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Abstract. This paper presents a new general method for obstacle rep-
resentation in the configuration space (C-space) for redundant robots.
The method is based on the analytical deconstruction of the C-space,
i.e., the separated evaluation of the C-space portion contributed by the
collisions of each link in the kinematic chain. The systematic application
of a simple convolution of two functions describing each link and the
workspace, respectively, is applied. In order to do that, the transforma-
tion of the workspace among reference systems located at one point of
each link is needed; in this step a well-known and sound method is used.

1 Introduction

In this paper the explicit representation of obstacles in the Configuration Space
(C-space) of redundant articulated robots is adressed. This representation is
widely used in robotics in many tasks that involve the obstacle-avoidance prob-
lem as for example path planning or the optimization of robot paths.

The C-space concept [1] is very useful since the robot is representated by a
single point at this manifold. The advent of new methods that enable simpler
and faster evaluations is a challenge. Consequently, Kavraki [2] suggested the use
of the convolution of the obstacles and a mobile robot and the application of the
Convolution Theorem to evaluate the discrete C-space. Although, it is doubtless
a great advance on the way to optimize the computation time for the C-space
evaluation, only 2D mobile robots were considered, thus lacking in generality.

While a lot of effort has been done dealing with mobile robots, only a few
works [3][4][5][6] are concerned with articulated manipulators. In [7] a general
method is proposed, for many types of structures that include both mobile and
articulated, where the C-obstacles evaluation is established as the convolution
product of two functions that represent the robot and the obstacles.

Although this is a big step, the method is not general enough, since some
structures —such as redundant robots— can not be considered. A further step
can be taken by an analysis of the proposed general method as applied to artic-
ulated robots, since changing the reference system for each link would provide a
new method that simplifies computation, thus reducing both the memory needs
and the computation times [8].



2 Evaluating C-Obstacles as a Convolution

In this section, the method proposed by Curto in [7] is revised, as it is the basis
for the method presented in this paper.

The representation of the C-obstacles is proposed based on the integral of the
product of two functions: one that represents the robot A and another one that
represents the obstacles in the workspace, B. W will designate the workspace
and C the C-space. Thus,

Definition 1. Let A : C × W → R be the function defined by

A(q, x) =

{
1 if x ∈ A(q)
0 if x 6∈ A(q)

(1)

where A(q) is the subset of W that represents the robot at the configuration q.

Definition 2. Let B : W → R be the function defined by

B(x) =

{
1 if x ∈ B

0 if x 6∈ B
(2)

where B is the subset of W formed by the obstacles.

Using both A and B, a new definition for calculating C-obstacles is proposed:

Definition 3. Let CB : C → R be the function defined by

CB(q) =

∫

A(q, x)B(x)dx ∀q ∈ C, ∀x ∈ W (3)

The region CBf is defined as the subset of C that verifies

CBf = {q ∈ C/CB(q) > 0} (4)

The previous expressions were defined without considering any specific pa-
rameterization of W and C.

Now, a representation of W and C is given by selecting two frames FW and
FA for the workspace and for the robot, respectively, where FW is fixed and FA

is attached to the robot. In this way, a point x ∈ W is given by (x1, x2, · · · , xn)
where n is the workspace dimension, and a configuration q ∈ C is represented by
(q1, q2, · · · , qm) that specify the position and orientation of FA respect to FW ,
where m is the dimension of C. Thus, the expression (3) becomes

CB(q1, · · · , qm) =

∫

A(q1, · · · , qm, x1, · · · , xn)B(x1, · · · , xn)dx1 · · · dxn (5)



3 Superposition Principle of C-obstacles

In this paper, an articulated robot is considered as a kinematic chain. In this
way, a robot A is viewed as a set of r rigid objects. The kinematics of this chain,
i.e., the movement restrictions imposed by the joint to each element, Ai —the
degrees of freedom, DOFs—, would determine some regions of the C-space.

This principle is the basis of the evaluation of the C-space for robots that
consist of several elements connected by means of different types of joints.

Considering that a robot consists of r rigid objects, the resulting C-obstacles
will follow the Superposition Principle:

Theorem 1. Let A be an articulated robot formed by r elements A1, . . . ,Ar.

If CB1, . . . ,CBr are, respectively, the C-obstacle regions for the A1, . . . ,Ar

elements in the space where the obstacle B is projected, then, the C-obstacle CB

due to B for the robot A can be obtained as

CB =

r⋃

k=1

CBk (6)

The expression (6) reflects the fact that the union of these subsets equals
the configuration space for A. The idea of C-obstacles superposition is the key
principle that enables the deconstruction approach.

4 The Deconstruction Method

The Deconstruction method tries to independently evaluate portions of the C-
space in order to find the C-obstacles due to each link in the kinematic chain.

4.1 Applicating the Superposition Principle

Taking into account (6), the calculation of CB for a robot A, a kinematic chain
of r links, is done through the union of all the CBk related to each of the elements
of the robot. The computation of every C-obstacle region must be done through
the evaluation of the associated CBk functions.

CBk(q1k
, · · · , qsk

), ∀k ∈ {1, . . . , r} (7)

with {q1k
, · · · , qsk

} ⊆ {q1, · · · , qm}, where {q1, · · · , qm} are the DOFs associated
to the robot A. That is, for the k-th element only the subset of configuration
variables associated to it are considered, and, analogously to (5), each of the
CBk(q1k

, · · · , qsk
) functions is evaluated as follows

∫

Ak(q1k
, · · · , qsk

, x1, · · · , xn)B(x1, · · · , xn)dx1 · · · dxn (8)



4.2 Choosing the Frames

When solving the integral (8), the function Ak(q1k
, · · · , qsk

, x1, · · · , xn), repre-
senting the robot, is difficult to evaluate, due to its dependency on all of the
DOFs related to itself and to the previous links in the chain. Thus, we will try
to reduce this difficulty by choosing the proper frames.

In order to do that, let’s consider the robot formed by the kinematic chain of
figure 1. As one can see, following the Denavit-Hartenberg method [9], a frame is
associated with each link, placing the origin at the end of the link; the orientation
of axes depends on the position and orientation of the link.

Fig. 1. Frames in the kinematic chain of an articulated robot

Following the Denavit-Hartenberg procedure, the Deconstruction method
proposes to use the frame determined by the previous link for the k-th element.
Thus, for link 1 the frame FA0

—which coincides with the workspace frame,
FW — is used; similarly, for the k-th link, frame FAk−1

will be used (figure 1).
Now, if we have a look to Ak(q1k

, · · · , qsk
, x1, · · · , xn), the expression we are

evaluating, it can be written as follows

Ak(q1k
, · · · , quk

︸ ︷︷ ︸

DOF(1,...,k−1)

, q(u+1)k
, · · · , qsk

︸ ︷︷ ︸

DOFk

, x1, · · · , xn) (9)

where {q1k
, · · · , quk

} are the degrees of freedom associated to the elements pre-
ceding the k-th element the k-th element, whose DOFs are

{
q(u+1)k

, · · · , qsk

}
.

At this point, the position and orientation of the element Ak is expressed
related to the frame FA0

. The position, just like the frame FAk−1
, is determined

by the associated degrees of freedom of the previous links in the chain, that is
to say, some of the parameters related to each Ai —previous elements– in that
subchain, (ai, αi, di and θi, the Denavit-Hartenberg parameters).



Thus, if the position and orientation of the element Ak are expressed taking
as origin the frame FAk−1

, its evaluation will be much simpler. An homogeneous
transformation T is needed to perform this operation.

Definition 4. Let k−1
0 T be the transformation that permits us to move the frame

FA0
to such point that it will coincide with FAk−1

.

It is important to point out that this homogeneous transformation depends
on the configuration parameters related to the previous elements in the chain,
that is to say, k−1

0 T = f(q1k
, · · · , quk

). At this point, the position and orientation
of the link Ak, expressed related to the frame FAk−1

, will only depend of its
associated degrees of freedom, that is,

{
q(u+1)k

, · · · , qsk

}
.

However, this homogeneous transformation has a consequence: it will be nec-
essary to express the workspace as a function of the new frame, FAk−1

:

B′(x′

1, · · · , x
′

n) =k−1
0 TB(x1, · · · , xn) (10)

In this way, the evaluation of (9) is equivalent to the following one

A′

k(q(u+1)k
, · · · , qsk

, x′

1, · · · , x
′

n) (11)

Finally, (8), which is used to calculate the C-obstacle portion pertaining to
the element Ak, becomes

∫

A′

k(q(u+1)k
, · · · , qsk

, x′

1, · · · , x
′

n)B′(x′

1, · · · , x
′

n)dx′

1 · · · dx′

n (12)

Now, after the proper frame is chosen, as it can be seen in (12), it is possible
to study individually each one of the links.

4.3 Choosing the Coordinate Functions

Kavraki [2] and Curto [7] propose the simplification of the C-space calculation
by the use of the Convolution theorem (and the Fast Fourieer Transform). We
shall now expose how this is applicable inside the new proposed formalism by
means of the introduction of a coordinate functions change.

As demonstrated in [7], it is sufficient to choose the proper coordinate func-
tions, (ξ1, · · · , ξn), that will permit to find one or more relationships between
some of the configuration variables and some of the coordinate functions, which
will allow to find the convolution.

Thus, a new function, Ā′

k, is introduced; the idea is to find a simpler func-
tional dependency in function A′

k, in such a way that element Ak becomes inde-
pendent of a subset of

{
q(u+1)k

, · · · , qsk

}
, depending only on

{
q(v+1)k

, · · · , qsk

}
.

Having this new function Ā′

k, (12) will be defined as

∫
longA longB dξ1 · · · dξn



longA=Ā′

k(0,···,0,q(v+1)k
,···,qsk

,ξ1−q(u+1)k
,···,ξv−qvk

,ξ(v+1)k
,···,ξn)

longB=B′(ξ1,···,ξn)
(13)

which leads to a function Ā′

k that depends only on
{
q(v+1)k

, · · · , qsk

}
. Now, for

variables
{
q(u+1)k

, · · · , qvk

}
the following convolution product appears.

∫
(Ā′

k(0,···,0,q(v+1)k
,···,qsk

)
∗B)(ξ1,···,ξvk

)(ξ(v+1)k
,···,ξn) dξ(v+1)k

···dξn

(14)

where subindices (ξ1, · · · , ξvk
) denote that the convolution product is calculated

for all of the values of these variables.

5 Conclusion

In this paper, a mathematical formalism for the Deconstruction method is pro-
posed. This approach permits the simplification of the C-space evaluating process
by means of the application of a simple and repetitive operation for each link in
the kinematic chain, being valid for redundant robots. This method can natu-
rally face the evaluation of C-spaces of many dimensions, since only non-colliding
configurations are considered for the evaluation of the following links.
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