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Abstract. The analysis of scientific articles produced by different groups of au-

thors helps to identify and characterize research groups and collaborations among

them. Although this is a quite studied area, some issues, such as quick understand-

ing of groups and visualization of large social networks still pose some interest-

ing challenges. In order to contribute to this study, we present a solution based in

Overlapper, a tool for the visualization of overlapping groups that makes use of

an enhanced variation of force-directed graphs. For a real case study, the tool has

been applied to articles in the DBLP database.

1 Introduction

Social network analysis has been a growing area of study in social sciences, mainly due

to the amount of social information that can be recovered from internet social activities

(blogs, chats, mail contacts, etc.) and from different public databases (movie and music

databases, scientific article databases, etc.).

Information visualization has been extensively used by social scientists to aid in

understanding these relationships. Most of the uses of information visualization in so-

cial networks are devoted to path-finding tasks, neighbor detection and most connected

nodes (hubs) detection [9]. To perform these tasks, the usual visualization techniques

are Node Links (NL) diagrams. NL diagrams represent entities as nodes (usually, points

or small figures) and relationships as links (lines) that join related nodes. These dia-

grams are good for finding common neighbors and other characteristics, such as ar-

ticulation points (nodes where two large subgroups join), but become cluttered and

unreadable when the size of the graph is large [13]. Filtering and navigation through

the graph must be implemented to dodge this problem. The primary alternate visualiza-

tion technique to NLs are matrix graph representations, which perform well in finding

most connected nodes and large complete subgraphs. Unfortunately matrix represen-

tations are not as good as NLs at conveying paths, and also have problems with large

networks because of the space needed to represent the matrices (they are symmetric

matrices, thus duplicating information, with lots of empty cells). The merging of both

techniques is leading to promising results [12] although are still unable to deal with the

large networks problem.

Some social data provides group information in addition to plain, individual rela-

tionships. This group information can help to simplify individual-level visualizations

by taking them to group-level visualization, and it is key to understanding group re-

lationships. In fact, research to find the best layout for NLs usually involves artificial



classification of data by means of clustering or similar techniques, based on geomet-

rical characteristics of the graph (usually path length between nodes). Most of these

classification algorithms generate non-overlapping groups, which are useful for graph

drawing but are not as good for group analysis, since real social groups are usually more

complex, involving different degrees of overlap among groups.

There are techniques to find overlapping groups in data, such as fuzzy clustering [1]

or biclustering [15], but there are also known overlapping groups in social data. Fur-

thermore, some of the largest public databases contain information on social groups,

such as IMDb (for movies) or DBLP (for scientific articles). In this paper, we present

the application of a graph drawing method that speeds up the comprehension of these

groups and exploits its use to simplify graph visualization. Section 2 presents related

work in the area of social networks and clustered graph drawing. Section 3 explains the

method to build overlapping group graphs, while Section 4 details its application to a

real case study. Finally, Section 5 has our conclusions and summarizes some lines of

future work that we are exploring.

Supplementary information, including more snapshots and a demonstration video

with Smart Graphics’ DBLP entries is available at http://vis.usal.es/artoverlapper.

2 Related Work

In this section, we will briefly survey the main social network tools and clustered graph

drawing techniques in the present days.

2.1 Social network tools

There are a number of tools available to draw graphs, and the number of researchers

that use these tools to analyze their data or as a starting point for their own graph imple-

mentations increase everyday. Some of these tools are mainly based in force-directed

graphs, such as GraphViz [6] or Prefuse [11]. Force-directed graphs [8] make use of

concepts such as gravitational or spring forces to layout nodes in a NL diagram.

These tools are usually more focused on aesthetics and usability, and they are used

by a broad range of users, both scientific and non-scientific. For example, Prefuse,

which is written in Java and it is accompanied by a comprehensive documentation and

a large set of examples.

Other tools, such as Pajek [3] or JUNG (http://jung.sf.net) are focused on statistical

analysis and drawing methods. Contrary to GraphViz or Prefuse, Pajek and JUNG are

used mainly by specialists in social sciences and graph drawing.

2.2 Clustered Graph drawing

Clustered graphs (CGs) are NL representations where groups or zones of related nodes

are highlighted (specially colored, for example). These representations use non-overlapping

clusters present in the data or obtained by clustering techniques (usually hierarchical

clustering).



Three main types of CG drawings have been identified [2]: hierarchical clustered

graphs, compound graphs and force-directed clustered graphs.

Hierarchical clustered graphs, introduced by Eades and Feng [5], start by drawing

the highest level of a hierarchical clustering (only one cluster for all the nodes), and

then go on drawing in decreasing z coordinates additional graphs with lower levels of

clustering, where nodes are clusters and edges join clusters that were together in the

upper clustering (see Fig 1a).

Compound graphs [19] are Hierarchical Clustered Graphs in which the inclusion

relationship is taken into account to draw the hierarchical clustering in a single graph

representation. The final visualization is very similar to a Treemap [18] (see Fig. 1b).

a) c)b)

Fig. 1. a) Hierarchical clustered graph. A 3D visualization with different levels of clustering.

Edges relate clusters together in the upper level. b) Compound graph, the cluster hierarchy at the

left is translated to a graph layout of inclusion clusters. c) Force-directed clustered graph. Edges

internal and external to clusters act as spring forces, with additional help of virtual edges by using

virtual nodes in each cluster (all these figures are taken from [2]).

Finally, force-directed clustered graphs (FDCGs) are the most widespread Clustered

Graphs. A combination of spring forces for a single clustering is used: inter-cluster,

intra-cluster and (sometimes) ancillary forces by using virtual nodes in each cluster. In

addition, a gravitational repulsion between each pair of nodes is applied (see Fig.1c).

Most of the social network tools discussed above have been used to implement FD-

CGs. For example, SocialAction [16] uses the Prefuse visualization kit and betweeness

centrality (a measure of the relative importance of a node within a graph) to determine

and draw clusters, simplifying the visualization of graph drawings. Vizster [10] is also

based on Prefuse and group zones by clustering, allowing the user to define its granu-

larity. Frishman and Tal [7] take GraphViz as a starting point for a dynamic drawing of

clustered graphs. It is common in this implementations that the clustering displayed in

the graph is a level of a hierarchical clustering, that can be changed at user’s demand.

Besides Compound Graphs, where intersection between groups is reduced to in-

clusion, none of these graph drawing methods deal with overlapping groups, that are

usually present in real data, or which can be obtained by newer classification tech-

niques such as biclustering. Overlapping groups are usually a better way to display

connections between entities, avoiding the threshold cut in hierarchical clustering that

can assign doubtful nodes to a group.



Fig. 2. a) Three groups are represented as complete subgraphs, with edges between all their mem-

bers. b) Edges are hidden and replaced by transparent hulls wrapping the elements in each group.

The relationships between groups arise quickly and elements like n4, present in the three groups,

are highlighted by hull overlapping.

3 Group drawing with Overlapper

In this section we describe the drawing methods used by the presented visualization

technique, focusing on graph building, layout and interaction.

3.1 Overlapper

Overlapper is a tool designed for visual analysis of data from different fields, such as

social groups or biclustering results. It integrates and links different ancillary visual-

ization techniques, such as parallel coordinates, scatter plots, tree maps and node-link

diagrams to gain insight into the field of study. The main visualization in Overlapper is

based in the graph that is described below.

The overall structure of the tool is redesigned for each field of study to fit with

the specific characteristics of the data (e. g. node types, group types, relevant ancil-

lary visualization techniques). Two versions have been developed, one for movie world

analysis [20], awarded at the 14th Graph Drawing Contest [4], and another one for

biclustering results analysis [17].

3.2 Group Building

Graph drawing with Overlapper centers on groups and their representation. To achieve

this, the data to be represented should contain information on groups, either from pre-

vious information (as could be the case of databases like IMDb or DBLP) or from

classification techniques (producing either overlapping or non-overlapping groups). No



matter what the source of data, we produce a list of groups G1, ...,Gk each one contain-

ing elements, that will be treated as nodes in a graph: Gi = {ni1, ...,nik}. Note that, for

some groups, it is possible that Gi

⋂
G j 6= ⊘.

From this list of groups, each Gi is represented as a complete subgraph, with the

resulting graph being the union of all these subgraphs (see Fig. 2). Nodes and edges in

this graph G = (N,E) correspond to:

N = {ni| ∃ Gk with ni ∈ Gk} (1)

E = {(ni,n j)| ∃ Gk with ni,n j ∈ Gk} (2)

3.3 Graph layout and drawing

The graph is displayed using a force-directed layout, with two kinds of forces, in a

way similar to other force-directed graphs, such as the ones implemented in the social

network tools discussed in Section 2. A spring force S attracts nodes joined by an edge,

while a gravitational force X repulses each node from every other node (see eq. 3). Both

forces depends on the distances among nodes. The S force is kept stronger than X to

avoid dispersion of groups. The overall result is that nodes in the same groups tend to

be closer and are separated from nodes in different groups.

Fi = ∑
(ni,n j)∈E

Si, j + ∑
n j∈N

Xi, j (3)

The layout is computed iteratively, so after each cycle, nodes are relocated depend-

ing on the applied forces, and forces are again recomputed for the new locations of

nodes.

For each layout cycle, nodes are drawn as circles at their recomputed positions. In

addition, for each group a rounded transparent shape (hull) is drawn, instead of draw-

ing their edges. The contour of the hull is determined by the positions of the outermost

nodes in each subgraph, that are taken as anchor points for a closed spline. The out-

ermost nodes are computed on-the-run by checking the positions of the nodes in each

group, and determining which are the ones in the periphery at each moment (those with

the minimum or maximum x,y coordinates).

The transparency level of hulls is determined by the maximum number of over-

lapping groups in a determinate set of groups, nmax. If 0 is the transparency level of

transparent colors and k is the transparency level of solid colors, the transparency of

each hull is (k − k0)/nmax. k0 is a low value that keeps the maximum overlap from

being fully solid.

Hull drawing, although based on edges, does not clutter the visualization. The trans-

parency of hulls makes intersecting zones among groups more opaque, thus highlighting

the highly connected, hub-like zones.

Finally, to boost comprehension of the relationships among groups, intersecting

nodes are drawn as pie charts, with as many sectors as groups the node belongs to.

This way, after getting used to our method, the analysis of group interactions becomes
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Fig. 3. Some examples of real group relationships from DBLP. Each hull is a group (an article)

and each node an author. a) Three articles, in the first one four authors collaborated, the other

two were written by single authors. b) A chain of scientific collaborations. Most left author has

written two articles, one alone and another one with the chain’s following author that, in turn, has

written another article with the following author in the chain. Finally, this author also collaborated

in a paper with three other colleagues, one of which has written an article alone. c) Two articles

written by almost the same people except one person. d) Four articles. The most prolific author

worked alone once, another time with just a colleague and two more times with groups of two

and four other people. e) A more complex interrelationship of authors. The most relevant author,

present in all (seven) publications is quickly identified. Also, the most prolific authors worked

together on a couple of papers.

easy and unambiguous, and identifying the most connected nodes, thanks to transpar-

ent hulls and pie charts, is quicker (see Fig. 3). Note that for groups of two elements,

hulls are drawn as lines, and for groups of one element, no hull is drawn at all, so in

these cases piecharts are used to distinguish, for example, a member of a group that

has worked in other projects, from a member that just worked in this group. These very

small groups can occur in research paper datasets (some papers are authored by a small

number of researchers).

3.4 Graph interaction

Once the graph is built and displayed, it can be manipulated by the user in a number of

ways. Regarding to the layout, the user can change the parameters X and S and modify

the representation by dragging and fixing node positions. Regarding the graph drawing,

the user can visualize or hide nodes, edges, hulls and pie charts; draw labels of node

and group names; and highlight the nodes connected to a particular node. In order to

facilitate the navigation through the graph, the user can search for author names, filter

low related groups, and get an overview of the complete graph. Finally, the user can

export the graph visualization to different image formats.



a) b)

Fig. 4. a) Japanese researchers in a peripheral group of authors that have published in Bioinfor-

matics. Although it is a more complex group than those presented in fig. 3, interactions between

authors are clear. b) Top-left part of the central subgroup, where the most influent Bioinformat-

ics’ contributors are present. This zone is mainly populated by German authors. Top-right square

shows the overall view of the complete graph, with disconnected, peripheral groups surrounding

the central group, with clear branches.

4 Case Study

In order to demonstrate the capabilities of our representation, we have used subsets

of the DBLP article database [14]. Specifically, we have focused on the articles from

the journal Bioinformatics, with 10 years of publications (since 1998) and over 3500

articles and 25000 authors.

The first five years of Bioinformatics, with 932 articles and 2197 authors, represents

a good challenge for our visualization tool. Filtering all the articles not related to any

other, we reduced the number of articles and authors to 615 and 1212, respectively. The

graph layout, directed by forces, disperses unrelated articles around the visualization

space, leaving the highest related subgroup in the center of the visualization (see Fig. 4b,

top-right square).

It is remarkable that the nationality of the authors is reflected in the way research

groups are formed and publish. For example, in Fig. 4a we observe that a large periph-

eral group is formed almost exclusively by Japanese researchers.

The central group, with the most influential authors in Bioinformatics in its first five

years, also include nationality groupings (see Fig. 5a for Russian researches, intercon-

necting with German colleagues of Fig. 4b).



a)

b)

Fig. 5. a) Bottom left branch of the central main group. Most of the authors are Russian, with

hub figures as Nikolay A. Kolchakov and articulation points as Victor G. Levitsky and Alexey V.

Kochetov. b) Central part of the main group. Here, Alfonso Valencia reveals as one of the most

connected nodes and also as an articulation point. Other articulated and connected authors are

Gary D. Storno and Andrej Sali.

Although complexity in group interactions arises in the groups of Fig. 4 and Fig. 5

with respect to the ones in Fig. 3, relationships are still clear. Due to forces equilibrium,

on few occasions one node can be placed too close to a group that contains nodes related

to it, but the node itself does not pertain to the group. In these cases, pie charts disen-

tangle possible ambiguities. Hub nodes and articulation points are identified quickly,

as can be seen in Fig. 5b. The identification of hub nodes is a difficult task in NL dia-

grams [12]; and it is mainly solved by this visualization.

Finally, we must consider that article graphs are usually sparse, and therefore clut-

tering is less frequent than in other denser graphs. However, the use of hulls instead



of edges significantly simplifies the comprehensibility of the visualization whereas the

traditional graph drawings of nodes and edges are unreadable even for these relatively

simple examples (see Fig. 6).

Fig. 6. Traditional NL representation of fig. 5a. The visualization becomes cluttered and details

about groups are unreadable.

5 Conclusions and future work

We have developed a new graph drawing method based on a different way of represent-

ing relationships among nodes. Individual relationships are taken as the basic infras-

tructure for the graph layout, but are hidden to the benefit of group relationships. The

resulting graph drawing method is only applicable if group information is present or

can be inferred with some classification technique. In these cases, which are common

in social networks, the overlapping clustered graph drawing has advantages over stan-

dard NL diagrams. The edge cluttering is avoided and is substituted by an unoffensive

hull overlapping, that is exploited to highlight intersecting groups.

The presented case study demonstrates that our method can successfully deal with

large sparse graphs without losing readability and provides quick insight into group

relationships. Also, thanks to the pie charts and the force-directed graph layout, the

identification of hub nodes and articulation points is enhanced.

The use of this technique in denser graphs is under research. The overlapping dis-

play method will need modifications in the layout algorithm to deal with possible mis-

placing of nodes inside group hulls in which they are not included. This issue is solved

by the force-directed layout for sparse graphs, but becomes a problem in denser ones.
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13. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in informa-

tion visualization: A survey. IEEE Trans. on Vis. and Comp. Graph., 6(1):24–43, 2000.

14. M. Ley. The dblp computer science bibliography: Evolution, research issues, perspectives.

In 9th Intl. Symp. on String Processing and Information Retrieval, pages 1–10, 2002.

15. S. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: a survey.

IEEE/ACM Trans. of Computational Biology and Bioinformatics, 1(1):24–45, 2004.

16. A. Perer and B. Shneiderman. Balancing systematic and flexible exploration of social net-

works. IEEE Trans. on Vis. and Comp. Graph., 12(5):693–700, 2006.

17. R. Santamarı́a, R. Therón, and L. Quintales. Bicoverlapper: A tool for bicluster visualization.

Bioinformatics, 24(9):1212–1213, May 2008.

18. B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In Infovis, pages 73–78,

2001.

19. K. Sugiyama, K.; Misue. Visualization of structural information: automatic drawing of com-

pound digraphs. IEEE Trans. on Systems, Man and Cybernetics, 21(4):876–892, 1991.

20. R. Therón, R. Santamarı́a, J. Garcı́a, D. Gómez, and V. Paz-Madrid. Overlapper: movie
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