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Introduction

Higgs bundles were introduced by Hitchin [31, 32] and are of interest in many areas

of differential and algebraic geometry, topology and mathematical physics, such as the

study of surface group representations, gauge theory, Kähler and hyperkähler geometry

and integrable systems.

A Higgs bundle over a compact Riemann surface X is a pair (V, φ) consisting of a

holomorphic vector bundle V over X and a holomorphic section φ of End(V )⊗K, where

K is the canonical line bundle over X. The section φ is called the Higgs field. A Higgs

bundle is said to be stable if for each subbundle U ⊂ V for which φ(U) ⊆ U ⊗K, one has

deg(U)

rk(U)
<

deg(V )

rk(V )
.

Semistability is defined replacing the strict inequality with a weak inequality.

The notion of Higgs bundle can be extended to the notion of G-Higgs bundle, where

G is a complex reductive Lie group. A G-Higgs bundle is then a pair (E,ϕ) where E

is a principal G-bundle over X and ϕ is a holomorphic section of the vector bundle

E(g) = E ×Ad g twisted by K. When G = GL(n,C), the standard representation of

GL(n,C) in Cn gives a one-to-one correspondence between principal GL(n,C)-bundles and

vector bundles of rank n. Using this correspondence we have that E(gl(n,C)) = End(V ),

where V is the vector bundle associated to the principal GL(n,C)-bundle E. Hence, this

notion is equivalent to the notion of Higgs bundle described above. Simpson [51, 52]

studied Higgs bundles in higher dimension and considered G-Higgs bundles for arbitrary

complex reductive Lie groups G, which were also studied by Hitchin [30, 32] on Riemann

surfaces.

The extension of the theory of G-Higgs bundles to real reductive Lie groups has been

systematically studied by Bradlow, Garćıa-Prada, Gothen and Mundet i Riera (see for

example [7, 19]). Let G be a real reductive Lie group, H ⊆ G be a maximal compact

subgroup and HC be its complexification. Let ι : HC → GL(mC) be the complexified

isotropy representation defined in terms of the Cartan decomposition, g = h + m, of the

Lie algebra of G and using the fact that [h,m] ⊆ m. A G-Higgs bundle is a pair (E,ϕ)

where E is a principal HC-bundle over X and ϕ is a holomorphic section of the vector

bundle E(mC)⊗K = (E×ι m
C)⊗K. If G is a complex reductive Lie group then, applying

this definition to the underlying real Lie group, we recover the notion of G-Higgs bundle

for a complex Lie group G.

The moduli space of Higgs bundles were constructed by Nitsure [42] using Geome-
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tric Invariant Theory. The moduli space M(G) of G-Higgs bundles was constructed by

Simpson [53, 54] for a complex reductive Lie group G using algebraic methods and in ge-

neral (including real reductive Lie groups) by Schmitt [49, 50] using Geometric Invariant

Theory.

G-Higgs bundles are important in relation to the representations of the fundamental

group of the surfaceX. LetG be a reductive Lie group, the moduli space of representations

of π1(X) in G is defined as the orbit space

R(G) = Hom+(π1(X), G)/G,

where Hom+(π1(X), G) denotes the subspace of all reductive representations of π1(X) on

G, that is, those that composed with the adjoint representation in the Lie algebra of G

decompose as a sum of irreducible representations, and G acts on Hom+(π1(X), G) by

conjugation. The space R(G) is Hausdorff with the quotient topology and it is a real

analytic variety (see Goldman [22]).

Moduli spaces of representations have a very rich topology and geometry, reflecting

both properties of X and G. They have been studied from many points of view. When G

is compact they appear, for example, in quantum field theories [3]. If G = U(n), then the

theorem of Narasimhan and Seshadri [41] gives an homeomorphism between R(U(n)) and

the moduli space of semistable holomorphic vector bundles of rank n and degree 0. This

result is generalized by Ramanathan [47] for any compact Lie group G. He proved that,

when G is semisimple, the moduli space of representations R(G), when G is semisimple,

is homeomorphic to the moduli space of semistable principal GC-bundles on X, where GC

is the complexification of G. If G is reductive, there is an analogous result that involves

the representations of the universal central extension of the fundamental group of X on

G.

There is a homeomorphism between R(G) andM(G) for any reductive real Lie group

G that provides a generalization for non-compact groups of the theorem of Narasimhan

and Seshadri and the results of Ramanathan mentioned above. The proof of this result

involves the moduli space of solutions to the Hitchin’s equations. It was proved by Hitchin

[31] and by Simpson [52, 53, 54] for a complex Lie group and by Bradlow, Garćıa-Prada,

Gothen and Mundet i Riera [10, 19] in the real case, thatM(G) is homeomorphic to the

moduli space of solutions to the Hitchin’s equations, MHit(G), which is defined as the

space of pairs (A,ϕ), where A is a connection on a smooth principal H-bundle EH and
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ϕ ∈ Ω1,0(EH(mC)), satisfying

FA − [ϕ, τ(ϕ)] = 0,

∂̄A(ϕ) = 0,

modulo gauge equivalence. The other important ingredient involved in the proof of the

homeomorphism R(G) ∼= M(G) is a theorem of Corlette [13], and Donaldson [15] for

G = SL(2,C), that establishes a homeomorphism between R(G) and the moduli space

MHar(G) of solutions of certain harmonic equations, defined as the space of pairs (A,ψ),

where A is a connection on a smooth principal H-bundle EH and ψ ∈ Ω1(EH(m)), satis-

fying

FA + 1
2
[ψ, ψ] = 0,

dA(ψ) = 0,

d∗A(ψ) = 0,

modulo gauge equivalence. The map (A,ϕ) 7→ (A,ψ = ϕ − τ(ϕ)) defines a homeomor-

phism between MHit(G) and MHar(G) and gives R(G) ∼= M(G). Using these homeo-

morphisms one can obtain information about the moduli space of representations working

withM(G) or with the moduli space of solutions of Hitchin’s equations.

The geometry and topology of the moduli space of G-Higgs bundles have been studied

for several complex reductive Lie groups like GL(n,C), SL(n,C), SO(n,C) and Sp(2n,C),

and for some of their real forms, like U(p, q), Sp(2n,R), among others. This thesis is

devoted to the study of the moduli space of SO0(p, q)-Higgs bundles, where SO0(p, q) is

the connected component of the identity of the Lie group SO(p, q). The special orthogonal

group with signature (p, q), SO(p, q), is the subgroup of SL(n = p+ q,R) consisting of all

linear transformations of a n = p+ q dimensional real vector space which leave invariant

a non-degenerate symmetric bilinear form of signature (p, q) and it is a real form of the

reductive group SO(p + q,C). It coincides with the compact real form when p or q are

equal to zero and with the split form when p = q, if p + q is even, or when q = p + 1, if

p+ q is odd. The Cartan decomposition of the complex Lie algebra so(p+ q,C) is

so(p+ q,C) = (so(p,C)× so(q,C))⊕mC,

where

mC =

{(
X2

−X t
2

)
| X2 complex (p× q)-matrix

}
.

Following the definition given above, an SO0(p, q)-Higgs bundle is a pair (E,ϕ) con-

sisting of a holomorphic principal SO(p,C) × SO(q,C)-bundle E and a section ϕ ∈
H0(E(mC) ⊗ K). Using the standard representations of SO(p,C) and SO(q,C) in Cp
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and Cq respectively, there is a one-to-one correspondence between SO0(p, q)-Higgs bun-

dles and tuples (V,QV ,W,QW , η), where V and W are two holomorphic vector bundles

of rank p and q respectively and trivial determinant, QV and QW are non-degenerate

symmetric quadratic forms in V and W respectively and η ∈ H0(Hom(W,V )⊗K). To an

SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) we can associate an SO(p+ q,C)-Higgs bundle

defined by the triple

(E = V ⊕W,Q =

(
QV

QW

)
, φ =

(
η

−η>

)
).

In this thesis we study the notions of semistability, stability and polystability for

SO(n,C) and SO0(p, q)-Higgs bundles applying the general notions given by Garćıa-Prada,

Gothen and Mundet i Riera [19], that generalize the results given by Ramanathan [47] for

principal bundles. We show that the notions of stability and semistability for SO(n,C)

and SO0(p, q)-Higgs bundles can be simplified to the following.

Proposition (see Proposition 2.4). An SO(n,C)-Higgs bundle (E, Q, φ) with n 6= 2 is

semistable if and only if for any isotropic subbundle E ′ ⊂ E such that φ(E ′) ⊆ E ′ ⊗K
the inequality degE ′ ≤ 0 holds, and it is stable if it is semistable and for any non-zero

isotropic subbundle E ′ ⊂ E such that φ(E ′) ⊆ E ′ ⊗K we have degE ′ < 0.

Proposition (see Proposition 3.3). An SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) with

p, q 6= 2 is semistable if and only if for any pair of isotropic subbundles V ′ ⊂ V , W ′ ⊂ W

such that η(W ′) ⊆ V ′ ⊗K, the inequality deg V ′ + degW ′ ≤ 0 holds. It is stable if and

only if it is semistable and for any pair of isotropic subbundles V ′ ⊂ V , W ′ ⊂ W , at least

one of them non-zero, such that η(W ′) ⊆ V ′ ⊗K, we have deg V ′ + degW ′ < 0.

The cases n = 2 and p = 2 or q = 2 require an special treatment. Every SO(2,C)-Higgs

bundle is semistable and stable. The simplified notions of semistability and stability for

SO0(p, q)-Higgs bundles with p = 2 (resp. q = 2) involves only the isotropic subbundles

of W (resp. V ).

Morse-theoretic techniques for studying the topology of moduli spaces of Higgs bundles

were introduced by Hitchin [31, 32]. The problem of counting the connected components

ofM(G) using these methods has been carried out for several reductive real Lie groups.

Hitchin solved the problem for the groups SL(n,R) and PSL(n,R) in [32]. His methods

were extended to U(p, q) and GL(n,R) with n ≥ 3 by Bradlow, Garćıa-Prada and Gothen

in [7, 8]. The problem for the symplectic group Sp(4,R) was studied by Gothen in [25]

and by Garćıa-Prada and Mundet i Riera in [21], whereas the general case Sp(2n,R) was
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studied by Garćıa-Prada, Gothen and Mundet i Riera in [19]. The case of PGL(n,R) has

been studied recently by Oliveira in [43].

In this thesis we give important steps in the program of counting the connected com-

ponents of the moduli space M(G) for G = SO0(p, q). The classification of principal

SO(p,C) and SO(q,C)-bundles defines a topological invariant c = (c1, c2) ∈ π1(SO(p,C))×
π1(SO(q,C)) in the moduli space of polystable SO0(p, q)-Higgs bundles. When p, q ≥ 3,

the invariant (c1, c2) ∈ Z2 × Z2 corresponds to the second Stiefel-Whitney classes of the

two orthogonal bundles that we obtain from the reduction of the structure groups of

(V,QV ) and (W,QW ) from SO(p,C) and SO(q,C) to the real groups SO(p) and SO(q).

This gives a first decomposition of the moduli space

M(G) =
∐

c

Mc(G).

To obtain the number of connected components it is necessary to distinguish which of

these components Mc(G) are connected and which decompose as a union of connected

components. The strategy of Hitchin for finding the connected components in Mc(G) is

to consider the Hitchin function

f :Mc(G) → R

[A,ϕ] 7→ ‖ϕ‖2,

where one identifies the moduli space of G-Higgs bundles with the space of solutions to

Hitchin’s equations and we use the L2-norm ‖ · ‖ defined by the metric that solves the

Hitchin’s equations. It is a consequence of the Uhlenbeck’s weak compactness theorem

that this function is proper [31], and so it must have a minimum on each connected

component ofMc(G).

To apply these techniques, the first step is to compute the critical points of f . The

Hitchin function f is the moment map of the circle action [A,ϕ] 7→ [A, eiθϕ], when we

restrict to the smooth locus,Ms
c(G). This implies that a smooth point of the moduli space

is a critical point if and only if it is a fixed point of the circle action. If [A,ϕ] ∈Mc(G), it

is a fixed point of the circle action if and only if there exists a 1-parameter family of gauge

transformations {g(θ)}, generated by an infinitesimal gauge transformation ψ, such that

dA(ψ) = 0 and [ψ, ϕ] = iϕ.

A G-Higgs bundle (E,ϕ) associated to the solution (A,ϕ) corresponds to a fixed point

of the circle action if and only if it is a Hodge bundle (also called a complex variation

of Hodge structure, cf. [51]). This means that the vector bundles E(hC) and E(mC)
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decompose in sums of eigenbundles for the action of the infinitesimal transformation ψ

and that [ψ, ϕ] = iϕ.

Once we have characterized the critical points of f , the second step is to identify

which are the minima, that is, to find the smooth Hodge bundles for which the Hessian

is non-negative definite. This can be done using the method given by Hitchin in [32, §8].

Let

C•(E,ϕ) : E(hC)
ad(ϕ) // E(mC)⊗K ,

be the deformation complex (see [19]), whose first hypercohomology group H1(C•(E,ϕ))

is the space of infinitesimal deformations of (E,ϕ). When (E,ϕ) represents a smooth

point, H1(C•(E,ϕ)) is canonically isomorphic to the tangent space at this point and, for

all eigenvalues k of ψ, the hypercohomology group H1(C•
k(E,ϕ)), where

C•
k(E,ϕ) : E(hC)k

ad(ϕ) // E(mC)k+1 ⊗K ,

is isomorphic to the eigenspace of the Hessian of f with eigenvalue −k. Then, a smooth

G-Higgs bundle (E,ϕ) is a minimum if and only if H1(C•
k(E,ϕ)) = 0 for k > 0.

If this condition holds, even when theG-Higgs bundle (E,ϕ) is not smooth, we continue

to have a local minimum. Following Hitchin’s method, to rule out non-smooth G-Higgs

bundles as minima it is necessary to find a smooth family of deformations of (E,ϕ) such

that the corresponding infinitesimal deformation is a non-zero element of H1(C•
k(E,ϕ))

for some k > 0.

In this thesis we apply these methods to the moduli space of polystable SO0(p, q)-

Higgs bundles. Our main result is Theorem 6.10 which gives a complete description of

the smooth minima of the Hitchin function in the moduli space of SO0(p, q)-Higgs bundles.

We also solve the problem of finding the number of connected components of the moduli

space of polystable SO0(1, n)-Higgs bundles with n odd.

Theorem (see Theorem 7.5). The moduli space of SO0(1, n)-Higgs bundles with n odd

has 2 connected components.

Among the real forms SO0(p, q), the split real forms SO0(n, n) and SO0(n, n+ 1) play

and important role. It was proved by Hitchin in [32] that, when G is the split real form of

some complex reductive Lie group, the moduli space M(G) has a connected component

homeomorphic to a Euclidean space of dimension (2g−2) dimG. This component is called

the Hitchin component. When G = PSL(2,R), this component can be identified with

Teichmüller space. In [32, §5] he gives a general method to construct Hitchin component

which is based on the definition of a section of the Hitchin map. We revisit the general
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method given by Hitchin in [32] to construct Hitchin component and specialize it to the

orthogonal split real forms SO0(n, n) and SO0(n, n+ 1).

Using the characterizations of simple and smooth G-Higgs bundle given by Garćıa-

Prada, Gothen and Mundet i Riera in [19], and the relation between the stability of an

SO0(p, q)-Higgs bundle and the stability of its associated SO(p + q,C)-Higgs bundle, we

prove that an SO0(p, q)-Higgs bundle is smooth if and only if it is stable and simple.

Hence, stable does not imply simple in the moduli space of SO0(p, q)-Higgs bundles. This

is an specific phenomenon of the complex Lie groups SO(n,C) and Sp(2n,C), and their

real forms, that appears already for principal bundles (see [46, 47]). This means that a

polystable SO0(p, q)-Higgs bundle fails to be smooth if it is stable but non-simple, or if it

is strictly polystable.

Even when the SO0(p, q)-Higgs bundle is not smooth, if H1(C•
k) = 0 for all k > 0, it is

a local minimum. Then, after giving a description of the stable but non-simple SO0(p, q)-

Higgs bundles, we see that we can include in a more general theorem about minima the

stable but non-simple elements that satisfy this condition. We conjecture that these are

all the possible stable minima in M(SO0(p, q)). To prove this, we should rule out some

non-smooth SO0(p, q)-Higgs bundles as minima. This turns out to be technically much

more difficult than the previous studied cases and this is calling for new methods to be

developed.

Another topic treated in this thesis is the isomorphisms for special orthogonal groups

of low rank. Cartan proved in [12] the existence of a list of isomorphisms between some

classical semisimple Lie algebras of low rank (see [29, Ch. X, §6]):

so(3,C) ∼= sl(2,C) ∼= sp(2,C),

so(3) ∼= su(2) ∼= sp(2),

so(2, 1) ∼= sl(2,R),

so(4,C) ∼= sl(2,C)× sl(2,C),

so(4) ∼= su(2)× su(2),

so(2, 2) ∼= sl(2,R)× sl(2,R),

so(1, 3) ∼= sl(2,C),

so(2, 6) ∼= so∗(8),

so(5,C) ∼= sp(4,C),

so(5) ∼= sp(4),

so(2, 3) ∼= sp(4,R),

so(1, 4) ∼= sp(2, 2).

so(6,C) ∼= sl(4,C),

so(6) ∼= su(4),

so(3, 3) ∼= sl(4,R),

so(2, 4) ∼= su(2, 2),

so(1, 5) ∼= su∗(4),

Using these isomorphisms and the list of isomorphisms between Spin Lie groups and

other classical semisimple Lie groups described in [28, Theorem 14.1], we study the relation
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between the moduli space of polystable SO(n,C)-Higgs bundles with n = 3, 4, 5 and 6 and

the moduli space of polystable G-Higgs bundles, where G = SL(2,C), SL(2,C)×SL(2,C),

Sp(4,C) and SL(4,C) respectively. We also described the relations between the real forms

SO0(p, q) with p + q = n, for n = 3, 4, 5, 6, and the corresponding real forms of the Lie

group G, describing explicitly the morphisms between the moduli spaces of Higgs bundles.

Now we give a description of the different chapters of this thesis.

In Chapter 1 we review the definition of G-Higgs bundle, where G is a real Lie group.

This chapter also includes the definition of the stability condition for a G-Higgs bundle

introduced in [10, 19], and sketches the basic ingredients that it involves, such as parabolic

subgroups, Levi subgroups, antidominant characters, reduction of structure group and

filtrations.

In Chapter 2 we apply the general notions to the special orthogonal complex Lie

group SO(n,C). In order to make easier the understanding of the notions of semistability,

stability and polystability, we develop the case n = 6, which is a simple but rich enough

example to illustrate this theory.

We introduce the definition of SO0(p, q)-Higgs bundle in Chapter 3. As in the case

of SO(n,C), we apply the general notions to obtain the notions of semistability, stability

and polystability for SO0(p, q)-Higgs bundles and we give a simplified notion of stability

in Proposition 3.3. We illustrate the theory with an example that explains in detail the

stability for SO0(3, 3)-Higgs bundles. In Section 3.5 we prove that an SO0(p, q)-Higgs

bundle is smooth if and only if it is stable and simple. The chapter concludes with a full

description of the two types of non-smooth objects, stable but non-simple and strictly

polystable SO0(p, q)-Higgs bundles, that will be useful in the study of the non-smooth

minima carried out in Chapter 8.

In Chapter 4, we describe the principal objects and results involved in the homeomor-

phism R(G) ∼=M(G), particularizing to the case G = SO0(p, q).

In Chapter 5, we describe the maps that occur between several moduli spaces of Higgs

bundles induced by the isomorphisms between low rank orthogonal Lie algebras and other

reductive Lie algebras given by Cartan in [12].

The main result of this thesis is proved in Chapter 6. We give an explicit description

of the smooth minima of the Hitchin function inM(SO0(p, q)) (Theorem 6.10). We also

study in detail the general techniques used to prove the theorem. We define the Hitchin

function and explain the role that it plays in the study of the topology ofM(SO0(p, q)).

We also describe the critical points and explain the criterion of minima applied in the
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smooth case.

In Chapter 7 we explain the general methods given by Hitchin for the study of the

non-smooth minima of the Hitchin function, we conjecture what happens with the non-

smooth minima in M(SO0(p, q)) and we explain the technical problems that appear in

this case. We finally compute the connected components of the moduli space of polystable

SO0(1, n)-Higgs bundles with n odd.

Chapter 8 is devoted to the construction of the Hitchin components of the moduli

spaces M(SO0(n, n)) and M(SO0(n, n + 1)). We revisit the general method given by

Hitchin in [32] and then specialize it to the special orthogonal split real forms.
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1 G-Higgs bundles

Let X be a compact Riemann surface. Let G be a real reductive Lie group, H be a

maximal compact subgroup of G and HC be its complexification. Let

ι : HC → GL(mC),

be the complexified isotropy representation, defined in terms of the Cartan decomposition

g = h + m of the Lie algebra of G and using the fact that [h,m] ⊆ m.

Definition 1.1. A G-Higgs bundle is a pair (E,ϕ) where E is a principal HC-bundle

over X and ϕ is a holomorphic section of the vector bundle E(mC)⊗K = (E×ι m
C)⊗K,

where K is the canonical line bundle over X. The section ϕ is called the Higgs field.

Two G-Higgs bundles (E,ϕ) and (E ′, ϕ′) are isomorphic if there is an isomorphism

E ∼= E ′ which takes ϕ to ϕ′ under the induced isomorphism E(mC) ∼= E ′(mC).

When G is a real compact reductive Lie group, the Cartan decomposition of the Lie

algebra is g = h and then the Higgs field is equal to zero. Hence, a G-Higgs bundle is in

fact a principal GC-bundle.

Let G be a complex reductive Lie group and consider the underlying real Lie group

GR. In this case, the complexification HC of a maximal compact subgroup is again the

Lie group G and since

gR = h + ih,

the isotropy representation coincides with the adjoint representation of G on its Lie alge-

bra. Applying Definition 1.1 to GR we recover the notion of G-Higgs bundle for a complex

reductive Lie group G. When G = GL(n,C), the standard representation of GL(n,C)

in Cn gives a one-to-one correspondence between principal GL(n,C)-bundles and vector

bundles of rank n. Using this correspondence we have E(gl(n,C)) = End(V ), where V

is the vector bundle associated to the principal GL(n,C)-bundle E. Hence, this notion

recovers the notion of Higgs bundle.

A good reference for the material explained in the rest of the chapter is [19].

1.1 Parabolic subgroups

A subgroup P ⊂ G is said to be parabolic if G/P is a complete variety, that is, G/P is

an algebraic variety such that for any variety Y the projection morphism G/P × Y → Y

is a closed map. The most common example of complete variety is a projective variety.
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Let G be a complex semisimple Lie group and consider a Cartan subalgebra c of the

Lie algebra g. Let ∆ be the set of roots of g with respect to this Cartan subalgebra. We

have a decomposition

g = c⊕
⊕
α∈∆

gα,

where gα = {H ∈ g | (adC)H = α(C)H, for all C ∈ c}. Let ∆+ be the set of positive

roots and Π = {α1, ..., αn} be the set of simple roots. For any subset A ⊂ Π we define

∆A = {δ ∈ ∆ | δ =
n∑

i=1

miαi with mi ≥ 0 for all αi ∈ A},

and let

pA = c⊕
⊕
δ∈∆A

gδ.

If PA ⊂ G is the connected subgroup with Lie algebra pA, then PA is a parabolic subgroup

of G. Similarly we can define

∆0
A = {δ ∈ ∆ | δ =

n∑
i=1

miαi with mi = 0 for all αi ∈ A},

and let

lA = c⊕
⊕
δ∈∆0

A

gδ,

which is a subalgebra of pA. If LA is the connected subgroup with Lie algebra lA, then

LA is a Levi subgroup of PA.

A weight λ ∈ c∗ is said to be dominant if 2〈λ,αi〉
〈αi,αi〉 ≥ 0 for all αi ∈ Π, where 〈·, ·〉

denotes the Killing form of g, and it is said to be strictly dominant if 2〈λ,αi〉
〈αi,αi〉 > 0 for all

αi ∈ Π.

Every simple root αi ∈ Π, has an associated coroot defined by the formula

α′i =
2

〈αi, αi〉
αi.

Let {λ1, . . . , λn} ∈ c∗ defined by the condition
2〈λi,αj〉
〈αj ,αj〉 = δij. The λi are dominant weights

and we call them the fundamental dominant weights. Then, a weight λ is dominant

if λ =
∑
miλi with all mi ≥ 0, and strictly dominant if λ =

∑
miλi with all mi > 0.

An antidominant character for the parabolic subgroup PA is an element of the form

χ =
∑
αi∈A

miλi,
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with all mi ≤ 0. We say that χ is strictly antidominant if mi < 0 for all αi ∈ A.

If G is a reductive group which is not semisimple, all these definitions can be genera-

lized considering the semisimple part gs = [g, g] of g and the decomposition

g = z⊕ gs,

where z is the centre of g (see [19]).

1.2 Stability

Let (E,ϕ) be a G-Higgs bundle such that HC is a semisimple complex Lie group, and

consider a parabolic subgroup PA ⊆ HC and its Levi subgroup LA ⊆ PA.

To any antidominant character χ of PA we can associate an element sχ ∈ ih taking

the dual via the Killing form. Let

Psχ = {g ∈ G | etsχge−tsχ is bounded as t→∞},
psχ = {X ∈ g | Ad(etsχ)(X) is bounded as t→∞}.

We have the inclusions Psχ ⊆ PA and psχ ⊆ pA which are equalities when the antidominant

character is strict. In fact, every parabolic subgroup of HC is of the form Ps with s ∈ ih.

A holomorphic section σ of E(HC/PA) is equivalent to a reduction of the structure

group of E from HC to PA, that is, there exists a principal PA-bundle Eσ such that

E ∼= Eσ ×PA
HC.

Analogously, if σL is a holomorphic section of Eσ(PA/LA), it gives a reduction of the

structure group of Eσ from PA to LA,

Eσ
∼= EσL

×LA
PA.

If χ is an antidominant character for PA, let

(mC)−χ = {v ∈ mC | ι(etsχ)v remains bounded as t→∞},
(mC)0

χ = {v ∈ mC | ι(etsχ)v = v for any t} ⊂ (mC)−χ ,

which are subspaces of mC invariant under the action of PA and LA respectively. We have

that E(mC) ∼= Eσ ×PA
mC and E(mC) ∼= EσL

×LA
mC, and we can thus identify the vector

bundles Eσ ×PA
(mC)−χ and EσL

×LA
(mC)0

χ with two holomorphic subbundles

E(mC)0
χ ⊆ E(mC)−χ ⊆ E(mC).
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If χ =
∑

αi∈Amiλi, where {λi} ∈ c∗ is the set of fundamental weights associated to

the simple roots Π = {αi}, there exists some positive integer n such that for any αi ∈ A,

the morphism of Lie algebras nλi : c→ C gives a morphism of Lie groups κnαi
: PA → C∗.

(See [19], Lemma 2.3). We define the degree of the bundle E with respect to a reduction

σ and to an antidominant character χ as the real number

deg(E)(σ, χ) =
1

n

∑
αi∈A

deg(Eσ ×κnαi
C∗).

Definition 1.2. A G-Higgs bundle (E,ϕ) is called semistable if for any parabolic sub-

group P ⊂ HC, any antidominant character χ for P , and any holomorphic section

σ ∈ Γ(E(HC/P )) such that ϕ ∈ H0(E(mC)−σ,χ ⊗K), we have

deg(E)(σ, χ) ≥ 0.

The pair (E,ϕ) is called stable if it is semistable and furthermore: for any P , χ and σ

as above, such that ϕ ∈ H0(E(mC)−σ,χ ⊗K) and such that P 6= HC, we have

deg(E)(σ, χ) > 0.

Finally, (E,ϕ) is called polystable if it is semistable and for any P , χ and σ as above,

such that ϕ ∈ H0(E(mC)−σ,χ ⊗K), P 6= HC and χ is strictly antidominant, and such that

deg(E)(σ, χ) = 0,

there is a holomorphic reduction of the structure group σL ∈ Γ(Eσ(P/L)). Furthermore,

under these hypothesis ϕ is required to belong to H0(E(mC)0
σL,χ ⊗K).

These notions of semistability, stability and polystability can be generalized to G-

Higgs bundle with HC reductive but not semisimple. In this case, the notions depend on

a parameter α ∈ Z(hC) which is equal to zero when HC is semisimple (see [19]).

Definition 1.3. The moduli space of polystable G-Higgs bundles is defined as the

set of isomorphisms classes of polystable G-Higgs bundles and is denoted by M(G).

1.3 Stability in terms of filtrations

Let (E,ϕ) be a G-Higgs bundle such that HC is a semisimple classical complex Lie group,

and consider a parabolic subgroup P ⊆ HC and its Levi subgroup L ⊆ P .

A workable notion of semistability, stability and polystability can be obtained giving

a description of the objects involved in Definition 1.2 in terms of filtrations of vector

bundles (see [19, Section 2.8]).
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Since HC is a classical group, we have an inclusion HC ⊆ GL(n,C) for some n,

and using the standard representation ρ : HC → GL(n,C), we can associate to E a

holomorphic vector bundle E = E ×ρ Cn.

If χ is an antidominant character for P , dρ(sχ) diagonalizes as an element in gl(n,C)

with real eigenvalues λ1 < · · · < λk and this gives rise to a decomposition E =
⊕k

j=1E(λj),

where E(λj) = ker(λj − dρsχ). For each i consider the holomorphic subbundle Ei =⊕
j≤iE(λj) ⊂ E. This induces a filtration

E = (0 ⊂ E1 ⊂ · · · ⊂ Ek = E).

That is, to have a reduction of the structure group from HC to the parabolic is the same

as to have a filtration of this form. The parabolic subgroup Psχ is precisely the subgroup

which preserve this filtration, that is,

Psχ = {g ∈ HC | g(Ei) ⊂ Ei for any i}.

In these terms, the vector bundles E(mC)−σ,χ and E(mC)0
σ,χ can be expressed as

E(mC)−σ,χ = E(mC) ∩ ((Ep1,q1)−σ,χ ⊕ · · · ⊕ (Epr,qr)−σ,χ),

E(mC)0
σ,χ = E(mC) ∩ ((Ep1,q1)0

σ,χ ⊕ · · · ⊕ (Epr,qr)0
σ,χ),

where we are using the notation Ep,q = E⊗p ⊗ (E∗)⊗q, and with

(Ep,q)−σ,χ =
∑

λi1
+···+λip≤λj1

+···+λjq

Ei1 ⊗ · · · ⊗ Eip ⊗ E⊥
j1
⊗ · · · ⊗ E⊥

jq
⊂ Ep,q,

(Ep,q)0
σ,χ =

∑
λi1

+···+λip=λj1
+···+λjq

Ei1 ⊗ · · · ⊗ Eip ⊗ E⊥
j1
⊗ · · · ⊗ E⊥

jq
⊂ Ep,q,

where E⊥
j = {e ∈ E∗ | 〈e, Ej〉 = 0} and 〈, 〉 is the natural pairing between E and E∗.

Finally, the degree can be computed as

deg(E)(σ, χ) = λk deg E +
k−1∑
i=1

(λi − λi+1) degEi.
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2 SO(n,C)-Higgs bundles

In this section we apply Definition 1.1 and the notions of stability described in Chapter

1 to the case G = SO(n,C).

Definition 2.1. An SO(n,C)-Higgs bundle is a pair (E, φ) where E is a principal

SO(n,C)-bundle and φ ∈ H0(E(so(n,C))⊗K).

If (E, φ) is an SO(n,C)-Higgs bundle, using the standard representations of SO(n,C)

in Cn we can associate to the principal SO(n,C)-bundle E a holomorphic vector bundle

E of rank n,

E = E ×SO(n,C) Cn,

with trivial determinant, together with a non-degenerate symmetric quadratic form Q :

E ⊗ E → C, that is, there is a one-to-one correspondence between principal SO(n,C)-

bundles and pairs (E, Q). Of course, if E is a vector bundle of rank n and trivial de-

terminant equipped with a non-degenerate symmetric quadratic form Q, then Q induces

an isomorphism Q : E → E∗ and, taking determinants, an isomorphism detQ : det E →
(det E)∗. This means that detQ gives an isomorphism (det E)2 ∼= O. So, to give a

principal SO(n,C)-bundle it is necessary to give a triple (E, Q, q), where E is a holomor-

phic vector bundle of rank n, Q is a non-degenerate symmetric quadratic form on E and

q : det E ∼= O is an isomorphism satisfying q2 = detQ. We will omit q in this thesis for

simplicity, since it will not play a role in our analysis.

The Higgs field in terms of the vector bundle E is a section φ ∈ H0(so(E)⊗K), where

so(E) = {f ∈ End(E) | Q(f ·, ·) +Q(·, f ·) = 0 and Tr(f) = 0}.

Hence, SO(n,C)-Higgs bundles are in one-to-one correspondence with triples (E, Q, φ).

2.1 Parabolic subgroups of SO(n,C) and filtrations

Let n = 2m or n = 2m + 1. Using the orthogonal form Q =

(
Im

Im

)
, or Q =

Im

Im

1

 in the odd case, to define the Lie algebra so(n,C), we can consider the

Cartan subalgebra,

c = {diagonal matrices in so(n,C)} = 〈Ci = Eii − En+i,n+i, i = 1, . . . ,m〉,
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for n = 2m or n = 2m + 1. The sets of roots of so(n,C) with respect to this Cartan

subalgebra are

∆ = {±ei ± ej with i 6= j} ⊂ c∗, for n even,

∆ = {±ei ± ej with i 6= j} ∪ {±ek} ⊂ c∗, for n odd,

where ei


c1

. . .

cn

 = ci, and the sets of simple roots are

Π = {αi = ei − ei+1(1 ≤ i ≤ m− 1), αm = em−1 + em}, for n = 2m even,

Π = {αi = ei − ei+1(1 ≤ i ≤ m− 1), αm = em}, for n = 2m+ 1 odd.

For any subset A ⊂ Π we can define a parabolic subgroup PA ⊂ SO(n,C) and a Levi

subgroup LA ⊂ PA as in Section 1.1.

An antidominant character for a parabolic subgroup PA is in this case an element of

the form

χ =
∑
αi∈A

miλi,

with all mi ≤ 0, where the fundamental weights are:

λi = α1 + 2α2 + . . .+ (i− 1)αi−1 + i(αi + . . .+ αm−2) + 1
2
i(αm−1 + αm),

for i < m− 1,

λm−1 = 1
2
(α1 + 2α2 + . . .+ (m− 2)αm−2 + 1

2
mαm−1 + 1

2
(m− 2)αm),

λm = 1
2
(α1 + 2α2 + . . .+ (m− 2)αm−2 + 1

2
(m− 2)αm−1 + 1

2
mαm),

for n = 2m even, and

λi = α1 + 2α2 + . . .+ (i− 1)αi−1 + i(αi + . . .+ αm) for i < m,

λm = 1
2
(α1 + 2α2 + . . .+mαm),

for n = 2m+ 1 odd.

Let E be a principal SO(n,C)-bundle and consider a reduction of the structure group

of E to a parabolic subgroup P of SO(n,C). Let E be the holomorphic vector bundle

associated to E via the standard representation and let s = iX ∈ iso(n) be the element

associated to an antidominant character for P as in the previous section.

The eigenvalues of a skew-symmetric matrix always come in pairs ±µj (except in the

odd-dimensional case where there is an additional unpaired 0 eigenvalue). For a real
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skew-symmetric matrix the non-zero eigenvalues are all pure imaginary and thus are of

the form ±iλj, with λj ∈ R. Any real skew-symmetric matrix can be diagonalized by

a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are complex

it is not possible to diagonalize by a real matrix, however, it is possible to bring every

skew-symmetric matrix to a block diagonal form

0 λ1

−λ1 0

0 λ2

−λ2 0

. . .

0 λl

−λl 0

0

. . .

0


by an orthogonal transformation. If {v1, v

′
1, . . . , vl, v

′
l, v2l+1, . . . , vm} is the orthogonal ba-

sis in which X has block diagonal form, then {v1 + iv′1, . . . , vl + iv′l, v2l+1, . . . , vm, ivl +

v′l, . . . , iv1 + v′1}, is the basis in which s takes form

−λ1
. . .

−λl

0

. . .

0

λl

. . .

λ1


.

Using this diagonal form, if g = (gij) ∈ SO(n,C), then we have

Ad(ets)(g) = etsge−ts = Diag(e−tλ1 , . . . , e−tλl , 1, . . . , 1, etλl , . . . , etλ1) · (gij)

·Diag(etλ1 , . . . , etλl , 1, . . . , 1, e−tλl , . . . , e−tλ1).

If all the eigenvalues of s are different, P is the subgroup of upper triangular matrices in

SO(n,C) and if they are not, we have block upper diagonal matrices. Considering the

sequence of different eigenvalues of s, λ1 < λ2 < . . . < λk−1 < λk, with λk−i+1 + λi = 0,

we can construct a filtration

E = (0 ⊂ E1 ⊂ · · · ⊂ Ek = E)

as in Section 1.3. In this case, since λk−i+1 + λi = 0, the subbundles in the filtration

satisfy Ej = E
⊥Q

k−j, that is, E is a filtration of isotropic subbundles.

In the following example we study the parabolic subgroups of SO(6,C), which is a

simple but rich enough case to illustrate this theory.
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Example 2.2. Parabolic subgroups of SO(6,C).

Every parabolic subgroup of SO(6,C) is in correspondence with an element s ∈ iso(6),

that is, the parabolic subgroups of SO(6,C) are defined by

Ps = {g ∈ SO(6,C) | etsge−ts is bounded as t→∞},

where s takes all the possible values in iso(6). The corresponding Levi subgroups are

defined by

Ls = {g ∈ SO(6,C) | Ad(g)(s) = s}.

Let −λ1 ≤ −λ2 ≤ −λ3 ≤ λ3 ≤ λ2 ≤ λ1 be the eigenvalues of s. If g = (gij) ∈ SO(6,C),

then we have that etsge−ts is equal to



g11 et(λ2−λ1)g12 et(λ3−λ1)g13 e−t(λ1+λ3)g14 e−t(λ1+λ2)g15 e−2tλ1g16

et(λ1−λ2)g21 g22 et(λ3−λ2)g23 e−t(λ2+λ3)g24 e−2tλ2g25 e−t(λ1+λ2)g26

et(λ1−λ3)g31 et(λ2−λ3)g32 g33 e−2tλ3g34 e−t(λ2+λ3)g35 e−t(λ1+λ3)g36

et(λ1+λ3)g41 et(λ2+λ3)g42 e2tλ3g43 g44 et(λ3−λ2)g45 et(λ3−λ1)g46

et(λ1+λ2)g51 e2tλ2g52 et(λ2+λ3)g53 et(λ2−λ3)g54 g55 et(λ2−λ1)g56

e2tλ1g61 et(λ1+λ2)g62 et(λ1+λ3)g63 et(λ1−λ3)g64 et(λ1−λ2)g65 g66


.

Studying the behavior of this matrix when t→∞ for all possible values of λi we obtain

the list of parabolic subgroups of SO(6,C):

P = SO(6,C), P1 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 , P2 =


∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗

 ,

P3 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

 , P4 =


∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗

 , P5 =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

 ,

P6 =


∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

 , P7 =


∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

∗

 .

Observe that Pi are not matrices in SL(6,C) but in SO(6,C), this means that there are

relations between the elements in a position marked by ∗ and some of them are in fact

zero.
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The corresponding Levi subgroups are

L = SO(6,C), L1 =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 , L2 =


∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗

 ,

L3 =


∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

 , L4 =


∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗

 , L5 =


∗ ∗
∗ ∗

∗
∗

∗ ∗
∗ ∗

 ,

L6 =


∗

∗
∗ ∗
∗ ∗

∗
∗

 , L7 =


∗

∗
∗

∗
∗

∗

 .

Let E be a principal SO(6,C)-bundle E. A reduction of the structure group of E to a

parabolic subgroup Pi is equivalent to the existence of a filtration of its associated vector

bundle E. To conclude with this example, we describe the filtration corresponding to each

parabolic subgroup Pi of SO(6,C):

P : E = (0 ⊂ E), λi = 0,

P1 : E = (0 ⊂ E
(3)
1 ⊂ E), −λ = −λ = −λ < λ = λ = λ,

P2 : E = (0 ⊂ E
(1)
1 ⊂ E

(5)
2 ⊂ E), −λ < 0 = 0 = 0 = 0 < λ,

P3 : E = (0 ⊂ E
(2)
1 ⊂ E

(4)
2 ⊂ E), −λ = −λ < 0 = 0 < λ = λ,

P4 : E = (0 ⊂ E
(1)
1 ⊂ E

(3)
2 ⊂ E

(5)
3 ⊂ E), −λ < −µ = −µ < µ = µ < λ,

P5 : E = (0 ⊂ E
(2)
1 ⊂ E

(3)
2 ⊂ E

(4)
3 ⊂ E), −λ = −λ < −µ < µ < λ = λ,

P6 : E = (0 ⊂ E
(1)
1 ⊂ E

(2)
2 ⊂ E

(4)
3 ⊂ E

(5)
4 ⊂ E), −λ < −µ < 0 = 0 < µ < λ,

P7 : E = (0 ⊂ E
(1)
1 ⊂ E

(2)
2 ⊂ E

(3)
3 ⊂ E

(4)
4 ⊂ E

(5)
5 ⊂ E), −λ < −µ < −γ < γ < µ < λ.

In the filtrations, we have the relation Ej
∼= E

⊥Q

k−j and the number (i) denotes the dimen-

sion of each subbundle.

2.2 Stability of SO(n,C)-Higgs bundles

Applying Definition 1.2 to SO(n,C)-Higgs bundles and using the results of Section 1.3 we

obtain the following:

Proposition 2.3. An SO(n,C)-Higgs bundle (E, Q, φ) with n 6= 2 is semistable if for

any filtration

E = (0 ⊂ E1 ⊂ . . . ⊂ Ek = E),

1 ≤ k ≤ n, satisfying Ej = E
⊥Q

k−j, and any element of

Λ(E) = {λ = (λ1 ≤ λ2 ≤ . . . ≤ λk) ∈ Rk | λk−i+1 + λi = 0 for any i}
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such that φ ∈ H0(N(E , λ)⊗K), where

N(E , λ) = so(E) ∩
∑

λj≤λi

Hom(Ei, Ej),

we have

d(E , λ) =
k−1∑
j=1

(λj − λj+1) degEj ≥ 0.

The triple (E, Q, φ) is stable if it is semistable and for any choice of the filtration E
and non-zero λ ∈ Λ(E) such that φ ∈ H0(N(E , λ)⊗K), we have

d(E , λ) > 0.

Finally, the triple (E, Q, φ) is polystable if it is semistable and for any filtration E as

above and λ ∈ Λ(E) satisfying λi < λi+1 for each i, φ ∈ H0(N(E , λ)⊗K) and d(E , λ) = 0,

there is an isomorphism

E ' E1 ⊕ E2/E1 ⊕ · · · ⊕ Ek/Ek−1

satisfying

Q(Ei/Ei−1, Ej/Ej−1) = 0 unless i+ j = k + 1.

Furthermore, via the isomorphism,

φ ∈ H0(
⊕

i

Hom(Ei/Ei−1, Ei/Ei−1)⊗K).

There is a simplification of the semistability and stability conditions, which is next

described.

Proposition 2.4. An SO(n,C)-Higgs bundle (E, Q, φ) with n 6= 2 issemistable if and

only if for any isotropic subbundle E ′ ⊂ E such that φ(E ′) ⊆ E ′ ⊗ K the inequality

degE ′ ≤ 0 holds, and it is stable if it is semistable and for any non-zero isotropic

subbundle E ′ ⊂ E such that φ(E ′) ⊆ E ′ ⊗K we have degE ′ < 0.

Proof. This proof is analogous to the proof of Theorem 3.9 in [19].

Let (E, Q, φ) be an SO(n,C)-Higgs bundle and assume that for any isotropic subbundle

E ′ ⊂ E such that φ(E ′) ⊆ E ′⊗K one has degE ′ ≤ 0. We are going to prove that (E, Q, φ)

is semistable.

Choose any filtration E = (0 ⊂ E1 ⊂ . . . ⊂ Ek = E) satisfying Ej = E
⊥Q

k−j for any j.

We have to understand the geometry of the set

Λ(E , φ) = {λ ∈ Λ(E) | φ ∈ N(E , λ)} ⊂ Rk.
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Let J = {j | φ(Ej) ⊆ Ej⊗K} = {j1, . . . , jr}. One checks easily that if λ = (λ1, . . . , λk) ∈
Λ(E) then

λ ∈ Λ(E , φ)⇔ λa = λb for any ji ≤ a ≤ b ≤ ji+1.

The set of indices J is symmetric:

j ∈ J ⇔ k − j ∈ J .

To check this we have to prove that φ(Ej) ⊆ Ej ⊗K implies that φ(E
⊥Q

j ) ⊆ E
⊥Q

j ⊗K.

Suppose that this is not true, then there is a j with φ(Ej) ⊆ Ej⊗K and there exists some

w ∈ E⊥Q

j such that φ(w) /∈ E⊥Q

j ⊗K. Then there exists v ∈ Ej such that Q(v, φ(w)) 6= 0.

However, since φ ∈ H0(so(E)⊗K), we must have

Q(v, φ(w)) = Q(v,−φ>(w)) = −Q(φ(v), w),

and the latter vanishes because by assumption φ(v) belongs to Ej. So we have reached a

contradiction.

Let J ′ = {j ∈ J | 2j ≤ k} and define for any j ∈ J ′ the vector

Lj = −
∑
c≤j

ec +
∑

d≥k−j+1

ed,

where e1, . . . , ek is the canonical basis of Rk. We know that the set Λ(E , φ) is the positive

span of the vectors {Lj | j ∈ J ′}. Consequently, we have

d(E , λ) ≥ 0 for any λ ∈ Λ(E , φ) ⇔ d(E , Lj) ≥ 0 for any j

and d(E , Lj) = − degEk−j − degEj. Since degEk−j = degEj, d(E , Lj) ≥ 0 is equivalent

to degEj ≤ 0, which holds by assumption. Hence (E, Q, φ) is semistable.

Conversely, if (E, Q, φ) is semistable then for any isotropic subbundle E ′ ⊂ E such that

φ(E ′) ⊆ E ′⊗K we have degE ′ ≤ 0 is immediate by applying the semistability condition

of the filtration 0 ⊂ E ′ ⊂ E ′⊥Q ⊂ E.

Finally, the proof of the second statement on stability is very similar to the case of

semistability, so we omit it.

The case n = 2 requires a special attention. Observe that a principal SO(2,C)-bundle

(E,Q) decomposes as E = L⊕ L−1, where L is a line bundle and Q =

(
1

1

)
. Then,

any principal SO(2,C)-bundle has an isotropic subbundle with degree greater or equal

than zero. However, from the isomorphism SO(2,C) ∼= C∗ we deduce that there are
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no proper parabolic subgroups in SO(2,C), and using Definition 1.2 we have that any

SO(2,C)-Higgs bundle is stable. Then, the simplified notions described in Definition 2.4

can not be applied to this case.

We illustrate Proposition 2.3 and Proposition 2.4 with the following example.

Example 2.5. Stability of SO(6,C)-Higgs bundles.

Let (E, Q, φ) be an SO(6,C)-Higgs bundle. In this example we apply Theorem 2.3 to

obtain stability conditions of (E, Q, φ) for each parabolic subgroup of SO(6,C) and we

arrive at the simplified notions of Theorem 2.4.

Let P ⊂ SO(n,C) be a parabolic subgroup and let χ be an strictly antidominant

character for P . The fibre of the bundle E(mC)−σ,χ of Definition 1.2, which is denoted by

N(E , λ) in Proposition 2.3, is

(mC)−χ = {v ∈ mC | ι(etsχ)v remains bounded as t→∞}.

Since in the case of SO(6,C) the isotropy representation coincides with the adjoint repre-

sentation, the condition φ ∈ H0(N(E , λ)⊗K) is equivalent to

φ ∈ {v ∈ so(6,C) | Ad(ets)v is bounded as t→∞} ∼= p.

If v = (vij) ∈ so(6,C), then we have that Ad(ets)v is equal to

v11 et(λ2−λ1)v12 et(λ3−λ1)v13 e−t(λ1+λ3)v14 e−t(λ1+λ2)v15 0

et(λ1−λ2)v21 v22 et(λ3−λ2)v23 e−t(λ2+λ3)v24 0 −e−t(λ1+λ2)v15

et(λ1−λ3)v31 et(λ2−λ3)v32 v33 0 −e−t(λ2+λ3)v24 −e−t(λ1+λ3)v14

et(λ1+λ3)v41 et(λ2+λ3)v42 0 −v33 −et(λ3−λ2)v23 −et(λ3−λ1)v13

et(λ1+λ2)v51 0 −et(λ2+λ3)v42 −et(λ2−λ3)v32 −v22 −et(λ2−λ1)v12

0 −et(λ1+λ2)v51 −et(λ1+λ3)v41 −et(λ1−λ3)v31 −et(λ1−λ2)v21 −v11


.

The stability conditions for each parabolic subgroup are the following:

• P1: A reduction of the structure group of the SO(6,C)-Higgs bundle (E, Q) to

the parabolic subgroup P1 is equivalent to a filtration E = (0 ⊂ E
(3)
1 ⊂ E), the set

of eigenvalues of the corresponding s1 ∈ iso(6) is given by Λ(E) = {(−λ, λ)} and the

condition φ ∈ H0(N(E , λ)⊗K) is equivalent to

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

f2,1 f2,2 f2,3 f2,4 0 −f1,5

f3,1 f3,2 f3,3 0 −f2,4 −f1,4

0 0 0 −f3,3 −f2,3 −f1,3

0 0 0 −f3,2 −f2,2 −f1,2

0 0 0 −f3,1 −f2,1 −f1,1


.
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Then,

d(E , λ) = (−λ− λ) degE
(3)
1 = −2λ degE

(3)
1 ≥ 0

and d(E , λ) ≥ 0 if and only if

degE
(3)
1 ≤ 0.

• P2: A reduction to P2 is equivalent to a filtration E = (0 ⊂ E
(1)
1 ⊂ E

(5)
2 ⊂ E), the

set of possible weights is Λ(E) = {(−λ, 0, λ)} and the condition given by the Higgs field

is

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

0 f2,2 f2,3 f2,4 0 −f1,5

0 f3,2 f3,3 0 −f2,4 −f1,4

0 f4,2 0 −f3,3 −f2,3 −f1,3

0 0 −f4,2 −f3,2 −f2,2 −f1,2

0 0 0 0 0 −f1,1


.

Then,

d(E , λ) = (−λ− 0) degE
(1)
1 + (0− λ) degE

(5)
2 = −2λ degE

(1)
1 ≥ 0

if and only if

degE
(1)
1 ≤ 0.

• P3: For the parabolic subgroup P3 we have the filtration E = (0 ⊂ E
(2)
1 ⊂ E

(4)
2 ⊂ E),

the set of weights Λ(E) = {(−λ, 0, λ)} and the condition

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

f2,1 f2,2 f2,3 f2,4 0 −f1,5

0 0 f3,3 0 −f2,4 −f1,4

0 0 0 −f3,3 −f2,3 −f1,3

0 0 0 0 −f2,2 −f1,2

0 0 0 0 −f2,1 −f1,1


.

Then,

d(E , λ) = (−λ− 0) degE
(2)
1 + (0− λ) degE

(4)
2 = −2λ degE

(2)
1 ≥ 0

if and only if

degE
(2)
1 ≤ 0.

• P4: For the parabolic P4 we have the filtration E = (0 ⊂ E
(1)
1 ⊂ E

(3)
2 ⊂ E

(5)
3 ⊂ E),
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the set of weights Λ(E) = {(−λ,−µ, µ, λ)}, the condition

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

0 f2,2 f2,3 f2,4 0 −f1,5

0 f3,2 f3,3 0 −f2,4 −f1,4

0 0 0 −f3,3 −f2,3 −f1,3

0 0 0 −f3,2 −f2,2 −f1,2

0 0 0 0 0 −f1,1


,

and the semistability condition implies

d(E , λ) = (−λ+ µ) degE
(1)
1 − 2µ degE

(3)
2 + (µ− λ) degE

(5)
3

= −2(λ− µ) degE
(1)
1 − 2µ degE

(3)
2 ≥ 0.

• P5: For this parabolic we have the filtration E = (0 ⊂ E
(2)
1 ⊂ E

(3)
2 ⊂ E

(4)
3 ⊂ E), the

set of weights Λ(E) = {(−λ,−µ, µ, λ)}, the condition

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

f2,1 f2,2 f2,3 f2,4 0 −f1,5

0 0 f3,3 0 −f2,4 −f1,4

0 0 0 −f3,3 −f2,3 −f1,3

0 0 0 0 −f2,2 −f1,2

0 0 0 0 −f2,1 −f1,1


,

and the semistability condition implies

d(E , λ) = (−λ+ µ) degE
(2)
1 − 2µ degE

(3)
2 + (µ− λ) degE

(4)
3

= −2(λ− µ) degE
(2)
1 − 2µ degE

(3)
2 ≥ 0.

• P6: For this parabolic we have the filtration E = (0 ⊂ E
(1)
1 ⊂ E

(2)
2 ⊂ E

(4)
3 ⊂ E

(5)
4 ⊂

E), the set of weights Λ(E) = {(−λ,−µ, 0, µ, λ)}, the condition

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

0 f2,2 f2,3 f2,4 0 −f1,5

0 0 f3,3 0 −f2,4 −f1,4

0 0 0 −f3,3 −f2,3 −f1,3

0 0 0 0 −f2,2 −f1,2

0 0 0 0 0 −f1,1


,

and the semistability condition implies

d(E , λ) = (−λ+ µ) degE
(1)
1 − µ degE

(2)
2 − µ degE

(4)
3 + (µ− λ) degE

(5)
4

= −2(λ− µ) degE
(1)
1 − 2µ degE

(2)
2 ≥ 0.

26



• P7: For this parabolic we have the filtration E = (0 ⊂ E
(1)
1 ⊂ E

(2)
2 ⊂ E

(3)
3 ⊂ E

(4)
4 ⊂

E
(5)
5 ⊂ E), the set of weights Λ(E) = {(−λ,−µ,−γ, γ, µ, λ)}, the condition

φ =



f1,1 f1,2 f1,3 f1,4 f1,5 0

0 f2,2 f2,3 f2,4 0 −f1,5

0 0 f3,3 0 −f2,4 −f1,4

0 0 0 −f3,3 −f2,3 −f1,3

0 0 0 0 −f2,2 −f1,2

0 0 0 0 0 −f1,1


,

and the semistability condition implies

d(E , λ) = (−λ+ µ) degE
(1)
1 + (−µ+ γ) degE

(2)
2 + (−γ − γ) degE

(3)
3 +

+(γ − µ) degE
(4)
4 + (µ− λ) degE

(5)
5 =

= −2(λ− µ) degE
(1)
1 − 2(µ− γ) degE

(2)
2 − 2γ degE

(3)
3 ≥ 0.

Then, (E, Q, φ) is semistable if and only if the semistability condition holds for the

parabolic subgroups P1, P2 and P3, and in these cases, the condition φ ∈ H0(N(E , λ)⊗K)

is equivalent to φ(E ′) ⊆ E ′ ⊗K, where E ′ is the isotropic subbundle which has to verify

degE ′ ≤ 0. The analogous property holds for the stability condition.

In fact, we have an inclusion p3 ⊂ p1, and then, if we suppose that the condition holds

for P1, then it automatically holds for P3. Therefore, it suffices to verify the stability

condition for P1 and P2, which are the maximal parabolic subgroups of SO(6,C). This is

a general phenomenon for SO(n,C) when n is even.
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3 SO0(p, q)-Higgs bundles

The special orthogonal group SO(p, q) is the subgroup of SL(n = p+q,R) consisting of all

linear transformations of a n = p+ q dimensional real vector space which leave invariant

a non-degenerate symmetric bilinear form of signature (p, q). This group is a real form of

SO(n = p+ q,C).

Using the standard non-degenerate symmetric bilinear form of signature (p, q) on Rn

ε(x, y) = −x1y1 − · · · − xpyp + xp+1yp+1 + · · ·+ xnyn,

this means that,

ε(Ax,Ay) = ε(x, y)

for all A ∈ SO(p, q) and all x, y ∈ Rn. Then

SO(p, q) = {A ∈ SL(n = p+ q,R) | AtIp,qA = Ip,q},

where Ip,q =

(
−Ip

Iq

)
.

The Lie group SO(p, q) is a real (non-complex) group of dimension n(n− 1)/2 which

is non-compact for p, q 6= 0, semisimple for p + q ≥ 3 and which has two connected

components. Let SO0(p, q) be the connected component of the identity.

The Lie algebra of SO(p, q) and then of its identity component SO0(p, q) is so(p, q),

which has Cartan decomposition

so(p, q) = h + m,

where h = so(p)× so(q) is the Lie algebra of the maximal compact subgroup of SO0(p, q).

If we use the standard non-degenerate symmetric bilinear form of signature (p, q), we have

so(p, q) = {X ∈ sl(n = p+ q,R) | X tIp,q + Ip,qX = 0} =

=

{(
X1 X2

X t
2 X3

)
| X1, X3 real skew-symmetric of rank p and q, X2 real (p× q)

}
,

and then

h =

{(
X1 0

0 X3

)
| X1 ∈ so(p), X3 ∈ so(q)

}
,

and

m =

{(
0 X2

X t
2 0

)
| X2 real (p× q)-matrix

}
.
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The involution of so(p+ q,C) that defines so(p, q) as a real form is σ(X) = Ip,qX̄Ip,q, that

is

so(p, q) = {X ∈ so(p+ q,C) | Ip,qX̄Ip,q = X} =

= {X ∈ sl(p+ q,C) | X +X t = 0, Ip,qX̄Ip,q = X} =

=

{(
X1 iX2

−iX t
2 X3

)
| X1, X3 real skew-symmetric of rank p and q, X2 real (p× q)

}
.

Observe that there is an isomorphism(
X1 iX2

−iX t
2 X3

)
→

(
X1 X2

X t
2 X3

)
=

(
−iIp 0

0 Iq

)(
X1 iX2

−iX t
2 X3

)(
iIp 0

0 Iq

)
.

The Cartan decomposition of the complex Lie algebra is

so(p+ q,C) = (so(p,C)× so(q,C))⊕mC,

where

mC = {

(
0 X2

−X t
2 0

)
| X2 complex matrix (p× q)},

and the complexified isotropy representation is

ι : SO(p,C)× SO(q,C)→ GL(mC),

where

ι

(
a 0

0 b

)(
0 X2

−X t
2 0

)
=

(
a 0

0 b

)(
0 X2

−X t
2 0

)(
a−1 0

0 b−1

)
=

=

(
0 aX2b

−1

−bX t
2a

−1 0

)
∈ mC.

Definition 3.1. An SO0(p, q)-Higgs bundle is a pair (E,ϕ), where E is a holomorphic

principal SO(p,C)× SO(q,C)-bundle over X and ϕ ∈ H0(E(mC)⊗K).

Two SO0(p, q)-Higgs bundles (E,ϕ) and (E ′, ϕ′) are isomorphic if there is an isomor-

phism E ∼= E ′ which takes ϕ to ϕ′ under the induced isomorphism E(mC) ∼= E ′(mC).

If (E,ϕ) is an SO0(p, q)-Higgs bundle, the principal SO(p,C)× SO(q,C)-bundle E is

the fibred product

E = ESO(p,C) × ESO(q,C)

of two principal bundles with structure groups SO(p,C) and SO(q,C) respectively. Using

the standard representations of SO(p,C) and SO(q,C) in Cp and Cq we can associate to
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ESO(p,C) and ESO(q,C) two holomorphic vector bundles V and W of rank p and q respec-

tively,

V = ESO(p,C) ×SO(p,C) Cp,

W = ESO(q,C) ×SO(q,C) Cq,

with detV = detW = O, together with two non-degenerate symmetric quadratic forms

QV : V ⊗ V → C and QW : W ⊗W → C,

which induce two isomorphisms

qV : V ∼ // V ∗ and qW : W ∼ // W ∗.

The vector bundle E(mC) can be expressed in terms of V and W as follows:

E(mC) = {(η, ν) ∈ Hom(W,V )⊕ Hom(V,W ) | ν = −η>},

where η> = q−1
W ◦ ηt ◦ qV ,

V
η> //

qV

��

W

qW

��
V ∗ ηt

// W ∗,

that is, E(mC) ∼= Hom(W,V ). Then, in terms of vector bundles, the Higgs field is a

section η ∈ H0(Hom(W,V )⊗K), that is

η : W → V ⊗K,

and hence SO0(p, q)-Higgs bundles (E,ϕ) are in one-to-one correspondence with tuples

(V,QV ,W,QW , η).

Finally, an isomorphism between two SO0(p, q)-Higgs bundles (V,QV ,W,QW , η) and

(V ′, QV ′ ,W ′, QW ′ , η′) is given by two isomorphisms gV : V → V ′ and gW : W → W ′ such

that (gV × IK) ◦ η = η′ ◦ gW , where IK is the identity on K.

3.1 Stability of SO0(p, q)-Higgs bundles

Every parabolic subgroup P of SO(p,C) × SO(q,C) is of the form P1 × P2, where P1 ⊂
SO(p,C) and P2 ⊂ SO(q,C) are parabolic subgroups.

Given a s = (s1, s2) ∈ i(so(p)× so(q)), we define the sets

Ps1 = {g ∈ SO(p,C) | ets1ge−ts1 is bounded as t→∞},
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Ps2 = {g ∈ SO(q,C) | ets2ge−ts2 is bounded as t→∞}.

These sets are parabolic subgroups of SO(p,C) and SO(q,C) respectively and then Ps1 ×
Ps2 is a parabolic subgroup of the product. In fact, every parabolic subgroup of SO(p,C)×
SO(q,C) is of this form.

Let (E,ϕ) be an SO0(p, q)-Higgs bundle and consider a reduction of structure group for

the principal SO(p,C)×SO(q,C)-bundle E to a parabolic subgroup P1×P2 of SO(p,C)×
SO(q,C). Let V and W be the pair of holomorphic vector bundles associated to E

and let (s1, s2) be the pair of elements in iso(p) × iso(q) associated to P1 and P2. If

−λ1 < . . . < −λr < 0 < λr < . . . < λ1 and −µ1 < . . . < −µs < 0 < µs < . . . < µ1

are the sequences of different eigenvalues for s1 and s2 (we use again r and s), where the

zeros appear only if p or q are odd, let V (λj) = ker(λj − s1), W (λj) = ker(µj − s2) and

Vi =
⊕

j≤i V (λj), Wi =
⊕

j≤iW (µj). With these definitions we obtain filtrations

V = (0 ⊂ V1 ⊂ · · · ⊂ Vr = V ),

W = (0 ⊂ W1 ⊂ · · · ⊂ Ws = W ),

of isotropic subbundles generated by the eigenvectors in which s = (s1, s2) is diagonal.

The parabolic subgroups Ps1 and Ps2 are precisely the subgroups which preserve these

filtrations.

Applying Definition 1.2 to SO0(p, q)-Higgs bundles and using the language of filtrations

described in Section 1.3 we obtain the following result.

Proposition 3.2. Let (V,W,QV , QW , η) be an SO0(p, q)-Higgs bundle with p, q 6= 2, then

it is semistable if for any pair of filtrations

V = (0 ⊂ V1 ⊂ · · · ⊂ Vr = V ),

W = (0 ⊂ W1 ⊂ · · · ⊂ Ws = W ),

satisfying Vj = V
⊥QV
r−j , Wj = V

⊥QW
s−j and any element (λ, µ) ∈ Λ(V)× Λ(W) with

Λ(V) = {λ = (λ1, λ2, . . . , λr) ∈ Rr | λi ≤ λi+1, λr−i+1 + λi = 0 for any i},

Λ(W) = {µ = (µ1, µ2, . . . , µs) ∈ Rs | µi ≤ µi+1, µs−i+1 + µi = 0 for any i},

such that η ∈ H0(N ⊗K), where

N = N(V ,W , λ, µ) =
∑

λj≤µi

Hom(Wi, Vj),
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we have

d(V , λ) + d(W , µ) ≥ 0.

The tuple (V,W,QV , QW , η) is stable if it is semistable and for any choice of the filtrations

(V ,W) and non-zero (λ, µ) ∈ Λ(V)× Λ(W), that is, at least one of λ and µ is non-zero,

such that η ∈ H0(N ⊗K), we have

d(V , λ) + d(W , µ) > 0.

Finally, the tuple (V,W,QV , QW , η) is polystable if it is semistable and for any filtrations

(V ,W) as above and non-zero (λ, µ) ∈ Λ(V) × Λ(W) satisfying λi < λi+1, µi < µi+1 for

each i, η ∈ H0(N ⊗K) and d(V , λ) + d(W , µ) = 0, there are splittings of vector bundles

V ' V1 ⊕ V2/V1 ⊕ · · · ⊕ V/Vr−1 W ' W1 ⊕W2/W1 ⊕ · · · ⊕W/Ws−1

satisfying

QV (Vi/Vi−1, Vj/Vj−1) = 0 unless i+ j = r + 1,

QW (Wi/Wi−1,Wj/Wj−1) = 0 unless i+ j = s+ 1,

with respect to which

η ∈ H0(
⊕

µi=λj

Hom(Wi/Wi−1, Vj/Vj−1)⊗K).

The following proposition contains the simplified notions of semistability and stability.

Proposition 3.3. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle with p, q 6= 2. It

is semistable if and only if for any pair of isotropic subbundles V ′ ⊂ V , W ′ ⊂ W such

that η(W ′) ⊆ V ′ ⊗K, the inequality deg V ′ + degW ′ ≤ 0 holds. It is stable if and only

if it is semistable and for any pair of isotropic subbundles V ′ ⊂ V , W ′ ⊂ W , at least one

of them non-zero, such that η(W ′) ⊆ V ′ ⊗K, we have deg V ′ + degW ′ < 0.

Proof. Take an SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) and assume that for any pair

of isotropic subbundles V ′ ⊆ V , W ′ ⊂ W such that η(W ′) ⊂ V ′ ⊗K, we have deg V ′ +

degW ′ ≤ 0 holds. We want to prove that (V,QV ,W,QW , η) is semistable.

Choose a pair of filtrations V = (0 ⊂ V1 ⊂ . . . ⊂ Vr = V and W = (0 ⊂ W1 ⊂ . . . ⊂
Ws = W satisfying Vj = V

⊥QV
r−j and Wj = W

⊥QW
s−j for any j. We have to understand the

geometry of the convex set

Λ = {(λ, µ) ∈ Λ(V)× Λ(W) | η ∈ N} ⊂ Rr × Rs.
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Let

J = {(i, j) | η(Wj) ⊆ Vi ⊗K, (η(Wj) * Vk ⊗K for l < i)}

= {(i1, j1), . . . , (ik, jk)}.

One checks easily that if (λ, µ) ∈ Λ(V)× Λ(W), then

(λ, µ) ∈ Λ⇔

{
λa = λb, for any il ≤ a ≤ b ≤ il+1,

µa = µb, for any jl ≤ a ≤ b ≤ jl+1.

The set of indices J is symmetric,

(i, j) ∈ J ⇔ (r − i, s− j) ∈ J .

To check this we have to prove that φ(Ej) ⊆ Ej ⊗ K implies that φ(E
⊥Q

j ) ⊆ E
⊥Q

j ⊗
K. Suppose that this is not true, then there is a pair (i, j) with η(Wj) ⊆ Vi ⊗ K (or

equivalently, η>(Vi) ⊆ Wj ⊗ K) and there exists some w ∈ W
⊥QW
j such that η(w) /∈

V
⊥QV
i ⊗K. Then there exists v ∈ Vi such that QV (v, η(w)) 6= 0. We have

QV (v, η(w)) = QW (−η>(v), w) = 0,

and the latter vanishes because by assumption −η>(v) belongs to Wj. So we have reached

a contradiction.

Let J ′ = {(i, j) ∈ J | 2i ≤ r, 2j ≤ s} and define for any (i, j) ∈ J ′ the vectors

Li = −
∑
c≤i

ec +
∑

d≥r−i+1

ed,

Mj = −
∑
c≤j

fc +
∑

d≥s−j+1

fd,

where {e1, . . . , er} and {f1, . . . , fs} are the canonical basis of Rr and Rs. The set Λ is the

positive span of the vectors {Li,Mj | (i, j) ∈ J ′} and we have

d(V , λ) + d(W , µ) ≥ 0 for any (λ, µ) ∈ Λ⇔ d(V , Li) + d(W ,Mj) ≥ 0 for any (i, j).

We have also that

d(V , Li) = − deg Vr−i − deg Vi,

d(W ,Mj) = − degWs−j − degWj.

Since deg Vr−i = deg Vi and degWs−j = degWj, then d(V , Li) + d(W ,Mj) = −2(deg Vi +

degWj) ≥ 0 is equivalent to deg Vi + degWj ≤ 0, which holds by assumption. Hence

(V,QV ,W,QW , η) is semistable.
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Conversely, if (V,QV ,W,QW , η) is semistable, for any isotropic subbundle E ′ ⊂ E such

that φ(E ′) ⊆ E ′⊗K we have that the condition degE ′ ≤ 0 is immediate by applying the

semistability condition of the filtrations 0 ⊂ V ′ ⊂ V ′⊥QV ⊂ V and 0 ⊂ W ′ ⊂ W ′⊥QW ⊂ W .

Finally, the proof of the second statement on stability is very similar to case of semista-

bility, so we omit it.

As we have mentioned in Section 2.2, the Lie group SO(2,C) has no parabolic sub-

groups and the stability condition can not be simplified in terms of isotropic subbundles.

This phenomenon appears also for SO0(p, q)-Higgs bundles in the study of the parabolic

subgroups of SO(p,C) × SO(q,C) when p or q are equal to 2. This is the reason why

Proposition 3.3 does not work when p = 2 or q = 2. The following result deals with this

case.

Proposition 3.4. An SO0(2, q)-Higgs bundle (V,QV ,W,QW , η) is semistable if and

only if for any isotropic subbundle W ′ ⊂ W such that η(W ′) ⊆ V ⊗ K, the inequality

degW ′ ≤ 0 holds. It is stable if and only if it is semistable and for non-zero isotropic

subbundle W ′ ⊂ W such that η(W ′) ⊆ V ⊗K, we have degW ′ < 0.

To conclude this section we include several low rank examples to illustrate the notions

of stability for SO0(p, q)-Higgs bundles. In Example 3.5 we deduce the simplified notion

of stability given by Proposition 3.3 in the particular case of SO0(3, 3)-Higgs bundles.

In Example 3.6, using the low rank isomorphisms given in Section 5, we compare the

notion of stability for the special orthogonal group SO0(2, 1) with the notion of stability

for Sp(2,R) defined in [19].

Example 3.5. Stability of SO0(3, 3)-Higgs bundles.

Let (E,ϕ) be an SO0(3, 3)-Higgs bundle. The parabolic subgroups of SO(3,C) are T =

SO(3,C) and Pλ =


∗ ∗ ∗
∗ ∗
∗

 ⊂ SO(3,C) corresponding to the elements s = 0 and s =

 −λ

0

λ

 in iso(3). A reduction of the structure group of the principal SO(3,C)×

SO(3,C)-bundle E to a parabolic subgroup of SO(3,C) × SO(3,C) is in correspondence

with a pair of filtrations of the associated vector bundles V and W . This correspondence
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is the following:

T = T × T,
(0, 0),

V = (0 ⊂ V ) , W = (0 ⊂ W ),

P1 = Pλ × T,
(−λ < 0 < λ, 0),

V = (0 ⊂ V
(1)
1 ⊂ V

(2)
2 ⊂ V ) , W = (0 ⊂ W ),

P2 = T × Pλ,
(0,−λ < 0 < λ),

V = (0 ⊂ V ) , W = (0 ⊂ W
(1)
1 ⊂ W

(2)
2 ⊂ W ),

P3 = Pλ × Pµ,
(−λ < 0 < λ,−µ < 0 < µ),

V = (0 ⊂ V
(1)
1 ⊂ V

(2)
2 ⊂ V ) , W = (0 ⊂ W

(1)
1 ⊂ W

(2)
2 ⊂ W ).

In this example, we use two different methods to write the condition for the parabolic

subgroups given by the Higgs field, we use the definition

N =
∑

λj≤µi

Hom(Wi, Vj),

and we also compute the set

{X ∈ mC | ι(ets)(X) is bounded as t→∞}.

If f = (fij) ∈ Hom(W,V ) ∼= mC and ι : SO(3,C) × SO(3,C) → GL(mC) is the isotropy

representation, then

ι(ets)(f) =


e−tλ

1

etλ




f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3




etµ

1

e−tµ


=


et(µ−λ)f1,1 e−tλf1,2 e−t(µ+λ)f1,3

etµf1,1 f2,2 e−tµf2,3

et(µ+λ)f3,1 etλf3,2 et(λ−µ)f3,3

 .

Observe that s = (s1, s2) with s1 =

 −λ

0

λ

 and s2 =

 −µ

0

µ

 and that we

are considering mC ∼= Hom(W,V ). If f = (fij) is in Hom(W,V ), the corresponding part

in Hom(V,W ) is

f> =


f3,3 f2,3 f1,3

f3,2 f2,2 f1,2

f3,1 f2,1 f1,1

 .

In the following list we describe, for each parabolic subgroup, the bundle N and the

condition for d(V , λ) + d(W , µ) that semistability condition requires:
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• T : N = Hom(W,V ) and d(V , λ) = d(W , µ) = 0.

• P1 : N = Hom(W,V1) ⊕ Hom(W,V2) or equivalently η =


f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

0 0 0

, that

is, η>(V
(1)
1 ) = 0.

d(V , λ) = −2λ deg V
(1)
1 , d(W , µ) = 0, then d(V , λ) + d(W , µ) ≥ 0 if and only if

deg V
(1)
1 ≤ 0.

• P2 : N = Hom(W2, V )⊕Hom(W,V ) or equivalently η =


0 f1,2 f1,3

0 f2,2 f2,3

0 f3,2 f3,3

, that is,

η(W
(1)
1 ) = 0.

d(V , λ) = 0, d(W , µ) = −2µ degW
(1)
1 , then d(V , λ) + d(W , µ) ≥ 0 if and only if

degW
(1)
1 ≤ 0.

• P3, λ > µ: N = Hom(W1, V1) ⊕ Hom(W2, V1) ⊕ Hom(W2, V2) ⊕ Hom(W,V1) ⊕

Hom(W,V2) or equivalently η =


f1,1 f1,2 f1,3

0 f2,2 f2,3

0 0 0

, that is, η(W
(1)
1 ) ⊆ V

(1)
1 ⊗ K and

η>(V
(1)
1 ) = 0.

d(V , λ) + d(W , µ) = −2λ deg V
(1)
1 − 2µ degW

(1)
1 > −2λ(deg V

(1)
1 + degW

(1)
1 ), then

d(V , λ) + d(W , µ) ≥ 0 if and only if deg V
(1)
1 + degW

(1)
1 ≤ 0.

• P3, λ < µ: N = Hom(W2, V1) ⊕ Hom(W2, V2) ⊕ Hom(W,V1) ⊕ Hom(W,V2) ⊕

Hom(W,V ) or equivalently η =


0 f1,2 f1,3

0 f2,2 f2,3

0 0 f3,3

, that is, η(W
(1)
1 ) = 0 and η>(V

(1)
1 ) ⊆

W
(1)
1 ⊗K.

d(V , λ) + d(W , µ) = −2λ deg V
(1)
1 − 2µ degW

(1)
1 > −2µ(deg V

(1)
1 + degW

(1)
1 ), then

d(V , λ) + d(W , µ) ≥ 0 if and only if deg V
(1)
1 + degW

(1)
1 ≤ 0.

• P3, λ = µ: N = Hom(W1, V1) ⊕ Hom(W2, V1) ⊕ Hom(W2, V2) ⊕ Hom(W,V1) ⊕

Hom(W,V2) ⊕ Hom(W,V ) or equivalently η =


f1,1 f1,2 f1,3

0 f2,2 f2,3

0 0 f3,3

, that is, η(W
(1)
1 ) ⊆

V
(1)
1 ⊗K and η>(V

(1)
1 ) ⊆ W

(1)
1 ⊗K.

d(V , λ) + d(W , λ) = −2λ(deg V
(1)
1 + degW

(1)
1 ), then d(V , λ) + d(W , µ) ≥ 0 if and only

if deg V
(1)
1 + degW

(1)
1 ≤ 0.
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Observe that the SO0(3, 3)-Higgs bundle is semistable if and only if the semistability

condition holds for the parabolic subgroups P1 and P2, which are the maximal parabolic

subgroups. The same happens for the stability condition (but we do not consider the

parabolic P ). For the parabolic subgroups P1 and P2 the condition given by the Higgs

field is η(W ′) = 0, where W ′ is the isotropic subbundle of W which verify degW ′ ≤ 0

and respectively η>(V ′) = 0, where V ′ is the isotropic subbundle of V which has to verify

deg V ′ ≤ 0. For a pair of isotropic subbundles V ′ and W ′ in V and W respectively, the

condition given by the Higgs field is η(W ′) ⊆ V ′ ⊗ K (and η>(V ′) ⊆ W ′ ⊗ K) and the

condition for the degrees is deg V ′+degW ′ ≤ 0. Then, we have the result that we expect

(Proposition 3.3).

Example 3.6. Stability of SO0(2, 1) and Sp(2,R)-Higgs bundles.

In Section 5.1 we describe an isomorphism between the Lie group Spin(2, 1), which is

a double cover of SO0(2, 1), and the groups SL(2,R) ∼= Sp(2,R), that allow us to define an

arrow from the moduli space of SL(2,R)-Higgs bundles toM(SO0(2, 1)). In this example

we check that, if an SO0(2, 1)-Higgs bundle lifts to an SL(2,R)-Higgs bundle, both sta-

bility notions coincide. This is due to the fact that in both cases the complexification of

the maximal compact subgroups is SO(2,C) which has no proper parabolic subgroups.

3.2 Polystable SO0(p, q)-Higgs bundles

The main result in this section is Theorem 3.7 which give a full description of polystable

SO0(p, q)-Higgs bundles.

For this, we need to describe some special SO0(p, q)-Higgs bundles which arise from

certain G-Higgs bundles, where G is a real subgroup of SO0(p, q). We have the following

inclusions:

U(n) ↪→ SO0(2n, 0) or SO0(0, 2n) ∼= SO(2n)

V ′ 7→ (V ′ ⊕ V ′∗, 〈·, ·〉,−,−,−),

SO(n) ↪→ SO0(n, 0) or SO0(0, n) ∼= SO(n)

(V ′, Q′) 7→ (V ′, Q′,−,−,−),

U(p, q) ↪→ SO0(2p, 2q)

(V ′,W ′, β′, γ′) 7→ (V ′ ⊕ V ′∗, 〈·, ·〉,W ′ ⊕W ′∗, 〈·, ·〉, β′ + γ′t),
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where 〈·, ·〉 denotes the dual pairing in each case.

Theorem 3.7. Let (V,QV ,W,QW , η) be a polystable SO0(p, q)-Higgs bundle. There is a

decomposition, unique up to reordering, of this Higgs bundle as a sum of stable Gi-Higgs

bundles, where Gi is one of the following groups: SO0(pi, qi), U(pi, qi), SO(ni) or U(ni).

Proof. Let (V,QV ,W,QW , η) be a polystable SO0(p, q)-Higgs bundle. For the principal

SO0(p,C) and SO0(q,C)-bundles (V,QV ) and (W,QW ) we fix filtrations V = (0 ⊂ V1 ⊂
· · · ⊂ Vr = V ), W = (0 ⊂ W1 ⊂ · · · ⊂ Ws = W ), with Vj = V

⊥QV
r−j , Wj = W

⊥QW
s−j

and strictly antidominant characters λ1 < ... < λr, µ1 < ... < µs with λr−i+1 + λi = 0,

µs−i+1 + µi = 0, such that η ∈ H0(
⊕

λj≤µi

Hom(Wi, Vj)⊗K) and d(V , λ) + d(W , µ) = 0.

Since (V,QV ,W,QW , η) is polystable, we have

V ' V1 ⊕ V2/V1 ⊕ · · · ⊕ V/Vr−1, W ' W1 ⊕W2/W1 ⊕ · · · ⊕W/Ws−1 ,

with

QV (Vi/Vi−1, Vj/Vj−1) = 0 unless i+ j = r + 1,

QW (Wi/Wi−1,Wj/Wj−1) = 0 unless i+ j = s+ 1,

and

η ∈ H0(
⊕

µi=λj

Hom(Wi/Wi−1, Vj/Vj−1)⊗K).

The conditions

QV (Vi/Vi−1, Vj/Vj−1) = 0 unless i+ j = r + 1,

QW (Wi/Wi−1,Wj/Wj−1) = 0 unless i+ j = s+ 1,

tell us that the bilinear forms QV and QW give isomorphisms (Vi/Vi−1)
∗ ∼= Vr−i+1/Vr−i

and (Wi/Wi−1)
∗ ∼= Ws−i+1/Ws−i. We have the exact sequence

V ⊥
i

// V ⊥
i−1

p // (Vi/Vi−1)
∗

where p is given by v 7→ QV (v, ·), then

(Vi/Vi−1)
∗ ∼= V ⊥

i−1/V
⊥
i
∼= Vr−i+1/Vr−i.

The same for (W,QW ) and its corresponding decomposition.

Suppose that p is odd and that we have a filtration V = (0 ⊂ V1 ⊂ ... ⊂ Vr = V ),

where r is even, then V ⊥
r
2

= Vr− r
2

= V r
2
. On the other hand, rk(V ⊥

r
2

) = p − rk(V r
2
), that

implies rk(V r
2
) = p

2
, which is not a natural number. Then, if p is odd, all the possible
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filtrations V = (0 ⊂ V1 ⊂ ... ⊂ Vr = V ), have odd length r, and the value 0 always

appears in the middle of the corresponding strictly antidominant character λ1 < ... < λr.

When the rank p is even, we have filtrations for all 1 ≤ r ≤ p. When r is odd, we have

λ r+1
2

= 0 and in the even case, we have · · ·λ r
2
< λ r

2
+1 · · · , with λ r

2
= −λ r

2
+1 < 0. We

have the analogous result when q odd.

There is a piece of Higgs field non-equal to zero in the following cases:

• When r and s are odd and λ r+1
2

= µ s+1
2

= 0. Then we have

η ∈ H0(Hom(W s+1
2
/W s−1

2
, V r+1

2
/V r−1

2
)⊗K),

and since

(V r+1
2
/V r−1

2
)∗ ∼= V r+1

2
/V r−1

2
and (W s+1

2
/W s−1

2
)∗ ∼= W s+1

2
/W s−1

2
,

the piece

(V r+1
2
/V r−1

2
, QV , W s+1

2
/W s−1

2
, QW , η)

is in itself an SO0(p
′, q′)-Higgs bundle with p′ ≤ p and q′ ≤ q. Observe that QV and

QW denotes now the restriction to the corresponding subbundles.

• When λj = µi for any 1 ≤ j ≤ r, 1 ≤ i ≤ s. This implies also λr−j+1 = µs−i+1.

Then we have

(η1, η2) ∈ H0((Hom(Wi/Wi−1, Vj/Vj−1)⊕ Hom(Ws−i+1/Ws−i, Vr−j+1/Vr−j))⊗K),

and since

(Vj/Vj−1)
∗ ∼= Vr−j+1/Vr−j and (Wi/Wi−1)

∗ ∼= Ws−i+1/Ws−i,

the piece

(Vj/Vj−1, Wi/Wi−1, η1, η
>
2 )

is in itself a U(p′, q′)-Higgs bundle with p′ < p and q′ < q. We can also take

(Vr−j+1/Vr−j,Ws−i+1/Ws−i, η2, η
>
1 )

but it is clear that one set of data determines the other by duality.

There is a piece of Higgs field equal to zero in the following cases:
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• If r is odd and s even, we have the zero value only in the part corresponding to V

and the pair

(V r+1
2
/V r−1

2
, QV )

is then an orthogonal bundle with Higgs field equals to zero that appears in the

decomposition of V , that is, an SO(p′)-Higgs bundle. Analogously, if r is even and

s is odd, the pair

(W s+1
2
/W s−1

2
, QW )

is an SO(q′)-Higgs bundle in the decomposition of W .

• When we have λj 6= µi for all 1 ≤ i ≤ s, then we have a pair of U(p′)-Higgs bundles

Vj/Vj−1 and Vr−j+1/Vr−j,

dual one to the other. Analogously, if µi 6= λj for all 1 ≤ j ≤ r,

Wi/Wi−1 and Ws−i+1/Ws−i

are U(q′)-Higgs bundle, determined one from the other by the duality given by QW .

Each piece in the decomposition is also polystable, and we can repeat the process and

obtain a decomposition where all the pieces are stable Higgs bundles (using the Jordan-

Hölder reduction, [19, Sec. 2.10]).

Lemma 3.8. If a polystable SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) decomposes as a

sum of stable Gi-Higgs bundles where Gi = SO0(pi, qi) and SO(ni) with ni 6= 2, then

(V,QV ,W,QW , η) is stable.

If in the decomposition of a polystable SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) there

is a summand which is an SO(2)-Higgs bundle, that is, a principal SO(2,C)-bundle E =

L⊕L−1, the isotropic subbundles L and L−1, which have opposite degrees, do not violate

the stability condition for E (since there are no parabolic subgroups in SO(2,C)) but they

violate the stability condition for (V,QV ,W,QW , η).

Lemma 3.9. If an SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) is strictly polystable, then

in the decomposition there must be at least a Gi-Higgs bundle with Gi = U(ni), SO(2) or

U(pi, qi).
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3.3 Moduli space of SO0(p, q)-Higgs bundles.

Definition 3.10. The moduli space of polystable SO0(p, q)-Higgs bundles is defined

as the set of isomorphisms classes of polystable SO0(p, q)-Higgs bundles and is denoted by

M(SO0(p, q)).

If (E,ϕ) is an SO0(p, q)-Higgs bundle, since E is the fibred product

E = ESO(p,C) × ESO(q,C)

of two orthogonal bundles, we have a topological invariant c = (c1, c2) associated to it,

which is given by the following exact sequences

1→ π1(SO(p,C))→ S̃O(p,C)→ SO(p,C)→ 1,

1→ π1(SO(q,C))→ S̃O(q,C)→ SO(q,C)→ 1,

where S̃O(p,C) and S̃O(q,C) are the universal covers of SO(p,C) and SO(q,C) respec-

tively, and the associated long cohomology sequences

H1(X, S̃O(p,C)) // H1(X, SO(p,C))
c1 // H2(X, π1(SO(p,C))) ∼= π1(SO(p,C)),

H1(X, S̃O(q,C)) // H1(X, SO(q,C))
c2 // H2(X, π1(SO(q,C))) ∼= π1(SO(q,C)).

This invariant

c = (c1, c2) ∈ π1(SO(p,C))× π1(SO(q,C))

measures the obstruction to lifting ESO(p,C) and ESO(q,C) to a flat S̃O(p,C)) and S̃O(p,C))-

bundle respectively. Observe that when n > 2, the universal cover of SO(n,C) is

Spin(n,C). We have that

π1(SO(n,C)) =


1, n = 1,

Z, n = 2,

Z2, n ≥ 3.

When p, q ≥ 3, the invariants (c1, c2) ∈ H2(X,Z2)×H2(X,Z2) ∼= Z2 × Z2 correspond to

the second Stiefel-Whitney classes of the two orthogonal bundles that we obtain from the

reduction of the structure groups of ESO(p,C) and ESO(q,C) to the real groups SO(p) and

SO(q).

Since detV = detW = O, using the applications

H1(X, SO(p,C)), H1(X, SO(q,C))
det // J(X)
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in the Jacobian of X and the identification

H1(X,Z2) ∼= J2(X) = {L ∈ J(X) | L2 ∼= O},

the first Stiefel-Whitney classes of these bundles are zero.

We define the moduli space of polystable SO0(p, q)- Higgs bundles with invariant c as

Mc(SO0(p, q)) = {(E,ϕ) ∈M(SO0(p, q)) such that c(E) = c}.

3.4 SO0(p, q)- and SO(p+ q,C)-Higgs bundles stability

The goal of this section is to understand the relation between the stability of an SO0(p, q)-

Higgs bundle and the stability of its associated SO(p+q,C)-Higgs bundle which is defined

as follows.

Let (E,ϕ) be an SO0(p, q)-Higgs bundle. Extending the structure group of E from

SO(p,C)× SO(q,C) to SO(p+ q,C) and using

ESO(p+q,C)(so(p+ q,C)) = ESO(p+q,C) ×Ad so(p+ q,C)

= ESO(p,C)×SO(q,C)(so(p,C)× so(q,C))⊕ ESO(p,C)×SO(q,C)(m
C),

which is induced by the Cartan decomposition

so(p+ q,C) = (so(p,C)× so(q,C))⊕mC,

the pair (ESO(p+q,C), ϕ), with ϕ ∈ H0(ESO(p,C)×SO(q,C)(m
C) ⊗ K) ⊂ H0(ESO(p+q,C)(so(p +

q,C))⊗K), is an SO(p+ q,C)-Higgs bundle.

In terms of vector bundles, if E is the vector bundle associated to ESO(p+q,C) via

the standard representation of SO(p + q,C) in Cp+q and (V,QV ,W,QW , η) is the tuple

corresponding to (E,ϕ), then E = V ⊕W , and the SO(p+ q,C)-Higgs bundle associated

to (V,QV ,W,QW , η) is the triple

(E = V ⊕W,Q =

(
QV

QW

)
, φ =

(
η

−η>

)
).

Proposition 3.11. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle and let (E, Q, φ)

be the corresponding SO(p + q,C)-Higgs bundle. If (V,QV ,W,QW , η) is stable, then

(E, Q, φ) is stable as SO(p+ q,C)-Higgs bundle.

Proof. Let (V,QV ,W,QW , η) be a semistable SO0(p, q)-Higgs bundle and consider the

associated SO(p + q,C)-Higgs bundle (E, Q, φ). We will see that for every isotropic sub-

bundle E ′ ⊂ E such that φ(E ′) ⊆ E ′ we have deg(E ′) ≤ 0.
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If E ′ ⊂ E is an isotropic subbundle, we consider the projection p : E → W and the

subbundles W ′ = p(E ′) and V ′ = E ′ ∩ V . We have the exact sequence

0→ V ′ → E ′ → W ′ → 0

and the equality

degE ′ = deg V ′ + degW ′.

Since Q =

(
QV

QW

)
, we have

(E ′)⊥E = (V ′ ⊕W ′)⊥E = (V ′)⊥E ∩ (W ′)⊥E

= [(V ′)⊥V ⊕W ] ∩ [V ⊕ (W ′)⊥W ] = (V ′)⊥V ⊕ (W ′)⊥W ,

and then, the condition E ′ ⊆ (E ′)⊥E implies V ′ ⊆ (V ′)⊥V and W ′ ⊆ (W ′)⊥W , that is,

V ′ and W ′ are isotropic subbundles of V and W respectively. On the other hand, since

φ(E ′) ⊆ E ′ ⊗K and φ =

(
η

−η>

)
, we have η(W ′) ⊆ V ′ ⊗K.

The semistability condition for (V,QV ,W,QW , η) gives deg V ′ + degW ′ ≤ 0 and then

we conclude that semistability of an SO0(p, q)-Higgs bundle implies semistability as SO(p+

q,C)-Higgs bundle.

Let now E ′ ⊂ E to be a non-zero isotropic subbundle such that φ(E ′) ⊆ E ′ ⊗ K.

Since E ′ 6= 0, at least one of V ′ and W ′ is non-zero, then the stability condition for

(V,QV ,W,QW , η) gives degE ′ = deg V ′ + degW ′ < 0 and we conclude.

3.5 Smoothness and deformation theory

It is known that a stable vector bundle is simple and that it is a smooth point of the moduli

space of polystable vector bundles. On the other hand, a stable principal SO(n,C)-bundle

with n 6= 2 represents a smooth point of the moduli space M(SO(n)) if and only if it is

simple (see [46]). Observe that, for n = 2, we have SO(2,C) ∼= C∗ and then any SO(2)-

Higgs bundle is stable, simple and smooth. Thus, except in the case n = 2, the stability

of a special orthogonal bundle does not imply simplicity. In this section we study the

smoothness conditions in the moduli spaceM(SO0(p, q)).

Definition 3.12. A G-Higgs bundle (E,ϕ) is said to be simple if Aut(E,ϕ) = ker ι ∩
Z(HC), where H ⊂ G is a maximal compact subgroup, Z(HC) denotes the centre of its

complexification and ι : HC → GL(mC) is the isotropy representation corresponding to the

Cartan decomposition g = h + m of the Lie algebra of G.
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A G-Higgs bundle is simple if the group of automorphisms is as small as possible. To

be in ker ι means to be compatible with the Higgs field.

If (E,Q) is an SO(n)-Higgs bundle with n > 2, that is, a principal SO(n,C)-bundle,

it has Higgs field equal to zero and then it is simple if and only if

Aut(E,Q) = Z(SO(n,C)) =

{
In, n odd,

±In, n even.

The group of automorphisms of an SO0(p, q)-Higgs bundle is

Aut(V,QV ,W,QW , η) = {(f, g) ∈ Aut(V,QV )× Aut(W,QW ) | η ◦ g = f ◦ η},

and hence (V,QV ,W,QW , η) is simple if

Aut(V,QV ,W,QW , η) = ker ι ∩ Z(SO(p,C)× SO(q,C)).

The condition f = (f1, f2) ∈ ker ι is equivalent to f1 ◦ η ◦ f−1
2 = η and

Z(SO(p,C)× SO(q,C)) =


Ip+q, p, q odd,

Ip+q, Ip,q, p even, q odd,

Ip+q, − Ip,q, p odd, q even,

±Ip+q, ± Ip,q, p, q even.

Thus, an SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) is simple if and only if

Aut(V,QV ,W,QW , η) =

{
±Ip+q, p, q even,

Ip+q, rest.

Let us consider the deformation complex of an SO0(p, q)-Higgs bundle (E,ϕ),

C•(E,ϕ) : 0 // E(so(p,C)× so(q,C))
ad(ϕ) // E(mC)⊗K // 0 .

We are using again the property [hC,mC] ⊆ mC of the Cartan decomposition. For every

x ∈ X we have ϕx ∈ mC, E(hC)x
∼= hC and

ad(ϕ)x(H) = [H,ϕx] ∈ mC for all H ∈ hC.

If (V,QV ,W,QW , η) is the tuple associated to (E,ϕ), we have

C•(V,QV ,W,QW , η) : so(V )⊕ so(W ) → Hom(W,V )⊗K,(
f

g

)
7→ ηg − fη.

We adapt the results of Biswas and Ramanan in [5] to give the following result.
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Proposition 3.13. If (E,ϕ) is an SO0(p, q)-Higgs bundle, we have the following.

1. The space of endomorphisms of (E,ϕ) is isomorphic to the hypercohomology group

H0(C•(E,ϕ)).

2. The space of infinitesimal deformations of (E,ϕ) is isomorphic to the first hyperco-

homology group H1(C•(E,ϕ)).

3. There is a long exact sequence

0→ H0(C•(E,ϕ))→ H0(E(hC))→ H0(E(mC)⊗K)→ H1(C•(E,ϕ))→

→ H1(E(hC))→ H1(E(mC)⊗K)→ H2(C•(E,ϕ))→ 0,

where H i(E(hC))→ H i(E(mC)⊗K) is induced by ad(ϕ).

It follows from the above proposition that, for every SO0(p, q)-Higgs bundle (E,ϕ) re-

presenting a smooth point ofM, the tangent space at this point is canonically isomorphic

to H1(C•(E,ϕ)).

Proposition 3.14. If an SO0(p, q)-Higgs bundle (E,ϕ) is stable, simple and satisfies

H2(C•(E,ϕ)) = 0,

then it is a smooth point of the moduli space.

We say that (E,ϕ) is infinitesimally simple if End(E,ϕ) ∼= H0(C•(E,ϕ)) is isomor-

phic to H0(E(ker dι ∩ z)). Stable implies infinitesimally simple.

Let (V,QV ,W,QW , η) be the tuple corresponding to (E,ϕ) and consider the associated

SO(p+ q,C)-Higgs bundle (E, Q, φ) and the deformation complex

C•(E, Q, φ) : so(E)
ad(ϕ) // so(E)⊗K.

Since SO(p+q,C) is complex, infinitesimally simple in this case means H0(C•(E, Q, φ)) =

0 (ker dι = ker(ad) = 0) and, as in the real case, stable implies infinitesimally simple.

There is an isomorphism

H2(C•(E, Q, φ)) = H0(C•(E, Q, φ))∗,

and we have the following relation

H0(C•(E, Q, φ)) ∼= H0(C•(E,ϕ))⊕H2(C•(E,ϕ))∗.
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Then, if (E, Q, φ) is stable, H0(C•(E, Q, φ)) = 0 and this implies

H0(C•(E,ϕ)) = H2(C•(E,ϕ)) = 0.

Using Proposition 3.11 we obtain the following description.

Corollary 3.15. If an SO0(p, q)-Higgs bundle (E,ϕ) is stable and simple, then it is a

smooth point of the moduli space.

Corollary 3.16. Let (E,ϕ) be a stable SO0(p, q)-Higgs bundle which represents a smooth

point of M, then

H0(C•(E,ϕ)) = H2(C•(E,ϕ)) = 0.

The expected dimension of the moduli spaceM(SO0(p, q)) (see [19]), is

dim H1(C•(E,ϕ)) = −χ(C•(E,ϕ)) =
n(n− 1)(g − 1)

2
,

where n = p+ q and dim(SO0(p, q)) = n(n−1)
2

.

3.6 Stable but non-simple SO(n) and SO0(p, q)-Higgs bundles

In this section we give a description of the stable SO(n) or SO0(p, q)-Higgs bundles that

fail to be simple. These results will be used in the study of strictly polystable SO0(p, q)-

Higgs bundles of Section 7.

Observe that the stability condition for a principal SO(n,C)-bundle can be deduced

from the stability condition for an SO(n,C)-Higgs bundles given by Proposition 2.3 and

Proposition 2.4 taking the Higgs field equal to zero. Of course, as in the case of SO(2,C)-

Higgs bundles, a principal SO(2,C)-bundle is always stable.

Lemma 3.17. If an SO(n)-Higgs bundle (E,Q) decomposes as a sum of Gi-Higgs bundles

and one of them is an SO(2)-Higgs bundle or an SO(ni)-Higgs bundle with n > 2 which

is not stable, then (E,Q) is not stable.

Proof. If there is a summand which is an SO(2)-Higgs bundle Ei = L⊕L−1, the isotropic

subbundles L and L−1, which have opposite degrees, do not violate the stability condition

for E but they violate the stability condition for (E,Q). If a summand (Ei, Qi) is a

non-stable SO(ni)-Higgs bundle, there is a proper isotropic subbundle Fi ⊂ Ei such that

degFi ≥ 0. Since Qi is the restriction of Q to Ei, Fi is an isotropic subbundle of E that

violates its stability.
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Theorem 3.18. Let (E,Q) be a stable SO(n)-Higgs bundle with n 6= 2, that is, a principal

SO(n,C)-bundle, which is not simple, then it decomposes as a sum of stable and simple

SO(ni)-Higgs bundles with ni 6= 2.

Proof. Since (E,Q) is not simple and

Z(SO(n,C)) =

{
In, n odd,

±In, n even,

there is an automorphism f ∈ Aut(E,Q)\{±In} if n even, or f ∈ Aut(E,ϕ)\{In} if n is

odd.

Suppose that f = λIn with λ ∈ C∗. It has to preserve the orthogonal structure of E,

that is,

Q(f(e), f(e′)) = λ2Q(e, e′) = Q(e, e′),

and this happens if and only if λ = ±1. On the other hand, the determinant of f has to

be equal to one. Then, the only possibilities are f = ±In if n is even and f = In if n is

odd, which are exactly the cases that we are excluding.

The group Aut(E,ϕ) is reductive. This implies that f may be chosen in such a way

that there is a splitting E =
⊕

Ei such that f restricted to Ei is λiIn with λi ∈ C∗.

Since

Q(ei, ej) = Q(f(ei), f(ej)) = λiλjQ(ei, ej),

then Q(Ei, Ej) can only be non-zero when λiλj = 1. Since Q is non-degenerate, the

possible λ′s values of lambda come in pairs (λi, λ
−1
i ) corresponding to (Ei, E

∗
i ). If λi = ±1,

we have λi = λ−1
i and then E1

∼= E∗
1 and E−1

∼= E∗
−1. Since det f =

∏
i λ

rk Ei
i = 1, we do

not have the value λi = 0.

Suppose that there is a λi 6= ±1, then Ei ⊂ E is an isotropic subbundle of E. If

degEi ≥ 0, this subbundle violates the stability condition for (E,Q). If degEi < 0, then

degE∗
i > 0 and again (E,Q) is not stable. Hence λi = ±1 and (E,Q) = (E1, Q1) ⊕

(E−1, Q−1).

Lemma 3.17 tell us that these summands are stable SO(ni)-Higgs bundles with ni 6= 2.

If there is a summand which is a non-simple SO(ni)-Higgs bundle, applying the ar-

gument of this proof inductively we conclude that a stable but non-simple SO(n)-Higgs

bundle can be decomposed as a sum of smooth SO(ni)-Higgs bundles.

Lemma 3.19. If an SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) decomposes as a sum of Gi-

Higgs bundles and one of them is an SO0(pi, qi)-Higgs bundle (Vi, QV ,Wi, QW , ηi) which

is not stable, then (V,QV ,W,QW , η) is not stable.
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Proof. Since (Vi, QV ,Wi, QW , ηi) is not stable, there are isotropic subbundles V ′ ⊂ Vi,

W ′ ⊂ Wi such that ηi(W
′) ⊆ V ′⊗K and with deg V ′+degW ′ ≥ 0. These are also isotropic

subbundles of V and W and violate the stability condition for (V,QV ,W,QW , η).

Lemma 3.20. If an SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) decomposes as a sum of

Gi-Higgs bundles and one of them is an SO(2)-Higgs bundle or an SO(ni)-Higgs bundle

which is not stable, then (V,QV ,W,QW , η) is not stable.

Proof. It can be deduced from the proof of Lemma 3.17 and Lemma 3.19.

Theorem 3.21. Let (V,QV ,W,QW , η) be a stable SO0(p, q)-Higgs bundle which is not

simple, then it decomposes as a sum of stable and simple SO0(pi, qi) and SO(ni)-Higgs

bundles with ni 6= 2.

Proof. Suppose that the Higgs field is equal to zero, then the SO0(p, q)-Higgs bundle

(V,QV ,W,QW , η) is a stable principal SO(p,C)×SO(q,C)-bundle, that is, it decomposes

as a sum of a stable SO(p)-Higgs bundle and a stable SO(q)-Higgs bundle. If the sum-

mands are simple we have the result and if they are not, we conclude using Theorem

3.18.

Suppose now that η 6= 0. Since (V,QV ,W,QW , η) is not simple, there is an auto-

morphism f ∈ Aut(V,QV ,W,QW , η)\{±Ip+q} if p and q are even, or an automorphism

f ∈ Aut(V,QV ,W,QW , η)\{Ip+q} in the rest of the cases.

Suppose that f = (f1, f2) = (λIp, µIq) is a multiple of the identity in V and W

(λ, µ ∈ C∗). The determinant of f1 and f2 has to be equal to 1 and they have to preserve

the corresponding orthogonal structures, that is,

QV (f1(v), f1(v
′)) = λ2QV (v, v′) = QV (v, v′),

QW (f2(w), f2(w
′)) = µ2QW (w,w′) = QW (w,w′).

On the other hand, since we are supposing that the automorphisms are multiples of the

identity, the condition f1 ◦ η = η ◦ f2 is equivalent to f1 = f2. Then, the only possibilities

are f = ±Ip+q if p and q are even and f = Ip+q in the rest of the cases, which are exactly

the cases that we are excluding. Thus, f is not of this form. Observe that it is possible to

have one of the automorphisms, f1 or f2, equal to a multiple of the identity, more exactly,

the identity when the rank (p or q) is odd and ±1 when the rank is even.

Since the group Aut(V,QV ,W,QW , η) is reductive, there are splittings V =
⊕

Vj,

W =
⊕

Wi such that f1 and f2 are λj and µi in Vj and Wi respectively (λj, µi ∈ C∗).
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Since

QV (vi, vj) = QV (f1(vi), f1(vj)) = λiλjQV (vi, vj),

then QV (Vi, Vj) can only be non-zero when λiλj = 1. Since QV is non-degenerate, the

possible values of lambda come in pairs (λj, λ
−1
j ) corresponding to (Vj, V

∗
j ). If λj = ±1,

we have λj = λ−1
j and then V1

∼= V ∗
1 and V−1

∼= V ∗
−1. Since det f1 =

∏
j λ

rk Vj

j = 1, we do

not have λj = 0. The same for (W,QW ).

Since f preserve the Higgs field, for each component ηi,j ∈ H0(Hom(Wi, Vj)⊗K), we

have that

ηi,j(f2(w)) = µiηi,j(w)

is equal to

f1(ηi,j(w)) = λjηi,j(w),

for all w ∈ Wi, and then, µi 6= λj implies ηi,j = 0.

Suppose that there is a λj 6= ±1. If µi 6= λj for all i, we have ηi,j = 0 for all i, that is,

η>(Vj) = 0. Since

QV (Vj, Vj) = QV (f1(Vj), f1(Vj)) = λ2
jQV (Vj, Vj),

and λ2
j 6= 1, we have QV (Vj, Vj) = 0 and hence, Vj ⊂ V is an isotropic subbundle.

If deg Vj ≥ 0, this subbundle violates the stability condition for (V,QV ,W,QW , η). If

deg Vj < 0, then deg V ∗
j > 0 and again (V,QV ,W,QW , η) is not stable and we get a

contradiction. Analogously, if there is a µi 6= ±1 with λj 6= µi for all j, we obtain a

contradiction with the stability of (V,QV ,W,QW , η). Finally, suppose that there is a

λi 6= ±1 such that λj = µi for some i. The subbundles Vj ⊂ V and Wi ⊂ W are isotropic

and η(Wi) ⊆ Vj ⊗ K. If deg Vj + degWi ≥ 0, these subbundles violate the stability

condition for (V,QV ,W,QW , η). If deg Vi + degWi < 0, then deg V ∗
i + degW ∗

i > 0 and

again (V,QV ,W,QW , η) is not stable. Then λj, µi = ±1.

Since 1 = det f1 = 1rk V1 · (−1)rk V−1 and analogously for f2, we have rkV−1 and rkW−1

even.

Denote ηi = ηi,i, where i = ±1. We have the following decomposition

(V,QV ,W,QW , η) = (V1,W1, η1)⊕ (V−1,W−1, η−1).

Since at least one piece of the automorphism, f1 or f2, is not a multiple of the identity,

only one of the four subbundles V1, V−1, W1 and W−1 can be zero. Since η 6= 0, at least

one of the Higgs fields η1 and η−1 has to be non-zero. Thus, (V,QV ,W,QW , η) is a sum
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of two SO0(pi, qi)-Higgs bundles, (V1,W1, η1) and (V−1,W−1, η−1), or it is a sum of an

SO0(pi, qi)-Higgs bundle together with one or two SO(ni)-Higgs bundles.

Lemma 3.19 and Lemma 3.20 tell us that these summands are stable Gi-Higgs bundles.

If there is a summand which is a non-simple SO(ni)-Higgs bundle, we have from

Theorem 3.18 that it decomposes as a sum of stable and simple orthogonal bundles. If

there is a summand which is a non-simple SO0(pi, qi)-Higgs bundle, applying the argument

of this proof inductively we conclude that it can be decomposed as a sum of stable and

simple Gi-Higgs bundles with Gi = SO0(pi, qi) and SO(ni).

Let (V,QV ,W,QW , η) be a stable but non-simple SO0(p, q)-Higgs bundle and consider

the decomposition given by Theorem 3.21. Since all the summands are smooth, they are

simple, and since (V,QV ,W,QW , η) is not simple, it must have at least one summand of

the following types: a smooth SO0(pi, qi)-Higgs bundle with pi and qi even, or a smooth

SO(ni)-Higgs bundle with ni even. These conditions allow us to take the automorphism

−1 in this summand and guarantee the non-simplicity.
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4 SO0(p, q)-Higgs bundles and surface group represen-

tations

Let S be a compact oriented smooth surface of genus g and let π1 be its fundamental

group. The group SO0(p, q) acts on the set Hom(π1, SO0(p, q)) of representations of the

fundamental group in SO0(p, q) by conjugation:

(g · ρ)(γ) = gρ(γ)g−1,

for g ∈ SO0(p, q), ρ ∈ Hom(π1, SO0(p, q)) and γ ∈ π1.

A representation ρ ∈ Hom(π1, SO0(p, q)) is said to be reductive if the composition

with the adjoint representation in the Lie algebra

π1
ρ // SO0(p, q)

Ad // GL(so(p, q))

decomposes as a sum of irreducible representations. We will denote the subspace of all

reductive representations by Hom+(π1, SO0(p, q)).

Definition 4.1. The moduli space of representations of π1 in SO0(p, q) is defined

as the orbit space

R(SO0(p, q)) = Hom+(π1, SO0(p, q))/ SO0(p, q).

Consider the usual presentation

π1 = 〈a1, b1, ..., ag, bg |
g∏

i=1

[ai, bi] = 1〉,

where [ai, bi] = aibia
−1
i b−1

i . Every representation is determined by the images of the

generators a1, b1, ..., ag, bg. Then, Hom(π1, SO0(p, q)) can be embedded in SO0(p, q)
2g via

ρ 7→ (ρ(a1), ..., ρ(bg)) ∈ SO0(p, q)
2g,

and can be identified with the subset of SO0(p, q)
2g of elements (A1, B1, ..., Ag, Bg) satis-

fying the algebraic equation
∏g

i=1[Ai, Bi] = 1. Thus, Hom(π1, SO0(p, q)) have structure of

real analytic variety. The set of reductive representations Hom+(π1, SO0(p, q)) is an open

subset, and then has also structure of real analytic variety. Moreover, the moduli space

R(SO0(p, q)) is also a real analytic variety and it is Hausdorff with the quotient topology.

(See Goldman [22]).
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4.1 Representations and flat connections

There is a correspondence between the representations of the fundamental group on

SO0(p, q), modulo the action of SO0(p, q), and the set of equivalence classes of flat prin-

cipal SO0(p, q)-bundles. (See [35], Chap. I, §2).

To any representation ρ : π1 → SO0(p, q), we can associate a flat principal SO0(p, q)-

bundle

Eρ = S̃ ×ρ SO0(p, q),

where S̃ is the universal cover of S, which is a flat principal π1-bundle. This is the orbit

space for the action of π1 on S̃ and the action

a · A = ρ(a)Aρ(a)−1

of π1 on SO0(p, q) via ρ.

Conversely, let (E,D) be a flat principal SO0(p, q)-bundle. If γ = γ(t) with 0 ≤ t ≤ a

is a curve in S and ξ is a section of E defined along γ, the section ξ is parallel along γ if

Dξ(γ′(t)) = 0 for 0 ≤ t ≤ a,

where γ′(t) is the tangent vector of γ at γ(t). If ξ0 is in the fibre Eγ(0), it extends uniquely

to a parallel section ξ along γ called the parallel displacement of ξ0 and this induces a

linear transformation of the fibre Ex0 , where x0 = γ(0) = γ(a). Since D is flat, the parallel

displacement depends only on the homotopy class of γ and then we have a representation

ρ(E,D) : π1 → SO0(p, q),

called the holonomy representation of E.

We say that a flat connection D in a principal SO0(p, q)-bundle E is reductive if the

representation of π1 in SO0(p, q) corresponding to (E,D) is reductive. Then, if we restrict

to reductive elements, the correspondence between representations of the fundamental

group on SO0(p, q) modulo the action of SO0(p, q) and the set of equivalence classes of

flat principal SO0(p, q)-bundles gives a correspondence

R(SO0(p, q)) ∼= F(SO0(p, q)),

being

F(SO0(p, q)) = { reductive flat connections D on a principal

SO0(p, q)-bundle E }/G(E),
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where G(E) denotes the gauge group of E, that is, the group of SO0(p, q)-invariant

automorphisms of E and the action of the gauge group on the space of connections is

given by

g ·D = g ◦D ◦ g−1,

which preserves the condition of flatness.

The maximal compact subgroup of SO(p, q) is S(O(p) × O(q)), while SO(p) × SO(q)

is the maximal compact subgroup of SO0(p, q). The fundamental group of SO0(p, q),

coincides with the fundamental group of its maximal compact subgroup. Using

π1(SO(1)) = 1, since SO(1) = {1},

π1(SO(2)) = Z, since SO(2) ∼= S1,

π1(SO(n)) = Z2, for n > 2,

we obtain
π1(SO0(p, q)) p = 1 p = 2 p ≥ 3

q = 1 1 Z Z2

q = 2 Z Z× Z Z2 × Z
q ≥ 3 Z2 Z× Z2 Z2 × Z2

Let us consider the following exact sequence

1→ π1(SO0(p, q))→ S̃O0(p, q)→ SO0(p, q)→ 1,

where S̃O0(p, q) is the universal cover of SO0(p, q), which coincides with the Lie group

Spin0(p, q) when p, q > 2. The associated long cohomology sequence is

H1(S, S̃O0(p, q))
// H1(S, SO0(p, q))

c2 // H2(S, π1(SO0(p, q))) ∼= π1(SO0(p, q)),

where we are regarding S̃O0(p, q), SO0(p, q) and π1(SO0(p, q)) as the sheafs of locally

constant functions.

The sets H1(S, S̃O0(p, q)) and H1(S, SO0(p, q)) parameterize the set of equivalence

classes of flat principal bundles over S with structure group S̃O0(p, q) and SO0(p, q) res-

pectively. The characteristic class

c(Eρ) ∈ H2(S, π1(SO0(p, q))) ∼= π1(SO0(p, q))

measures the obstruction to lifting Eρ to a flat S̃O0(p, q)-bundle or equivalently to lifting

ρ to a representation of π1 in S̃O0(p, q). This class is an invariant for the classification of
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principal SO0(p, q)-bundles on S, and then it is an invariant for the representations of π1

in SO0(p, q). As we have seen, for p+ q ≥ 3, this invariant can be an integer, an element

of the group Z2, a pair of integers, a pair in Z2×Z2 or in Z2×Z, depending on the values

of p and q. The number of liftings is measured by H1(S, π1(SO0(p, q))).

The moduli space of reductive representations of π1 in SO0(p, q) with invariant c is

defined as

Rc(SO0(p, q)) = {ρ ∈ R(SO0(p, q)) such that c(ρ) = c}.

Since c is constant on each connected component of R(SO0(p, q)), then Rc(SO0(p, q)) is

a connected component or a union of connected components. Fixing the invariant c we

have the correspondence

Rc(SO0(p, q)) ∼= Fc(SO0(p, q)),

where

Fc(SO0(p, q)) = { reductive flat connections D on a principal SO0(p, q)-bundle

E with c(E) = c}/G(E).

4.2 Harmonic reductions and harmonic equations

Let E be a principal SO0(p, q)-bundle over S. This bundle admits a reduction of the

structure group from SO0(p, q) to the maximal compact SO(p) × SO(q) if there are a

principal SO(p)× SO(q)-bundle F and an injection F ⊂ E such that

F //

��

E

��
S S

is commutative. This gives a decomposition

E = F ×SO(p)×SO(q) SO0(p, q).

A reduction of structure group is equivalent to giving a section h of the bundle

ESO0(p,q)/ SO(p)×SO(q) = E ×SO0(p,q) (SO0(p, q)/ SO(p)× SO(q)),

which is obtained by considering the transitive action of SO0(p, q) on the symmetric space

SO0(p, q)/ SO(p)× SO(q). Lifting to the universal cover S̃ of S, we have

S̃
h̃ //

π

��

S̃ × (SO0(p, q)/ SO(p)× SO(q))

��
S

h // E ×SO0(p,q) (SO0(p, q)/ SO(p)× SO(q)),
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and then, the reduction is now a section of S̃×(SO0(p, q)/ SO(p)×SO(q)), or equivalently

a map

h̃ : S̃ → SO0(p, q)/ SO(p)× SO(q)

equivariant under the action of π1.

Let X be a compact Riemannian manifold and Y a compact Riemannian manifold

with non-positive sectional curvature.

Definition 4.2. If f : X → Y is a smooth map, we define the energy density of f as

e(f) : X −→ R+

x 7−→ Tr(df∗xdfx),

where df∗xdfx : TxX → TxX, and the energy of f as the integral

E(f) =

∫
X

e(f)dνX ,

where dνX is the volume element in X.

The Laplace operator applied to f is

∆f = div(∇f) = d∗df.

Definition 4.3. The map f : X → Y is harmonic if ∆f = 0.

This condition is related to the Euler-Lagrange equation for the energy functional.

The harmonic maps are in fact critical points of the energy functional (see [16]).

Using this definition, the map h̃ is harmonic if

∆h̃ = d∗dh̃ = 0.

There is another notion of harmonicity for a reduction of structure group that we will

describe next. We will see that both are equivalent.

Let P be a principal G-bundle and consider the gauge group G(P ) of G-invariant

automorphisms of P . The sections of the associated bundle of groups

P (G) = P ×G G,
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where G acts on G by internal automorphisms, are equivalent to maps h : P → G

satisfying

h(pg) = g−1h(p)g,

and forms a group that can be identified with the gauge group G(P ). The correspondence

is given by

Ω0(P (G)) ↔ G(P )

h ↔ h∗ : P → P, h∗(p) = ph(p).

The map h∗ is equivariant:

h∗(pg) = pgh(pg) = pgg−1h(p)g = h∗(p)g.

The Lie algebra of the gauge group G(P ) can be described as well as the set of holomorphic

sections of

P (g) = P ×Ad g.

Then, G(P ) = Ω0(P (G)) and Lie G(P ) = Ω0(P (g)).

Applying this to our case, we have G(F ) = Ω0(F (SO(p) × SO(q))) and Lie G(F ) =

Ω0(F (so(p) × so(q))), that is, if we consider F as the fibred product of two principal

bundles with structure groups SO(p) and SO(q) respectively,

F = ESO(p) × ESO(q),

a gauge transformation g ∈ G(F ) is a pair (g1, g2) of sections g1 ∈ Ω0(ESO(p)(SO(p))) and

g2 ∈ Ω0(ESO(q)(SO(q))).

A reduction of the structure group from SO0(p, q) to the maximal compact SO(p) ×
SO(q) gives, for any connection D on the principal SO0(p, q)-bundle E, a unique splitting

D = A+ ψ,

where A is a connection on F and ψ is in Ω1(F (m)), where we use F (m) to denote the

bundle associated to F via the isotropy representation.

There is an action of the gauge group G(F ) on the set

{(A,ψ) | A connection on F, ψ ∈ Ω1(F (m))}.

A connection A on the principal bundle F is equivalent to a pair of connections (A1, A2)

on the two principal bundles ESO(p) and ESO(q). Let ω1 and ω2 be the corresponding

connections 1-forms defined by

(ω1)p : TpESO(p) → so(p) (ω2)q : TqESO(q) → so(q)

Xp 7→ τp(Yp) Xq 7→ τq(Yq),
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where p ∈ ESO(p), q ∈ ESO(q), the vector fields Yp and Yq are the vertical components of

Xp and Xq according to the decomposition in vertical and horizontal vector fields given

by the connections, and τp and τq are the isomorphisms between the vertical subspaces

and the Lie algebras. If ξ ∈ so(p),

τp(ξ) = γ′(0),

where γ is the curve in ESO(p) defined by

γ(t) = p · exp(tξ).

The analogous definition for τq. A gauge transformation g = (g1, g2) ∈ G(ESO(p)(SO(p)))×
G(ESO(q)(SO(q))) acts on the pair (ω1, ω2) as follows,

TpESO(p)

(g1)∗

��

(g1·ω1)p // so(p) TqESO(q)

(g2)∗

��

(g2·ω2)q // so(q)

Tg1(p)ESO(p)

(ω1)g1(p)

::vvvvvvvvvvvvvvvvvvv
Tg2(q)ESO(q)

(ω2)g2(q)

::vvvvvvvvvvvvvvvvvvv

that is,

(g1 · ω1)p(Xp) = (ω1)g1(p)((g1)∗(xp)),

(g2 · ω2)q(Xq) = (ω2)g2(q)((g2)∗(xq)),

and then

gi · ωi = g∗i (ωi).

Let (V,QV ) and (W,QW ) be the vector bundles associated to the principal bundles

ESO(p) and ESO(q), that is,

V = ESO(p) ×SO(p) Rp,

W = ESO(q) ×SO(q) Rq,

with detV = detW = R and QV , QW are two non-degenerate symmetric quadratic

forms on V and W respectively. A connection A = (A1, A2) defines a pair of covariant

derivatives

dA1 : Ωp(V )→ Ωp+1(V ), dA2 : Ωp(W )→ Ωp+1(W )

with

dAi
(σ · ϕ) = (dAi

σ) ∧ ϕ+ σ · dϕ,
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for all σ ∈ Ω0(V ) (resp. Ω0(W )) and ϕ ∈ Ωp, preserving the forms QV and QW ,

d(QV (ϕ, ψ)) = QV (dA1ϕ, ψ) +QV (ϕ, dA1ψ), ϕ, ψ ∈ Ωp(V )

d(QW (ϕ, ψ)) = QW (dA2ϕ, ψ) +QW (ϕ, dA2ψ), ϕ, ψ ∈ Ωp(W ).

An element (g1, g2) ∈ G(V )× G(W ) acts on (dA1 , dA2) by

gi · dAi
= gi ◦ dAi

◦ g−1
i = gidAi

g−1
i + dAi

.

Finally, if g = (g1, g2) is an element of Ω0(ESO(p)(SO(p))) × Ω0(ESO(q)(SO(q))) and

x ∈ S, we have gx = ((g1)x, (g2)x) ∈ SO(p) × SO(q) and ψx is locally an element of m,

then gx acts on ψx through the isotropy representation

ι : SO(p)× SO(q)→ GL(m),

that is, if ψx =

(
X2

X t
2

)
∈ m,

gx · ψx = ι(gx)(ψx) =

(
(g1)x

(g2)x

)(
X2

X t
2

)(
(g1)

−1
x

(g2)
−1
x

)

=

(
(g1)xX2(g2)

−1
x

(g2)xX
t
2(g1)

−1
x

)
.

We can write

g · ψ = ι(g)(ψ) = gψg−1.

We can express the moment map for the action of G(F ) on the pairs (A,ψ) as

Φ = d∗Aψ,

where d∗A is the adjoint of dA. The reduction of structure group from SO0(p, q) to SO(p)×
SO(q) is said to be harmonic if this moment map vanishes, that is

d∗Aψ = 0.

This condition of harmonicity for the reduction h is equivalent to the condition for the

map

h̃ : S̃ → SO0(p, q)/ SO(p)× SO(q),

to be harmonic as a map of Riemannian manifolds because the 1-form ψ can be identified

with the differential of the map h̃ and dA with the pullback of the Levi-Civita connection
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on SO0(p, q)/ SO(p)× SO(q) (see [14]).

Let ρ be a representation of π1 in SO0(p, q) and let (E,D) be its associated flat

principal bundle. Consider a harmonic reduction F ⊂ E. As we have seen in the previous

section, the connection D admits a splitting

D = A+ ψ,

where A is a connection on F and ψ ∈ Ω1(F (m)). Since D is flat, it satisfies the following

equation

FD = FA +
1

2
[ψ, ψ] + dA(ψ) = 0,

where FA + 1
2
[ψ, ψ] takes values in h and dA(ψ) in m. Then, the pair (A,ψ) satisfies the

equations 
FA + 1

2
[ψ, ψ] = 0

dA(ψ) = 0

d∗A(ψ) = 0

(1)

where [ψ, ψ] = ψψ + ψψ, which are called harmonic equations. First and second

equalities correspond to FD = 0 and the last equation is the condition of harmonicity for

the reduction to SO(p)× SO(q).

A theorem of Corlette [13] applied to SO0(p, q) says the following:

Theorem 4.4. If ρ is a representation of π1 in SO0(p, q) and (E,D) is the associated

flat principal bundle, the representation ρ is reductive if and only if E admits a harmonic

reduction to SO(p)× SO(q).

We have seen in Section 4.1 that there is a correspondence

Rc(SO0(p, q)) ∼= Fc(SO0(p, q)).

Now, Theorem 4.4 gives a bijection between the space Fc(SO0(p, q)) and the moduli space

MHar
c (SO0(p, q)) = {(A,ψ) | A connection on a principal SO(p)× SO(q)-bundle F ,

ψ ∈ Ω1(F (m)), satisfying (1) and with c(F ) = c}/G(F ).

Then, we have

Rc(SO0(p, q)) ∼= Fc(SO0(p, q)) ∼=MHar
c (SO0(p, q)).
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4.3 Hitchin’s equations and Higgs bundles

We describe now the moduli spaceMc(SO0(p, q)) in terms of Dolbeault operators.

If E is a smooth principal SO(p,C) × SO(q,C)-bundle, a Dolbeault operator is a

C-linear map

∂̄E : Ω0(X,E)→ Ω0,1(X,E),

which satisfy

∂̄E(fξ) = ∂̄Efξ + f∂̄Eξ,

where f ∈ Ω0(X) and ξ ∈ Ω0(X,E). This can be extended to a C-linear map

∂̄E : Ω0,1(X,E)→ Ω0,2(X,E).

SinceX is a Riemann surface, we have Ω0,2(X,E) = 0 and hence all Dolbeault operators in

E satisfy ∂̄2
E = 0. This means that each Dolbeault operator ∂̄E on E defines a holomorphic

structure on E (see [55], Appendix). Denote E the corresponding holomorphic principal

SO(p,C)× SO(q,C)-bundle.

We thus have a correspondence between the moduli space of polystable SO0(p, q)-

Higgs bundles and the moduli space of polystable pairs (∂̄E, ϕ), where ∂̄E is a Dolbeault

operator on a principal SO(p,C) × SO(q,C)-bundle E and ϕ ∈ Ω1,0(E(mC)), satisfying

the condition ∂̄E(ϕ) = 0, which is equivalent to ϕ ∈ H0(E(mC) ⊗K), modulo de gauge

group G(E),

Mc(SO0(p, q)) ∼= {Polystable (∂̄E, ϕ) | ∂̄E on a smooth principal SO(p,C)× SO(q,C)-

bundle E, ϕ ∈ Ω1,0(E(mC)), ∂̄E(ϕ) = 0 and c(E) = c}/G(E).

The gauge group G(E) acts on the operators ∂̄E by the rule

g · ∂̄E = g∂̄Eg
−1.

If g = (g1, g2) ∈ G(E) ∼= Ω0(ESO(p,C)(SO(p,C)))× Ω0(ESO(q,C)(SO(q,C))), where

E = ESO(p,C) × ESO(q,C),

and x ∈ X, then gx = ((g1)x, (g2)x) is in SO(p,C)×SO(q,C) and ϕx is locally an element

of mC. Then gx acts on ϕx through the complexified isotropy representation

ι : SO(p,C)× SO(q,C)→ GL(mC),
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that is, if ϕx =

(
X2

−X t
2

)
∈ mC,

gx · ϕx = ι(gx)(ϕx) =

(
(g1)x

(g2)x

)(
X2

−X t
2

)(
(g1)

−1
x

(g2)
−1
x

)

=

(
(g1)xX2(g2)

−1
x

−(g2)xX
t
2(g1)

−1
x

)
.

We can write

g · ϕ = ι(g)(ϕ) = gϕg−1.

Let (V,QV ) and (W,QW ) be the vector bundles associated to E. The Higgs field is of

the form

η : W → V ⊗K.

In terms of V and W , a gauge transformation g is a pair (g1, g2) of automorphisms of V

and W respectively. We have the commutative diagram

W
η //

g2

��

V ⊗K
g1×IdK

��
W

g·η // V ⊗K,

and the action of g = (g1, g2) on η is given by

g · η = g1 ◦ η ◦ g−1
2 .

If we consider the isotropy representation

ι : SO(V )× SO(W )→ E(mC)⊗K ∼= Hom(W,V )⊗K,

we have

g · η = ι(g)(η) =

(
g1 ◦ η ◦ g−1

2

−g2 ◦ η> ◦ g−1
1

)
∼= g1 ◦ η ◦ g−1

2 .

If E is a smooth principal SO(p,C) × SO(q,C)-bundle, there is a correspondence

between Dolbeault operators on E and connections on the reduction F of E to SO(p) ×
SO(q), which is given by

dA → ∂̄A,

∂̄ + d1,0
A ← ∂̄,

where d1,0
A is determined by the reduction.
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Consider a pair (A,ϕ), where A is a connection on the smooth principal SO(p)×SO(q)-

bundle F and ϕ ∈ Ω1,0(F (mC)). Let τ denote the conjugation on so(p+ q,C) that defines

the compact real form

so(p+ q) = {X ∈ so(p+ q,C) | X = X̄} =

= {X ∈ sl(p+ q,R) | X +X t = 0},

that is, τ(X) = X̄. Since τ and the Cartan involution commute, we have τ(mC) ⊆ mC

and then τ preserves the Cartan decomposition so(p + q,C) = so(p,C) × so(q,C) ⊕ mC.

This conjugation induces a τ in E(mC) and then it makes sense to apply τ to the section

ϕ.

The Hitchin’s equations corresponding to the pair (A,ϕ), where A is a connection

on a smooth principal SO(p)× SO(q)-bundle F and ϕ ∈ Ω1,0(F (mC)), are{
FA − [ϕ, τ(ϕ)] = 0,

∂̄A(ϕ) = 0.
(2)

Since τ(η) = η̄, we can compute

[ϕ, τ(ϕ)] =

(
η

−η>

)(
η̄

−η̄>

)
+

(
η̄

−η̄>

)(
η

−η>

)
=

=

(
−η η̄> − η̄ η>

−η>η̄ − η̄>η

)
,

and if the connection is A = (A1, A2), we get from FA− [ϕ, τ(ϕ)] = 0 the pair of equations

FA1 + η η̄> + η̄ η> = FA1 + 2 Re(η η̄>) = 0,

FA2 + η>η̄ + η̄>η = FA2 + 2 Re(η>η̄) = 0.

If we fix the pair (A,ϕ), a solution to the Hitchin’s equations is a reduction from

SO(p,C)× SO(q,C) to SO(p)× SO(q) and the connection A is the unique connection on

F compatible with the holomorphic structure of E, that is, the part (0, 1) of the covariant

derivative dA, ∂̄A, is the Dolbeault operator that defines the holomorphic structure of

E. But, if we fix the reduction and F is a principal SO(p) × SO(q)-bundle, then a

solution of the Hitchin’s equations is a pair (A,ϕ), where A is a connection on F and

ϕ ∈ Ω1,0(F (mC)), satisfying {
FA − [ϕ, τ(ϕ)] = 0,

∂̄A(ϕ) = 0.
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The moduli space of solutions to the Hitchin’s equations is

MHit
c (SO0(p, q)) = {(A,ϕ) | A connection on a smooth principal SO(p)× SO(q)-bundle

F , ϕ ∈ Ω1,0(F (mC)) satisfying (2) and with c(F ) = c}/G(F ).

We have described in Section 4.2 the action of G(F ) on the connection A and the action

of G(F ) on ϕ ∈ Ω1,0(F (mC)) is analogous to the action on ϕ ∈ Ω1,0(E(mC)) explained in

this section. If g = (g1, g2) ∈ G(F ) = Ω0(ESO(p)(SO(p)))× Ω0(ESO(q)(SO(q))) and x ∈ X,

then gx = ((g1)x, (g2)x) is in SO(p)× SO(q) and ϕx is in mC. Then gx acts on ϕx through

the isotropy representation

ι : SO(p)× SO(q) ⊂ SO(p,C)× SO(q,C)→ GL(mC).

that is, if ϕx =

(
0 X2

−X t
2 0

)
∈ mC,

gx · ϕx = ι(gx)(ϕx) =

(
(g1)x 0

0 (g2)x

)(
0 X2

−X t
2 0

)(
(g1)

−1
x 0

0 (g2)
−1
x

)

=

(
0 (g1)xX2(g2)

−1
x

−(g2)xX
t
2(g1)

−1
x 0

)
.

We can write

g · ϕ = ι(g)(ϕ) = gϕg−1.

Theorems of Bradlow, Garćıa-Prada and Mundet i Riera [10] for an arbitrary reductive

real Lie group when the Higgs bundle is stable and Garćıa-Prada, Gothen and Mundet i

Riera [19, Theorem 2.19] for the general polystable case, give the following.

Theorem 4.5. An SO0(p, q)-Higgs bundle (E,ϕ) is polystable if and only if the principal

SO(p,C)× SO(q,C)-bundle E admits a reduction to SO(p)× SO(q) such that

FA − [ϕ, τ(ϕ)] = 0,

where A is the connection on the principal SO(p)× SO(q)-bundle F corresponding to the

operator ∂̄E that defines the holomorphic structure of E.

This result gives a correspondence between the moduli space of SO0(p, q)-Higgs bundles

and the moduli space of solutions of the Hitchin’s equations,

Mc(SO0(p, q)) ∼=MHit
c (SO0(p, q)).
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4.4 The correspondence

The proof of the following result is given by Theorem 4.4 and Theorem 4.5.

Theorem 4.6. There is a homeomorphism

Rc(SO0(p, q)) ∼=Mc(SO0(p, q)).

Theorem 4.4 gives a homeomorphism between the moduli space of representations and

the moduli space of solutions to the harmonic equations,

Rc(SO0(p, q)) ∼=MHar
c (SO0(p, q)),

and Theorem 4.5 gives a homeomorphism between the moduli space of Higgs bundles and

the moduli space of solutions to Hitchin’s equations,

Mc(SO0(p, q)) ∼=MHit
c (SO0(p, q)).

To prove the result of Theorem 4.6 we need to establish a bijection between the spaces of

solutionsMHar
c (SO0(p, q)) andMHit

c (SO0(p, q)).

If (A,ψ) represents a class in MHar
c (SO0(p, q)) and we extend the structure group

from SO(p) × SO(q) to SO(p,C) × SO(q,C), the extended connection and curvature are

of the form

dA = d1,0
A + d0,1

A ,

FA = F 2,0
A + F 1,1

A + F 0,2
A = F 1,1

A ,

sinceX is a Riemann surface and then F 2,0
A = F 0,2

A = 0. We denote ∂̄A = d0,1
A . Analogously,

ψ = ψ1,0 + ψ0,1 = ϕ− τ(ϕ),

with ϕ ∈ Ω1,0(F (mC)) and τ being the conjugation in so(p+q,C) that defines the compact

real form so(p + q) as we have seen in Section 4.3. Rewriting the harmonic equations in

these terms, we obtain the Hitchin’s equations
FA − [ϕ, τ(ϕ)] = 0,

∂̄A(ϕ) = 0,

(F 0,2
A = [ϕ, ϕ] = 0).

That is, the map

(A,ϕ) 7→ (A,ψ = ϕ− τ(ϕ))
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defines a homeomorphism

MHit
c (SO0(p, q)) ∼=MHar

c (SO0(p, q)),

and we obtain the result of Theorem 4.6.

All the correspondences used in this proof are outlined in the following diagram:

Rc(SO0(p, q)) oo //
OO

��

Mc(SO0(p, q))

Fc(SO0(p, q)) oo //MHar
c (SO0(p, q)) oo //MHit

c (SO0(p, q))
��

OO

ρ oo //
OO

��

(∂̄ = ∂̄A, ϕ)

Eρ, D = A+ ψ oo // (A,ψ = ϕ− τ(ϕ)) oo // (A,ϕ)
��

OO

Using this homeomorphism we can obtain information about the topological proper-

ties of Rc(SO0(p, q)) studying the topological properties of Mc(SO0(p, q)). For example,

counting the number of connected components of each Rc(SO0(p, q)) is the same as count-

ing the number of the connected components ofMc(SO0(p, q)).
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5 Low rank isomorphisms

In this chapter, using the isomorphisms between Spin Lie groups and other classical

semisimple Lie groups described in [28, Theorem 14.1], we study the relation between

the moduli space of polystable SO(n,C)-Higgs bundles with n = 3, 4, 5 and 6 and the

moduli space of polystable G-Higgs bundles, where G = SL(2,C), SL(2,C) × SL(2,C),

Sp(4,C) and SL(4,C) respectively, and the relations between the real forms SO0(p, q),

with p+ q = n, and the corresponding real forms of the Lie group G.

Using the classification of semisimple complex Lie algebras given by the Dynkin dia-

grams, we observe the isomorphisms:

so(3,C) ∼= sl(2,C) ∼= sp(2,C),

so(4,C) ∼= sl(2,C)× sl(2,C),

so(5,C) ∼= sp(4,C),

so(6,C) ∼= sl(4,C).

Each isomorphism induces isomorphisms between the corresponding real forms. To deal

with the real forms, we use the following result (see [29]).

Theorem 5.1. Suppose that g1 and g2 are real forms of the same simple complex Lie

algebra g, and let g1 = h1 + m1 and g2 = h2 + m2 be any Cartan decompositions. If h1

and h2 are isomorphic, g1 and g2 are isomorphic.

Hence, the isomorphisms between the compact real forms:

so(3) ∼= su(2) ∼= sp(2),

so(4) ∼= su(2)× su(2),

so(5) ∼= sp(4),

so(6) ∼= su(4),

induce isomorphisms between the non-compact real forms:

so(2, 1) ∼= sl(2,R),

so(2, 2) ∼= sl(2,R)× sl(2,R),

so(1, 3) ∼= sl(2,C),

so(2, 3) ∼= sp(4,R),

so(1, 4) ∼= sp(2, 2).

so(3, 3) ∼= sl(4,R),

so(2, 4) ∼= su(2, 2),

so(1, 5) ∼= su∗(4),

so(2, 6) ∼= so∗(8),
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This gives local isomorphisms between the Lie groups SO0(p, q) with p+ q = 3, 4, 5, 6

and other semisimple classical Lie groups, and allow us to establish an arrow between

the corresponding moduli spaces. Since the problem of counting the number of connected

components of the moduli space of G-Higgs bundles is solved for several semisimple classi-

cal Lie groups, we will use these local isomorphisms to study the same problem for the

moduli spaceM(SO0(p, q)) in these small rank cases.

5.1 Isomorphisms of SO(3,C) and its real forms

The Lie group SO(3,C) is locally isomorphic to the special linear group SL(2,C) and

to the symplectic group Sp(2,C), but the Lie group with Lie algebra so(3,C) which is

isomorphic to SL(2,C) and Sp(2,C) is the spin group Spin(3,C) (see [28, Theorem 14.1]).

The same happens in the case of the real forms, we have isomorphisms

Spin(3) ∼= SU(2) ∼= Sp(2) and Spin0(2, 1) ∼= SL(2,R).

Spin groups are double covers of the special orthogonal groups, and then we have the

short exact sequences

1 → Z2 → Spin(3) ∼= SU(2) → SO(3) → 1,

1 → Z2 → Spin(3,C) ∼= SL(2,C) → SO(3,C) → 1,

1 → Z2 → Spin0(2, 1) ∼= SL(2,R) → SO0(2, 1) → 1.

Since we are interested in the moduli space of SO0(p, q)-Higgs bundles and not in spin

Higgs bundles, we will use these sequences to establish arrows from the moduli space of

SU(2), SL(2,C) and SL(2,R)-Higgs bundles to the moduli space of SO(3), SO(3,C) and

SO0(2, 1)-Higgs bundles respectively.

We start with the compact real form SO(3). A SU(2)-Higgs bundle is a principal

SL(2,C)-bundle, or equivalently, a holomorphic vector bundle E of rank 2 with trivial de-

terminant. Let F = S2E. This vector bundle has rank 3 and a non-degenerate symmetric

quadratic form

QF : S2E × S2E → Λ2E ⊗ Λ2E = O

defined by

QF (x⊗ y, x′ ⊗ y′) = (x ∧ x′)⊗ (y ∧ y′) + (x ∧ y′)⊗ (y ∧ x′).

Hence, (F = S2E,QF ) is a principal SO(3,C)-bundle and we have the map

M(SU(2)) → M(SO(3))

E 7→ (F = S2E,QF ).
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A principal SO(3,C)-bundle F lifts to a principal SL(2,C)-bundle if and only if the second

Stiefel-Whitney class ω2(FSO(3)) of the underlying orthogonal real bundle FSO(3) is zero.

Consider now the sequence for the complex groups

1→ Z2 → SL(2,C)→ SO(3,C)→ 1.

An SL(2,C)-Higgs bundle is a pair (E, φ), where E is a holomorphic vector bundle of

rank 2 and trivial determinant, and φ ∈ H0(End0(E) ⊗ K). On the other hand, as we

have seen in Chapter 2, an SO(3,C)-Higgs bundle is a triple (F,QF , ϕ) consisting of a

principal SO(3,C)-bundle (F,QF ) and a holomorphic section ϕ ∈ H0(so(F )⊗K).

With the same construction as in the compact case, we obtain the principal SO(3,C)-

bundle (F = S2E,QF ). Let {e1, e2} be a basis of E, then {e21, e1e2, e22} is a basis of F . If

φ =

(
a b

c −a

)
in this basis, we obtain the matrix of ϕ in the corresponding basis of F

computing

ϕ(ei ⊗ ej) = φ(ei)⊗ ej + ei ⊗ φ(ej),

for i, j = 1, 2. We can also get the matrix of QF in this basis computing QF (ei⊗ej, ek⊗el)

with i, j, k, l = 1, 2. The resulting matrices are

ϕ =


2a b 0

2c 0 2b

0 c −2a

 and QF =


0 0 2

0 −1 0

2 0 0

 .

(Using e1 ∧ e2 = 1 ∈ Λ2E ∼= O). Since ϕtQF + QFϕ = 0, the Higgs field ϕ is skew-

symmetric and we can finally establish the map

M(SL(2,C)) → M(SO(3,C))

(E, φ =

(
a b

c −a

)
) 7→ (F = S2E,QF , ϕ =


2a b 0

2c 0 2b

0 c −2a

).

As in the compact case, an SO(3,C)-Higgs bundle (F,QF , ϕ) lifts to an SL(2,C)-Higgs

bundle if and only if the second Stiefel-Whitney class ω2(FSO(3)) of the underlying ortho-

gonal real bundle FSO(3) is zero.

For the split real form SO0(2, 1) we have the following sequence

1→ Z2 → SL(2,R)→ SO0(2, 1)→ 1.
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An SL(2,R)-Higgs bundle is a triple (E = L ⊕ L−1, Q =

(
0 1

1 0

)
, φ) where L is a

holomorphic line bundle, Q ∈ H0(S2E∗) is the dual pairing and φ is a symmetric trace-free

endomorphism of E, that is, φ =

(
0 b

c 0

)
with b ∈ H0(L2 ⊗K) and c ∈ H0(L−2 ⊗K).

If we consider

F = S2E = S2(L⊕ L−1) = L2 ⊕O ⊕ L−2 = V ⊕W

and take V = L2 ⊕ L−2 and W = O, since QF restricts to V and W , we obtain two

orthogonal bundles (V,QV ) and (W,QW ) of ranks 2 and 1 respectively. If {l, l−1} is a

basis of E, the Higgs field ϕ of the SO0(2, 1)-Higgs bundle and the orthogonal form QF

in the basis {l2, l−2, 1} of E = V ⊕W are of the form

ϕ =


b

c

2c 2b

 and QF =

(
QV

QW

)
=


2

2

−1

 .

We thus have the map

M(SL(2,R)) → M(SO0(2, 1))

(L⊕ L−1, φ =

(
0 b

c 0

)
) 7→ (V = L2 ⊕ L−2,W = O, η =

(
b

c

)
).

Observe that, to obtain the Higgs field η, all we have to do is to consider the sections

b ∈ H0(L2⊗K) and c ∈ H0(L−2⊗K) as homomorphisms from O to L2⊗K and L−2⊗K
respectively.

As in the previous cases, if (V = M ⊕M−1,W = O, η) is an SO0(2, 1)-Higgs bundle,

it lifts to an SL(2,R)-Higgs bundle if and only if ω2(FSO(3)) = 0, where F = V ⊕W . Since

ω2(FSO(3)) = deg(M) mod 2,

it happens if and only if deg(M) is even.

5.2 Isomorphisms of SO(4,C) and its real forms

Since we have the isomorphism so(4,C) ∼= sl(2,C) × sl(2,C), the orthogonal Lie group

SO(4,C) is locally isomorphic to SL(2,C)× SL(2,C), but as in the previous section, the

Lie group with Lie algebra so(4,C) which is isomorphic to SL(2,C)×SL(2,C) is the spin
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group Spin(4,C). (See [28], Theorem 14.1). We have also local isomorphisms between the

real forms

SO(4) ∼= SU(2)× SU(2),

SO0(2, 2) ∼= SL(2,R)× SL(2,R),

SO0(1, 3) ∼= SL(2,C),

that we will use to establish the relations between the corresponding moduli spaces of

Higgs bundles.

For the compact real form SO(4) we have the sequence

1→ Z2 → Spin(4) ∼= SU(2)× SU(2)→ SO(4)→ 1.

Consider a pair of holomorphic vector bundles E and E ′ of rank 2 and trivial determinant

and let F = E ⊗ E ′. This vector bundle has rank 4 and a non-degenerate symmetric

quadratic form defined by

QF : (E ⊗ E ′)× (E ⊗ E ′) → Λ2E ⊗ Λ2E ′ = O

(x⊗ x′, y ⊗ y′) 7→ (x ∧ y)⊗ (x′ ∧ y′).

We can define the map

M(SU(2)× SU(2)) → M(SO(4))

(E,E ′) 7→ (F = E ⊗ E ′, QF ).

A principal SO(4,C)-bundle (F,QF ) lifts to a principal Spin(4,C)-bundle if and only if

ω2(FSO(4)) = 0 ∈ H2(Z2) ∼= Z2.

Consider now the sequence for the complex group

1→ Z2 → Spin(4,C) ∼= SL(2,C)× SL(2,C)→ SO(4,C)→ 1,

and let (E, φ) and (E ′, φ′), where E and E ′ are holomorphic vector bundles of rank 2

and trivial determinant, φ ∈ H0(End0(E)⊗K) and φ′ ∈ H0(End0(E
′)⊗K), be a pair of

SL(2,C)-Higgs bundles. With the same construction as in the compact case, we obtain

the principal SO(4,C)-bundle (F = E ⊗ E ′, QF ).

If {e1, e2} and {e′1, e′2} are basis of E and E ′ respectively, then {e1 ⊗ e′1, e1 ⊗ e′2, e2 ⊗
e′1, e2 ⊗ e′2} is a basis of F . If

φ =

(
φ1,1 φ1,2

φ2,1 −φ1,1

)
and φ′ =

(
φ′1,1 φ′1,2

φ′2,1 −φ′1,1

)
,
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in the basis of E and E ′ respectively, we obtain the following matrix for the Higgs field ϕ

of the SO(4,C)-Higgs bundle in the basis of F ,

ϕ =


φ1,1 + φ′1,1 φ′1,2 φ1,2 0

φ′2,1 φ1,1 − φ′1,1 0 φ1,2

φ2,1 0 −φ1,1 + φ′1,1 φ′1,2

0 φ2,1 φ′2,1 −φ1,1 − φ′1,1

 .

Analogously, QF =


1

−1

−1

1

 . Since ϕtQF + QFϕ = 0, ϕ is skew-symmetric

and we can finally establish the map

M(SL(2,C)× SL(2,C)) → M(SO(4,C))

(E, φ), (E ′, φ′) 7→ (F = E ⊗ E ′, QF , ϕ).

For the split real form SO0(2, 2) we have the following sequence

1→ Z2 → Spin0(2, 2) ∼= SL(2,R)× SL(2,R)→ SO0(2, 2)→ 1.

A pair of SL(2,R)-Higgs bundles is a pair of triples

(E = L⊕ L−1, Q, φ) and (E ′ = M ⊕M−1, Q′, φ′),

where L and M are holomorphic line bundles, Q and Q′ are the corresponding dual

pairings and the Higgs fields φ and φ′ are symmetric trace-free endomorphisms of E and

E ′ respectively. In this case we have

F = E ⊗ E ′ = (L⊗M)⊕ (L⊗M−1)⊕ (L−1 ⊗M)⊕ (L−1 ⊗M−1).

Taking V = (L⊗M)⊕ (L−1⊗M−1) and W = (L⊗M−1)⊕ (L−1⊗M), since QF restricts

to V and W , we obtain the principal SO(2,C)-bundles (V,QV ) and (W,QW ).

If {l, l−1} and {m,m−1} are basis of E and E ′ respectively and

φ =

(
φ1,2

φ2,1

)
and φ′ =

(
φ′1,2

φ′2,1

)
,

in these basis, the Higgs field ϕ of the SO0(2, 2)-Higgs bundle and the orthogonal form

QF in the basis {l ⊗m, l−1 ⊗m−1, l ⊗m−1, l−1 ⊗m} of F = V ⊕W are of the form

ϕ =


φ′1,2 φ1,2

φ2,1 φ′2,1

φ′2,1 φ1,2

φ2,1 φ′1,2

 and QF =

(
QV

QW

)
=


1

1

−1

−1

 .

74



Then, the map

M(SL(2,R)× SL(2,R))→M(SO0(2, 2))

is given by

(L⊕ L−1, φ =

(
φ1,2

φ2,1

)
,M ⊕M−1, φ′ =

(
φ′1,2

φ′2,1

)
)

↓

(V = (L⊗M)⊕ (L−1 ⊗M−1),W = (L⊗M−1)⊕ (L−1 ⊗M), η =

(
φ′1,2 φ1,2

φ2,1 φ′2,1

)
).

For the real form SO0(1, 3) we have the following sequence

1→ Z2 → Spin0(1, 3) ∼= SL(2,C)→ SO0(1, 3)→ 1.

If E is a holomorphic vector bundle of rank 2 and trivial determinant and φ is a trace-free

endomorphism of E and we consider in F = E ⊗ E∗ the quadratic form

QF : (E ⊗ E∗)× (E ⊗ E∗) → Λ2E ⊗ Λ2E∗ = O

(x⊗ x′, y ⊗ y′) 7→ (x ∧ y)⊗ (x′ ∧ y′),

we obtain a principal SO(4,C)-bundle.

If {e1, e2} and {e−1
1 , e−1

2 } are basis of E and E∗ respectively, then {e1 ⊗ e−1
1 + e2 ⊗

e−1
2 , e1 ⊗ e−1

2 , e1 ⊗ e−1
1 − e2 ⊗ e−1

2 , e2 ⊗ e−1
1 } is a basis of E ⊗ E∗. Let

V = 〈e1 ⊗ e−1
1 + e2 ⊗ e−1

2 〉,

W = 〈e1 ⊗ e−1
2 , e1 ⊗ e−1

1 − e2 ⊗ e−1
2 , e2 ⊗ e−1

1 〉.

If φ =

(
a b

c −a

)
in the basis of E and φt =

(
a c

b −a

)
in the corresponding basis of

E∗, the Higgs field ϕ of the SO0(1, 3)-Higgs bundle and the orthogonal form QF in the

basis of F = V ⊕W are of the form

ϕ =

(
η

−η>

)
=


c 2a b

2b

2a

2c


and

QF =

(
QV

QW

)
=


2

−1

−2

−1

 ,
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and we can define the map

M(SL(2,C)) → M(SO0(1, 3))

(E, φ) 7→ (F = E ⊗ E∗, QF , η).

5.3 Isomorphisms of SO(5,C) and its real forms

As in the previous cases, the isomorphisms

Spin(5,C) ∼= Sp(4,C),

Spin(5) ∼= Sp(4),

Spin0(2, 3) ∼= Sp(4,R),

Spin0(1, 4) ∼= Sp(2, 2),

(see [28, Theorem 14.1]), and the fact that spin groups are double covers of the orthogonal

groups, allow us, in each of the four cases, to define a map from the moduli space of

symplectic Higgs bundles to the moduli space of special orthogonal Higgs bundles.

For the compact real form SO(5) we have the sequence

1→ Z2 → Spin(5) ∼= Sp(4)→ SO(5)→ 1.

an Sp(4)-Higgs bundle is a principal Sp(4,C)-bundle, that is, a holomorphic vector bun-

dle E of rank 4 and trivial determinant together with a non-degenerate antisymmetric

quadratic form Ω ∈ H0(Λ2E∗). The representation Λ2V of Sp(4,C), where V denotes the

standard representation, decomposes as

Λ2V = W ⊕ C,

where W is the irreducible five-dimensional representation of Sp(4,C) (See [18, §16.2]).

Then, the vector bundle Λ2E, which has rank 6, decomposes as

Λ2E = F ⊕O,

where F is holomorphic vector bundle of rank 5. In Λ2E we can define a non-degenerate

symmetric quadratic form given by

Q : Λ2E × Λ2E → Λ4E = O

(x ∧ y, x′ ∧ y′) 7→ x ∧ y ∧ x′ ∧ y′,
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Then, (Λ2E,Q) is a principal SO(6,C)-bundle. If QF is the restriction of the orthogonal

form Q to F , (F,QF ) is a principal SO(5,C)-bundle (F,QF ) and we can finally define the

map

M(Sp(4)) → M(SO(5))

(E,Ω) 7→ (F,QF ).

Consider now the sequence for the complex group

1→ Z2 → Spin(5,C) ∼= Sp(4,C)→ SO(5,C)→ 1.

an Sp(4,C)-Higgs bundle is a triple (E,Ω, φ) consisting of a holomorphic vector bundle E

of rank 4 and trivial determinant, a symplectic form Ω on E and a holomorphic section

φ ∈ H0(sp(E)⊗K), where

sp(F ) = {f ∈ End0(E) | Ω(f ·, ·) + Ω(·, f ·) = 0}.

If {e1, e2, e3, e4} is a basis of E, then {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4} is a

basis of Λ2E = F ⊕O. The matrix of Q in this basis is

Q =



1

−1

1

1

−1

1


,

(where we are considering e1 ∧ e2 ∧ e3 ∧ e4 = 1 under the isomorphism Λ4E ∼= O). On the

other hand, if

Φ =


φ1,1 φ1,2 φ1,3 φ1,4

φ2,1 φ2,2 φ1,4 φ2,4

φ3,1 φ3,2 −φ1,1 −φ2,1

φ3,2 φ4,2 −φ1,2 −φ2,2



in the basis of E, (using Ω =


1

1

−1

−1

), we obtain the matrix of the Higgs field

of the SO(6,C)-Higgs bundle (Λ2E,Q, ϕ) in the corresponding basis of Λ2E computing

ϕ(ei ∧ ej) = φ(ei) ∧ ej + ei ∧ φ(ej).
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The resulting matrix is

ϕ =



φ1,1 + φ2,2 φ1,4 φ2,4 −φ1,3 −φ1,4 0

φ3,2 0 −φ2,1 φ1,2 0 −φ1,4

φ4,2 −φ1,2 φ1,1 − φ2,2 0 φ1,2 φ1,3

−φ3,1 φ2,1 0 φ2,2 − φ1,1 −φ2,1 −φ2,4

−φ3,2 0 φ2,1 −φ1,2 0 φ1,4

0 −φ3,2 φ3,1 −φ4,2 φ3,2 −φ1,1 − φ2,2


.

Observe that ϕ(e1 ∧ e3 + e2 ∧ e4) = 0. Hence, we can set F = 〈e1 ∧ e2, e1 ∧ e4, e1 ∧ e3 −
e2 ∧ e4, e2 ∧ e3, e3 ∧ e4〉. The matrix of the orthogonal form QF in this basis of F is

QF =



1

1

2

1

1


,

and the matrix of the Higgs field of the SO(5,C)-Higgs bundle (F,QF , ϕF ) is

ϕF =



φ1,1 + φ2,2 φ2,4 2φ1,4 −φ1,3 0

φ4,2 φ1,1 − φ2,2 −2φ1,2 0 φ1,3

φ3,2 −φ2,1 0 φ1,2 −φ1,4

−φ3,1 0 2φ2,1 φ2,2 − φ1,1 −φ2,4

0 φ3,1 −2φ3,2 −φ4,2 −φ1,1 − φ2,2


,

which satisfies ϕt
FQF +QFϕF = 0. We can establish the map

M(Sp(4,C)) → M(SO(5,C))

(E,Ω, φ) 7→ (F,QF , ϕF ).

For the split real form SO0(2, 3) we have the following sequence

1→ Z2 → Spin0(2, 3) ∼= Sp(4,R)→ SO0(2, 3)→ 1.

an Sp(4,R)-Higgs bundle is a triple (E, β, γ), where E is a holomorphic vector bundle of

rank 2, β ∈ H0(S2E ⊗K) and γ ∈ H0(S2E∗ ⊗K). In this case, we have

Λ2(E ⊕ E∗) = Λ2E ⊕ (E ⊗ E∗)⊕ Λ2E∗ = F ⊕O = V ⊕W ⊕O.

If {e1, e2} is a basis of E, then {e1 ∧ e2, e1 ∧ e−1
1 , e1 ∧ e−1

2 , e2 ∧ e−1
1 , e2 ∧ e−1

2 , e−1
1 ∧ e−1

2 } is a

basis of Λ2(E ⊕ E∗) and if

β =

(
β1 β2

β2 β3

)
and γ =

(
γ1 γ2

γ2 γ3

)
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in the basis of E and E∗, the matrix of the Higgs field ϕ in this basis is

ϕ =



β2 β3 −β1 −β2

γ2 −β2

γ3 β1

−γ1 −β3

−γ2 β2

−γ2 γ1 −γ3 γ2


.

Again, since ϕ(e1∧e−1
1 +e2∧e−1

2 ) = 0, we set F = 〈e1∧e2, e1∧e−1
2 , e1∧e−1

1 −e2∧e−1
2 , e2∧

e−1
1 , e−1

1 ∧ e−1
2 〉. Let

V = 〈e1 ∧ e2, e−1
1 ∧ e−1

2 〉 = Λ2E ⊕ Λ2E∗,

W = 〈e1 ∧ e−1
2 , e1 ∧ e−1

1 − e2 ∧ e−1
2 , e2 ∧ e−1

1 〉 ⊂ E ⊗ E∗.

We can define the orthogonal forms Q and QF as in the previous cases because Λ4(E ⊕
E∗) = Λ2E ⊗ (Λ2E)−1 = O. The matrix of QF in this basis is

QF =

(
QV

QW

)
=



1

1

1

2

1


,

and the matrix of the Higgs field is

ϕF =

(
η

−η>

)
=



β3 2β2 −β1

γ1 −2γ2 −γ3

γ3 β1

γ2 −β2

−γ1 −β3


,

which satisfies ϕt
FQF +QFϕF = 0. We can establish the map

M(Sp(4,R)) → M(SO0(2, 3))

(E, β, γ) 7→ (V = Λ2E ⊕ Λ2E∗, QV ,W ⊂ E ⊗ E∗, QW , η).

For the real form SO0(1, 4) we have the following sequence

1→ Z2 → Spin0(1, 4) ∼= Sp(2, 2)→ SO0(1, 4)→ 1.
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Using the Cartan decomposition (see [29, Ch. X, §2]),

sp(2, 2) = sp(2)× sp(2)⊕m,

where

sp(2, 2) =




x1,1 x1,2 x1,3 x1,4

x̄1,2 x2,2 x1,4 x2,4

−x̄1,3 x̄1,4 x̄1,1 −x̄1,2

x̄1,4 −x̄2,4 −x1,2 x̄2,2

 ,
with x1,1 and x2,2

purely imaginary

 ,

and

m =




ix1,2 ix1,4

−ix̄1,2 ix1,4

−ix̄1,4 ix̄1,2

−ix̄1,4 −ix1,2


 ,

and the imbedding of sp(2)× sp(2) in sp(2, 2) given by

(
x1,1 x1,3

−x̄1,3 x̄1,1

)
,

(
x2,2 x2,4

−x̄2,4 x̄2,2

)
7→


x1,1 x1,3

x2,2 x2,4

−x̄1,3 x̄1,1

−x̄2,4 x̄2,2

 ,

(for the dimensions, observe that x1,1 and x2,2 are purely imaginary), we can see an

Sp(2, 2)-Higgs bundle as a tuple (E,Ω, E ′,Ω′, φ), where E and E ′ are holomorphic vector

bundles of rank 2 and trivial determinant, Ω and Ω′ are symplectic forms on E and E ′

respectively and the Higgs field is of the form φ =


a b

c b

d −c
d −a

. If {e1, e2} and

{e′1, e′2} are basis of E and E ′ respectively, the Higgs field φ is in the basis {e1, e′1, e2, e′2}.
Now we have

Λ2(E ⊕ E ′) = Λ2E ⊕ (E ⊗ E ′)⊕ Λ2E ′ = O ⊕ (E ⊗ E ′)⊕O = V ⊕W.

In the basis {e1 ∧ e2, e1 ∧ e′1, e1 ∧ e′2, e2 ∧ e′1, e2 ∧ e′2, e′1 ∧ e′2} of Λ2(E ⊕ E ′), the matrix of

the Higgs field is

ϕ =



d −c −a −b
b −b
−a a

−c c

−d d

−d c a b


.
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Since ϕ(e1 ∧ e2 + e′1 ∧ e′2) = 0, we set F = 〈e1 ∧ e′1, e1 ∧ e′2, e1 ∧ e2− e′1 ∧ e′2, e2 ∧ e′1, e2 ∧ e′2〉.
Let

V = 〈e1 ∧ e2 − e′1 ∧ e′2〉 = O,

W = 〈e1 ∧ e′1, e1 ∧ e′2, e2 ∧ e′1, e2 ∧ e′2〉 = E ⊗ E ′.

Since Λ4(E ⊕E ′) = Λ2E ⊗Λ2E ′ = O⊗O, we can define the orthogonal forms Q and QF

as in the previous cases. The matrix of the orthogonal form in this basis is

QF =

(
QV

QW

)
=



−2

−1

1

1

−1


,

(fixing e1 ∧ e2 ∧ e′1 ∧ e′2 = 1), and the matrix of the Higgs field is

ϕF =

(
η

−η>

)
=



d −c −a −b
2b

−2a

−2c

−2d


,

which satisfies ϕt
FQF +QFϕF = 0. We can finally define the map

M(Sp(2, 2)) → M(SO0(1, 4))

(E,Ω, E ′,Ω′, φ) 7→ (V = O, QV ,W = E ⊗ E ′, QW , η).

5.4 Isomorphisms of SO(6,C) and its real forms

The Lie group SO(6,C) is locally isomorphic to the special linear group SL(4,C) and the

spin group Spin(6,C) is isomorphic to SL(4,C) (see [28, Theorem 14.1]). Between the

corresponding real forms we have the following isomorphisms:

Spin(6) ∼= SU(4),

SO0(3, 3) ∼= SL(4,R),

Spin0(2, 4) ∼= SU(2, 2),

Spin0(1, 5) ∼= SU∗(4).

We start with the compact real form SO(6) of SO(6,C). We have the sequence

1→ Z2 → Spin(6) ∼= SU(4)→ SO(6)→ 1.
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If E is a holomorphic vector bundle of rank 4 and trivial determinant, then F = Λ2E is a

holomorphic vector bundle of rank 6 on which we can define a non-degenerate symmetric

quadratic form

QF : Λ2E × Λ2E → Λ4E = O

(x ∧ y, x′ ∧ y′) 7→ x ∧ y ∧ x′ ∧ y′,

obtaining a principal SO(6,C)-bundle (F,QF ). Then, we can define the map

M(SU(4)) → M(SO(6))

E 7→ (F = Λ2E,QF ).

Consider now the sequence for the complex group

1→ Z2 → Spin(6,C) ∼= SL(4,C)→ SO(6,C)→ 1.

Let (E, φ), where E is a holomorphic vector bundle of rank 4 and trivial determinant and

φ ∈ H0(End0(E) ⊗K), be an SL(4,C)-Higgs bundle. With the same construction as in

the compact case, we obtain a principal SO(6,C)-bundle (F = Λ2E,QF ).

If {e1, e2, e3, e4} is a basis of E, then {e1∧ e2, e1∧ e3, e1∧ e4, e2∧ e3, e2∧ e4, e3∧ e4} is a

basis of F . We obtain the matrix of the Higgs field ϕ of the corresponding SO(6,C)-Higgs

bundle in the corresponding basis of F computing

ϕ(ei ∧ ej) = φ(ei) ∧ ej + ei ∧ φ(ej).

It is a skew-symmetric endomorphism of F and we can finally establish the correspondence

M(SL(4,C)) → M(SO(6,C))

(E, φ) 7→ (F,QF , ϕ).

For the split real form SO0(3, 3) we have an isomorphism

SL(4,R)
∼= // SO0(3, 3).

The correspondence between the moduli spaces of Higgs bundles is the following. We

start with a principal SO(4,C)-bundle (E,QE) and a symmetric trace-free endomorphism

φ of E. With the same construction as in the compact case, we obtain the principal

SO(6,C)-bundle (F = Λ2E,QF ).

If {e1, e2, e3, e4} is the basis of E, then {e1 ∧ e2, e1 ∧ e4 + e2 ∧ e3, e3 ∧ e4, e1 ∧ e3, e1 ∧
e4 − e2 ∧ e3, e2 ∧ e4} is a basis of F . Let

V = 〈e1 ∧ e2, e1 ∧ e4 + e2 ∧ e3, e3 ∧ e4〉,
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W = 〈e1 ∧ e3, e1 ∧ e4 − e2 ∧ e3, e2 ∧ e4〉.

The matrix of the orthogonal form in this basis is

QF =

(
QV

QW

)
=



1

2

1

−1

−2

−1


,

and if

φ =


φ1,1 φ1,2 φ1,3 φ1,4

φ2,1 −φ1,1 φ2,3 φ1,3

φ3,1 φ3,2 −φ1,1 φ1,2

φ4,1 φ3,1 φ2,1 φ1,1

 ,

in the basis of E, the matrix of the Higgs field ϕ of the corresponding SO0(3, 3)-Higgs

bundle is

ϕ =

(
η

−η>

)
=



φ2,3 2φ1,3 −φ1,4

φ2,1 2φ1,1 φ1,2

−φ4,1 2φ3,1 φ3,2

φ3,2 2φ1,2 −φ1,4

φ3,1 2φ1,1 φ1,3

−φ4,1 2φ2,1 φ2,3


,

which satisfies ϕtQF +QFϕ = 0. We can establish the correspondence

M(SL(4,R)) → M(SO0(3, 3))

(E,Q, φ) 7→ (V,QV ,W,QW , η).

For the real form SO0(2, 4) we have the sequence

1→ Z2 → Spin0(2, 4) ∼= SU(2, 2)→ SO0(2, 4)→ 1.

A SU(2, 2)-Higgs bundle is a tuple (E,E ′, β, γ) consisting of two holomorphic vector

bundles E and E ′ of rank 2 satisfying Λ2E ⊗ Λ2E ′ = O and two homomorphisms

β : E ′ → E ⊗K and γ : E → E ′ ⊗K. We consider

Λ2(E ⊕ E ′) = Λ2E ⊕ (E ⊗ E ′)⊕ Λ2E ′,
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and let V = Λ2E ⊕ Λ2E ′ and W = E ⊗ E ′.

If {e1, e2} and {e′1, e′2} are basis of E and E ′ respectively, consider the basis {e1 ∧
e2, e

′
1 ∧ e′2, e1 ∧ e′1, e1 ∧ e′2, e2 ∧ e′1, e2 ∧ e′2} of Λ2(E ⊕ E ′) = V ⊕W . The matrix of the

orthogonal form in this basis is

QF =

(
QV

QW

)
=



1

1

−1

1

1

−1


,

and if

β =

(
β1 β2

β3 β4

)
and γ =

(
γ1 γ2

γ3 γ4

)
in the basis of E and E ′, the matrix of the Higgs filed ϕ of the corresponding SO0(2, 4) is

ϕ =

(
η

−η>

)
=



β3 β4 −β1 −β2

−γ3 γ1 −γ4 γ2

γ2 −β2

γ4 β1

−γ1 −β4

−γ3 β3


,

which satisfies ϕtQF +QFϕ = 0. We can define the map

M(SU(2, 2)) → M(SO0(2, 4))

(E,E ′, β, γ) 7→ (V,QV ,W,QW , η).

For the real form SO0(1, 5) we have the following sequence

1→ Z2 → Spin0(1, 5) ∼= SU∗(4)→ SO0(1, 5)→ 1.

Using the Cartan decomposition (see [29, Ch. X, §2]),

su∗(4) = sp(4)⊕m,

where

su∗(4) =

{(
Z1 Z2

Z̄t
2 Z̄1

)
| TrZ1 + Tr Z̄1 = 0

}
,
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m =

{(
iZ1 iZ2

iZ̄2 −iZ̄1

)
| Z1 ∈ su(2), Z2 ∈ so(2,C)

}
,

and

mC =

{(
A B

C At

)
| TrA = 0, B, C ∈ so(2,C)

}
,

we can see an Sp(2, 2)-Higgs bundle as a triple (E,Ω, φ), where E is a holomorphic vector

bundles of rank 4 and trivial determinant, Ω is a symplectic form on E and

φ =


φ1,1 φ1,2 0 φ1,4

φ2,1 −φ1,1 −φ1,4 0

0 φ3,2 φ1,1 φ2,1

−φ3,2 0 φ1,2 −φ1,1

 .

If {e1, e2, e3, e4} is a basis of E, consider the basis {e1 ∧ e3 + e2 ∧ e4, e1 ∧ e2, e1 ∧ e4, e1 ∧
e3 − e2 ∧ e4, e2 ∧ e3, e3 ∧ e4} of F and let

V = 〈e1 ∧ e3 + e2 ∧ e4〉,

W = 〈e1 ∧ e2, e1 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e2 ∧ e3, e3 ∧ e4〉.

The matrix of the orthogonal form in this basis is

QF =

(
QV

QW

)
=



−2

1

1

2

1

1


,

and the matrix of the Higgs field ϕ of the corresponding SO0(1, 5)-Higgs bundles is given

by

ϕ =

(
η

−η>

)
=



φ3,2 φ2,1 2φ1,1 φ1,2 −φ1,4

−2φ1,4

2φ1,2

2φ1,1

2φ2,1

2φ3,2


,

which satisfies ϕtQF +QFϕ = 0. We can establish the correspondence

M(SU∗(4)) → M(SO0(1, 5))

(E,Q, φ) 7→ (V,QV ,W,QW , η).
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5.5 SO0(2, 4)-Higgs bundles and SO∗(8)-Higgs bundles

The Lie algebra isomorphism su(4) ∼= so(6) together with Theorem 5.1 gives the following

isomorphism

so∗(8) ∼= so(2, 6).

The isomorphism between the Lie groups is

SO∗(8) ∼= SO0(2, 4).

Using this correspondence, we will establish a correspondence between the moduli space

of polystable SO0(2, 6)-Higgs bundles and the moduli space of polystable SO∗(8)-Higgs

bundles.

An SO∗(8)-Higgs bundle is a triple (E, β, γ), where E is a holomorphic vector bundle

of rank 4, β ∈ H0(Λ2E ⊗K) and γ ∈ H0(Λ2E∗ ⊗K). Let

V = Λ4E ⊕ Λ4E∗ and W = Λ2E ⊗ Λ4E∗.

Since Λ2E has a non-degenerate quadratic form with values in Λ4E defined by

Q : Λ2E × Λ2E → Λ4E

(x ∧ y, x′ ∧ y′) 7→ x ∧ y ∧ x′ ∧ y′,

considering the induced quadratic form in W we obtain an orthogonal bundle (W,QW ).

To construct the Higgs field we observe that

β ∈ H0(Λ2E ⊗K) ∼= H0(Λ2E ⊗ Λ4E∗ ⊗ Λ4E ⊗K) = H0(W ⊗ Λ4E ⊗K),

γ ∈ H0(Λ2E∗ ⊗K) ∼= H0(Λ2E∗ ⊗ Λ4E ⊗ Λ4E∗ ⊗K) = H0(W ∗ ⊗ Λ4E∗ ⊗K).

Since W ∼= W ∗, we can take

η : W → (Λ4E ⊕ Λ4E∗)⊗K,

x 7→ (β(x), γ(x)).

and establish the correspondence

M(SO∗(8)) → M(SO0(2, 6))

(E, β, γ) 7→ (V = Λ4E ⊕ Λ4E∗,W = Λ2E ⊗ Λ4E∗, QW , η).

86



6 Smooth minima

We have seen in Section 4.4 that there is a homeomorphism between the moduli space of

representations and the moduli space of Higgs bundles:

Rc(SO0(p, q)) ∼=Mc(SO0(p, q)).

A first step in the study of the number of connected components of the space of repre-

sentations Rc(SO0(p, q)) is to give a description of the minima of the Hitchin function in

the moduli spaceMs
c(SO0(p, q)) of smooth SO0(p, q)-Higgs bundles.

6.1 The Hitchin function

To simplify, we denoteM =Mc(SO0(p, q)).

Using the homeomorphism

MHit
c (SO0(p, q)) ∼=M,

of Section 4.3, which identifyM with the moduli space of solutions to Hitchin’s equations

MHit
c (SO0(p, q)) = {(A,ϕ) | A connection on a smooth principal SO(p)× SO(q)-bundle

F , ϕ ∈ Ω1,0(F (mC)) satisfying (2) and with c(F ) = c}/G(F ),

the Hitchin function is defined as the positive function

f :M→ R,

given by

[A,ϕ] 7→ ‖ϕ‖2 =

∫
X

|ϕ|2d vol,

where [·, ·] denotes the equivalence class in the moduli space MHit
c (SO0(p, q)) and | · | is

the harmonic metric that gives the reduction to SO(p) × SO(q). Equivalently, we can

define the map over the moduli space of Higgs pairs, for a fixed (E,ϕ) ∈M, by using the

L2-norm ‖ · ‖ of the metric that solves the Hitchin’s equations.

Proposition 6.1. The function f([A,ϕ]) = ‖ϕ‖2 is a proper map.

The proof is given by Hitchin in [31, Proposition 7.1].

Consider a compact subspace [0, k] ⊂ R and the inverse image

f−1[0, k] = {[A,ϕ] | f([A,ϕ]) = ‖ϕ‖2 ≤ k}.
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A pair [A,ϕ] ∈ f−1[0, k] is a solution of the Hitchin’s equations, that is,

FA − [ϕ, τ(ϕ)] = 0.

Since ‖[ϕ, τ(ϕ)]‖2 is bounded by a multiple of ‖ϕ‖2, we have an L2 bound of the curvature

FA, and using Uhlenbeck’s weak compactness theorem, any infinite sequence in f−1[0, k]

has convergent subsequence, and hence f−1[0, k] is compact.

Even if M is not smooth, as in our case, the fact that f is a proper map gives

information about the connected components ofM.

Proposition 6.2. LetM′ ⊆M be a closed subspace and let N ′ ⊆M′ be the subspace of

local minima of f on M′. If N ′ is connected, then M′ is connected.

This result is in fact more general. The proper function f has a minimum on each

connected component of M′, and then the number of connected components of M′ is

bounded by the number of connected components of N ′. Thus, we are interested in com-

puting the critical points and more precisely the local minima of f .

We introduce now the notion of moment map for a hamiltonian action of a Lie group

on a symplectic manifold to give more properties of the Hitchin function.

Let (M,ω) be a symplectic manifold, that is, a smooth manifold M equipped with a

closed non-degenerate 2-form ω called the symplectic form. If we have a symplectic action

of a Lie group G on M ,

g∗ω = ω for all g ∈ G,

a moment map for this action is a map

µ : M → g∗,

such that

d(〈µ, ξ〉) = iξ̃ω, for all ξ ∈ g,

where ξ̃ is the vector field on M induced by ξ, defined by

ξ̃mh = lim
t→0

h(exp(tξ) ·m)− h(m)

t

for any smooth function h : M → R, and the map 〈µ, ξ〉 : M → R is given by

〈µ, ξ〉(m) = 〈µ(m), ξ〉 for m ∈M,
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being 〈·, ·〉 the pairing between g and its dual. A vector field v on M is called Hamiltonian

if

ivω = dfv

for a smooth function fv : M → R. And the action of G is said to be Hamiltonian if

and only if the following two conditions hold. First, for every ξ ∈ g the vector field ξ̃ is

Hamiltonian, that is

iξ̃ω = dfξ

for some smooth function fξ : M → R. Second, the map

ξ 7→ fξ

is a Lie algebra homomorphism under the Poisson bracket

{fξ, fξ′} = ω(ξ̃, ξ̃′).

If the action of G on (M,ω) has a moment map µ, for each ξ ∈ g we can define

fξ(m) = 〈µ(m), ξ〉 for m ∈M,

and then the action is Hamiltonian.

Proposition 6.3. The restriction of f([A,ϕ]) = ‖ϕ‖2 to the smooth locus Ms ∈M is a

moment map for the Hamiltonian circle action

[A,ϕ] 7→ [A, eiθϕ].

We give a sketch of the proof of this result.

If A denotes the set of all connections on a principal SO(p) × SO(q)-bundle F and

Ω = Ω1,0(F (mC)), A × Ω is a symplectic manifold (see [31]). The action of the gauge

group G(F ) on A× Ω is symplectic, and the moment map of this action is

µ : A× Ω → (Lie G(F ))∗

(A,ϕ) 7→ FA − [ϕ, τ(ϕ)].

The subspace

S = {(A,ϕ) ∈ A× Ω | ∂̄A(ϕ) = 0}

is invariant under the action of the gauge group and we can consider the restriction

µ0 : S → (Lie G(F ))∗.
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Using the isomorphism MHit
c (SO0(p, q)) ∼= M, we have that M is isomorphic to the

following symplectic quotient

M∼= µ−1
0 (0)/G(F ),

and then, the smooth moduli spaceMs has structure of symplectic manifold.

The Lie group U(1), which is isomorphic to the sphere S1, is a subgroup of the gauge

group G(F ) and then acts on A× Ω and on S. But, since

eiθ · ϕ = eiθϕe−iθ = ϕ,

this action is trivial on Ω. Instead of this, from now on, we are going to consider the

following circle action on A× Ω:

eiθ · (A,ϕ) = (A, eiθϕ),

that can be defined as well on the moduli space of Higgs bundlesMs,

eiθ · [A,ϕ] = [A, eiθϕ].

Since the actions of U(1) and G(F ) on S commute

(U(1)× G(F ))× S → S,

instead of consider the action of U(1) onMs and find a moment map for this action, we

are going to consider the action of U(1) on S, to define the moment map for this action

and after that, to translate our results to the moduli spaceMs.

The Lie algebra

u(1) = {z ∈ C | z + z̄ = 0}

is naturally identified with iR and using the isomorphism u(1) ∼= u(1)∗ given by the Killing

form, the moment map for this circle action on S is

µU(1) : S → iR

(A,ϕ) 7→ i‖ϕ‖2 = i

∫
X

|ϕ|2d vol .

The subspace µ−1
0 (0) ⊂ S is invariant under the action of U(1), that is,

FA − [eiθϕ, τ(eiθϕ)] = 0

for all (A,ϕ) ∈ µ−1
0 (0). Thus, the moment map for the action of U(1) on µ−1

0 (0) is the

restriction

µU(1) : µ−1
0 (0)→ iR.
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Finally, since

‖g · ϕ‖2 =

∫
X

|gϕg−1|2d vol = ‖ϕ‖2

for all g ∈ G(F ), this map is invariant under the action of G(F ) and then we can restrict

to the quotientM∼= µ−1
0 (0)/G(F ) and finally to the smooth locus

Ms → iR.

If we consider u(1) isomorphic to R, the moment map takes values in R.

6.2 Morse Theory

In this section we describe some properties of the Hitchin function which are related to

Morse theory. Observe that these techniques can only be use when the moduli space

M(SO0(p, q)) is smooth, and this only happens in a few cases, for small values of p and

q.

Let f : M → R be a smooth function on a manifold M. A connected submanifold

M′ ⊂ M is a critical manifold for f if and only if df ≡ 0 along M′, and we say that

M′ is non-degenerate if the Hessian of f is non-degenerate on the normal bundle to

M′. Let Ml be the critical manifolds of M and denote the manifold of local minima of

f by N =M0.

The function f :M→ R is a Bott-Morse function if all the critical manifolds Ml

are non-degenerated.

Let ν(Ml) be the normal bundle of the critical manifoldMl. The non-degeneracy of

the Hessian implies, for any critical manifold, the decomposition

ν(Ml) = ν+(Ml)⊕ ν−(Ml),

where ν+(Ml) and ν−(Ml) are the subbundles where the Hessian is positive and negative

defined respectively.

The real dimension of ν−(Ml) is called the Morse index ofMl, denoted by

λl = index(Ml) = rk ν−(Ml).

Define the Poincaré polynomial ofM to be

Pt(M) =
∑

ti dimH i(M,Q).

For the critical manifolds we have the same definition

Pt(Ml) =
∑

ti dimH i(Ml,Q).
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The coefficient of ti is called the i-th Betti number of M. These numbers are

topological invariants ofM.

A Bott-Morse function is called perfect if

Pt(M) =
∑

l

tλlPt(Ml).

Proposition 6.4. If M = M(SO0(p, q)) is smooth, then the Hitchin function f is a

perfect Bott-Morse function.

6.3 Critical points of the Hitchin function

To study the critical points of the Hitchin function we use the following result.

Proposition 6.5. A smooth point of the moduli space M is a critical point of f if and

only if it is a fixed point of the circle action, and the subbundle ν−(Ml) where the Hessian

of the Hitchin function is negative definite equals the subbundle of ν(Ml) on which the

circle acts with negative weights.

Proof. The moduli spaceMs is a Kähler manifold, that is, it is a complex manifold (M, I),

which also carries a Riemannian metric g and a symplectic form ω on the underlying real

manifold in such a way that the three structures (complex, Riemannian, and symplectic)

are all mutually compatible,

ω(·, ·) = g(I·, ·) on TMs × TMs.

The metric g induces the isomorphism

TMs → T ∗Ms

v 7→ g(v, ·).

If f : Ms → R is a smooth map, the element of TMs corresponding to df ∈ T ∗Ms is

grad(f). Applying this to the Hitchin function, we have

df = g(grad(f), ·).

Proposition 6.3 tells us that f , restricted to the smooth locus, is a moment map for the

circle action. In this case, since u(1) ∼= R, the moment map f is the Hamiltonian function

that generates the circle action and

df = ω(u, ·) = g(Iu, ·),
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where I is the complex structure of Ms and u is the vector field generating the circle

action, that is

u[A,ϕ]h = lim
θ→0

h([A, eiθϕ])− h([A,ϕ])

θ

for any h :Ms → R. Thus,

grad(f) = Iu.

Then, the critical points of f are the smooth points of M where the gradient vanishes

and u is null on the fixed points of the action.

If m = [A,ϕ] is a fixed point of the circle action, the infinitesimal circle action on

TmMs is given by

vm 7→ [v, u]m.

On the other hand, if ∇ is the Levi-Civita connection onMs and Hf denotes the Hessian

of f , we have

Hf (vm) = ∇vm(grad(f)) = ∇vm(Iu) = ∇Ium(v)− [Iu, v]m = [v, Iu]m,

where we have used that um = 0.

Using Proposition 6.5, the critical points of f are of two types:

(1) The Higgs field ϕ = 0.

(2) If ϕ 6= 0, [A,ϕ] is a fixed point of the circle action if and only if

[A, eiθϕ] = [A,ϕ], for all eiθ ∈ S1.

Then, there is a 1-parameter family of gauge transformations g(θ) = (g1(θ), g2(θ)) ∈ G(F )

such that

(A, eiθϕ) = g(θ) · (A,ϕ) = (g(θ) · A, g(θ) · ϕ). (3)

We have that

g(θ) · ϕ = ι(g(θ))(ϕ) = Ad(g(θ))(ϕ) = exp(ad(θψ))(ϕ),

and taking d
dθ
|θ=0 in the second term of the parenthesis in (3) we obtain

d

dθ
(eiθϕ)|θ=0 = iϕ,

and
d

dθ
(g(θ) · ϕ)|θ=0 =

d

dθ
exp(ad(θψ))(ϕ)|θ=0 = ad(ψ)(ϕ) = [ψ, ϕ].
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Then

[ψ, ϕ] = iϕ.

Let A = (A1, A2). Since g1(θ) and g2(θ) act on A1 and A2 separately, we can consider

ψ1 and ψ2 generating the action of {g1(θ)} and {g2(θ)}. The equation (3) gives the

following condition for the action on the connections

gi(θ) · Ai = gi(θ) ◦ Ai ◦ gi(θ)
−1 = Ai,

or equivalently

Ai ◦ gi(θ) = gi(θ) ◦ Ai,

that is, the automorphism gi(θ) is parallel with respect to the connection Ai. Then we

have

dAi
(ψi) = 0.

That is, the family {g(θ) = (g1(θ), g2(θ))} is generated by an infinitesimal gauge trans-

formation ψ = (ψ1, ψ2) which is covariantly constant, that is,

dA1(ψ1) = dA2(ψ2) = 0

and with

[ψ, ϕ] = iϕ.

Proposition 6.6. An SO0(p, q)-Higgs bundle (V,QV ,W,QW , η) ∈ M represents a fixed

point of the circle action if and only it is a Hodge bundle (complex variation of Hodge

structure), that is, if and only if the vector bundles V and W have decompositions

V =
r⊕

m=−r

Vm and W =
s⊕

n=−s

Wn,

with Vm
∼= (V ∗)−m, Wn

∼= (W ∗)−n and ψ1|Vm = im and ψ2|Wn = in for an infinitesimal

gauge transformation ψ = (ψ1, ψ2), with

ηk : Wk → Vk+1 ⊗K.

Proof. If (V,QV ,W,QW , η) represents a smooth point of the moduli space which is a

critical point of f , as we have seen in the previous section, there is an endomorphism

ψ = (ψ1, ψ2) that gives decompositions

V =
⊕
m

Vm and W =
⊕

n

Wn,
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where m,n ∈ R, ψ1|Vm = im and ψ2|Wn = in. Moreover, since ψ1 and ψ2 are locally in

so(p) and so(q) respectively, they satisfy ψ1 = −ψ>1 and ψ2 = −ψ>2 . If qV : V ∼= V ∗ is the

isomorphism given by the orthogonal form QV , we have ψ>1 = q−1
V ◦ ψt

1 ◦ qV , and for all

v ∈ Vm we have

ψt
1(qV (v)) = qV (ψ>1 (v)) = −qV (ψ1(v)) = −imqV (v),

that is,

v ∈ Vm ⇔ qV (v) ∈ (V ∗)−m.

Hence, we have an isomorphism Vm
∼= (V ∗)−m. The same argument applied to ψ2, qW

and W gives an isomorphism Wn
∼= (W ∗)−n.

If v ∈ Vm and v′ ∈ Vl,

QV (ψ1(v), v
′) = QV (imv, v′) = imQV (v, v′)

and, on the other hand,

QV (ψ1(v), v
′) = QV (v, ψ>1 (v′)) = QV (v,−ψ1(v

′)) = QV (v,−ilv′) = −ilQV (v, v′),

that is,

i(m+ l)QV (v, v′) = 0.

Then, all the Vl are orthogonal to Vm (including l = m) under QV except l = −m. Since

QV is non-degenerate,

QV (v, v′) = 0 for all v′ ∈ V ⇒ v = 0,

and then, given 0 6= v ∈ Vm, there is a v′ ∈ V with QV (v, v′) 6= 0, that is, a v′ ∈ V−m.

The same for W , QW and ψ2. Then

V =
r⊕

m=−r

Vm and W =
s⊕

n=−s

Wn.

We also know that the endomorphisms ψ1 and ψ2 are trace free, then

0 = Tr(ψ1) = i
r∑

m=−r

m rk(Vm)⇔
r∑

m=−r

m rk(Vm) = 0,

0 = Tr(ψ2) = i
s∑

n=−s

n rk(Wn)⇔
s∑

n=−s

n rk(Wn) = 0.

The condition [ψ, ϕ] = iϕ for the solution (A,ϕ) is equivalent in this context to

ψ1η − ηψ2 = iη.
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If w ∈ Wk, we have

ψ1(η(w)) = η(ψ2(w)) + iη(w) = η(ikw) + iη(w) = i(k + 1)η(w),

that is,

ηk : Wk → Vk+1 ⊗K,

and we conclude.

If (V,QV ,W,QW , η) is a Hodge bundle and

(E = V ⊕W,Q =

(
QV

QW

)
, φ =

(
0 η

−η> 0

)
)

is the SO(p+ q,C)-Higgs bundle associated to it as in Section 3.4, the decompositions of

V and W give a decomposition

E = V ⊕W =
⊕

k

Ek =
⊕

k

(Vk ⊕Wk),

where Ek is the eigenbundle of eigenvalue ik for the action of the endomorphism ψ =(
ψ1 0

0 ψ2

)
∈ End(E), that is, Vk and Wk are eigenbundles for ψ1 and ψ2 respectively

with eigenvalue ik. The quadratic form Q gives isomorphisms El
∼= E∗

−l and the remaining

Ek are orthogonal to El under Q. Then, the decomposition of E is of the form

E = V ⊕W =
l⊕

k=−l

Ek =
l⊕

k=−l

(Vk ⊕Wk),

where l = max{r, s}.

The restriction of the Higgs field to each Ek satisfies

ϕk =

(
0 ηk

(−η>)k 0

)
: Ek → Ek+1 ⊗K,

where

ηk : Wk → Vk+1 ⊗K and (−η>)k : Vk → Wk+1 ⊗K.

Moreover, since the orthogonal structures on V and W give the following commutative

diagram

V ∗
−k

ηt
−k−1 //

qV

��

W ∗
−k−1 ⊗K

qW⊗1K

��
Vk

η>−k−1 // Wk+1 ⊗K,
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we have that

(−η>)k = −η>−k−1.

Analogously, if q : E ∼= E∗ is the isomorphism given by the orthogonal structure Q of E,

the commutative diagram

E∗
−k

ϕt
−k−1//

q

��

E∗
−k−1 ⊗K

q⊗1K

��
Ek

ϕ>−k−1 // Ek+1 ⊗K,

tells us that

ϕk
∼= ϕ>−k−1.

The general picture is the following

E−m
ϕ−m // E−m+1

ϕ−m+1 // E−m+2
ϕ−m+2 // · · · ϕm−3// Em−2

ϕm−2 // Em−1
ϕm−1 // Em

V−m

−η>m−1// W−m+1
η−m+1 // V−m+2

−η>m−3 // · · · ηm−3 // Vm−2

−η>−m+1// Wm−1
ηm−1 // Vm

⊕ ⊕ ⊕ · · · ⊕ ⊕ ⊕

W−m
η−m // V−m+1

−η>m−2// W−m+2
η−m+2 // · · ·

−η>−m+2// Wm−2
ηm−2 // Vm−1

−η>−m // Wm.

Note that the arrows represents the Higgs field and are twisted by K.

Theorem 6.6 together with Proposition 6.5 tell us that if (V,QV ,W,QW , η) is an

SO0(p, q)-Higgs bundle which represents a smooth point of the moduli space, it is a criti-

cal point of the Hitchin function if and only if it is a Hodge bundle, but observe that not

every Hodge bundle represents a smooth point.

6.4 Criterion for minima

Let (E,ϕ) be an SO0(p, q)-Higgs bundle and let (ESO(p+q,C), ϕ) be the associated SO(p+

q,C)-Higgs bundle. Consider also the tuple (V,QV ,W,QW , η) corresponding to (E,ϕ)
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and the triple (E, Q, ϕ) corresponding to (ESO(p+q,C), ϕ). We have that

ESO(p+q,C)(so(p+ q,C)) = {f ∈ End(E) | f + f> = 0} = so(E),

E(hC) = {

(
f1 0

0 f4

)
∈ End(E) | f1 + f>1 = 0 and f4 + f>4 = 0}

∼= so(V )⊕ so(W ) ⊂ End(V )⊕ End(W ),

E(mC) = {

(
0 f2

−f>2 0

)
∈ End(E)} ∼= Hom(W,V ).

In fact,

ESO(p+q,C)(so(p+ q,C)) = E(hC)⊕ E(mC),

which is induced by the Cartan decomposition of the Lie algebra so(p+ q,C).

If (V,QV ,W,QW , η) is a Hodge bundle, Proposition 6.6 tells us that there is an infinite-

simal gauge transformation ψ = (ψ1, ψ2) such that

V =
r⊕

m=−r

Vm and W =
s⊕

n=−s

Wn,

with Vm
∼= (V ∗)−m, Wn

∼= (W ∗)−n, ψ1|Vm = im, ψ2|Wn = in and

ηk : Wk → Vk+1 ⊗K.

This decompositions of V and W give decompositions

End(V )k =
2r⊕

k=−2r

(
⊕

i−j=k

Hom(Vj, Vi)),

End(W )k =
2s⊕

k=−2s

(
⊕

i−j=k

Hom(Wj,Wi)),

Hom(W,V )k =
r+s⊕

k=−r−s

(
⊕

i−j=k

Hom(Wj, Vi)),

Hom(V,W )k =
r+s⊕

k=−r−s

(
⊕

i−j=k

Hom(Vj,Wi)).

If fk,l ∈ Hom(Vk, Vl) and gk,l ∈ Hom(Wk,Wl), using the isomorphisms qV and qW

induced by the orthogonal forms QV and QW we have that the diagrams

V ∗
l

f t
k,l //

∼=
��

V ∗
k

∼=
��

W ∗
l

gt
k,l //

∼=
��

W ∗
k

∼=
��

V−l

f>k,l // V−k, W−l

g>k,l // W−k,
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are commutative, and then, the skew-symmetry in E(hC) ∼= so(V )⊕ so(W ) ⊂ End(V )⊕
End(W ) is equivalent to the conditions:

f−l,−k + f>k,l = 0,

g−l,−k + g>k,l = 0,

that is, the following sets are related by skew-symmetry

fk,l ←→ −f>k,l, gk,l ←→ −g>k,l,

Hom(Vk, Vl) ←→ Hom(V−l, V−k), Hom(Wk,Wl) ←→ Hom(W−l,W−k).

Observe that when k = l, the endomorphism fh,l and gk,l are skew-symmetric. Analogously,

in E(mC) we have the relation:

hk,l ←→ −h>k,l,

Hom(Wk, Vl) ←→ Hom(V−l,W−k).

Then, the decompositions of V and W also induce decompositions of E(hC) ∼= so(V )⊕
so(W ) and E(mC) ∼= Hom(W,V ), and this gives a decomposition of the deformation

complex of Section 3.5:

C•(E,ϕ) : 0 // E(hC)
ad(ϕ) // E(mC)⊗K // 0 ,

that is,

C•(E,ϕ) =
⊕

k

C•
k(E,ϕ),

where C•
k(E,ϕ) are the subcomplexes

C•
k(E,ϕ) : 0 // E(hC)k

ad(ϕ) // E(hC)k+1 ⊗K // 0 ,

where the action of ad(ϕ) takes E(hC)k into E(mC)k+1 since

[ψ, [ϕ, f ]] = [[ψ, ϕ], f ] + [ϕ, [ψ, f ]] = [iϕ, f ] + [ϕ, ikf ] = i(k + 1)[ϕ, f ],

for all f ∈ E(hC)k. This induces a decomposition of the infinitesimal deformation space

given by

H1(C•(E,ϕ)) =
⊕

k

H1(C•
k(E,ϕ)).

Proposition 6.7. Let (E,ϕ) be an SO0(p, q)-Higgs bundle which represents a smooth

point of the moduli space M and which is a critical point of f . The hypercohomology

group H1(C•
k(E,ϕ)) is isomorphic to the eigenspace of the Hessian of f with eigenvalue

−k. Then, the point (E,ϕ) corresponds to a local minimum of f if and only if

H1(C•
k(E,ϕ)) = 0 for k > 0.
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If [E,ϕ] ∈Ms (s for smooth) is a critical point of f , then [E,ϕ] ∈Ml for some critical

manifoldMl and we define the Morse index at the point [E,ϕ] as the Morse index ofMl.

The first part of this proposition alow us to calculate the Morse index of [E,ϕ], which is

index =
∑
k>0

dimR H1(C•
k(E,ϕ)).

If [E,ϕ] ∈Ms is a minimum of f , that is [E,ϕ] ∈ N , then

H1(C•
k(E,ϕ)) = 0 for k > 0,

and the Morse index at [E,ϕ] is null.

To give a criterion for deciding when the hypercohomology H(C•
k(E,ϕ)) vanishes, we

use the Euler characteristic of the complex C•
k(E,ϕ) defined by

χ(C•
k(E,ϕ)) = dim H0(C•

k(E,ϕ))− dim H1(C•
k(E,ϕ)) + dim H2(C•

k(E,ϕ)).

Proposition 6.8. Let (E,ϕ) be an SO0(p, q)-Higgs bundle which represents a fixed point

under the circle action on M. Then

χ(C•
k(E,ϕ)) ≤ 0,

and equality holds if and only if the map

ad(ϕ) : E(hC)k → E(mC)k+1 ⊗K

is an isomorphism.

If (E,ϕ) represents a smooth SO0(p, q)-Higgs bundle, using the Corollary 3.16, we

have that

H0(C•
k(E,ϕ)) = H2(C•

k(E,ϕ)) = 0,

and then,

−χ(C•
k(E,ϕ)) = dim H1(C•

k(E,ϕ)),

for all k. Applying Proposition 6.7, we have the following criterion for local minima of f .

Proposition 6.9. Let (E,ϕ) be an SO0(p, q)-Higgs bundle which represents a smooth

point of M and which is a critical point of f . Then it represents a local minimum if and

only if

ad(ϕ) : E(hC)k → E(mC)k+1 ⊗K

is an isomorphism for all k > 0.
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This criterion can be used only when the SO0(p, q)-Higgs bundle represents a smooth

point of the moduli space. If (E,ϕ) does not represent a smooth point, it is shown in [32]

that if H1(C•
k(E,ϕ)) = 0 for all k > 0 then (E,ϕ) is a local minimum, but we will see in

Proposition 7.3 that to have

H1(C•
−(E,ϕ)) =

⊕
k>0

H1(C•
k(E,ϕ)) 6= 0

is not enough to prove that the point is not a minimum.

6.5 Smooth minima

In this section we describe the minima of the Hitchin function in the smooth locus Ms

using the criterion of Proposition 6.9. Since the Hitchin function is proper in M (see

Proposition 6.1) but not in Ms, to find these minima does not allow us to count the

number of connected components of Ms, but it is the first step in the study of the

connected components ofM.

We will consider in all this section Higgs bundles with non-zero Higgs field.

Theorem 6.10. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle, with p ≤ q, which

represents a smooth point of the moduli space and which is a local minimum of the Hitchin

function. If the Higgs field is not equal to zero, the minimum is in one of the following

cases:

(1) p ≥ 2 even, q = p+ 1 and

W−p → V−p+1 → · · · → V−1 → W0 → V1 → · · · → Vp−1 → Wp,

with all subbundles of rank 1,

Vk or Wk
∼= K−k for 0 ≤ k ≤ p− 1

and

0 < deg(W−p) ≤ p(2g − 2).

(2) p ≥ 1 odd, q = p+ 1 and

W−p → V−p+1 → · · · → W−1 → V0 → W1 → · · · → Vp−1 → Wp,

with all subbundles of rank 1,

Vk or Wk
∼= K−k for 0 ≤ k ≤ p− 1
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and

0 < deg(W−p) ≤ p(2g − 2).

(3) p ≥ 2 even, q = p− 2 + n with n ≥ 2 and

V−p+1 → W−p+2 → · · · → V−1 → W0 → V1 → · · · → Wp−2 → Vp−1,

with all the subbundles of rank 1 except rk(W0) = n = q − p+ 2,

deg(Vk or Wk) = −k(2g − 2) for 0 ≤ k ≤ p− 2,

and

0 < deg(V−p+1) ≤ (p− 1)(2g − 2).

(4) p ≥ 2 even, q = p− 2 + n with n ≥ 2 and

V−p+1 → W−p+2 → · · · → V−1 → W ′
0 → V1 → · · · → Wp−2 → Vp−1, W ′′

0 ,

with all the subbundles of rank 1 except rk(W0) = n = q−p+2, where W0 = W ′
0⊕W ′′

0 .

The first chain is a smooth SO0(p, p + n′)-Higgs bundle with n′ = rk(W ′
0) odd, W ′′

0

is a smooth SO(n′′)-Higgs bundle with n′′ = rk(W ′′
0 ) odd,

deg(Vk or Wk) = −k(2g − 2) for 0 ≤ k ≤ p− 2,

and

0 < deg(V−p+1) ≤ (p− 1)(2g − 2).

(5) p ≥ 3 odd, q = p− 1 + n with n ≥ 1 and

V−p+1 → W−p+2 → · · · → W−1 → V0 → W1 → · · · → Wp−2 → Vp−1, W0,

with all the subbundles in the first chain of rank 1. The first chain is a smooth

SO(p, p− 1)-Higgs bundle, W0 is a smooth SO(n)-Higgs bundle with rk(W0) = n =

q − p+ 1 odd, V0
∼= O and

Vk or Wk
∼= K−k for 1 ≤ k ≤ p− 1.

Note that in the diagrams the arrows represent the Higgs field and are twisted by K.

We will prove Theorem 6.10 in several steps.
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Suppose that (V,QV ,W,QW , η) ∈M is a smooth point which is a critical point of the

Hitchin function, then , it is a Hodge bundle and we have decompositions

V =
r⊕

m=−r

Vm and W =
s⊕

n=−s

Wn,

with Vm
∼= (V ∗)−m, Wn

∼= (W ∗)−n and ηk : Wk → Vk+1⊗K. Since the point is in particular

stable, we can say something more about its decomposition.

Proposition 6.11. If a Hodge bundle (V,QV ,W,QW , η) ∈M is stable, it has the follow-

ing structure

· · · → V−2 → W−1 → V0 → W1 → V2 → · · ·

· · · → W−2 → V−1 → W0 → V1 → W2 → · · ·

with all the bundles and the maps non-zero. There are two chains if V0 and W0 are

non-zero and only one if V0 or W0 is zero. Each chain ends in a subbundle of V or W

depending on the parity of the maximal weight.

Proof. Since QV (Vk, Vl) 6= 0 and QW (Wk,Wl) 6= 0 if and only if l = −k, the subbundles

Vk and Wk are isotropic subbundles of V and W respectively for k 6= 0.

Suppose that there is a piece of sequence which is invariant under the Higgs field, for

example:

Wk → Vk+1 → Wk+2 → Vk+3 → · · · → Wk+r−3 → Vk+r−2 → Wk+r−1 → Vk+r,

and where V0 or W0 are not included, then

V ′ = Vk+1 ⊕ Vk+3 ⊕ · · · ⊕ Vk+r−2 ⊕ Vk+r ⊂ V,

W ′ = Wk ⊕Wk+2 ⊕ · · · ⊕Wk+r−3 ⊕Wk+r−1 ⊂ W,

are isotropic subbundles satisfying η(W ′) ⊆ V ′⊗K and the stability of (V,QV ,W,QW , η)

implies deg(V ′) + deg(W ′) < 0. Now let

V ′′ = V−k−r ⊕ V−k−r+2 ⊕ · · · ⊕ V−k−3 ⊕ V−k−1 ⊂ V,

W ′′ = W−k−r+1 ⊕W−k−r+3 ⊕ · · · ⊕W−k−2 ⊕W−k ⊂ W.

These are also isotropic subbundles with η(W ′′) ⊆ V ′′ ⊗K and since

deg(V ′′) + deg(W ′′) = − deg(V ′)− deg(W ′) > 0,

these subbundles violate the condition of stability of (V,QV ,W,QW , η). Then, we conclude

that in each piece of sequence with non-zero subbundles and non-zero maps there has to

be a bundle with weight zero.
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The eigenvalues are integers since in each chain we have always the value zero and

consecutive eigenvalues differ by 1 (all maps are non-zero).

Observe that this result is only a first approach to the structure of the smooth points

of the moduli and not a full characterization. We will see that stability implies more than

the conditions in Proposition 6.11.

In the next proposition we prove the restrictions that the maximal weights of the chains

in Proposition 6.11 have to satisfy if the Hodge bundle (V,QV ,W,QW , η) is a minimum.

Proposition 6.12. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle which represents

a smooth point of the moduli space and which is a critical point of the Hitchin function.

The point is in particular stable and has the form shown in Proposition 6.11. Let r and s

be the maximal weights of the first and the second chain respectively. If (V,QV ,W,QW , η)

falls in one of the following cases, then it does not represent a local minimum of f :

1. The maximal weights coincide.

2. The weights r and s are odd.

3. The weights r and s are even and non-zero.

4. One of the maximal weights is odd and the other is even or zero.

Proof. 1. Suppose that r = s odd, the chains are of the form

W−r → V−r+1 → · · · → W−1 → V0 → W1 → · · · → Vr−1 → Wr,

V−r → W−r+1 → · · · → V−1 → W0 → V1 → · · · → Wr−1 → Vr.

Taking the piece of maximal weight of the complex ad(ϕ),

C•
2r(E,ϕ) : Λ2Vr ⊕ Λ2Wr → 0,

we deduce rk(Vr) = rk(Wr) = 1, and considering the piece with weight 2r − 1 given by

C•
2r−1(E,ϕ) : Hom(V−r, Vr−1)⊕ Hom(W−r,Wr−1)→ Hom(W−r, Vr)⊗K,

we observe that the isomorphism of the map implies rk(Vr−1) + rk(Wr−1) = 1 which is

not possible because in the chains all the subbundles are non-zero, and then rk(Vr−1),

rk(Wr−1) ≥ 1.

The argument is exactly the same when r = s is even.
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2. Suppose that s < r and that both weights are odd. The case with r < s and both

odd is the same, interchanging V and W . We have a Higgs bundle of the form

W−r → V−r+1 → · · · → W−1 → V0 → W1 → · · · → Vr−1 → Wr,

V−s → W−s+1 → · · · → V−1 → W0 → V1 → · · · → Ws−1 → Vs.

Note that s ≤ r − 2. The piece of maximal weight of the deformation complex,

C•
2r(E,ϕ) : Λ2Wr → 0,

tells us that rk(Wr) = 1 and the piece of weight 2r − 2, which is the next non-zero piece

and is given by

C•
2r−2(E,ϕ) : Hom(W−r,Wr−2)⊕ Λ2Vr−1 → Hom(W−r, Vr−1)⊗K,

implies rk(Wr−2) = 1 and rk(Vr−1) = 1 or 2. Finally, considering the first piece of the

complex with k odd,

C•
r+s−1(E,ϕ) : Hom(W−r,Ws−1)⊕ Hom(V−r+1, Vs)→ Hom(W−r, Vs)⊗K,

we obtain a contradiction. If rk(Vr−1) = 1, this isomorphism means rk(Ws−1) = 0 and if

rk(Vr−1) = 2, it implies rk(Ws−1) + rk(Vs) = 0. Both situations are not possible.

3. Suppose that s < r and that both weights are even. The case with r < s and both

even is the same, interchanging V and W . We have a Higgs bundle of the form

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr,

W−s → V−s+1 → · · · → V−1 → W0 → V1 → · · · → Vs−1 → Ws.

Note that s ≤ r − 2. The piece of maximal weight

C•
2r(E,ϕ) : Λ2Vr → 0

tells us that rk(Vr) = 1 and the isomorphism

C•
2r−2(E,ϕ) : Hom(V−r, Vr−2)⊕ Λ2Wr−1 → Hom(W−r+1, Vr)⊗K

implies rk(Vr−2) = 1 and rk(Wr−1) = 1 or 2. Finally, considering the first piece of the

complex with k odd,

C•
r+s−1(E,ϕ) : Hom(V−r, Vs−1)⊕ Hom(W−r+1,Ws)→ Hom(W−s, Vr)⊗K,
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we obtain a contradiction with the ranks, as in the previous case. In this proof we are

using r > s ≥ 2. If s = 0, the bundle Vs−1 = V−1 does not exist, and the first odd complex

C•
r+s−1(E,ϕ) = C•

r−1(E,ϕ) : Hom(W−r+1,W0)→ Hom(W0, Vr)⊗K

determines rk(Wr−1) = 1, but does not give contradiction.

4. Suppose that r is even and s is odd. The converse case is obtained interchanging

V and W . We have a Higgs bundle of the form

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr,

V−s → W−s+1 → · · · → V−1 → W0 → V1 → · · · → Ws−1 → Vs.

The first (maximal) odd complex is

C•
r+s(E,ϕ) : Hom(V−r, Vs)→ 0.

This isomorphism implies rk(Vr) rk(Ws) = 0 which is not possible.

This proposition tells us that when the subbundles V0 and W0 are both non-zero, the

only possibility for the structure of the minima is the one where the Higgs bundle has one

chain with maximal weight even and the other chain with maximal weight equal to zero,

that is, with only one subbundle. The rest of the minima has only one chain.

In Propositions 6.13 and 6.14 we will obtain conditions for the ranks of the eigenbundles

in the decomposition of a smooth minimum (V,QV ,W,QW , η).

Proposition 6.13. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle which represents

a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If this element has V0 non-zero and W0 = 0, it has to be in one of the following cases:

1. The maximal weight r is even, that is,

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr,

and all the subbundles have rank 1.

2. The maximal weight r is odd, that is,

W−r → V−r+1 → · · · → W−1 → V0 → W1 → · · · → Vr−1 → Wr,

and all the subbundles have rank 1 except V0 that can have any rank.
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3. The maximal weight r is odd and the minimum is of the form

W−r → V−r+1 → · · · → W−1 → V ′
0 → W1 → · · · → Vr−1 → Wr, V ′′

0

with V0 = V ′
0 ⊕V ′′

0 and with all the subbundles of rank 1 except V0. The SO0(r− 1+

n′, r + 1)-Higgs bundle

W−r → V−r+1 → · · · → W−1 → V ′
0 → W1 → · · · → Vr−1 → Wr,

is smooth, n′ = rk(V ′
0) is odd and V ′′

0 is a smooth SO(n′′)-Higgs bundle with n′′ =

rk(V ′′
0 ) odd.

If the element has W0 non-zero and V0 = 0, the statement is the same, but interchanging

V and W .

Proof. 1. Let the maximal weight r to be even. We have to determine the rank of r + 1

subbundles, and there are r complexes C•
2r−2k(E,ϕ), with 0 ≤ k ≤ r − 1. The piece of

maximal weight of the deformation complex given by

C•
2r(E,ϕ) : Λ2Vr → 0,

tells us that rk(Vr) = 1. The isomorphism for k = 1,

C•
2r−2(E,ϕ) : Hom(V−r+2, Vr)⊕ Λ2Wr−1 → Hom(W−r+1, Vr)⊗K,

implies

rk(Vr−2) +

(
rk(Wr−1)

2

)
= rk(Wr−1),

and the solutions for this equation are rk(Vr−2) = 1 and rk(Wr−1) = 1 or 2.

If rk(Wr−1) = 2, we have

1 2 1 1 2 1

V−r

η>r−1// W−r+1
η−r+1 // V−r+2

// · · · // Vr−2

η>−r+1// Wr−1
ηr−1 // Vr.

Denote N = ker ηr−1 and decompose Wr−1 = N ⊕ M , then W−r+1 = N∗ ⊕ M∗.

We know that C•
2r−2(E,ϕ)(f, g) = ηr−1 ◦ g − f ◦ η−r+1 is an isomorphism. Let f ∈

Hom(V−r+2, Vr), g =

(
0 g1

−g1 0

)
∈ Λ2Wr−1, ηr−1 = (0, a) ∈ Hom(Wr−1, Vr) ⊗ K =
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Hom(N ⊕ M,Vr) ⊗ K and η−r+1 = (b, c) ∈ Hom(W−r+1, V−r+2) ⊗ K = Hom(N∗ ⊕
M∗, V−r+2)⊗K. We have

ηr−1 ◦ g − f ◦ η−r+1 = (0, a)

(
0 g1

−g1 0

)
− f(b, c) = (−ag1 − fb, fc).

If c = 0, the map is not surjective, then c 6= 0, and this implies that Im(η>−r+1) 6= ker(ηr−1).

Then M = Im(η>−r+1) and

V−r

η>r−1 // M∗ η−r+1// V−r+2
// · · · // Vr−2

η>−r+1 // M
ηr−1 // Vr

N∗ N

with N and N∗ isotropic. We must have deg(N) < 0, but then N∗ violates the stability,

and we conclude that we do not have the case rk(Wr−1) = 2.

The piece of the deformation complex for k = 2,

C•
2r−4(E,ϕ) : Hom(V−r+4, Vr)⊕ Hom(W−r+3,Wr−1)⊕ Λ2Vr−2

↓
(Hom(W−r+3, Vr)⊕ Hom(W−r+1, Vr−2))⊗K,

tells us that

rk(V−r+4) + rk(W−r+3) = rk(W−r+3) + 1.

Then rk(Vr−4) = 1.

We conclude the proof of this first part using successively and alternatively the follow-

ing two statements:

• If k is even and

rk(Wr) = rk(Wr−2) = · · · = rk(Wr−2k+2) = 1,

rk(Vr−1) = rk(Vr−3) = · · · = rk(Vr−k+1) = 1,

then rk(Wr−2k) = 1.

• If k is odd and

rk(Wr) = rk(Wr−2) = · · · = rk(Wr−2k+2) = 1,

rk(Vr−1) = rk(Vr−3) = · · · = rk(Vr−k+2) = 1,

then rk(Wr−2k) = 1 and rk(Vr−k) = 1.
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In both cases we use the piece of weight 2r − 2k of the deformation complex, for

1 ≤ k ≤ r − 1. If k is even, we have

Hom(V−r+2k, Vr)⊕ Hom(W−r+2k−1,Wr−1)⊕ · · · ⊕ Hom(W−r+k+1,Wr−k+1)

↓
(Hom(W−r+2k−1, Vr)⊕ Hom(W−r+1, Vr−2k+2)⊕ · · · ⊕ Hom(W−r+k−1, Vr−k)⊗K,

where each part of the map has k summands. Simplifying the relations that give this

isomorphism for the ranks, we get rk(Vr−2k) = 1.

If k is odd, the piece of weight 2r − 2k is

Hom(V−r+2k, Vr)⊕ Hom(W−r+2k−1,Wr−1)⊕ · · · ⊕ Hom(V−r+k+1, Vr−k+1)⊕ Λ2Wr−k

↓
(Hom(W−r+2k−1, Vr)⊕ Hom(W−r+1, Vr−2k+2)⊕ · · · ⊕ Hom(W−r+k, Vr−k+1)⊗K,

In terms of the conditions for the ranks, this reduce to the map

Hom(V−r+2k, Vr)⊕ Λ2Wr−k → Hom(W−r+k, Vr−k+1),

which implies

rk(Vr−2k) +

(
rk(Wr−k)

2

)
= rk(Wr−k).

The solutions are rk(Vr−2k) = 1 and rk(Wr−k) = 1 or 2, and we remove the case of rank

2 as in the 2r − 2 case.

We obtain rk(V0) = 1, the last subbundle of V , in the step k = r
2
, and rk(W1) = 1,

the small for W , in the last step k = r − 1 which corresponds to the piece of weight 2 of

the deformation complex.

2. Let the maximal weight r to be odd. We have to determine the rank of r + 1

subbundles, and there is r complexes C•
2r−2k(E,ϕ), with 0 ≤ k ≤ r − 1. The piece of

maximal weight of the deformation complex,

C•
2r(E,ϕ) : Λ2Wr → 0,

tells us that rk(Wr) = 1 and the isomorphism for k = 1,

C•
2r−2(E,ϕ) : Hom(W−r+2,Wr)⊕ Λ2Vr−1 → Hom(W−r, Vr−1)⊗K,

implies

rk(Wr−2) +

(
rk(Vr−1)

2

)
= rk(Vr−1).
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The solutions are rk(Wr−2) = 1 and rk(Vr−1) = 1 or 2. We remove the case of rank 2 as

in the previous part of the proposition.

We conclude the proof using successively and alternatively the following two state-

ments:

• If k is even and

rk(Vr) = rk(Vr−2) = · · · = rk(Vr−2k+2) = 1,

rk(Wr−1) = rk(Wr−3) = · · · = rk(Wr−k+1) = 1,

then rk(Vr−2k) = 1.

• If k is odd and

rk(Vr) = rk(Vr−2) = · · · = rk(Vr−2k+2) = 1,

rk(Wr−1) = rk(Wr−3) = · · · = rk(Wr−k+2) = 1,

then rk(Vr−2k) = 1 and rk(Wr−k) = 1.

In both cases we use the piece of weight 2r − 2k of the deformation complex, for

1 ≤ k ≤ r − 1. If k is even, we have

Hom(W−r+2k,Wr)⊕ Hom(V−r+2k−1, Vr−1)⊕ · · · ⊕ Hom(V−r+k+1, Vr−k+1)

↓
(Hom(W−r, Vr−2k+1)⊕ Hom(W−r+2k−2, Vr−1)⊕ · · · ⊕ Hom(W−r+k, Vr−k+1)⊗K,

where each part of the map has k summands. Simplifying the relations that give this

isomorphism for the ranks, we get rk(Wr−2k) = 1.

If k is odd, the piece of weight 2r − 2k is the complex

Hom(W−r+2k,Wr)⊕ Hom(V−r+2k−1, Vr−1)⊕ · · · ⊕ Hom(W−r+k+1,Wr−k+1)⊕ Λ2Vr−k

↓
(Hom(W−r, Vr−2k+1)⊕ Hom(W−r+2k−2, Vr−1)⊕ · · · ⊕ Hom(W−r+k−1, Vr−k)⊗K,

In terms of the conditions for the ranks, this reduce to the map

Hom(W−r+2k,Wr)⊕ Λ2Vr−k → Hom(W−r+k−1, Vr−k),

which implies

rk(Wr−2k) +

(
rk(Vr−k)

2

)
= rk(Vr−k).
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The solutions are rk(Wr−2k) = 1 and rk(Vr−k) = 1 or 2, and we remove the case of rank

2 as in the case of weight 2r − 2.

We obtain rk(W1) = 1, the last subbundle of W , in the step k = r−1
2

, and rk(V2) = 1,

in the penultimate step k = r − 2 which corresponds to the piece of weight 4 of the

deformation complex. The last piece of the complex does not give new information and

the rank of V0 remains not fixed.

3. Suppose that the maximal weight r of the chain is odd and that we have a splitting

V0 = V ′
0 ⊕ V ′′

0 such that the Higgs bundle decomposes as

W−r → V−r+1 → · · · → W−1 → V ′
0 → W1 → · · · → Vr−1 → Wr, V ′′

0 .

We do not have this situation in 1. because in this case rk(V0) = 1. Since (V,QV ,W,QW , η)

is stable, Lemmas 3.19 and 3.20 tells us that

W−r → V−r+1 → · · · → W−1 → V ′
0 → W1 → · · · → Vr−1 → Wr,

is a stable SO0(r − 1 + n′, r + 1)-Higgs bundle and V ′′
0 is stable as SO(n′′)-Higgs bundle.

On the other hand, the SO0(r − 1 + n′ + n′′, r + 1)-Higgs bundle (V,QV ,W,QW , η) is

also simple. The only way to obtain this is taking a simple SO0(r − 1 + n′, r + 1)-Higgs

bundle with n′ odd and a simple SO(n′′)-Higgs bundle with n′′ odd. Since n′ is odd,

r − 1 + n′ is odd and the only automorphism of the simple SO0(r − 1 + n′, r + 1)-Higgs

bundle is the identity. Analogously, since n′′ is odd, the only automorphism of the simple

SO(n′′)-Higgs bundle is the identity.

Proposition 6.14. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle which represents

a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If V0 and W0 are non-zero, the Higgs bundle has to be of the form

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr, W0,

with r > 0 even and with all the subbundles in the first chain of rank 1. The first chain

is a smooth SO0(r + 1, r)-Higgs bundle and W0 is a smooth SO(n0)-Higgs bundle with

n0 = rk(W0) odd.

It is also possible to have a Higgs bundle with the structure obtained interchanging V

and W .

Proof. First of all, using Proposition 6.12, we know that if V0 and W0 are non-zero, the

point has to fit in with the structure

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr, W0,
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(or the other interchanging V and W ), with r > 0 and even.

The piece of maximal weight of the deformation complex,

C•
2r(E,ϕ) : Λ2Vr → 0,

tells us that rk(Vr) = 1. We obtain the result using alternatively the following two steps,

for any 0 ≤ k ≤ r − 2 and even:

1. If rk(Vr−k) = 1, then rk(Wr−k−1) = 1.

It is enough to consider the complex

C•
r−k−1(E,ϕ) : Hom(W0,Wr−k−1)→ Hom(W0, Vr−k)⊗K.

2. If rk(Vr−k) = 1, then rk(Vr−k−2) = 1.

We have the isomorphism

C•
2r−k−2(E,ϕ) : Hom(V−r, Vr−k−2)⊕ · · · → (Hom(W−r+k+1, Vr)⊕ . . . )⊗K,

where the dots are replacing homomorphisms between subbundles that we already

know that have rank 1. This implies that the ranks have to satisfy

k + 2

2
− 1 + rk(Vr−k−2) =

k + 2

2
,

and hence rk(Vr−k−2) = 1.

Finally, we need rk(W0) odd to guarantee simplicity. We do not have any similar condition

in the SO0(r + 1, r)-Higgs bundle because q′ = r is odd.

Finally, in Propositions 6.15, 6.16 and 6.17 we will obtain conditions for the degree of

the eigenbundles in the decomposition of a smooth minimum (V,QV ,W,QW , η).

Proposition 6.15. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle which represents

a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If this Higgs bundle is of the type 1. of Proposition 6.13, that is, it has maximal weight r

even and is of the form

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr,

with all the subbundles of rank 1, then

Vk or Wk
∼= K−k for 0 ≤ k ≤ r − 1

and

0 < deg(V−r) ≤ r(2g − 2).
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Proof. The existence of the non-zero maps

V0

η>−1 // W1
η1 // · · ·

η>−r+1// Wr−1
ηr−1 // Vr

gives the following relations

η>−1  deg(W1) ≥ −(2g − 2),

η1  deg(V2) ≥ deg(W1)− (2g − 2) ≥ −2(2g − 2),

η>−3  ...

η3  ...

...

η>−k  deg(Wk) ≥ deg(Vk−1)− (2g − 2) ≥ −k(2g − 2),

ηk  deg(Vk+1) ≥ deg(Wk)− (2g − 2) ≥ −(k + 1)(2g − 2),

...

η>−r+1  deg(Wr−1) ≥ deg(Vr−2)− (2g − 2) ≥ −(r − 1)(2g − 2),

ηr−1  deg(Vr) ≥ deg(Wr−1)− (2g − 2) ≥ −r(2g − 2),

because we have a non-zero global section ηk ∈ H0(W ∗
k ⊗ Vk+1 ⊗ K) if and only if

− deg(Wk)+deg(Vk+1)+2g−2 ≥ 0, and the analogous for η>k . (Since V0
∼= V ∗

0 , deg V0 = 0).

Then we have the inequalities

deg(Vk or Wk) ≥ −k(2g − 2) for 1 ≤ k ≤ r.

The criterion of Proposition 6.9, tells us that the r − 1 complexes C•
2r−2k(E,ϕ), 1 ≤

k ≤ r − 1 are isomorphisms. This give us the following system of r − 1 equations for the

degrees of Vk (k even) and Wk (k odd) for 1 ≤ k ≤ r − 1:

1 ≤ k < r
2

:

deg(Vr−2k) = deg(Vr−k or Wr−k) + k(2g − 2).

k = r
2

:

deg(W r
2
) = −r

2
(2g − 2).

r
2
< k ≤ r − 1 :

− deg(V2k−r) = deg(Vr−k or Wr−k) + k(2g − 2).

Solving the system we obtain deg(Vk or Wk) = −k(2g − 2) for 1 ≤ k ≤ r − 1.

The bundle V0 is an special orthogonal bundle, and then V0
∼= O. In

V0 → W1 ⊗K → · · · → Wr−1 ⊗Kr−1 → Vr ⊗Kr,
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the arrows are all non-zero homomorphisms between line bundles of the same degree, then

they are isomorphisms. The first one, k = 1, give us O ∼= W1 ⊗K, that is, W1
∼= K−1,

and successively we obtain Vk or Wk
∼= K−k for 1 ≤ k ≤ r − 1.

We can not determine the degree of Vr, but we know that

0 > deg(Vr) ≥ −r(2g − 2),

where the first inequality is given by stability, or equivalently

0 < deg(V−r) ≤ r(2g − 2).

Proposition 6.16. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle which represents

a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If this Higgs bundle is of the type 2. of Proposition 6.13, that is, it has maximal weight r

odd and is of the form

W−r → V−r+1 → · · · → W−1 → V0 → W1 → · · · → Vr−1 → Wr,

with all the subbundles of rank 1 except V0 that can have any rank, then

deg(Vk or Wk) = −k(2g − 2) for 0 ≤ k ≤ r − 1,

and

0 < deg(W−r) ≤ r(2g − 2).

The same result is verified for a minimum of type 3. of Proposition 6.13.

Proof. The existence of the non-zero Higgs fields gives again a sequence

η>−1  deg(W1) ≥ −(2g − 2),

η1  deg(V2) ≥ deg(W1)− (2g − 2) ≥ −2(2g − 2),

...

η>−r+2  deg(Wr−2) ≥ deg(Vr−3)− (2g − 2) ≥ −(r − 2)(2g − 2),

ηr−2  deg(Vr−1) ≥ deg(Wr−2)− (2g − 2) ≥ −(r − 1)(2g − 2),

η>−r  deg(Wr) ≥ deg(Vr−1)− (2g − 2) ≥ −r(2g − 2).

and

deg(Vk or Wk) ≥ −k(2g − 2) for 1 ≤ k ≤ r.

The criterion of Proposition 6.9, tells us that the r − 1 complexes C•
2r−2k(E,ϕ), 1 ≤

k ≤ r − 1 are isomorphisms. This give us the following system of r − 1 equations for the

degrees of Wk (k even) and Vk (k odd) for 1 ≤ k ≤ r − 1:
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1 ≤ k ≤ r−1
2

:

deg(Wr−2k) = deg(Vr−k or Wr−k) + k(2g − 2).

r+1
2
≤ k ≤ r − 1 :

− deg(W2k−r) = deg(Vr−k or Wr−k) + k(2g − 2).

Solving the system we obtain deg(Vk or Wk) = −k(2g − 2) for 1 ≤ k ≤ r − 1.

We can not conclude V0
∼= O and Vk or Wk

∼= K−k for 1 ≤ k ≤ r− 1 as in Proposition

6.15 because rk(V0) is arbitrary. It is possible only when rk(V0) = 1.

We can not determine the degree of Wr, but we get

0 < deg(W−r) ≤ r(2g − 2).

The proof for the type 3. is the same.

Proposition 6.17. Let (V,QV ,W,QW , η) be an SO0(p, q)-Higgs bundle which represents

a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If this Higgs bundle is of the form of Proposition 6.14, that is, it decomposes as

V−r → W−r+1 → · · · → W−1 → V0 → W1 → · · · → Wr−1 → Vr, W0,

with r > 0 even and with all the subbundles in the first chain of rank 1, where the first

chain is a smooth SO0(r + 1, r)-Higgs bundle and W0 is a smooth SO(n0)-Higgs bundle

with n0 = rk(W0) odd, then V0
∼= O and

Vk or Wk
∼= K−k for 1 ≤ k ≤ r.

Proof. The existence of the non-zero Higgs fields gives the same inequalities as in Propo-

sition 6.15,

deg(Vk or Wk) ≥ −k(2g − 2) for 1 ≤ k ≤ r.

Using the even complexes C•
2r−2k(E,ϕ), 1 ≤ k ≤ r − 1 we obtain

deg(Vk or Wk) = −k(2g − 2) for 0 ≤ k ≤ r − 1,

and we determine the degree of Vr using the first odd complex

C•
r−1(E,ϕ) : Hom(W0,Wr−1)→ Hom(W0, Vr)⊗K,

which implies

deg(Vr) = deg(Wr−1)− (2g − 2) = −r(2g − 2).

We conclude as in Proposition 6.15.
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Now we are in position to prove the main result.

Proof of Theorem 6.10: These five types of minima are the minima that we have described

in the previous results.

The minima of type (1) correspond to the minima of Proposition 6.15. We have

interchanged V and W to obtain p ≤ q and we have changed the notation using p instead

of r.

The minima of type (2) correspond to the minima of Proposition 6.16 with n = 1 and

p = r. And in the types (3) and (4) we have the minima of Proposition 6.16 with n ≥ 2.

We have interchanged V and W and we have taken p = r + 1.

Finally, minima of type (5) are the minima of Proposition 6.17 with p = r + 1.
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7 Non-smooth minima

Theorem 3.7 gives us a decomposition of a polystable SO0(p, q)-Higgs bundles as a sum

of stable Gi-Higgs bundles, where Gi is one of the following groups: SO0(pi, qi), U(pi, qi),

SO(ni) or U(ni). The following result tells us that, in fact, any polystable SO0(p, q)-Higgs

bundles can be decomposed as a sum of smooth Gi-Higgs bundles.

Proposition 7.1. Let (V,QV ,W,QW , η) be a polystable SO0(p, q)-Higgs bundle. There

is a decomposition, unique up to reordering, of this Higgs bundle in a sum of smooth

Gi-Higgs bundles, where Gi = SO0(pi, qi), U(pi, qi), SO(ni) or U(ni).

Proof. The starting point is Theorem 3.7.

A stable U(n)-Higgs bundle and a stable U(p, q)-Higgs bundle represent smooth points

in the moduli spaces of U(n)-Higgs bundles and U(p, q)-Higgs bundles respectively.

A stable SO(n)-Higgs bundle is smooth if and only if it is stable and simple. On the

other hand, any stable SO(n)-Higgs bundle which is not simple can be expressed, using

Theorem 3.18, as a direct sum of smooth SO(ni)-Higgs bundles.

Finally, as we know from Corollary 3.15, a stable SO0(p, q)-Higgs bundle represents

a smooth point of the moduli space if and only if it is simple, but if a stable SO0(p, q)-

Higgs bundle is non-simple, Theorem 3.21 tells us that it decomposes as a sum of smooth

SO0(pi, qi) and SO(ni)-Higgs bundles.

Since the Hitchin function f is additive with respect to this direct sum, if the polystable

Higgs bundle is a minimum, each Higgs bundle in the decomposition (with smooth sum-

mands) has to be a minimum on the corresponding moduli spaceM(Gi) and a minimum

as SO0(pi, qi)-Higgs bundle.

The summands corresponding to U(ni) or SO(ni)-Higgs bundles are minima, because

the Higgs field is zero in both cases.

A U(pi, qi)-Higgs bundle (Vi,Wi, βi, γi) is a minimum if and only if βi = 0 or γi = 0.

Then, the corresponding SO0(2pi, 2qi)-Higgs bundle (Vi ⊕ V ∗
i , 〈·, ·〉,Wi ⊕ W ∗

i , 〈·, ·〉, ηi =

βi + γt
i) has ηi = βi or ηi = γt

i . Suppose that γi = 0, then we have ηi = βi : Wi → Vi ⊗K
and the corresponding ηt

i : V ∗
i → W ∗

i ⊗K. The analogous if βi = 0.

A smooth SO0(pi, qi)-Higgs bundle is a minimum if it is in one of the cases of Theorem

6.10.
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If an SO0(p, q)-Higgs bundle (E,ϕ) is stable but it is not simple or it is strictly

polystable, Corollary 3.15 tells us that this Higgs bundle does not represent a smooth

point on the moduli space of polystable SO0(p, q)-Higgs bundles, and then, we can not

use the criterion of Proposition 6.9 to determine if (E,ϕ) is a minimum of the Hitchin

function. But Hitchin proves in [32] that even when the Higgs bundle is not smooth, if

H1(C•
k(E,ϕ)) = 0 for all k > 0, then (E,ϕ) is a local minimum. Hence, we can include

in type (4) of Theorem 6.10 the cases with n′′ = rk(W ′′
0 ) even that we have removed to

guarantee the simplicity of the total SO0(p, q)-Higgs bundle in the case n′′ > 2 and even,

and also the stability in the case n′′ = 2. Analogously, we can include in type (5) of

Theorem 6.10 the cases with rk(W0) even. We conjecture that these are all the possible

stable minima inM(SO0(p, q)).

Theorem 7.2. Let (V,QV ,W,QW , η) be a polystable SO0(p, q)-Higgs bundle, with p ≤ q,

which is a local minimum of the Hitchin function. If the Higgs field is not equal to zero,

the minimum is in one of the following cases:

(1) p ≥ 2 even, q = p+ 1 and

W−p → V−p+1 → · · · → V−1 → W0 → V1 → · · · → Vp−1 → Wp,

with all subbundles of rank 1,

Vk or Wk
∼= K−k for 0 ≤ k ≤ p− 1

and

0 < deg(W−p) ≤ p(2g − 2).

(2) p ≥ 1 odd, q = p+ 1 and

W−p → V−p+1 → · · · → W−1 → V0 → W1 → · · · → Vp−1 → Wp,

with all subbundles of rank 1,

Vk or Wk
∼= K−k for 0 ≤ k ≤ p− 1

and

0 < deg(W−p) ≤ p(2g − 2).

(3) p ≥ 2 even, q = p− 2 + n with n ≥ 2 and

V−p+1 → W−p+2 → · · · → V−1 → W0 → V1 → · · · → Wp−2 → Vp−1,
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with all the subbundles of rank 1 except rk(W0) = n = q − p+ 2,

deg(Vk or Wk) = −k(2g − 2) for 0 ≤ k ≤ p− 2,

and

0 < deg(V−p+1) ≤ (p− 1)(2g − 2).

(4) p ≥ 2 even, q = p− 2 + n with n ≥ 2 and

V−p+1 → W−p+2 → · · · → V−1 → W ′
0 → V1 → · · · → Wp−2 → Vp−1, W ′′

0 ,

with all the subbundles of rank 1 except rk(W0) = n = q−p+2, where W0 = W ′
0⊕W ′′

0 .

The first chain is a smooth SO0(p, p + n′)-Higgs bundle with n′ = rk(W ′
0), W

′′
0 is a

smooth SO(n′′)-Higgs bundle with n′′ = rk(W ′′
0 ),

deg(Vk or Wk) = −k(2g − 2) for 0 ≤ k ≤ p− 2,

and

0 < deg(V−p+1) ≤ (p− 1)(2g − 2).

(5) p ≥ 3 odd, q = p− 1 + n with n ≥ 1 and

V−p+1 → W−p+2 → · · · → W−1 → V0 → W1 → · · · → Wp−2 → Vp−1, W0,

with all the subbundles in the first chain of rank 1. The first chain is a smooth

SO(p, p− 1)-Higgs bundle, W0 is a smooth SO(n)-Higgs bundle with rk(W0) = n =

q − p+ 1, V0
∼= O and

Vk or Wk
∼= K−k for 1 ≤ k ≤ p− 1.

Note that in the diagrams the arrows represent the Higgs field and are twisted by K.

Since the condition

H1(C•
−(E,ϕ)) =

⊕
k>0

H1(C•
k(E,ϕ)) 6= 0

does not imply that the point is not a minimum, to rule out a stable but non-simple or

a strictly polystable element as minimum it is necessary the following result (see Hitchin

[32, §8]).

Proposition 7.3. Let (E,ϕ) be a polystable SO0(p, q)-Higgs bundle whose isomorphism

class is fixed under the circle action. Suppose that {(Et, ϕt)}t is a family of polystable

SO0(p, q)-Higgs bundles deforming (E,ϕ) and that the corresponding infinitesimal defor-

mation is a non-zero element of H1(C•
−(E,ϕ)), then (E,ϕ) is not a local minimum.
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Proof. Let (A,ϕ) ∈ MHit
c (SO0(p, q)) be the solution corresponding to the Higgs bundle

(E,ϕ). Remember that A is a connection on ESO(p)×SO(q) and ϕ ∈ Ω1,0(ESO(p)×SO(q)(m
C)).

If (A,ϕ) is a fixed point of the circle action, there is a 1-parameter family of gauge

transformations g(θ) = (g1(θ), g2(θ)) ∈ G(ESO(p)×SO(q)) such that

(A, eiθϕ) = g(θ) · (A,ϕ) = (g(θ) · A, g(θ) · ϕ).

This family is generated by an infinitesimal gauge transformation ψ = (ψ1, ψ2) which is

covariantly constant, dA1(ψ1) = dA2(ψ2) = 0, and with [ψ, ϕ] = iϕ. Denote (Aθ, ϕθ) =

g(θ)·(A,ϕ), then (A0, ϕ0) = (A,ϕ), and consider the corresponding infinitesimal variation

(Ȧ, ϕ̇) ∈ H1(C•(E,ϕ)).

We know from [32, §8] that if the circle acts with weights m and n on (Ȧ, ϕ̇) with

m > 0 or n > 1, the pair (A,ϕ) is not a local minimum of f . This is proved by computing

f̈ and showing that for these values of m and n it is negative in certain directions. The

condition m > 0 or n > 1 is equivalent to (Ȧ, ϕ̇) ∈ H1(C•
−(E,ϕ)) and we conclude.

Technical problems arise when we try to prove Theorem 7.2 applying Proposition

7.3 which do not enable us to conclude using these methods. However, we give a full

description of the polystable minima of the Hitchin function inM(p, q) in some particular

cases and solve the problem of counting the number of connected components.

7.1 Minima in M(SO0(3, 3))

From Theorem 6.10 we have that the only smooth minimum of the Hitchin function with

Higgs field non-equal to zero in the moduli space of polystable SO0(3, 3)-Higgs bundles is

the minimum of type (5) with p = 3 and n = rk(W0) = 1, that is,

V−2 → W−1 → V0 → W1 → V2, W0,

with V0
∼= W0

∼= O, V1
∼= K−1 and W2

∼= K−2. From Section 8.4, we also know that this

minimum is the minimum in the Hitchin component.

There is an isomorphism between the moduli space of polystable SO0(3, 3)-Higgs bun-

dles and the moduli space of polystable SL(4,R)-Higgs bundles which is described in

Section 5.4. The result given by Theorem 7.2 agrees with the results about SL(4,R)-

Higgs bundles proved by Hitchin in [32]. In this paper he proved that the minima in

M(SL(4,R)) are those with Higgs field equal to zero together with the minimum of the

Hitchin component, which is:

K3/2 → K1/2 → K−1/2 → K−3/2.
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Using the isomorphism

M(SL(4,R))→M(SO0(3, 3))

of Section 5.4, that is, taking Λ2(K3/2⊕K1/2⊕K−1/2⊕K−3/2) = V ⊕W and considering

the corresponding orthogonal form and Higgs field, it is easy to check that the minimum

in the Hitchin component ofM(SL(4,R)) goes to the minimum in the Hitchin component

ofM(SO0(3, 3)).

7.2 Minima in M(SO0(1, n)) with n odd

An SO0(1, n)-Higgs bundle is a tuple (V,QV ,W,QW , η), where (V,QV ) ∼= O, (W,QW ) is

a principal SO(n,C)-bundle and η : W → O⊗K.

In this section we describe the minima of the Hitchin function in the moduli space of

SO0(1, n)-Higgs bundles with n odd.

We first apply Theorem 6.10 to see which are the smooth minima of the Hitchin

function inM(SO0(1, n)). For n = 2, the only smooth minima with Higgs field non-equal

to zero are the minima of type (2) (with p = 1), that is, those of the form

W−1 → V → W1,

with 0 < deg(W−1) ≤ 2g − 2. For n = 1 or n > 2 there are no smooth minima with

non-zero Higgs field.

Theorem 7.4. There are no minima of the Hitchin function with non-zero Higgs field in

the moduli space of polystable SO0(1, n)-Higgs bundles with n odd.

Proof. Using Theorem 6.10 we have already seen that there are no smooth minima with

non-zero Higgs field inM(SO0(1, n)) if n 6= 2, then it is true for n odd.

1. If (V,QV ,W,QW , η) is a stable but non-simple SO0(1, n)-Higgs bundle (n odd) with

η 6= 0 which is a fixed point of the circle action, using Theorem 3.21 and Proposition 6.6,

we obtain that it decomposes as a sum of a smooth minimum inM(SO0(1, 2)) of the form

W−1 → V → W1, with V ∼= O and 0 < deg(W−1) ≤ 2g − 2,

together with a sum of SO(ni)-Higgs bundles W i with ni = rk(W i) 6= 2 where at least one

has rank ni even. The first summand is necessary to guarantee the condition η 6= 0 and the

condition for the rank ni to be even determines the non-simplicity of (V,QV ,W,QW , η).

Since n is odd, n− 2 is also odd, and hence, at least one of the SO(ni)-Higgs bundles

W i in the decomposition has rank ni odd. If we consider this summand together with the
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one of the form W−1 → V → W1, we obtain a smooth SO(1, ni + 2)-Higgs bundle which,

by Theorem 6.10, is not a minimum (observe that W i ∼= (W i)∗ and then it has weight

zero). This implies that (V,QV ,W,QW , η) is not a minimum and we conclude.

2. If (V,QV ,W,QW , η) is a strictly polystable SO0(1, n)-Higgs bundle (n odd) with

η 6= 0 which is a fixed point of the circle action, it decomposes as a sum of a smooth

minimum inM(SO0(1, 2)) of the form

W−1 → V → W1, with V ∼= O and 0 < deg(W−1) ≤ 2g − 2,

together with a sum of SO(ni)-Higgs bundles and at least one U(ni)-Higgs bundle. The

existence of at least one U(ni)-Higgs bundle in the decomposition is necessary to guarantee

the strict polystability of (V,QV ,W,QW , η). Since n is odd, n− 2 is also odd, and since

U(ni) ↪→ SO(2ni) ↪→ SO0(1, n− 2),

with 2ni even, there is at least one SO(ni)-Higgs bundle W i in the decomposition with ni

odd.

As in the stable but non-simple case, if we consider this summand W i together with

the one of the form W−1 → V → W1, we obtain a smooth SO(1, ni + 2)-Higgs bundle

which is not a minimum and we conclude.

Using the characterization of the minima given by Theorem 7.4 solve the problem of

counting the connected components of the moduli spaceM(SO0(1, n)) with n odd.

Theorem 7.5. The moduli space of SO0(1, n)-Higgs bundles with n > 1 and odd has 2

connected components.

Proof. The topological invariant associated to an SO0(1, n)-Higgs bundle (O,W,QW , η)

with n ≥ 3 is the Stiefel-Whitney class w2 ∈ π1(SO(n,C)) ∼= Z2 = {0, 1}. Theorem

7.4 tells us that there are no minima of the Hitchin function with non-zero Higgs field,

and then M(SO0(1, n)) is the disjoint union of the moduli spaces M0(SO0(1, n)) and

M1(SO0(1, n)), which are connected.
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8 The Hitchin component

The general theory summarized in Section 8.2 is due to Hitchin [31]. Defining a section

of the Hitchin map of a complex Lie group G, he gives an isomorphism between certain

vector space of dimension 2(g−1) dimG and a connected component of the moduli space of

polystable Gs-Higgs bundles, where Gs denotes the split real form of G. This component

is called the Hitchin component, and there are 22g connected components in M(Gs)

isomorphic to it, which is the number of possible elections of the square K1/2.

In Sections 8.5 and 8.4 we apply these results to the orthogonal split real forms

SO0(n, n) and SO0(n, n+ 1).

8.1 Hitchin component for SL(2,R)

The simplest case to consider is the complex Lie group SL(2,C) and its split real form

SL(2,R). The Lie algebra sl(2,C) has rank 1 and the algebra of invariant polynomials on

it is generated by an element p2 of degree 2 obtained from the characteristic polynomial

det(x− A) = x2 + p2(A)

of a trace free matrix A. We are going to define a section of the Hitchin map

p :M → H0(K2),

(A,ϕ) 7→ p2(ϕ),

whereM =M(SL(2,C)) denotes the moduli space of polystable SL(2,C)-Higgs bundles.

This section s : H0(K2)→M will give an isomorphism between the vector space H0(K2)

and a connected component of the moduli spaceM(SL(2,R)) ⊂M of polystable SL(2,R)-

Higgs bundles. To construct the section s, we consider the elements

〈x =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
, ẽ =

(
0 0

1 0

)
〉 ∼= sl(2,C),

that satisfy

[x, e] = 2e, [x, ẽ] = −2ẽ and [e, ẽ] = x,

where x is an element of the Cartan subalgebra (a semisimple element) and e, ẽ are

nilpotent. In the vector bundle K1/2 ⊕ K−1/2 we can consider the orthogonal structure

Q =

(
0 1

1 0

)
, and if α ∈ H0(K2), the Higgs field ϕ = ẽ − αe =

(
0 −α
1 0

)
is
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symmetric with respect to Q, then the pair (K1/2⊕K−1/2, ϕ = ẽ−αe =

(
0 −α
1 0

)
), is

an SL(2,R)-Higgs bundle. We define the section by

s(α) = (K1/2 ⊕K−1/2, ϕ =

(
0 −α
1 0

)
).

That is, the set {
(K1/2 ⊕K−1/2, ϕ =

(
0 −α
1 0

)
)

}
α∈H2(K2)

forms a connected component of M(SL(2,R)) called the Hitchin component. This

component has dimension 6g − 6 and there are 22g connected components isomorphic to

this one, which is the number of possible elections of the square root K1/2.

8.2 The general construction

Let G be a complex simple Lie group and Gs be its split real form. If the Lie algebra

g has rank l and p1, . . . , pl of degrees m1 + 1, . . . ,ml + 1 form a basis of the algebra of

invariant polynomials on the Lie algebra g, we can consider the holomorphic map

p :M→
l⊕

i=1

H0(Kmi+1)

defined by

p(A,ϕ) = (p1(ϕ), . . . , pl(ϕ)),

where M = M(G) denotes the moduli space of polystable G-Higgs bundles, or equiva-

lently, the space of solutions to Hitchin’s equations. The map p is called the Hitchin

map and the elements m1, . . . ,ml, which are fundamental invariants of the Lie algebra,

are the exponents of g.

We are going to define a section of the Hitchin map that will give an isomorphism

between the vector space
l⊕

i=1

H0(Kmi+1) and a connected component of the moduli space

M(Gs) ⊂M of polystable Gs-Higgs bundles.

A nilpotent element e ∈ g is called regular if its centralizer is l-dimensional. If c is a

Cartan subalgebra of g and ∆ are the corresponding roots, the element

e =
∑

α∈∆+

cαXα,
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where Xα is a root vector for α, is always nilpotent and it is regular if cα 6= 0 for

α ∈ Π. Any nilpotent element can be embedded in a 3-dimensional simple subalgebra

〈x, e, ẽ〉 ∼= sl(2,C), where x is semisimple, e and ẽ are nilpotent, and they satisfy

[x, e] = 2e; [x, ẽ] = −2ẽ; [e, ẽ] = x.

The adjoint action

〈x, e, ẽ〉 ∼= sl(2,C)→ End(g)

of this subalgebra breaks up the Lie algebra g as a direct sum of irreducible representations

g =
l⊕

i=1

Vi,

with dim(Vi) = 2mi + 1. That is, each Vi is the irreducible representation S2miC2 of

sl(2,C), where C2 is the standard representation, and the eigenvalues of adx on Vi are

−2mi,−2mi + 2, . . . , 2mi − 2, 2mi. The highest weight vector of Vi, defined as a vector

ei ∈ Vi that is eigenvector for the action of x and is in the kernel of ad(e), has eigenvalue

2mi for adx. We take V1 = 〈x, e, ẽ〉 and e = e1.

Given (α1, . . . , αl) ∈
l⊕

i=1

H0(Kmi+1), we define the Higgs field in the Hitchin compo-

nent by

ϕ = ẽ1 + α1e1 + . . .+ αlel.

To know how the bundle in the Hitchin component looks like, we have to understand

the representation

sl(2,C)→ g.

In the classical cases, we can embed g into the corresponding general linear Lie algebra

gl(m,C). In this cases, the Lie algebra g is equal to End(R), Λ2(R) or S2(R) . . . etc. for

some representation R of sl(2,C). On the other hand, we have the decomposition of g as

representation of sl(2,C),

sl(2,C)→ End(g) = End(S2m1C2 + . . .+ S2mlC2).

Then,

S2m1C2 + . . .+ S2mlC2 = End(R),Λ2(R) or S2(R) . . . etc.

and using Clebsch-Gordan formulas (see remark below), we can determine R as a sum

of symmetric powers of the standard representation of sl(2,C). Transforming the vector

bundle K1/2 ⊕ K−1/2 under this sum we obtain the corresponding vector bundle E in

the Hitchin component of M(Gs). We will see examples in the following subsections to

illustrate this process.
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Theorem 8.1. With the previous notations, if (α1, . . . , αl) ∈
l⊕

i=1

H0(Kmi+1),

s(α1, . . . , αl) =

(
E, ϕ = ẽ1 +

l∑
i=1

αiei

)

defines a section of the Hitchin map p and an isomorphism from the vector space

l⊕
i=1

H0(Kmi+1)

to a connected component of the moduli space M(Gs).

This connected component is called the Hitchin component and has dimension

2(g − 1) dimGs.

Remark: Clebsch-Gordan formulas.

Let Sn = SnC2 be the irreducible representation of dimension n+1 of the Lie algebra

sl(2,C). We have that Sn ⊗ Sn = S2(Sn)⊕ Λ2(Sn). On the other hand,

S2(Sn) =
⊕
α≥0

S2n−4α and Λ2(Sn) = S2(Sn−1) =
⊕
α≥0

S2n−2−4α.

For a sum of irreducible representations, we know that

Λ2(Sn ⊕ Sm) =
⊕

a+b=2

ΛaSn ⊗ ΛbSm.

Using this formulas we can determine the representation R (such that g = End(R), Λ2(R),

S2(R)... etc.) from the decomposition of g in sum of irreducible representations of sl(2,C).

8.3 Hitchin component for SL(n,R)

Consider the special general case SL(n,R) which is the split real form of SL(n,C). The

Lie algebra sl(n,C) has rank n− 1 and a basis for the invariant polynomials on sl(n,C)

is provided by the coefficients of the characteristic polynomial of a trace-free matrix,

det(x− A) = xn + p1(A)xn−2 + . . .+ pn−1(A),

where deg(pi) = i+ 1. We can consider the Hitchin map

p :M(SL(n,C))→
n−1⊕
i=1

H0(Ki+1)
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defined by

p(A,ϕ) = (p1(ϕ), . . . , pn−1(ϕ)),

whereM(SL(n,C)) is the moduli space of polystable SL(n,C)-Higgs bundles.

We are going to define a section of this map that will give an isomorphism between the

vector space
n−1⊕
i=1

H0(Ki+1) and a connected component of the moduli spaceM(SL(n,R)) ⊂

M(SL(n,C)) of polystable SL(n,R)-Higgs bundles.

A nilpotent element e ∈ sl(n,C) is called regular if its centralizer is (n−1)-dimensional.

In sl(n,C) a regular nilpotent element is conjugate to an element

e =
∑
α∈Π

cαXα,

where Π = {αi = ei − ei+1, 1 ≤ i ≤ n − 1} and Xαi
= Ei,i+1 is a root vector for αi.

Any nilpotent element can be embedded in a 3-dimensional simple subalgebra 〈x, e, ẽ〉 ∼=
sl(2,C), where x is semisimple, e and ẽ are nilpotent, and they satisfy

[x, e] = 2e; [x, ẽ] = −2ẽ; [e, ẽ] = x.

The adjoint action

〈x, e, ẽ〉 ∼= sl(2,C)→ End(sl(n,C))

of this subalgebra breaks up the Lie algebra sl(n,C) as a direct sum of irreducible repre-

sentations

sl(n,C) =
n−1⊕
i=1

Vi,

with dim(Vi) = 2i+ 1. That is, each Vi is the irreducible representation S2iC2, where C2

is the standard representation of sl(2,C), and the eigenvalues of ad x on Vi are −2i,−2i+

2, ..., 2i− 2, 2i.

The highest weight vector of Vi, defined as a vector ei ∈ Vi that is eigenvector for the

action of x and is in the kernel of ad(e), has eigenvalue 2i for adx. We take V1 = 〈x, e, ẽ〉
and e = e1.

Given (α1, ..., αn−1) ∈
n−1⊕
i=1

H0(Ki+1), we define the Higgs field in the Hitchin compo-

nent by

ϕ = ẽ1 + α1e1 + ...+ αn−1en−1,

and the vector bundle is given by

Sn−1(K−1/2 ⊕K1/2) = K−(n−1)/2 ⊕K−(n−3)/2 ⊕ · · · ⊕K(n−3)/2 ⊕K(n−1)/2.
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The field ϕ is given in the following order of the basis, K(n−1)/2⊕K(n−3)/2⊕· · ·⊕K−(n−3)/2⊕
K−(n−1)/2. The minimum in the Hitchin component is given by the values α1 = · · · =

αn−1 = 0, then it is the pair

(K(n−1)/2 ⊕K(n−3)/2 ⊕ · · · ⊕K−(n−3)/2 ⊕K−(n−1)/2, ϕ = ẽ),

that is

K(n−1)/2 → K(n−3)/2 → · · · → K−(n−3)/2 → K−(n−1)/2.

Note that in this diagrams the maps are twisted by K and Km → Km−1 must be inter-

preted as Km → Km−1 ⊗K = Km.

Example 8.2. Hitchin component of the moduli space of polystable SL(4,R)-Higgs bun-

dles.

The sets of positive and simple roots of sl(4,C) are

∆+ = {e1 − e2, e1 − e3, e1 − e4, e2 − e3, e2 − e4, e3 − 34},

Π = {e1 − e2, e2 − e3, e3 − 34}.

We know that e =


c1,2 c1,3 c1,4

c2,3 c2,4

c3,4

 , with c1,2, c2,3, c3,4 6= 0, is a regular nilpotent

element. If x =


h1

h2

h3

h4

 is in the Cartan subalgebra, it satisfies [x, e] = 2e

if and only if h1 = 3/2, h2 = 1/2, h3 = −1/2, h4 = −3/2 and c1,3 = c1,4 = c2,4 = 0. So

finally we can consider

x =


3

1

−1

−3

 and e =


1

1

1

 .

We know that the conditions [x, ẽ] = −2ẽ and [e, ẽ] = x determine ẽ. If

X =


x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

 ∈ sl(4,C),
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the adjoint action of the semisimple element x on X is given by

ad(x)(X) =


0 2x1,2 4x1,3 6x1,4

−2x2,1 0 2x2,3 4x2,4

−4x3,1 −2x3,2 0 2x3,4

−6x4,1 −4x4,2 −2x4,3 0

 ,

and the conditions imply ẽ =

 3

4

−3

. Thus, we obtain the 3-dimensional sub-

algebra

〈
x =


3

1

−1

−3

 , e =


1

1

1

 , ẽ =

, 3

4

−3


〉
.

We have a basis of the invariant polynomials {p1, p2, p3} of degrees 2, 3 and 3 respec-

tively and the decomposition

sl(4,C) = V1 ⊕ V2 ⊕ V3 = S2C2 ⊕ S4C2 ⊕ S6C2,

of the Lie algebra sl(4,C) as a sum of irreducible representations of sl(2,C).The highest

weight vector of V2 is of the form e2 =


x1,3

x2,4

 and it is in the kernel of ad(e) if

and only if x2,4−x1,3 = 0, then we can take e2 =


1

1

. Analogously, the highest

vector of V3 is of the form e3 =


x1,4

 and it is in the kernel of ad(e) for all the

possible values of X1,4, then we can take e2 =


1
. Finally, we define the Higgs
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field in the Hitchin component by

ϕ =


α1 α2 α3

3 α1 α2

4 α1

−3

 .

The vector bundle in the Hitchin component is given by

S3(K1/2 ⊕K−1/2) = K3/2 ⊕K1/2 ⊕K−1/2 ⊕K−3/2.

The minimum in the Hitchin component is given by the values α1 = · · · = αn−1 = 0, then

it is the pair

(K3/2 ⊕K1/2 ⊕K−1/2 ⊕K1/2, ϕ = ẽ),

that is

K3/2 → K1/2 → · · · → K−1/2 → K−3/2.

8.4 Hitchin component for SO0(n, n)

The Lie group SO0(n, n) is the split real form of SO(2n,C). A basis of the invariant

polynomials on so(2n,C) is provided by the coefficients of the characteristic polynomial

of a skew-symmetric matrix, which is of the form

det(x− A) = x2n + p1(A)x2n−2 + . . .+ pn(A),

where deg pi = 2i. The polynomial pn = detA of degree 2n is the square of the Pfaffian

polynomial p′n, which has degree n. Then, a basis is given by {p1, . . . , pn−1, p
′
n}, (the rank

of so(2n,C) is n), and the corresponding Hitchin map

p :M→
n−1⊕
i=1

H0(K2i)⊕H0(Kn)

is defined by

p(A,ϕ) = (p1(ϕ), . . . , pn−1(ϕ), p′n(ϕ)).

The nilpotent regular element is now

e =
∑

α∈∆+

cαXα ∈ so(2n,C) with cα 6= 0 for α ∈ Π,

where

∆+ = {ei ± ej with 1 ≤ i < j ≤ n},
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Π = {αi = ei − ei+1(1 ≤ i ≤ n− 1), αn = en−1 + en},

and the corresponding root vectors are

Xei−ej
= Eij − En+j,n+i and Xei+ej

= Ei,n+j − Ej,n+i.

(We are using the same notations as in Section 2.1).

The element x, that we can consider in the Cartan subalgebra, is of the form x =
n∑

i=1

hi(Ei,i − En+i,n+i). Imposing [x, e] = 2e we obtain that

x =
n∑

i=1

2(n− i)(Ei,i − En+i,n+i)

and

e =
∑
α∈Π

cαXα.

Then, we can take for example e =
∑
α∈Π

Xα. Finally, the conditions [x, ẽ] = −2ẽ and

[e, ẽ] = x determine ẽ.

The adjoint action

〈x, e, ẽ〉 ∼= sl(2,C)→ End(so(2n,C)),

gives the decomposition

so(2n,C) =
n−1⊕
i=1

Vi ⊕ Vn,

with dimVi = 4i− 1, for 1 ≤ i ≤ n− 1 (the exponents in this case are mi = 2i− 1) and

dimVn = 2n− 1 (mn = n− 1). That is, for 1 ≤ i ≤ n− 1, Vi = S4i−2C2 with eigenvalues

4i−2, 4i−4, . . . ,−4i+4,−4i+2 for the action of adx and Vn = S2n−2C with eigenvalues

2n− 2, 2n− 4, . . . ,−2n+ 4,−2n+ 2.

The highest weight vectors in this case are e1, . . . , en−1, en, where ei has eigenvalue

4i− 2 for 1 ≤ i ≤ n− 1, and en has eigenvalue 2n− 2. We take V1 = 〈x, e, ẽ〉 and e = e1.

Given (α1, . . . , αn−1, αn) ∈
n−1⊕
i=1

H0(K2i)⊕H0(Kn), the Higgs field in the Hitchin com-

ponent is the sum ϕ = ẽ+ α1e+ . . .+ αn−1en−1 + αnen.

Consider now the representation

sl(2,C)→ so(2n,C) = Λ2(R).

131



We know that so(2n,C) = S2C2 + S6C2 + . . . + S4n−6C2 + S2n−2C2 = Λ2(R). Then,

R = S2n−2C2 + 1, where 1 denotes the trivial representation,

Λ2(S2n−2C2 + 1) = Λ1(S2n−2)⊗ Λ1(1) + Λ2(S2n−2)⊗ Λ0(1) + Λ0(S2n−2)⊗ Λ2(1) =

= S2n−2 + Λ2(S2n−2).

Hence, the vector bundle in the Hitchin component is

E = (S2n−2 + 1)(K1/2 ⊕K−1/2) =

= Kn−1 ⊕Kn−2 ⊕ . . .⊕K ⊕O ⊕K−1 ⊕ . . .⊕K−n+2 ⊕K−n+1 ⊕O1 = V ⊕W,

where the subindex 1 is only to distinguish one trivial bundle from the other, in which we

can consider the orthogonal structure given by

Q =


1

. .
.

1

1

 .

Since we are considering the algebra so(2n,C) defined by the orthogonal structure

Q =

(
0 In

In 0

)
, the Higgs field ϕ = ẽ + α1e + . . . + αn−1en−1 + αnen is defined in the

following order of the subbundles:

Kn−1 ⊕Kn−2 ⊕ . . .⊕K ⊕O ⊕K−n+1 ⊕K−n+2 ⊕ . . .⊕K−1 ⊕O1,

↓
Kn−1 ⊕Kn−2 ⊕ . . .⊕K ⊕O1 ⊕K−n+1 ⊕K−n+2 ⊕ . . .⊕K−1 ⊕O,

(or the other way around, changing O ↔ O1).

The minimum in the Hitchin component is given by the values α1 = . . . = αn = 0,

that is, the minimum is the pair

(Kn−1 ⊕Kn−2 ⊕ . . .⊕K ⊕O ⊕K−n+1 ⊕K−n+2 ⊕ . . .⊕K−1 ⊕O1, ϕ = ẽ),

which is of the form

O

��>
>>

>>
>>

>>

Kn−1 → Kn−2 → · · · → K

@@���������

��=
==

==
==

= K−1 → · · · → K−n+2 → K−n+1.

O1

@@��������
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Note that in these diagrams the maps are twisted by K and Km → Km−1 must be

interpreted as Km → Km−1 ⊗K = Km.

To conclude we have to distinguish which powersKi are in V and which inW . Observe

that the Higgs field alternates V and W .

Take v and v1 generating O and O1 respectively. When n is odd, we have ϕ(v−v1) = 0.

Hence, part of O +O1 is in V and other in W , that is

V0 = 〈v + v1〉 and W0 = 〈v − v1〉.

Then, the minimum in the Hitchin component is

Kn−1

‖
V−n+1

→· · · →
K

‖
W−1

⇒

O +O1

∪
V0

⇒

K−1

‖
W1

→· · · →
K−n+1

‖
Vn−1

,

O +O1

∪
W0

.

Observe that the situation obtained by interchanging V and W is also possible. This

Higgs bundle is a minimum of the type (5) of Theorem 6.10 with n = rk(W0) = 1, p = n

and V−n+1
∼= Kn−1, that is, deg(V−n+1) = (n− 1)(2g − 2).

When n is even, the sum O+O1 is entirely contained in V or in W , and the minimum

in the Hitchin component is

Kn−1

‖
V−n+1

→
Kn−2

‖
W−n+2

→ · · · →
K

‖
V−1

⇒

O +O1

‖
W0

⇒

K−1

‖
V1

→· · · →
K−n+2

‖
Wn−2

→
K−n+1

‖
Vn−1

,

or of the one obtained by interchanging V and W . This Higgs bundle is a minimum of

the type (3) of Theorem 6.10 with n = rk(W0) = 2, p = n and V−n+1
∼= Kn−1, that is,

deg(V−n+1) = (n− 1)(2g − 2).

Example 8.3. Hitchin component of the moduli space of polystable SO0(3, 3)-Higgs bun-

dles.

The sets of positive and simple roots of so(6,C) are

∆+ = {e1 − e2, e2 − e3, e1 − e3, e1 + e2, e2 + e3, e1 + e3},

Π = {e1 − e2, e2 − e3, e2 + e3}.
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We know that e =



ce1−e2 ce1−e3 ce1+e2 ce1+e3

ce2−e3 −ce1+e2 ce2+e3

−ce1+e3 −ce2+e3

−ce1−e2

−ce1−e3 −ce2−e3


, with ce1−e2 , ce2−e3 ,

ce2+e3 6= 0, is a regular nilpotent element. If x =



h1

h2

h3

−h1

−h2

−h3


is

in the Cartan subalgebra, it satisfies [x, e] = 2e if and only if h1 = 4, h2 = 2 and

h3 = ce1−e3 = ce1+e2 = ce1+e3 = 0. So finally we can consider

x =


4

2

−4

−2

 and e =


1

1 1

−1

−1

−1

.
We know that the conditions [x, ẽ] = −2ẽ and [e, ẽ] = x determine ẽ. If

X =



x1,1 x1,2 x1,3 0 x1,5 x1,6

x2,1 x2,2 x2,3 −x1,5 0 x2,6

x3,1 x3,2 x3,3 −x1,6 −x2,6 0

0 x4,2 x4,3 −x1,1 −x2,1 −x3,1

−x4,2 0 x5,3 −x1,2 −x2,2 −x3,2

−x4,3 −x5,3 0 −x1,3 −x2,3 −x3,3


∈ so(6,C),

the adjoint action of the semisimple element x on X is given by

ad(x)(X) =



0 2x1,2 4x1,3 0 6x1,5 4x1,6

−2x2,1 0 2x2,3 −6x1,5 0 2x2,6

−4x3,1 −2x3,2 0 −4x1,6 −2x2,6 0

0 −6x4,2 −4x4,3 0 2x2,1 4x3,1

6x4,2 0 −2x5,3 −2x1,2 0 2x3,2

4x4,3 2x5,3 0 −4x1,3 −2x2,3 0


,

and the conditions imply ẽ =

 4

3

−4

−3 −3

3

. Thus, we obtain the 3-dimensional
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subalgebra

〈
x =


4

2

−4

−2

 , e =


1

1 1

−1

−1

−1

 , ẽ =

 4

3

−4

−3 −3

3

〉 .
We have a basis of invariant polynomials {p1, p2, p3} of degrees 2, 4 and 3 respectively

and the decomposition

so(6,C) = V1 ⊕ V2 ⊕ V3 = S2C2 ⊕ S6C2 ⊕ S4C2,

of the Lie algebra so(6,C) as a sum of irreducible representations of sl(2,C). The highest

weight vector of V3 is of the form e3 =



x1,3 x1,6

−x1,6

−x1,3


and it is in the kernel of

ad(e) if and only if x1,6 = −x1,3, then we can take e3 =


1 −1

1

−1

 . Analogously,

the highest weight vector of V2 is of the form e2 =



x1,5

−x1,5


and it is in the

kernel of ad(e) for all the possible values of x1,5, then we can take e2 =


1

−1

 .

Finally, we define the Higgs field in the Hitchin component by

ϕ =



α1 α3 α2 −α3

4 α1 −α2 α1

3 α3 −α1

−4

−3 −α1 −3

3 −α3 −α1


.
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To obtain the vector bundle in the Hitchin component we need to understand the

representation

sl(2,C)→ so(6,C) = Λ2(R).

We know that so(6,C) = S2C2 + S4C2 + S6C2 = Λ2(R). Then, R = S4C2 + 1. Hence,

the vector bundle is

E = (S4 + 1)(K1/2 ⊕K−1/2) = K2 ⊕K ⊕O ⊕K−1 ⊕K−2 ⊕O1 = V ⊕W,

and the Higgs field is defined using the following order of the subbundles,

K2 ⊕K ⊕O ⊕K−2 ⊕K−1 ⊕O1 −→ K2 ⊕K ⊕O1 ⊕K−2 ⊕K−1 ⊕O.

The minimum in the Hitchin component is given by the values α1 = α2 = α3 = 0.

Taking a basis K2 ⊕K ⊕O ⊕K−2 ⊕K−1 ⊕O1 = 〈e2, e1, v, e−2, e−1, v1〉, we have

ϕ(e2) = 4e1,

ϕ(e1) = 3(v + v1),

ϕ(v) = −3e−1,

ϕ(e−2) = 0,

ϕ(e−1) = −4e−2,

ϕ(v1) = −3e−1,

that is,

e2
4 // e1

3 // v + v1
−3 // e−1

−4 // e−2,

and ϕ(v − v1) = 0. If we denote V0 = 〈v + v1〉 and W0 = 〈v − v1〉, the minimum in the

Hitchin component is

K2

‖
V−2

→
K

‖
W−1

⇒

O +O1

∪
V0

⇒

K−1

‖
W1

→
K−2

‖
V2

,

O +O1

∪
W0

,

which is a minimum of the type (5) of Theorem 6.10 with n = rk(W0) = 1 and p = q = 3.

Example 8.4. Hitchin component of the moduli space of polystable SO0(4, 4)-Higgs bun-

dles.

The sets of positive and simple roots of so(8,C) are

∆+ = {e1−e2, e1−e3, e1−e4, e2−e3, e2−e4, e3−e4, e1+e2, e1+e3, e1+e4, e2+e3, e2+e4, e3+e4, },

Π = {e1 − e2, e2 − e3, e3 − e4, e3 + e4}.
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Using the same process as in the previous example, we obtain the 3-dimensional subalgebra

〈
x =


6

4

2

−6

−4

−2

 , e =


1

1

1 1

−1

−1

−1

−1

 ,

ẽ =


6

10

6

−6

−10

−6 −6

6


〉
∼= sl(2,C).

If X =



x1,1 x1,2 x1,3 x1,4 0 x1,6 x1,7 x1,8

x2,1 x2,2 x2,3 x2,4 −x1,6 0 x2,7 x2,8

x3,1 x3,2 x3,3 x3,4 −x1,7 −x2,7 0 x3,8

x4,1 x4,2 x4,3 x4,4 −x1,8 −x2,8 −x3,8 0

0 x5,2 x5,3 x5,4 −x1,1 −x2,1 −x3,1 −x4,1

−x5,2 0 x6,3 x6,4 −x1,2 −x2,2 −x3,2 −x4,2

−x5,3 −x6,3 0 x7,4 −x1,3 −x2,3 −x3,3 −x4,3

−x5,4 −x6,4 −x7,4 0 −x1,4 −x2,4 −x3,4 −x4,4


∈ so(8,C),

the adjoint action of the semisimple element x on X is given by

ad(x)(X) =



0 2x1,2 4x1,3 6x1,4 0 10x1,6 8x1,7 6x1,8

−2x2,1 0 2x2,3 4x2,4 −10x1,6 0 6x2,7 4x2,8

−4x3,1 −2x3,2 0 2x3,4 −8x1,7 −6x2,7 0 2x3,8

−6x4,1 −4x4,2 −2x4,3 0 −6x1,8 −4x2,8 −2x3,8 0

0 −10x5,2 −8x5,3 −6x5,4 0 2x2,1 4x3,1 6x4,1

10x5,2 0 −6x6,3 −4x6,4 −2x1,2 0 2x3,2 4x4,2

8x5,3 6x6,3 0 −2x7,4 −4x1,3 −2x2,3 0 2x4,3

6x5,4 4x6,4 2x7,4 0 −6x1,4 −4x2,4 −2x3,4 0


.

We take a basis of the algebra of invariant polynomials {p1, p2, p3, p4} of degrees 2, 4, 6

and 4 respectively. We also have a decomposition

so(8,C) = V1 ⊕ V2 ⊕ V3 ⊕ V4 = S2C2 ⊕ S6C2 ⊕ S10C2 ⊕ S6C2,

of the Lie algebra so(8,C) as a sum of irreducible representations of sl(2,C). The highest
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weight vector of V3 is of the form e3 =



x1,6

−x1,6


and it is in the kernel

of ad(e) for all the possible values of x1,6, then we can take e3 =


1

−1

 .

An eigenvector with eigenvalue 6 has to be of the form:

x1,4 x1,8

x2,7

−x2,7

−x1,8

−x1,4


and it is in the kernel of ad(e) if and only if x1,4 + x1,8 + x2,7 = 0. Then we can take, for

example,

e2 =


1 −1

1

−1

 and e4 =


1

−1

1

−1

.
We define the Higgs field in the Hitchin component by

ϕ =



α1 α2 + α4 α3 −α2

6 α1 −α3 −α4

10 α1 α4 α1

6 α2 −α1

−6

−α1 −10

−6 −α1 −6

6 −α2 − α4 −α1


.
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To obtain the vector bundle in the Hitchin component we have to understand the

representation

sl(2,C)→ so(8,C) = Λ2(R).

We know that so(8,C) = S2C2 ⊕ S6C2 ⊕ S10C2 ⊕ S6C2 = Λ2(R). Then, R = S6C2 + 1.

Hence, the vector bundle is

E = (S6 + 1)(K1/2 ⊕K−1/2) = K3 ⊕K2 ⊕K ⊕O ⊕K−1 ⊕K−2 ⊕K−3 ⊕O1 = V ⊕W,

and the Higgs field is defined using the following order of the subbundles,

K3 ⊕K2 ⊕K ⊕O ⊕K−3 ⊕K−2 ⊕K−1 ⊕O1

↓
K3 ⊕K2 ⊕K ⊕O1 ⊕K−3 ⊕K−2 ⊕K−1 ⊕O.

The minimum is given by the values α1 = α2 = α3 = α4 = 0. Taking a basis

K3 ⊕K2 ⊕K ⊕O ⊕K−3 ⊕K−2 ⊕K−1 ⊕O1 = 〈e3, e2, e1, v, e−3, e−2, e−1, v1〉, we have

ϕ(e3) = 6e2,

ϕ(e2) = 10e1,

ϕ(e1) = 6(v + v1),

ϕ(v) = −6e−1,

ϕ(e−3) = 0,

ϕ(e−2) = −6e−3,

ϕ(e−1) = −10e−2,

ϕ(v1) = −6e−1,

that is,

e3
6 // e2

10 // e1
6 // v, v1

−6 // e−1
−10 // e−2

−6 // e−3.

Then, we take V0 = 0 and W0 = 〈v, v1〉 = O + O1, and the minimum in the Hitchin

component is

K3

‖
V−3

→
K2

‖
W−2

→
K

‖
V−1

⇒

O +O1

‖
W0

⇒

K−1

‖
V1

→
K−2

‖
W2

→
K−3

‖
V3

,

which is a minimum of the type (3) of Theorem 6.10 with n = rk(W0) = 2 and p = q = 4.
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8.5 Hitchin component for SO0(n, n+ 1)

The Lie group SO0(n, n + 1) is the split real form of SO(2n + 1,C). A basis of the

invariant polynomials on so(2n+1,C) is provided by the coefficients {p1, . . . , pn−1, pn} of

the characteristic polynomial

det(x− A) = x(x2n + p1(A)x2n−2 + . . .+ pn(A)),

where deg pi = 2i (the rank of so(2n+ 1,C) is n). The corresponding Hitchin map

p :M→
n⊕

i=1

H0(K2i)

is defined by

p(A,ϕ) = (p1(ϕ), . . . , pn(ϕ)).

The nilpotent regular element is now

e =
∑

α∈∆+

cαXα ∈ so(2n+ 1,C) with cα 6= 0 for α ∈ Π,

where

∆+ = {ei ± ej with 1 ≤ i < j ≤ n} ∪ {ei with 1 ≤ i ≤ n},

Π = {αi = ei − ei+1(1 ≤ i ≤ n− 1), αn = en},

and the corresponding root vectors are

Xei−ej
= Eij − En+j,n+i, Xei+ej

= Ei,n+j − Ej,n+i,

Xei
= Ei,2n+1 − E2n+1,n+i, X−ei

= En+i,2n+1 − E2n+1,i.

The element x, that we can consider in the Cartan subalgebra, is of the form x =
n∑

i=1

hi(Ei,i − En+i,n+i). Imposing [x, e] = 2e we obtain that

x =
n∑

i=1

2(n+ 1− i)(Ei,i − En+i,n+i)

and

e =
∑
α∈Π

cαXα.

We take e =
∑
α∈Π

Xα. Finally, the conditions [x, ẽ] = −2ẽ and [e, ẽ] = x determine ẽ.

The adjoint action

〈x, e, ẽ〉 ∼= sl(2,C)→ End(so(2n+ 1,C)),
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gives the decomposition

so(2n+ 1,C) =
n⊕

i=1

Vi,

with dimVi = 4i − 1, for 1 ≤ i ≤ n (the exponents in this case are mi = 2i − 1). That

is, Vi = S4i−2C2, 1 ≤ i ≤ n, with eigenvalues 4i − 2, 4i − 4, . . . ,−4i + 4,−4i + 2 for the

action of ad x.

The highest weight vectors in this case are e1, . . . , en−1, en, where ei has eigenvalue

4i− 2 for 1 ≤ i ≤ n. We take V1 = 〈x, e, ẽ〉 and e = e1.

Given (α1, . . . , αn) ∈
n⊕

i=1

H0(K2i), the Higgs field in the Hitchin component is the

sum ϕ = ẽ+ α1e+ . . .+ αnen.

Consider now the representation

sl(2,C)→ so(2n+ 1,C) = Λ2(R).

We know that so(2n+ 1,C) = S2C2 + S6C2 + . . .+ S4n−2C2 = Λ2(R). Then, R = S2nC2.

Hence, the vector bundle is

E = S2n(K1/2 ⊕K−1/2) = Kn ⊕ . . .⊕K ⊕O ⊕K−1 ⊕ . . .⊕K−n = V ⊕W,

and the field ϕ is defined in the following order of the subbundles: Kn ⊕ Kn−1 ⊕ . . . ⊕
K ⊕K−n ⊕K−n+1 ⊕ . . .⊕K−1 ⊕O.

The minimum in the Hitchin component corresponds with the values α1 = . . . = αn =

0 and then it is the pair

(Kn ⊕Kn−1 ⊕ ...⊕K ⊕K−n ⊕K−n+1 ⊕ ...⊕K−1 ⊕O, ϕ = ẽ),

which is of the form

Kn

‖
W−n

→
Kn−1

‖
V−n+1

→· · · →
K

‖
V−1

→
O
‖
W0

→
K−1

‖
V1

→· · · →
K−n+1

‖
Vn−1

→
K−n

‖
Wn

,

when n is even and of the form

Kn

‖
W−n

→
Kn−1

‖
V−n+1

→· · · →
K

‖
W−1

→
O
‖
V0

→
K−1

‖
W1

→· · · →
K−n+1

‖
Vn−1

→
K−n

‖
Wn

,

when n is odd. These Higgs bundles are minima of the type (1) and (2) of Theorem 6.10

respectively with p = n and W−n
∼= Kn, that is, deg(W−n) = n(2g − 2).
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Example 8.5. Hitchin component of the moduli space of polystable SO0(3, 4)-Higgs bun-

dles.

The sets of positive and simple roots of so(7,C) are

∆+ = {e1 − e2, e1 − e3, e2 − e3, e1 + e2, e1 + e3, e2 + e3, e1, e2, e3},

Π = {e1 − e2, e2 − e3, e3}.

Using the same process as in the previous examples, we obtain the 3-dimensional sub-

algebra 〈
x =


6

4

2

−6

−4

−2

 , e =


1

1

1

−1

−1

−1

 ,

ẽ =


6

10

−6

−10

−12

12


〉
.

If X =



x1,1 x1,2 x1,3 0 x1,5 x1,6 x1,7

x2,1 x2,2 x2,3 −x1,5 0 x2,6 x2,7

x3,1 x3,2 x3,3 −x1,6 −x2,6 0 x3,7

0 x4,2 x4,3 −x1,1 −x2,1 −x3,1 x4,7

−x4,2 0 x5,3 −x1,2 −x2,2 −x3,2 x5,7

−x4,3 −x5,3 0 −x1,3 −x2,3 −x3,3 x6,7

−x4,7 −x5,7 −x6,7 −x1,7 −x2,7 −x3,7 0


∈ so(7,C),

the adjoint action of the semisimple element x on X is given by

ad(x)(X) =



0 2x1,2 4x1,3 0 10x1,5 8x1,6 6x1,7

−2x2,1 0 2x2,3 −10x1,5 0 6x2,6 4x2,7

−4x3,1 −2x3,2 0 −8x1,6 −6x2,6 0 2x3,7

0 −10x4,2 −8x4,3 0 2x2,1 4x3,1 −6x4,7

10x4,2 0 −6x5,3 −2x1,2 0 2x3,2 −4x5,7

8x4,3 6x5,3 0 −4x1,3 −2x2,3 0 −2x6,7

6x4,7 4x5,7 2x6,7 −6x1,7 −4x2,7 −2x3,7 0


.

We take a basis of the algebra of invariant polynomials {p1, p2, p3} with degrees 2, 4, 6

respectively. We also have a decomposition

so(7,C) = V1 ⊕ V2 ⊕ V3 = S2C2 ⊕ S6C2 ⊕ S10C2,
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of the Lie algebra so(7,C) as a sum of irreducible representations of sl(2,C). The highest

weight vector of V2 is of the form e2 =



x1,7

x2,6

−x2,6

−x1,7


and it is in the

kernel of ad(e) if and only if x2,6 + x1,7 = 0. We can take e2 =


1

−1

1

−1

.

Analogously, the highest weight vector of V3 is of the form e3 =



x1,5

−x1,5


and it is in the kernel of ad(e) for all the possible values of x1,5, then we can take

e3 =


1

−1

 . Finally, we define the Higgs field in the Hitchin component

by

ϕ =



α1 α3 α2

6 α1 −α3 −α2

10 α2 α1

−6

−α1 −10

−α1 −12

12 −α2 −α1


.

To obtain the vector bundle in the Hitchin component we have to understand the

representation

sl(2,C)→ so(7,C) = Λ2(R).

We know that so(7,C) = S2C2 + S6C2 + S10C2 = Λ2(R). Then, R = S6C2. Hence, the
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vector bundle is

E = S6(K1/2 ⊕K−1/2) = K3 ⊕K2 ⊕K ⊕O ⊕K−1 ⊕K−2 ⊕K−3 = V ⊕W,

and the Higgs field ϕ is defined in the following order of the subbundles: K3⊕K2⊕K ⊕
K−3 ⊕K−2 ⊕K−1 ⊕O.

The minimum in the Hitchin component corresponds with the values α1 = α2 = α3 =

0. Taking the basis K3 ⊕K2 ⊕K ⊕K−3 ⊕K−2 ⊕K−1 ⊕O = 〈e3, e2, e1, e−3, e−2, e−1, v〉,
we have

ϕ(e3) = 6e2,

ϕ(e2) = 10e1,

ϕ(e1) = 12v,

ϕ(e−3) = 0,

ϕ(e−2) = −6e−3,

ϕ(e−1) = −10e−2,

ϕ(v) = −12e−1,

that is,

e3
6 // e2

10 // e1
12 // v

−12 // e−1
−10 // e−2

−6 // e−3.

Thus, the minimum in the Hitchin component is

K3

‖
W−3

→
K2

‖
V−2

→
K

‖
W−1

→
O
‖
V0

→
K−1

‖
W1

→
K−2

‖
V2

→
K−3

‖
W3

,

which is a minimum of the type (2) of Theorem 6.10 with p = 3.
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