2π

σ

dσ

dω
(F.7)

indicando que S
(0)
0 (θ) es la PDF cuyo valor representa la probabilidad de que los

productos aparezcan con ángulo de scattering θ, es decir, la sección eficaz diferencial
normalizada.

Consideremos ahora la PDF clásica Pr(θj , φj) que da la probabilidad de reacción
integrada sobre el ángulo de scattering cuando el vector j se dispone a lo largo de la
dirección dada por θj y φj

Pr(θj , φj) =
∫ 1

−1

Pr(θ, θj , φj) d cos θ (F.8)

Esta función de densidad de probabilidad puede desarrollarse también en función de
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armónicos esféricos modificados

Pr(θj , φj) =
∞∑

k=0

k∑

q=−k

2k + 1
4π

s(k)
q C∗kq(θj , φj) (F.9)

donde, en este caso, los coeficientes s
(k)
q del desarrollo se denominan “polarisation

parameters” (PPs) y representan la polarización intŕınseca de la reacción (F.3) cuando
la detección de los productos no discrimina entre distintos valores del ángulo de sca-
ttering. La relación entre los PPs y las PDDCSs se deduce insertando (F.5) en (F.8)
y comparando la serie resultante con (F.9)

s(k)
q =

∫ 1

−1

S(k)
q (θ) d cos θ (F.10)

En concreto, para k=q=0 se encuentra que s
(0)
0 =1.

Los PDDCSs y los PPs son las cantidades claves a la hora de (i) cuantificar la
dependencia de las secciones eficaces con la polarización experimental (extŕınseca)
de los reactivos y (ii) analizar el mecanismo por el que trancurren las colisiones. Al
igual que los orbitales atómicos, tanto las PDDCSs como los PPs pueden expresarse
como cantidades complejas y reales [25, 50]: mientras que la primera representación
(cantidades complejas) facilita el manejo de expresiones que involucran a los momentos
intŕınsecos, la segunda (cantidades reales) permite interpretarlos en función de las
coordenadas cartesianas del espacio. La notación empleada será S

(k)
q (θ) (s(k)

q ) para
los momentos complejos y S

{k}
q (θ) (s{k}q ) para los momentos reales. La transformación

entre ambos conjuntos de PDDCSs viene dada por las ecuaciones

S
{k}
q+ (θ) =

1√
2
[(−1)qS(k)

q (θ) + S
(k)
−q (θ)] 1 ≤ q ≤ k

S
{k}
0 (θ) = S

(k)
0 (θ) (F.11)

S
{k}
q− (θ) =

1
i
√

2
[(−1)qS(k)

q (θ)− S
(k)
−q (θ)] 1 ≤ q ≤ k

que son igualmente válidas para PPs.

A la hora de describir un experimento y, en concreto, la polarización extŕınseca que
lo caracteriza, es necesario considerar un segundo sistema de referencia: el sistema
de laboratorio XYZ, cuyo origen coincide con el del sistema de centro de masa (xyz)
y cuya orientación espacial está fija. Los ángulos de Euler α, β y γ representarán la
rotación necesaria para llevar al sistema de centro de masa hasta el sistema de labo-
ratorio. Se utilizarán las letra mayúsculas Q, Θj y Φj para indicar las componentes
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Z ≡ E

Θj

Φj

j

Fig. F.1.: Sistemas de scattering (xyz) y de laboratorio (XY Z).

de los momentos y la posición de j definidos en el sistema de laboratorio. La Fig. F.1
sirve como ilustración del significado de estos ángulos y de la relación entre ambos
sistemas de referencia (el eje Z del sistema de laboratorio se representa como E por
razones que quedarán claras más adelante).

Si los reactivos se preparasen en el laboratorio según los momentos A
(k)
Q , los corres-

pondientes momentos extŕınsecos en el sistema de centro de masa (a(k)
q ) vendŕıan

dados por la expresión

a(k)
q =

k∑

Q=−k

Dk∗
qQ(α, β, γ)A(k)

Q (F.12)

donde Dk
qQ(α, β, γ) representa una matriz de rotación.

Una vez que sabemos cómo describir la polarización intŕınseca y la polarización
extŕınseca, estamos en condiciones de abordar el problema del control de la reacción
mediante la obtención de expresiones para los diferentes observables en función de la
polarización extŕınseca de los reactivos. A tal fin, la sección eficaz diferencial (DCS)
se escribirá

dσ

dω
=

σiso

4π

∫ 2π

0

∫ 1

−1

4π P (θ, θj , φj) ρ(θj , φj) d cos θ dφ (F.13)

donde σiso es la sección eficaz integral de la reacción cuando los reactivos no están
polarizados, ρ(θj , φj) es la PDF que describe la polarización extŕınseca de los reactivos
y el factor 4π dentro de la integral asegura su correcta normalización.

La PDF extŕınseca ρ(θj , φj) puede expandirse según una serie multipolar totalmente
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similar a (F.5), dependiente en este caso de los momentos de polarización extŕınsecos
a
(k)
q . Introduciendo las expansiones de P (θ, θj , φj) y ρ(θj , φj) en la expresión para la

DCS (F.13) y usando la ortogonalidad de los armónicos esféricos modificados [37], se
llega a la ecuación

dσ

dω
=

σiso

2π

∞∑

k=0

k∑

q=−k

(2k + 1) S(k)∗
q (θ) a(k)

q (F.14)

que permite evaluar la DCS para cualquier polarización experimental de los reactivos.

Una expresión equivalente para la sección eficaz integral (ICS) se obtiene inte-
grando (F.14) a todas las direcciones del espacio

σ = σiso

∞∑

k=0

(2k + 1) s
(k)
0 a

(k)
0 (F.15)

La mayor diferencia entre esta ecuación y (F.14) reside en que, mientras la DCS
depende de todos los PDDCSs y de todos los momentos de polarización extŕınsecos,
la ICS depende exclusivamente de los momentos con q=0. Esta diferencia proviene de
que la información contenida en los momentos con q 6=0 impone de manera impĺıcita
que se conoce la posición del plano de scattering. Sin embargo, al evaluar la ICS
integramos a todas las direcciones del espacio y, en particular, a todas las posibles
posiciones de dicho plano. Despues de tal integración no tiene sentido hablar del
plano de scattering y la ICS no puede depender de momentos cuya información está
referida a su posición.

F.2.2. Método mecano-cuántico

El punto de partida para obtener una expresión mecano-cuántica de los momen-
tos intŕınsecos (PDDCSs y PPs) son los elementos de la matriz de scattering en la
representación de helicidad [73], la representación mejor adaptada al estudio de las
correlaciones k-k′-j. Al ser dichos elementos independientes de M (la proyección
del momento angular total J) y como las ecuaciones que emplearemos sólo requieren
impĺıcitamente el uso de la enerǵıa total y de los números cuánticos que describen la
configuración atómica y el nivel vibracional de las moléculas, representaremos los ele-
mentos de la matriz de scattering en la representación de helicidad mediante SJ

j′Ω′,jΩ

(j (j′) es el número cuántico rotacional para la molécula diatómica reactiva (pro-
ducto), Ω (Ω′) es el número cuántico de helicidad de los reactivos (productos) y J es
el número cuántico para el momento angular total).
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Usando esta notación, la amplitud de scattering puede escribirse como [74]

fΩ′Ω(θ) =
1

2ikin

∑

J

(2J + 1) dJ
Ω′Ω(θ)SJ

j′Ω′,jΩ (F.16)

siendo dJ
Ω′Ω(θ) una matriz de rotación reducida y kin el número de onda asociado a

los reactivos. Las PDDCSs intŕınsecas vendrán dadas por

[
S(k)

q (θ)
]∗ =

∑

Ω′Ω1Ω2

f̄Ω′Ω1(θ)f̄
∗
Ω′Ω2

(θ)〈jΩ1, kq|jΩ2〉, (F.17)

donde f̄Ω′Ω(θ) representa

f̄Ω′Ω(θ) =

∑
J(2J + 1)dJ

Ω′Ω(θ)SJ
j′Ω′,jΩ[

2
∑

JΩ′Ω(2J + 1)|SJ
j′Ω′,jΩ|2

]1/2
. (F.18)

La DCS para una polarización arbitraria de los reactivos viene dada por [24]

dσ

dω
=

∑

Ω′Ω1Ω2

fΩ′Ω1(θ) f∗Ω′Ω2
(θ) 〈jΩ1|ρ̂|jΩ2〉 (F.19)

donde 〈jΩ1|ρ̂|jΩ2〉 es un elemento de la matriz de densidad de los reactivos (como
se impone que los productos están en un estado rotacional bien definido, el operador
densidad ρ̂ sólo considera las coherencias entre differentes helicidades) que describe
la preparación experimental de los mismos. Estos elementos de matriz se relacionan
con los momentos de polarización extŕınsecos según [25, 33]

〈jΩ1|ρ̂|jΩ2〉 =
2j∑

k=0

k∑

q=−k

2k + 1
2j + 1

a(k)
q 〈jΩ1, kq|jΩ2〉 (F.20)

Combinando (F.17), (F.18), (F.19) y (F.20) se llega a

dσ

dω
=

σiso

2π

2k∑

k=0

k∑

q=−k

(2k + 1) S(k)∗
q (θ) a(k)

q (F.21)

que es idéntica a la expresión (F.14) encontrada en la sección anterior excepto por el
hecho de que la suma en k está limitada a valores que van entre 0 y 2j (consecuencia
de la simetŕıa de los coeficientes de Clebsch-Gordan). Integrando sobre todas las
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direcciones del espacio llegaŕıamos a

σ = σiso

2k∑

k=0

(2k + 1) s
(k)
0 a

(k)
0 (F.22)

para la ICS.
La interpretación de los momentos intŕınsecos y extŕınsecos es idéntica independi-

entemente de si trabajamos usando mecánica clásica o cuántica. En la práctica, las
series infinitas clásicas se pueden truncar en k=2j transformándose los resultados en
resultados cuasiclásicos.

F.2.3. Retratos estereodinámicos

Hasta ahora la exposición se ha centrado en el empleo de los momentos de polari-
zación intŕınsecos para determinar el control de los observables de reacción que puede
lograrse mediante una adecuada polarización experimental de los reactivos.

Sin embargo, su utilidad va mucho más allá. Los momentos intŕınsecos representan
la polarización de los reactivos cuando la reacción tiene lugar o, en otras palabras,
la polarización de los reactivos que da lugar a la formación de productos. Por lo
tanto, mediante su análisis es posible caracterizar el mecanismo (o mecanismos) de la
reacción.

La manera más conveniente de llevar a cabo tal estudio es mediante los retratos es-
tereodinámicos (“stereodynamical portraits”): figuras tridimensionales que combinan
la información contenida en un determinado conjunto de momentos de polarización
y proporcionan una visión inmediata de las distribuciónes de r y j asociadas a esos
momentos. Las expresiones de estas distribuciones son [40]

Pr(θr, φr) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

s(k)
q 〈j0, k0|j0〉C∗kq(θr, φr) (F.23)

para los retratos asociados al eje internuclear (“internuclear axis potraits”) y

Qr(θj , φj) =
2j∑

k=0

k∑

q=−k

2k + 1
4π

s(k)
q 〈jj, k0|jj〉C∗kq(θj , φj) (F.24)

para los retratos asociados al momento angular rotacional (“rotational portraits”).
En estas expresiones se han utilizado los PPs (s(k)

q ) para generar los retratos. Sin
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embargo, seŕıa posible haber empleado las PDDCSs o los momentos extŕınsecos. Lo
único que cambiaŕıa seŕıa el significado f́ısico de las distribuciones tridimensionales
obtenidas: (i) las distribuciones asociadas a los PPs representan la distribución de r y
j que da lugar a la reacción (F.3), (ii) las asociadas a las PDDCSs son la distribución
de r y j que da lugar a la reacción (F.3) a un ángulo de scattering determinado y (iii)
las asociadas a los momentos extŕınsecos representan las distribuciones experimentales
de r y j.

F.3. Ejemplos y resultados

F.3.1. Determinación experimental de la influencia de la

polarización de los reactivos

Describiremos, en primer lugar, un experimento de haces moleculares que podŕıa
usarse para determinar la validez de las prediciones teóricas llevadas a cabo mediante
las herramientas introducidas en la Sección anterior.

El experimento es, en principio, capaz de polarizar cualquier molécula supceptible
de sufrir excitación Raman estimulada. Nuestra presentación se centrará, sin embargo,
en la reacción

H + D2(v = 0, j = 2) → HD(v′, j′) + D (F.25)

El experimento consiste en alinear el momento angular rotacional (j) de la molécula
D2 mediante la preparación de ésta en el estado |v=0, j=2,m=0〉, donde la proyección
de momento angular m se refiere al eje Z del sistema de laboratorio. La preparación
de la molécula reactivo en este estado puede conseguirse mediante Raman estimulado
seleccionando las frecuencias “pump” y “Stokes” de manera adecuada [97]. De esta
manera, el eje Z del sistema de laboratorio coincidiŕıa con la dirección del laser re-
sponsable de la transición2 y el eje internuclear de la molécula D2(v=0, j=2) quedaŕıa
dispuesto paralela/antiparalelamente a la dirección Z, mientras que j se colocaŕıa per-
pendicular a la misma. Cambiando la dirección del eje Z, se cambia la preparación
experimental de j y r con respecto al eje k y, si el experimento incluye detección de
productos resuelta en ángulo de scattering, también con respecto al plano de scatter-
ing (plano k-k′).

Para un estado puro |j=2,m=0〉, la polarización de r y j en el sistema de laborato-
rio está completamente determinada por tres momentos de polarización A

(k)
Q , cuyos

2Por esta razón, en la Fig.F.1, el eje Z del sistema de laboratorio se representó como E
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Fig. F.2.: Distribuciones experimentales de r y j correspondientes a los reactivos sin
polarizar (“isotropic”) y a diferentes preparaciones de ejes (incluyendo los
valores de α y β empleados en cada caso). Todas las figuras se refieren al
sistema de centro de masa xyz.

valores mecano-cuánticos son:

A
(0)
0 = 0 A

(2)
0 = −

√
2
7

A
(4)
0 =

√
2
7

(F.26)

Como la preparación de ejes tiene simetŕıa axial (en el sistema de laboratorio),
únicamente los momentos con Q=0 pueden ser distintos de cero.

Los valores de los momentos extŕınsecos en el sistema de centro de masa xyz pueden
obtenerse mediante el uso de la expresión (F.12), llevándonos a

a(k)
q = Dk∗

q0 (α, β, γ)A(k)
0 = Ckq(β, α)A(k)

0 (F.27)
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Dado que las preparaciones de ejes tienen simetŕıa axial en el sistema XY Z, los
únicos ángulos de Euler que se requieren son α y β, los ángulos azimutal y polar que
especifican la posición de Z en el sistema de centro de masa (ver la Fig.F.1, en la que
se ha identificado el eje Z con la dirección del laser E).

Varios ejemplos de las preparaciones de ejes que se pueden obtener mediante este
experimento se presentan en la Fig. (F.2) donde, despues de evaluar los momentos
extŕınsecos correspondientes a cada preparación de ejes mediante (F.27), se han em-
pleado los retratos estereodinámicos para obtener las distribuciones de r y j asociadas
a esos momentos.

F.3.2. Reacción D+H2(v = 0, j = 2)

Control

La naturaleza y magnitud del control de la reacción (F.25) mediante el experi-
mento anteriormente propuesto se discutirá a continuación. Los resultados se basan
en cálculos mecano-cuánticos [112] y de trayectorias cuasiclásicas [25] sobre la super-
ficie BKMP2 [111].

En el experimento, la dirección de alineamiento de r en el sistema de centro de
masa está determinado por los ángulos α y β. En particular, nosotros consideraremos
β=0, 54.74 y 90◦ (54.74◦ es el ángulo mágico) y α=0, 45 y 180◦. Es fundamental
a la hora de interpretar los resultados tener claro que, mientras el eje internuclear
r está alineado a lo largo de la dirección definida por α y β, el momento angular
rotacional se encuentra situado perpendicular a tal dirección. Por lo tanto, cuando
β=0◦ el eje internuclear será paralelo a k y las colisiones serán colineales (“head-
on”) y cuando β=90◦ el eje internuclear será perpendicular a k y las colisiones serán
laterales (“side-on”).

La Fig. F.3 representa la función de excitación (la sección eficaz integral sumada
sobre estados finales) para la reacción (F.25) en función de la enerǵıa de collisión. La
ĺınea continua corresponde al caso más habitual, reactivos sin polarizar, mientras que
las demás incluyen el efecto del alineamiento de D2 y nos permiten concluir que: la
reactividad es favorecida por colisiones colineales (β=0◦), dificultada por colisiones
laterales (β=90◦) y apenas alterada por la preparación correspondiente al ángulo
mágico. Aunque este no es un resultado inesperado (se sabe que la reacción D+H2 es
“collinearly constrained”), la Fig. F.3 cuantifica este efecto y establece en que medida
se puede controlar la reactividad seleccionando la polarización adecuada.

El efecto del alineamiento de los reactivos sobre la distribución rotacional de la
molécula HD cuando v′=0 y Ecoll=1.306 eV se ilustra en la Fig. F.4, que contiene
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Fig. F.3.: Función de excitación mecano-cuántica para la reacción H+D2(v=0,j=2) y
diferentes alineamientos de la molécula D2. La curva indicada como “iso”
corresponde a los reactivos sin polarizar, es decir, aquella situación en que
las distribuciones de los vectores j y r antes de la colisión son isotrópicas,
de tal manera que dichos vectores no se alinean u orientan a lo largo de
ninguna dirección en el espacio.

tanto resultados cuasiclásicos (panel superior) como mecano-cuánticos (panel infe-
rior). Ambos tipos de resultados muestran un notable acuerdo, encontrándose en los
dos casos que: las colisiones colineales (β=0◦) hacen la distribución rotacional más
fŕıa, las colisiones laterales (β=90◦) la hacen más caliente y las colisiones caracter-
izadas por el ángulo mágico no alteran la forma de la distribución isotrópica. Es
interesante resaltar que las ICSs correspondientes a la formación de productos en los
estados rotacionales j′=0-6 y j′=8-12 responden al alineamiento de los reactivos de
manera casi opuesta.

Únicamente los parámetros de polarización s
(0)
0 , s

(2)
0 y s

(4)
0 contribuyen a la sección

eficaz integral (ver (F.22)). De estos, s
(2)
0 es el principal responsable de los cambios en

el valor del observable. Este momento es bastante negativo (positivo) para j′ < 5 (j′ >

10) y cambia de signo cuando j′=8. Estos valores explican porqué preparaciones de los
ejes con a

(2)
0 =-0.535, 0 ó 0.237 (estos són los valores mecano-cuánticos del momento

de polarización extŕınseco cuando β toma los valores 0, 54.74 o 90◦ respectivamente)
llevan a distribuciones rotacionales de los productos que van siendo progresivamente
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Fig. F.4.: Distribución rotacional de los productos de la reacción
H+D2(v=0,j=2)→HD(v′=0,j′)+D a Ecoll=1.306 eV. Las distintas
curvas corresponden a los reactivos sin polarizar (iso) y a diferentes aline-
amientos de la molécula D2. El panel superior corresponde a resultados
cuasiclásicos y el inferior a resultados mecano-cuánticos.

más calientes.

El análisis del efecto de la polarización de los reactivos sobre la sección eficaz
diferencial requiere considerar el ángulo azimutal α además del ángulo β. Como se
demuestra a continuación, esto incrementa la estereoespecificidad del experimento
y permite un control de la reacción más “fino” que el obtenido para las secciones
integrales.

La Fig. F.5 contiene la DCS sumada sobre niveles rotacionales de la reacción (F.25)
cuando v′=0 y Ecoll=1.306 eV. El panel superior incluye resultados cuasiclásicos y
el inferior mecano-cuánticos. Un análisis rápido de los resultados permite concluir
dos cosas: (i) el acuerdo entre ambos tipos de resultados es muy notable (tanto más
cuanto que la consideración de la DCS implica un gran nivel de detalle en el estudio
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de la reacción) y (ii) cambios en la preparación de los reactivos provocan drásticas
modificaciones de la forma de la DCS.

Las colisiones colineales (β=0◦) dan lugar a una distribución angular que, com-
parada con la obtenida en el caso isotrópico, favorece el scattering en la dirección
“backward” (θ = 180◦). A su vez, las colisiones laterales (β=90◦) aumentan el scat-
tering “sideways”. El alineamiento correspondiente al ángulo mágico lleva a una
situación intermedia entre lo observado para los dos casos anteriores.

Es de destacar, por último, la influencia del ángulo azimutal α, cuyo valor puede
tener un efecto espectacular sobre la forma de la DCS. Valgan como ejemplo los re-
sultados correspondientes a β=54.74◦,α=45◦ y a β=54.74◦,α=180◦: mientras que en
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el primer caso el alineamiento de la molécula D2 lleva a una DCS de forma similar a
la isotrópica, aunque mucho menos intensa, la segunda preparación de ejes da lugar
a un notable incremento de la DCS, que es especialmente pronunciado alrededor de
θ=115◦. Los valores α=0 y 180◦ corresponden a preparaciones de los reactivos donde
el eje internuclear de la diatómica está sobre (o cerca de) el plano de scattering. Por el
contrario, valores del ángulo azimutal comprendidos en el intervalo 45◦ ≤ α ≤ 135◦ in-
dican que predominan las geometŕıas donde el eje internuclear está aproximadamente
perpendicular al plano de scattering. El hecho que se obtenga un gran incremento
de la DCS cuando α=180◦ sugiere que la reacción es predominantemente colineal,
es decir, que el plano formado por los tres átomos permanece constante durante el
transcurso de la reacción y coincide con el plano de scattering.

Mecanismo

Además de sobre el control de la reacción (F.25), las páginas anteriores nos propor-
cionaron pistas acerca del mecanismo de dichas colisiones. Sin embargo, para llevar
a cabo un estudio pormenorizado del mecanismo es más conveniente utilizar direc-
tamente los momentos de polarización intŕınsecos en combinación con los retratos
estereodinámicos.

Dicho análisis permite caracterizar dos mecanismos distintos para las colisiones
D+H2 que, manteniendo la nomenclatura utilizada por otros autores [110], llamare-
mos directo (“direct”) y retrasado (“delayed”).

El primero es un mecanismo directo, responsable de la mayor parte de la reactividad
(en concreto, de todo el scattering “backward” y “sideways”) y asociado a valores del
número cuántico de momento angular total (J) medios y bajos. La estereodinámica
del mecanismo viene fundamentalmente determinada por dos momentos intŕınsecos
reales: S

{1}
1− (θ) y S

{2}
0 (θ) (y sus correspondientes PPs cuando se consideran los resul-

tados integrados sobre el ángulo de scattering). El primero determina la orientación
de j con respecto al eje y del sistema de centro de masa y, el segundo, la inclinación
de r respecto al eje z ≡ k, la dirección de aproximación de los reactivos.

Un examen detallado de los valores3 de S
{1}
1− (θ) y s

{1}
1− permite concluir que existe

una relación entre éstos y la excitación rotacional de los productos. Tal relación se ex-
plica mediante la Fig. F.6: si j está orientado de modo paralelo (antiparalelo) al eje y,
los átomos H y D chocan mientras se mueven a lo largo de direcciones aproximadamen-
te opuestas (similares), formándose un complejo H-D-D con gran (poca) excitación
“bending” que, al romperse, da lugar a la formación de productos rotacionalmente

3Valores positivos (negativos) de los momentos S
{1}
1− (θ) y s

{1}
1− indican que j se orienta paralelamente

(antiparalelamente) a y
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Fig. F.6.: Ilustración que ejemplifica la influencia de la orientacion de la molécula D2

sobre la excitación rotacional de los productos, es decir, de la molécula HD.
Si la orientación de j es paralela (antiparalela) a y ≡ k×k′, los átomos H y
D que colisionan lo hacen moviéndose sobre direcciones aproximadamente
opuestas (similares). Esto llevará a la formación de un complejo H-D-D con
más (menos) enerǵıa vibracional “bending” que, a su vez, da lugar a más
(menos) excitación rotacional de los productos.

muy (poco) excitados. Como ilustración del esta caracteŕıstica de la reacción, la
Fig. F.7 presenta la distribución rotacional y los retratos estereodinámicos intŕınsecos
correspondientes a la reacción H+D2(v=0,j=2)→HD(v′=0,j′)+D cuando Ecoll=1.506
eV. Para facilitar la visualización de los retratos, el origen del sistema de centro de
masa se ha desplazado del centro del cubo (su posición real) a una esquina posterior
del mismo. Los retratos asociados al momento angular rotacional de D2 (fila central)
representan las distribuciónes de j que dan lugar a la formación de los productos para
cada uno de los valores de j′ y muestran de una manera clara como los valores bajos
(altos) de j′ correlacionan con colisiones donde j está orientado a lo largo de −y (+y).

El valor de los momentos S
{2}
0 (θ) y s

{2}
0 se relaciona con el alineamiento de j y r

con respecto a k. Valores positivos (negativos) de dichos momentos corresponden (i)
a j alineado paralelamente (perpendicularmente) a k y a (ii) r dispuesto perpendicu-
larmente (paralelamente) a k. Siempre que el mecanismo directo sea el mecanismo
dominante (lo cual, como se discutirá más tarde, es verdad siempre excepto cuando
consideremos reacciones estado-a-estado en la zona “forward”), se encuentra que los
valores de los momentos S

{2}
0 (θ) y s

{2}
0 vienen determinados por la necesidad de faci-

litar a los reactivos el acceso a la zona del estado de transición, que para esta reacción
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Fig. F.7.: Distribución rotacional mecano-cuántica de los productos de la reacción
H+D2(v=0,j=2)→HD(v′=0,j′)+D a Ecoll=1.506 eV y retratos estere-
odinámicos intŕınsecos correspondientes al eje internuclear de la molécula
D2 (fila superior) y a su momento angular rotacional (fila intermedia).

es lineal y muy ŕıgido (ligeras desviaciones de la geometŕıa lineal llevan a notables
incrementos de enerǵıa). Esto significa que, cuando predominen los parámetros de
impacto bajos, dichos valores mostrarán que r tiende a disponerse a lo largo de k

mientras que, por el contrario, cuando dominen los parámetros de impacto altos, los
valores de los momentos indicarán que r se “tumba” y se coloca perpendicularmente a
k. Un ejemplo de este comportamiento se encuentra en los retratos estereodinámicos
para r inclúıdos en la Fig. F.7 (fila superior): a medida que aumenta la excitación
rotacional de los productos los parámetros de impacto que participan en la reacción
van siendo mayores y, en consecuencia, el eje internuclear se tumba con respecto a k.

El segundo de los mecanismos identificado en relación con el proceso F.25 (el me-
canismo retrasado) es responsable de los picos “forward” que aparecen en las DCSs
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{2}
0 (θ) renormalizada para la H+D2(v=0,j=2)→HD(v′=0,j′=1, 4, 8 y

10)+D a Ecoll=1.306 eV. Las ĺıneas continuas corresponden a resultados
cuanto-mecánicos y las discontinuas a resultados cuasiclásicos. La renor-
malización de la PDDCS implica dividir S

{2}
0 (θ) entre S

{0}
0 (θ), de manera

que las polarizaciones intŕınsecas correspondientes a distintos valores del
ángulo de scattering pueden compararse entre si directamente.

cuando los productos se forman con poca excitación rotacional. Las colisiones asocia-
das a este mecanismo se caracterizan por grandes valores del parámetro de impacto
y por poder ser tanto “nearside” como “farside” [115, 116], según sea el ángulo de
deflexión positivo o negativo. La presencia de ambos tipos de colisiones4 se manifiesta
a traves de la aparición de fuertes oscilaciones en las PDDCSs mecano-cuánticas para
valores de j′ bajos en la zona “forward” de la DCS (ver Fig. F.8). Dichas oscilaciones
no pueden ser reproducidas por los cálculos de trayectorias (ĺıneas discontinuas en la
Fig. F.8) y se han atribúıdo a interferencias entre las colisiones “nearside” y “farside”
[96].

El efecto de estas oscilaciones sobre la esterodinámica de la reacción resulta evidente
al analizar los retratos estereodinámicos intŕınsecos de la Fig. F.9. Debido a los
bruscos cambios en los valores de las PDDCSs, su forma cambia de una manera
radical con el ángulo de scattering: modificaciones de unos pocos grados cambian
completamente las preferencias direccionales de la reacción.

4En contraste con el mecanismo directo, el mayoritario, donde las colisiones eran exclusivamente
“nearside”
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Fig. F.9.: Retratos estereodinámicos intŕınsecos para la reacción
H+D2(v=0,j=2)→HD(v′=0,j′=0)+D a Ecoll=1.306 eV y tres valores
del ángulo de scattering (θ=4, 8 y 11◦).

F.3.3. Reacción F+H2(v = 0, j = 2)

La reacción F+H2 es, después de la reacción H+H2 y sus variantes isotópicas, la
que ha recibido más atención por parte de los cient́ıficos dedicados al estudio de
la dinámica molecular y constituye, por lo tanto, la elección natural a la hora de
continuar el análisis de la estereodinámica de las reacciones átomo-diátomo.

Con esta finalidad, se han aplicado las técnicas expuestas en las secciones anteriores
al estudio del mecanismo y del control de la reacción

F + H2(v = 0, j = 2) → FH(v′, j′) + H (F.28)

para tres enerǵıas de colisión5: 0.079, 0.119 y 0.148 eV. Los momentos de polarización

5Coinciden con las enerǵıas de los experimentos de haces moleculares llevados a cabo por Lee y sus



232 F. Estereodinámica de reacciones elementales. . .

intŕınsecos a cada enerǵıa se han calculado a partir de las correspondientes matrices
de scattering en la representación de helicidad obtenidas mediante cálculos indepen-
dientes del tiempo llevados a cabo con el programa ABC [75] sobre la superficie de
enerǵıa potencial desarrollada por Stark y Werner (SW) [125].

Un análisis detallado de la información contenida en los momentos intŕınsecos de-
muestra que (i) la estereodinámica de las colisiones que llevan a HF(v′=3) es diferente
de la encontrada para las colisiones que llevan a HF(v′=1 y 2) y (ii) que se pueden
distinguir dos mecanismos diferentes, que se corresponden con los mecanismos directo
y retrasado encontrados al estudiar la reacción H+D2. El primero continúa siendo
el mecanismo dominante y muestra caracteŕısticas fundamentalmente similares: (i)
existe una clara correlación entre la excitación rotacional de los productos y la orien-
tación de j a lo largo del eje y y (ii) la inclinación del eje internuclear r con respecto
al eje z tiende a ser la que facilita el acceso de los reactivos a la zona del estado de
transición (que en este caso no es lineal sino plegado [125]). Esta tendencia es, sin em-
bargo, mucho menos marcada que para la reacción H+D2, posiblemente debido a que
la vibración “bending” del estado de transición para la superficie SW es mucho más
plana que para la superficie BKMP2, de manera que los requerimientos direccionales
para acceder al estado de transición son ahora menos rigurosos.

El segundo mecanismo, el mecanismo retrasado, es únicamente discernible cuando
se consideran resultados estado-a-estado resueltos en el ángulo de scattering. Las
correspondientes PDDCSs presentan las mismas oscilaciones encontradas para la
reacción H+D2 y procedentes de interferencias entre colisiones “nearside” y “farside”,
con sólo dos pequeñas diferencias: (i) la amplitud de las oscilaciones es ahora menor
y (ii) su presencia se extiende sobre un mayor intervalo de ángulos de scattering,
indicando que, posiblemente, la vida media del complejo que da lugar al scattering
“forward” es mayor para la reacción F+H2 que para la H+D2.

Los momentos intŕınsecos pueden emplearse, además, para cuantificar el control
alcanzable mediante la preparación de los reactivos. Es especialmente significativo el
control sobre las secciones eficaces diferenciales, como se ilustra en las Figs. F.10 y
F.11. Estas figuras contienen las DCSs correspondientes a HF(v′=2 y 3) y a distintos
alineamientos experimentales. En ambos casos, una preparación de ejes que favorezca
las colisiones colineales (β=0◦) da lugar a la aparición de un notable máximo en
la zona “backward”, a θ=180◦. La posición de dicho máximo se puede controlar
prácticamente a voluntad, sin más que inclinar la dirección de alineamiento en el
plano de scattering. Cuando esto ocurre, el máximo se desplaza suavemente hacia la
zona “sideways”, tanto más cuanto más se aproxime la preparación a β=90◦,α=0◦,

colaboradores [120]
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Fig. F.10.: Sección eficaz diferencial de la reacción F+H2(v=0,j=2)→HD(v′=2,j’)+D
sumada sobre los niveles rotacionales finales cuando Ecoll=0.148 eV. Las
distintas curvas corresponden a los reactivos sin polarizar (iso) y a dife-
rentes alineamientos de la molécula D2.

permitiendo un control “a la carta” de la DCS en las zonas “backward” y “sideways”.
Por el contrario, la DCS “forward” muestra poca sensibilidad a la preparación de los
reactivos, cambiando relativamente poco con α y β.

F.3.4. Reacciones ultrafŕıas

Se dice que una reacción está dentro del régimen ultrafŕıo cuando la enerǵıa de
colisión es lo suficientemente baja como para que sólo una onda parcial, la que corres-
ponde a l=0, sea reactiva. En estas condiciones, valores de l 6=0 daŕıan lugar a una
barrera centŕıfuga que, aunque pequeña, seŕıa suficiente para impedir la reacción.

Los elementos de la matriz de scattering para reacciones ultrafŕıas SJ
j′Ω′,jΩ resultan

ser independientes de la helicidad de los reactivos, es decir,

SJ
j′Ω′,jΩ = SJ

j′Ω′,j (F.29)

Este hecho influye decisivamente en los valores que los momentos de polarización
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Fig. F.11.: Sección eficaz diferencial de la reacción F+H2(v=0,j=2)→HD(v′=3,j’)+D
sumada sobre los niveles rotacionales finales cuando Ecoll=0.148 eV. Las
distintas curvas corresponden a los reactivos sin polarizar (iso) y a dife-
rentes alineamientos de la molécula D2.

intŕınsecos mecano-cuánticos pueden tomar cuando la enerǵıa de colisión tiende a cero
y en las posibilidades de controlar la reacción. Es posible demostrar, combinando la
anterior expresión con las ecuaciones (F.17) y (F.18), que

� El momento S
{0}
0 (θ) es independiente del ángulo de scattering y toma el valor

1/2.

� Todas las PDDCSs de rango (k) impar se anulan.

� Únicamente los PPs s
{0}
0 y s

{k par}
q par (q distinto de cero) pueden tener valores no

nulos. El resto serán necesariamente cero.

y, por lo tanto,

� No es posible controlar la ICS para reacciones ultrafŕıas. La razón de tal im-
posibilidad es que el control de la ICS depende de los valores de los PPs con
q=0 (ver (F.22)), todos los cuales se anulan cuando la enerǵıa de colisión tiende
a cero.
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Fig. F.12.: Distribución rotacional de los productos de la reacción
F+H2(v=0,j=2)→HD(v′=2,j’)+D a Ecoll=1 µeV y retratos intŕınsecos
para valores seleccionados de j′. Las curvas correspondientes a los
reactivos sin polarizar (iso) y a los diferentes alineamientos de la molécula
H2 se superponen.

� Es posible controlar la DCS para reacciones ultrafŕıas porque todas las PDDCSs
con k par pueden (y generalmente son) distintas de cero (ver (F.21)).

Como ejemplo de tal control (o ausencia de él) se presentan las Figs. F.12 y F.13. En
la primera se ilustra la imposibilidad de controlar la ICS de las colisiones F+H2(v=0,
j=2)→ HF(v′=2,j’)+H a Ecoll=1 µeV (a esta enerǵıa, prácticamente sólo la onda par-
cial s es reactiva). Independientemente de como preparemos los reactivos no logramos
modificar los valores de la ICS. Es de destacar que los retratos estereodinámicos
intŕısecos son muy anisotrópicos siendo, sin embargo, imposible aprovechar tal infor-
mación para controlar la ICS.

La Fig.F.13 contiene mapas polares (representaciones de la DCS sobre un plano
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Fig. F.13.: Mapas polares para la reacción F+H2(v=0,j=2)→HD(v′=2,j’)+D a
Ecoll=1 µeV. Los distintos paneles corresponden a los reactivos sin po-
larizar (iso) y a diferentes alineamientos de la molécula H2.

tal que el ángulo polar coincide con el ángulo de scattering y la distancia al centro
es proporcional a la enerǵıa cinética de los productos, de tal manera que a mayor
(menor) distancia mayor (menor) enerǵıa cinética y menor (mayor) enerǵıa interna de
los productos) para la reacción F+H2(v=0, j=2) a Ecoll=1 µeV. La DCS isotrópica
tiene la forma que era de esperar, es decir, es completamente isotrópica. Por su
parte, las distintas preparaciones de ejes dan lugar a DCSs con formas muy distintas,
destacando el hecho de que se pueden manipular independientemente las direcciones
de salida de las moléculas HF(v′=2) y HF(v′=3).

Por ejemplo, las colisiones colineales (β=0◦) favorecen la formación de HF(v′=3)
en θ=0 o 180◦, mientras que los productos HF(v′=2) son dispersados de modo pre-
ferente según θ=45 o 135◦ (sin embargo, la distribución rotacional de los productos
HF(v′=2,j′ alto) sigue un patrón opuesto al adoptado por los niveles HF(v′=2,j′

bajo), donde se concentra la mayor probabilidad de reacción).

Cuando la preparación experimental es la que corresponde a β=90◦,α=0◦ (colisiones
laterales), la distribución angular de los productos HF(v′=3) se invierte, formándose
preferentemente en direcciones correspondientes a scattering “sideways”. Respecto a
los productos HF(v′=2), la distribución angular cambia poco respecto al caso anterior
para valores de j′ bajos y sigue la evolución de HF(v’= 3) para valores altos de j′.
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Por último, si preparamos los reactivos según β=54.74◦,α=0◦ serán las distribu-
ciones angulares de HF(v′=3) las que permanecen casi inalteradas y las asociadas a
HF(v′=2) las que cambian (en este caso todas rotan 45◦ respecto al caso anterior,
independientemente de si el valor de j′ es alto o bajo).

F.4. Conclusiones

� Se han presentado una serie de herramientas teóricas que, basándose en el es-
tudio de la polarización del momento angular rotacional de los reactivos en
reacciones átomo-diátomo, permiten profundizar en el estudio del mecanismo
de tales procesos y establecer esquemas experimentales para su control. Se
ha descrito, además, un experimento que permitiŕıa validar las predicciones
teóricas.

� El formalismo matemático se ha establecido de manera que puede ser usado
en combinación tanto de cálculos de trayectorias como de cálculos mecano-
cuánticos.

� El método se basa en la distinción entre polarización intŕınseca y extŕınseca de
los reactivos. La primera representa su polarización cuando la reacción tiene
lugar y depende exclusivamente de la dinámica del proceso. La segunda re-
presenta la preparación de reactivos correspondiente a cada experimento y, en
principio, puede ser modificada a voluntad.

� En primer lugar, se han aplicado estas técnicas a la reacción H+D2, encontrándo-
se que:

– Es posible controlar los productos de reacción mediante una adecuada
preparación de los reactivos. Dicho control afecta a la probabilidad de
reacción, a la distribución de niveles internos de los productos y a la di-
rección en la que éstos se forman.

– Se pueden caracterizar dos mecanismos distintos. Uno, el mayoritario,
corresponde a colisiones directas fuertemente inflúıdas por la geometŕıa
del estado de transición y con parámetros de impacto medios y bajos. El
otro, responsable del scattering “forward”, corresponde a la interferencia
entre colisiones “nearside” y “farside” con parámetro de impacto alto.

� El estudio de la reacción F+H2 llevó a resultados cualitativamente similares:
(i) es posible controlar la reacción polarizando la molécula H2 y (ii) se pueden
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diferenciar claramente los dos mismos mecanismos que para las colisiones H+D2.
Las estereodinámica de la reacción es diferente según que los productos sean
HF(v′=1 y 2) o HF(v′=3).

� Las técnicas desarrolladas son aplicables al estudio del mecanismo y control de
reacciones qúımicas en régimen ultrafŕıo. Es estos casos, aunque el valor de la
ICS no puede cambiarse polarizando los reactivos, puede modificarse notable-
mente la distribución angular de los productos y la DCS.
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