
Supporting the understanding of the evolution of open source software items

Roberto Theron∗

Antonio Gonzalez†

Francisco J. Garcia‡

Department of Computer Science
University of Salamanca, Spain

Abstract

This paper intends to support the awareness of open source software
developers and project managers through the understanding of the
evolution of software items.

We propose a simple interactive visualization tool that focuses in
the representation of the collaboration that takes place between de-
velopers during the development of software items. The visualiza-
tion, which is supported by several interaction techniques, presents
detailed information on a single software item regarding the cre-
ation of baselines, branches and revisions, and useful date and time
details for the arrangement of the development time line and col-
laboration representation. It also allows the filtering of dates using
dates ranges, the hiding of rows and columns and the review of each
revision log.

To demonstrate the usefulness of our proposal we performed a
case study extracting the evolution details from a software item of
XBMC(formerly known as ”XBox Media Center”), an open source
software project under the management of SourceForge.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Screen design; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

Keywords: radiosity, global illumination, constant time

1 Introduction

The open source software community has become of increasingly
importance and size the last decade, and the number of researchers
studying its development and contributing with tools and ideas have
also increase. At the same time many online software repositories,
such as SourceForge, Apache, Google Code and Freshmeat, have
come into scene to support the development of open source soft-
ware projects. This has opened a space for the concurrent contribu-
tion of many developers distributed across the world.

The collaboration between developers in open source software
projects is crucial and demands a lot of informal communication
and coordination. Our intend is to support the awareness of the

∗theron@usal.es
†agtorres@usal.es
‡fgarcia@usal.es

project managers and developers regarding the evolution of items
and the collaboration taking place on its development.

Currently, there are many commercials tools that support the ver-
sioning of code and configuration management. Even though CVS
and Subversion remain the most widely used tools by development
companies and contributors of open source projects. According to
the definition of [Estublier 2000] Software Configuration Manage-
ment enhance the environment of the developers, managing con-
currency and collaboration, and recording changes including time,
date, which modules were affected, how long the modification took
and information about who did the change. The Software Config-
uration Management tools support many other functions, but the
above functions are shared by most code versioning tools; such as
Subversion [Collins-Sussman et al. 2004]. Hence the importance
of software repositories as the information source to extract the col-
laboration activities taking place during project developments, as
well as key information as the identification and establishment of
baselines and revisions and the tracking of changes including dates
and times. However, in spite of the richness of this data source there
is an important lack of mechanisms to convey by means of proper
representations of how the contribution and collaboration of team
members occurs in a particular project.

Traditionally, the software development process has been a sub-
ject of interest for information visualization practitioners. Thus,
the software visualization community is providing excellent results
which are being featured in main stream IDEs. However, Software
Configuration Management tools and code versioning tools still can
be enhanced by using highly interactive visualizations rather than
mere static representations.

In recent years the field of information visualization has played
an important role providing insight through visual representations
combined with interaction techniques that take advantage of the
human eye’s broad bandwidth pathway to the mind, allowing ex-
perts to see, explore, and understand large amounts of information
at once [Theron 2006].

The interactive visual solution we propose in this paper considers
both space and time strategies: the space strategy uses layout and
graphic design to pack appropriate information in one view, while
the time strategy uses view transitions to spread information over
multiple views [Mackinlay et al. 1991]. Additionally, we take
into consideration several techniques to support navigation, inter-
pretation of visual elements and understanding relationships among
items in their full context [Leung and Apperlley 1994].

There are also many information visualization techniques, each one
with its advantages and disadvantages, so frequently it is required
to use a sort of combination to provide a real solution to end users.
Spence [Spence 2000] and Card [Card et al. 1999] provide ex-
cellent surveys of information visualization mechanisms and tech-
niques. We support our visualization through the use of a grid based
structure, selection, navigation, filtering, polyfocal display, a tree
hierarchy (a directed graph) for representing revisions, a focus +
context view and a time line as visualization techniques.

We considered in our design what is going on in the project, who



Figure 1: Normal View of the main visualization panel.

else is working on the project, what are they doing, how long have
they been working on a revision, how their work may impact the
work of others, if developers are collaborate between them or work
separate from each other and the overall framework designed by
Storey in [Storey et al. 2005] for describing the visualizations of
human activities in software engineering.

This paper is committed to present a 2D interactive visualization
tool, which allows visualizing the contributions of the team mem-
bers, through several revisions, baselines and long periods of time,
on the same item or document within the software project. This
way, the rest of the paper is organized as follows: Section 2 reviews
some related works applied to the visualization of software evolu-
tion and software visualization techniques; Section 3 discusses the
design of our visualization; Section 4 is a case study in which the
tool is used to review open source software items, and finally, Sec-
tion 5 discusses the conclusions.

2 Related Work

Considerable work has been dedicated to study the software visual-
ization and information visualization areas. Although we concen-
trate on the evolution of individual items and the collaboration of
software teams on its development, in this section we review some
useful ideas that have been applied in the visual representation of
code versioning tools repositories.

As a starting point it is useful to consider the definition proposed by
Gracanin [Gracanin et al. 1994] who states that Software Visual-
ization is a discipline that makes use of various forms of imagery to
provide insight and understanding and to reduce complexity of the
existing software system under consideration. As a consequence it
is important to identify the tasks that will be performed by the vi-
sualization as well as the scope and content of the visualization,
who will be the audience, what data source is going to be repre-
sented, how it will be represented, which medium will be used for
the representation, the forms and techniques that will be used by
the presentation and how the user is going to interact with the visu-
alization.

On the other hand Xie [Xie et al. 2006] list a set of questions that

can be used to guide the design of visualizations of open source
software repositories; for the purposes of this paper it is relevant
determining which authors work on the same file, when was a mod-
ification made and how many authors worked on the release of the
system.

Moreover, Eick [Eick et al. 2002] accurately states that a funda-
mental problem in visualizing software changes is to choose effec-
tive visual representations or metaphors and then review some of
them, as well as some combinations showing different data perspec-
tives filtered by developer, basic statistics about changes, size of
the changes, activity carry out by developer, etc. We consider that
the use of effective visual representations and metaphors in combi-
nation with interaction techniques are a powerful combination for
making the visualization display different perspectives of the repre-
sentation, and thus useful in the representation of the evolution of
software items.

Many authors, like Voinea and Telea [Voinea and Telea 2006c] sup-
port the idea that software configuration management repositories
are valuable for project accounting, development audits and under-
stand the evolution of software projects. We strongly agree about
the richness of software repositories; so the effective design of the
repository of Software Configuration Management and Code Ver-
sioning tools can provide information about the development pro-
cess that is not possible to acquire from any other source. We also
consider that through a well design visualization its possible to nav-
igate the repository data and get an insight of what is going on in
the project. The same authors, Voinea and Telea, also propose two
visualizations for software management configuration repositories
in [Voinea and Telea 2006a] and [Voinea and Telea 2006b]. Those
proposals demonstrated that the adequate use of 2D visualizations
in conjunction with colors and textures contribute to the develop-
ment of powerful multidimensional visualization solutions. At the
moment, we do not incorporate textures but we include the use of
colors for the identification of revisions and branches.

Other important contribution to the software evolution field has be
done by Gall [Gall et al. 1999] who developed an interesting ap-
proach using 3D representations and color coding applied to soft-
ware evolution through the time, thinking over structure and at-
tribute changes. The attributes are the revision number, item size



Figure 2: View of the time line design.

Figure 3: Control Panel of the visualization tool.

and complexity. This approach visualizes the version and each item
attributes every time, using one color for each attribute.

There are also several proposals addressing the representation of
temporal spaces using many different structures. Morris [Mor-
ris et al. 2003] worked with the visualization of temporal hierar-
chies plotting research documents along a horizontal track in the
time line and placing related documents according to the hierarchi-
cal structure produced by the clustering phase. Card [Card et al.
2006] developed a visualization that allows exploring hierarchies
that change with time using searches, navigating through a hier-
archical presentation and filtering results with the assistance of a
time slider control. Theron [Theron 2006] proposed a tree-ring
metaphor to represent hierarchical time based structures and ap-
plied it to browse and discover relationships in the history of com-
puter languages. Kumar and Garland [Kumar and Garland 2006]
proposed a solution for the visualization of time-varying graphs
where the users can slide to different time periods to explore the
graph or discover trends interacting with the presentation. We de-
cided to use a linear time line to represent more intuitively the
relationship between programmers, revisions, baselines, dates and
times.

One of the representations that have strongly influence the design of
our visualization, because of the disposition of its elements, is the
one presented by Lanza in [Lanza 2001]. This proposal deals with
the visualization of software attributes throughout the time using an
evolution matrix with variable size rectangular boxes inside each
cell; the width of the boxes represents the number of methods and
the height the number of attributes in the class. This visualization
method is powerful and could be improved borrowing some ideas
about colors and textures from [Gall et al. 1999].

Other related visualization has been developed by Koike [Koike
and Chu 1997] describing a representation that shows the evolution
of items from the repository of the software management configu-
ration tool. On this visualization each software item is represented
using two dimensions and the overall visualization with three di-
mensions. This representation is a classic reference in the evolu-
tion field and we consider it very interesting. However, we are in
favour of the use of 2D visualizations supported by several inter-
action techniques, because they could result more effective while
visualizing large data sets.

Finally, the Revision Tree is a visualization proposal presented in
[Theron et al. 2007] for the representation of the evolution of soft-

ware items. We based this proposal in that paper and have expanded
its scope to represent the evolution of open source software item,
we also have included several new interaction techniques to make
the visualization more usable and intuitive, and developed a tool for
extracting open source software repositories details.

3 Visualization of the evolution of open
source software items

In this section we propose a 2D representation for the collaboration
history of software items and baseline structures. The visualiza-
tion is applicable to open source software projects and commercial
products, as well as to repositories managed by tools such as CVS
and Subversion, or any commercial tool.

The visualization presented here was designed to visualize the con-
tributions of the team members through several revisions, baselines
and long periods of time, on the same item or document within
the software project. In this context it is important to consider that
the evolution of every software item implicitly holds a temporal at-
tribute, which is the most important and critical element needed to
understand the software development process of any system.

Before going on, it is fundamental to highlight that a baseline is a
label that references the software status in a particular moment, and
it could be present or not depending on the tool used in the manage-
ment of the software repository. So, in the cases where the baseline
label is not present we map the dates into a sequential number for
our visualization tool.

The following subsections discuss the design details of our pro-
posal, the time line and the possibilities that offer the control panel
of the application.

3.1 Visualization design

The problem at hand presented several challenges that were ad-
dressed in the proposed visualization: the representation of large
revision trees where the software items have several branches and
each branch many item revisions; the navigation through the ver-
sion tree offering a focus + context view; support to interactivity to
enable the inspection of many revisions at a time, exhibit the col-
laboration of developers for every branch and correlate all the in-
formation with the time line. The main components of the resulting



Figure 4: Segment of the evolution of a software item.

Figure 5: Hiding of rows and columns.

visualization are the time line, the control panel and the visualiza-
tion of the revision tree.

It is important to highlight that we decided to use a grid based struc-
ture because it provides an intuitive mechanism to visualize the
working relationship between developers, baselines and revisions;
using the rows to represent the authors and the columns for the ele-
ments of the time line. Moreover, grids and matrices structures are
widely known by developers and the cells can be used as containers
for the drawing of nodes of the directed graph representing the flow
of revisions for the item.

The figure 1 exposes the normal vista of the design; it uses a time
line for variable width columns to accommodate the revisions in
each baseline or date (depending of the type of repository), the dis-
tribution of the rows is uniform for the authors while the first line is
used to arrange the time line. The cells of the grid contains the revi-
sions, which are aligned with the time line according to its baseline,
date and time.

3.2 Time Line

The time line (see figure 2) indicates the baseline numbering on the
center, and the date and hour of creation of a revision in the bottom.
The horizontal blue lines with arrows in both ends emphasizes an
individual day, the vertical black lines indicate the end of one day
and the vertical light gray lines delimits a specific activity within a
given time (review carefully the baseline 27). The vertices of the
revision tree are carefully aligned with the elements of the time line
to show the evolution of the software item.

3.3 Control Panel

This area of the visualization complements the interaction of the
user with the visualization, and the user has the possibility of choos-
ing when to show or hide this control. The control panel is shown

in the figure 3, and it is composed by the panels item details, filter
dates, revision details and zoom. The panel item details displays
the name of the software item, its creation date, the last date when
it was updated, the number of programmers participating in its evo-
lution, and the number of baselines or dates of its evolution. The
filter dates panel allows to filter the presentation by ranges of dates,
while revision details panel presents the details about a selected re-
vision and and the zoom panel zooms the area where the mouse
is located. The filtering of dates is useful for reviewing a specific
period of time and get a more specific view of an interesting activ-
ity range. Consequently, the Revision Details panel provides even
more details about a selected revision, including the log that have
been entered for that revision and the path of the revision in the
repository. Finally, the Zoom panel focuses in the position where
the mouse is located and amplify by a factor of 2 that area.

3.4 Interacting with the revision tree

The revision tree is our proposal for representing the evolution and
collaboration during the development of software items. It lay-
outs the revisions, baselines and branches accordingly, based on the
time line information and the developers working on revisions and
branches. The position of the revisions is the intersection between
the row of a programmer and the column representing a specific
time in the time line. The revisions are represented by ovals and the
revision number is aligned horizontally if it has 1 digit and verti-
cally if it has more than 1 digit. The blue ovals are revisions within
the main branch and the others are revisions within branches. The
orange line connecting the blue ovals delineate the main code ver-
sioning and the green line the branches. However, when there are
duplicated branches, where the revisions belongs to more than one
branch, the line connecting revisions is composed by more than one
color; where each color represents a specific branch. This represen-
tation let us appreciate all the baselines and revisions at a glance
as well as the relationships among baselines and the hierarchical



Figure 6: Highlighting of the remaining path of the main branch.

Figure 7: Highlighting of revision created by a branch in the same path that the main branch.

association between branches and revisions. The figure 4 shows a
piece of the visualization where can see the color coding and two
branches sharing some most of their revisions; the small square
on the top right of the figure shows a zoom of a segment of this
branches and allows to observe two different colors, one for each
branch.

Moreover, the visualization supports many interaction techniques
to allow discover information not visible at first glance and gener-
ate new visualizations perspectives. The figure 5a shows a normal
view, the figure 5b shows the hiding of one developer and the fig-
ure 5c shows the hiding of one developer and one baseline. Addi-
tionally, it supports polyfocal displays allowing to expand rows and
columns in many different points of the visualization, and offers the
possibility of exchanging rows, as will be shown in the case study.

The visualization provides the possibility to select the branches to
highlight its path. In the case of the main branch, when it is se-
lected at some point of the visualization the remaining path of the
branch is highlighted, as shown in figure 6, and in the case of reg-
ular branches the remaining path is highlighted until it is merge in
the main branch. This feature is even more valuable when there is
a branch in the same path that follows the main branch and it is re-
quired to highlight the connection between revisions or the merge
of one of these branches, figure 7 shows an example of the last case.

4 Case Study: Exploring the evolution of
software items

When assessing our proposal it stands out that it is possible to ob-
tain a great amount of information at a glance and it does not re-
quire a detailed explanation to discover data of relevance; it is easy
to follow up contributions to the development of a software item
and understand how it has evolved throughout. This visualization
also provides useful information for project managers; they can re-
alize who have been working most in the development of the item,
if someone has quit working for the project they can discover if the
last revisions made by that programmer to the item were merged or
if there is a merge that has never been done for any other reason.
They can also get information about the periods with more activity
in the component and can also recognize when the item is stable
because it is not suffering frequent changes. Actually, it is possi-
ble to get a lot more information through the careful checking of
every visualization detail and especially if a large real life dataset
is used. Although the 2D revision tree performs better in a large
screen, even a small space such as the one used in figure 1 (1 third

of a page in a colored print out) can help the user to obtain a general
idea of what was the evolution of a particular item.

The following questions were used to assess our visualization and
improve its weaknesses. We consider that the proposed visual-
ization can answer these questions quickly; some of them at first
glance while others questions could be answered with little effort
and some interaction. To demonstrate this, in this section we use
one software item taken from XBMC (formerly known as ”XBox
Media Center”), and open source project.

1. Does the visualization provide a focus + context view?

2. How many developers are participating in the development of
the software item?

3. Who are the developers contributing to the evolution?

4. Who is the programmer with more contributions to the evolu-
tion of the item?

5. How many baselines constitute the whole evolution process?

6. Does the tool offer information about dates and times of the
creation of baselines and revisions?

7. Is there a revision without been merged after a long time?

8. How long has been the development of the item?

9. Which baseline has more revisions?

10. Which branch does have more revisions activity?

11. Which is the period of time that does not have activity?

12. Is there a period when the item was stable and then suddenly
started having a lot of activity?

13. Is it possible to compare baselines activity?

The complete evolution of a software item could be seen in the
figure 8. We can answer immediately, without using the control
panel information, how many developers are participating in the
development of the software item, how many baselines constitutes
the evolution, which revisions and branches have been merged. It
is also possible to get information about what baseline, branch or
date has more revisions, and it is possible to compare the activ-
ity of baselines and dates. The visualization also provides filter-
ing mechanisms that are not assessed by the above questions, but
those mechanisms allows to answer some questions which answers
are not available at first sight. The figure 9 shows the results of



Figure 8: Visualization of the evolution of a software item from XMBC; example 1.

Figure 9: Results of filtering dates in the software item.



Figure 10: Final results after exchanging rows and hiding rows and columns.

Figure 11: Evolution of XboxMediaCenter.cpp; example 2.



Figure 12: Complete evolution of VideoDatabase.cpp; example 3.

Figure 13: Dates filtering applied to VideoDatabase.cpp.



Figure 14: Hiding of rows and columns.

filtering dates in our example. Finally, we exchange some rows,
then we hide some developers and baselines, expand some rows and
columns and highlight the path of a revision. After doing this, we
get a different view of the evolution of the software item, as shown
in the figure 10. Now, we can see clearly the application of the
polyfocal technique and get details about who are the programmers
that have contributed more to the development of the item; we have
expanded the rows with more revisions to discover that jmarshallnz
and yuvalt are the developers with more contributions. Moreover,
we are able to see when the selected branch, highlighted in red, is
merged into the main branch. If we continue interacting with the
visualization we can get the names of all the developers working in
the software item with only some mouse clicks.

After carefully reviewing the figure 9, it is not possible to clearly
see the dates and times of the creation of revisions, but after ex-
panding some columns these details become visible. Besides, the
information about how long has been the development of the soft-
ware item, which is the period of time that does not have activity,
when the activity of the item has become stable or reactivated, could
be gather after carefully reviewing the visualization and interacting
with it. Moreover, the Control panel provides many useful details
that could be used to save interaction time and effort.

We consider that the visualization provides many details, some of
them are evident while others require some interaction, but the im-
portance of the contribution is the combination of visualization and
interaction techniques to offer the information the users need. This
visualization is very simple, intuitive and powerful for supporting
developers and project managers in the development of open source
software.

Now, we are going to review the example in the figure 11. This
example is very simple, but it allows us to see that the programmer
that has worked the most of the main branch is yamp, and after he
stop working in the main branch others programmers have alter-
nated working on this branch. Then, some new branches have been
created and the work is distributed between the others program-
mers, except yamp. This information could result very valuable for
the project managers to make conclusions associated to the software
item.

Finally, the figure 12 shows the evolution of a very active software
item. Its evolution has been expanded from January 19th, 2004 un-
til April 16th, 2008 and it continues evolving. The evolution of this
item accounts 202 dates, this means that it has had activity with one
or more revision in 202 different days. Moreover, 22 programmers
have been participating in the development of this software item.
In spite of the large quantity of information displayed in the figure
12 it is possible to clearly distinguish the branches and the overall
evolution. However, it is advisable to filter some dates out to review
in detail the evolution of the software item. The figure 13 shows the
results of filtering out the dates before October 1st, 2007, and ex-
changing some some rows to group the developers working on the
main branch. But, we still does not have enough visibility of the
the names of the developers, so we hide some rows and columns to
produce other view of the representation; the result is shown on fig-
ure 14. Hence, we can expand or hide some columns to enlarge the
revisions and review in more detail. It is important to highlight that
the images shown here have been produced by an standard moni-
tor of 1280 x 800 resolution for testing purposes, so with a larger
screen the results can improve significantly.

5 Conclusion

Our proposal provides a focus + context view, a grid structure to
which all programmers are familiar with, a time line to guide and
position users in the time space, a control panel for filtering dates,
display additional details and a zoom panel; and several interaction
possibilities to make available the information the user needs. With
this presentation the user can get many answers about how the evo-
lution of the item is going on and the team is always aware about
who is working on the different baselines and revisions. Whereas
the visualization is always visible for all revisions the users can re-
view all the baselines and revisions in a very short time, and there-
fore there is no information hiding or occlusion. The time line
representation is clear, showing the complete time interval since
the item was created, supports temporal comparisons and made the
concurrency of the programmers evident. Besides, the interactivity
adds functionality to filter or focus in specific areas: in synthesis
the two dimensional visualization offers a clear and functional pre-
sentation.



The visualization presented in this paper shows enough evidence to
state that for the representation of the evolution and collaboration
in the development of software items a two dimensional representa-
tion offering several interaction possibilities can result in a powerful
solution for the visualization of multidimensional data.

References

CARD, S. K., MACKINLAY, J., AND SHNEIDERMAN, B. 1999.
Readings in Information Visualization: Using Vision to Think.

CARD, S. K., SUH, B., PENDLETON, B. A., AND HEER, J. 2006.
Timetree: exploring time changing hierarchies. In IEEE Sym-
posium on Visual Analytics Science and Technology 2006 (VAST
2006), IEEE Computer Society, Baltimore; MD; USA. Piscat-
away NJ.

COLLINS-SUSSMAN, B., FITZPATRICK, B., AND PILATO, M.
2004. Version Control with Subversion. Sebastopol, CA USA:
O’Reilly Media, Inc. ISBN: 0-596-00448-6.

EICK, S. G., GRAVES, T. L., KARR, A. F., MOCKUS, A., AND
SCHUSTER, P. 2002. Visualizing software changes. IEEE Trans.
Softw. Eng. 28, 4, 396–412.

ESTUBLIER, J. 2000. Software configuration management: A
roadmap. The Future of Software Engineering. ISBN 1-58113-
253-0.

GALL, H., JAZAYERI, M., AND RIVA, C. 1999. Visualizing soft-
ware release histories: The use of color and third dimension.
In ICSM ’99: Proceedings of the IEEE International Conference
on Software Maintenance, IEEE Computer Society, Washington,
DC, USA, 99.

GRACANIN, D., MATKOVIC, K., AND ELTOWEISSY, M. 1994.
Software visualization. Innovations in Systems and Software En-
gineering Volumen 1, Number 3, 221 – 230.

KOIKE, H., AND CHU, H.-C. 1997. Vrcs: Integrating version
control and module management using interactive 3d graphics.
In VL ’97: Proceedings of the 1997 IEEE Symposium on Visual
Languages (VL ’97), IEEE Computer Society, Washington, DC,
USA, 168.

KUMAR, G., AND GARLAND, M. 2006. Visual exploration of
complex time-varying graphs. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5, 805–812.

LANZA, M. 2001. The evolution matrix: recovering software evo-
lution using software visualization techniques. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles of
Software Evolution, ACM Press, New York, NY, USA, 37–42.

LEUNG, Y., AND APPERLLEY, M. 1994. A review and taxon-
omy of distortion-oriented presentation techniques. ACM Trans-
actions on Computer-Human Interaction Volumen 1, Nmero 2
(Junio), 126 – 160.

MACKINLAY, J. D., ROBERTSON, G. G., AND CARD, S. K. 1991.
The perspective wall: detail and context smoothly integrated. In
CHI ’91: Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, ACM Press, New York, NY, USA,
173–176.

MORRIS, S. A., YEN, G., WU, Z., AND ASNAKE, B. 2003. Time
line visualization of research fronts. J. Am. Soc. Inf. Sci. Technol.
54, 5, 413–422.

SPENCE, R. 2000. Information visualization. ACM Press.

STOREY, M.-A. D., CUBRANIC, D., AND GERMAN, D. M. 2005.
On the use of visualization to support awareness of human activ-
ities in software development: a survey and a framework. In
SoftVis ’05: Proceedings of the 2005 ACM symposium on Soft-
ware visualization, ACM Press, New York, NY, USA, 193–202.

THERON, R., GONZALEZ, A., GARCIA, F. J., AND SANTOS, P.
2007. The use of information visualization to support software
configuration management. Lecture Notes in Computer Science
Volume 4663/2007, 317–331.

THERON, R. 2006. Hierarchical-temporal data visualization using
a ring tree metaphor. Lecture Notes in Computer Science. Smart
Graphics.

VOINEA, L., AND TELEA, A. 2006. Mining software repositories
with cvsgrab. In MSR ’06: Proceedings of the 2006 interna-
tional workshop on Mining software repositories, ACM Press,
New York, NY, USA, 167–168.

VOINEA, L., AND TELEA, A. 2006. Multiscale and multivariate
visualizations of software evolution. In SOFTVIS 2006, Associ-
ation for Computing Machinery Inc.

VOINEA, L., AND TELEA, A. 2006. An open framework for
cvs repository querying, analysis and visualization. In MSR ’06:
Proceedings of the 2006 international workshop on Mining soft-
ware repositories, ACM Press, New York, NY, USA, 33–39.

XIE, X., POSHYVANYK, D., AND MARCUS, A. 2006. Visualiza-
tion of cvs repository information. In WCRE ’06: Proceedings
of the 13th Working Conference on Reverse Engineering (WCRE
2006), IEEE Computer Society, Washington, DC, USA, 231–
242.


