VNiVERSITY OF SALAMANCA

DEPARTMENT OF COMPUTER SCIENCE AND AUTOMATION
SCIENCES FACULTY

VNiVERSiIDAD
b SALAMANCA

PND THESiS

ORGANIZATION BASED
MULTIAGENT ARCHITECTURE
FOR DISTRIBUTED ENVIRONMENTS

AVTHOR
Aitor Mata Conde

SVPER ViSORS
Dr. Belén Pérez Lancho
Dr. Emilio S. Corchado Rodriguez

~ MARCH, 2010 ~
Salamanca, Spain

The present PhD. thesis document entitled “Organization Based Multiagent
Architecture for Distributed Environments” submitted by Mr. Aitor Mata
Conde to the Department of Computer Science and Automation of the
University of Salamanca in partial fulfilment of the requirements for the
degree of Doctor in Computer Science and Automatics has been carried out
under the supervision of Dr. Belén Pérez Lancho, Senior Lecturer at the
Department of Computer Science and Automation of the University of
Salamanca, and Dr. Emilio S. Corchado Rodriguez, Senior Lecturer at the
Department of Computer Science and Automation of the University of
Salamanca

Salamanca, march 19", 2010.

The Supervisors, The graduate

Signed, Dr. Belén Pérez-Lancho Signed, Mr. Aitor Mata Conde
Senior Lecturer
University of Salamanca, Spain

Signed, Dr. Emilio S. Corchado
Senior Lecturer
University of Salamanca, Spain

w

"We can only see a short distance abead,

13

but we can see plenty there that needs to be done.

A. M. Turing

“Computing machinery and intelligence”

vi

ACKNOWLEDGEMENTS

inishing a work like this takes a lot of time and effort and |

have to thank many people. Despite any attempt to thank

everyone involved in the development of this investigation,
please forgive any unintentional omission.

I want to begin acknowledging my two supervisors, Belén and Emilio,
who have been a great help especially at the end of this complex process, their
perspective and compatible but different point of views have made it easier. |
also want to thank Professor Juan for his invaluable help from the beginning
and all through the process of the development of this PhD. thesis.

I have to remember Deanna here, for helping me with all that English
expressions and corrections in this document.

I also have to cite here Dante and Javi, for their help and advices to
easier face all the process and Fran and Sara for being helpful partners, sharing
problems, congresses and times.

Alfonso de Maruri must also be acknowledged, for being a great help
with the internal guidelines of an investigation of this kind, and for being a
constant help with the guidelines of my own life.

My parents and brother have been a helpful hand and table for

it

receiving and listening to me when tons of work accumulated over my
shoulders.

My family in law has also been there, specially my nephews that have
created a new expression: when somebody is concentrated doing anything or
fixedly regarding something, he or she is making the thesis.

Miro, my father in law, who left us during this process. His presence
has been an important companion in some difficult moments.

It is fair to remember here all the members of the Department of
Computer Science and Automation of the University of Salamanca. They gave
me, from the very beginning of my university studies, a complete spectre of
this science with its lights and shadows, but always exciting.

I also want to thank the company of a set of authors that have made
the fulfilment of this thesis easier. They have put light in the dark moments,
introducing external elements that have enriched the process. They are, in
almost chronologically order: Jaime Bayly [Bayly, 2005], Josep Maria
Gironella [Gironella, 1952], Frank McCourt [McCourt, 2006], Javier Reverte
[Reverte, 2006], Maria Luisa Prada [Prada, 2004], Ken Follett [Follett, 2007],
Muriel Barbery [Barbery, 2007], Jean Auel [Auel, 2005], Isabel Allende,
twice [Allende, 2005, , 2003], Marta Rivera de la Cruz [Rivera de la Cruz,
2009], Fernando Savater [Savater, 2008], Stieg Larsson, three times [Larsson,
2009b, , 2008, , 2009a], Mathias Malzieu, [Malzieu, 2009], Fernando Sanchez
Drag6 [Sanchez Drag6, 2009] and Lao Tse[Tse, 2007]. All these authors and
books have served as a varied counterpoint to all the information, data,
experiments, and results showed through this document. It is also necessary to
cite Silvio here, to make me remind teenage rhythms and Joel Fleischman,
Chris Stevens and all their neighbours, to show me again that other type of
daily life is possible.

And last but, of course, not least | want to specially thank Yolanda, for

being always there, her help and presence have made this possible.

vt

ABSTRACT

istributed environments represent a complex field in which

applied solutions should be flexible and include significant

adaptation capabilities. These environments are related to
problems where multiple users and devices may interact, and where simple
and local solutions could possibly generate good results, but may not be
effective with regards to use and interaction.

There are many techniques that can be employed to face this kind of
problems, from CORBA to multi-agent systems, passing by web-services and
SOA, among others. All those methodologies have their advantages and
disadvantages that are properly analyzed in this document, to finally explain
the new architecture presented as a solution for distributed environment
problems.

The new architecture for solving complex solutions in distributed
environments presented here is called OBaMADE: Organization Based
Multiagent Architecture for Distributed Environments. It is a multiagent
architecture based on the organizations of agents paradigm, where the agents
in the architecture are structured into organizations to improve their

organizational capabilities.

i

The reasoning power of the architecture is based on the Case-Based
Reasoning methodology, being implemented in an internal organization that
uses agents to create services to solve the external requests made by the users.

The OBaMADE architecture has been successfully applied to two
different case studies where its prediction capabilities have been properly
checked. Those case studies have showed optimistic results and, being
complex systems, have demonstrated the abstraction and generalizations
capabilities of the architecture.

Nevertheless OBaMADE is intended to be able to solve much other
kind of problems in distributed environments scenarios. It should be applied
to other varieties of situations and to other knowledge fields to fully develop

its potential.

RESVMEN

0s entornos distribuidos representan un campo de

conocimiento complejo en el que las soluciones a aplicar deben

ser flexibles y deben contar con gran capacidad de adaptacion.
Este tipo de entornos estd normalmente relacionado con problemas donde
varios usuarios y dispositivos entran en juego. Para solucionar dichos
problemas, pueden utilizarse sistemas locales que, aunque ofrezcan buenos
resultados en términos de calidad de los mismos, no son tan efectivos en
cuanto a la interaccidn y posibilidades de uso.

Existen multiples técnicas que pueden ser empleadas para resolver
este tipo de problemas, desde CORBA a sistemas multiagente, pasando por
servicios web y SOA, entre otros. Todas estas metodologias tienen sus
ventajas e inconvenientes, que se analizan en este documento, para explicar,
finalmente, la nueva arquitectura presentada como una solucién para los
problemas generados en entornos distribuidos.

La nueva arquitectura presentada aqui se llama OBaMADE, que es el
acronimo del inglés Organization Based Multiagent Architecture for
Distributed Environments (Arquitectura Multiagente Basada en

Organizaciones para Entornos Distribuidos). Se trata de una arquitectura

X1

multiagente basada en el paradigma de las organizaciones de agente, donde los
agentes que forman parte de la arquitectura se estructuran en organizaciones
para mejorar sus capacidades organizativas.

La capacidad de razonamiento de la arquitectura estd basada en la
metodologia de razonamiento basado en casos, que se ha implementado en una
de las organizaciones internas de la arquitectura por medio de agentes que
crean servicios que responden a las solicitudes externas de los usuarios.

La arquitectura OBaMADE se ha aplicado de forma exitosa a dos
casos de estudio diferentes, en los que se han demostrado sus capacidades
predictivas. Aplicando OBaMADE a estos casos de estudio se han obtenido
resultados esperanzadores y, al ser sistemas complejos, se han demostrado las
capacidades tanto de abstraccion como de generalizacion de la arquitectura
presentada.

Sin embargo, esta arquitectura esta disefiada para poder ser aplicada a
mas tipo de problemas de entornos distribuidos. Debe ser aplicada a mas
variadas situaciones y a otros campos de conocimiento para desarrollar

completamente el potencial de esta arquitectura.

X

TABLE OF CONTENTS

ACKNOWILEDGEMENTS ..utiitieitieieesieenieesitesieesite st et eeeeeeeseeesbeesbeesbeesseesneas vii
ABSTRACT eiteetieitienttenite ettt et st e et e et e e bt e bt e bt e bt e sbeesbeesheesaeesasesabesateeteenbeenseens iX
REESV MEN -tittettesttestte sttt sttt ettt et b e bt e bt e s b e e sbeesheesatesate st e eateeateenteeneeens Xi
TABLE OF CONTENTS ..utiiuiieteeteete et ete e it este e bt e sbeesieesaeesbeesaeesaeesaeesasesaneeaees xiii
LIST OF FEGVRES tioiieeciiieiiieiieerieeesteeesteesteesteessaeeesnteesseeesaeesnsessnsessnsenenns XXi
LEST OF TABLES uiiiitiieeieeeiieeitteeciteeeeteeetreestteesteestaeesaseesasaesnbaeensaeesaseeensenan XXV
LiST OF ALGORITHMS . ciiiiierieerieerieeniienieenieeseeseesieesnessesasesssessesssesnsesssenns XXVii
f. INTRODVCTION couiieiiieiiietiieieieeeete ettt se st sae e sens 1
1.1. HYPOTHESIS OF WORK AND MAIN OBJECTIVES.....ccccovveevreerrrennnenn 3
1.2, METHODOLOGY .cooctiiiiiiiiniiienieesieeenieeeseeesseessseeessseessseesssesssseessseenns 4
1.3, THESIS STRUCTURE ...cuttiitteeteeesteeeseteesteesteessseeessseessseessesssssessseesns 7
2. DiSTRIBVTED ENVIRONMENTS ..oeoeriiieriiierieenireresree e e esneee e 11
2.1, PROBLEM DEFINITION ...cttiittiiieenieenieesnireesieesieessieesnareesvessveeenens 13
2.1.1. DISTRIBUTED SYSTEMS’ MAIN FEATURES.....ccoveieeieiie e 13
2.1.2. MAIN ISSUES HANDLED BY DISTRIBUTED SYSTEMScccvvrierniiennenne 14
2.1.3. DISTRIBUTED COMPUTING TECHNOLOGIES......cccvteeeirraeenieesneenneenns 16

2.2, CORBA ... et 17
2.2.1. THE OBJECT MANAGEMENT ARCHITECTURE (OMA) ..o 20

Xt

2.2.2. CORBA APPLICATIONS AND INTEREST FIELDS.......ccccovviiiiiiiiiiiininns 23
2.3, SO e e et 25
2.3.1. DEFINITION OF SOA ..ottt 26
2.3.2. LOOSE COUPLING.....coiviiiiiiieiieiiire sttt sre st 31
2.3.3. STATE AND STATELESSNESS.....vtivirtiieieteeeereniesresresiesieseeie s snesesanens 32
2.3.4. SERVICE-ORIENTED ARCHITECTURE (SOA) MODELcccvvvviiiennns 35
2.3.5. BUSINESS ROLEScuviiiiiiiisiinin s 36
2.4, WEB SERVICESuttiiecctiee ettt ettt e e e tte e e e eirae e s e irae e e nree e s sanaeeeeenreas 38
24.1. DEFINITION L.oiiiiiiiie st 39
24.2. WEB SERVICES PROBLEMS.........ciiiviniiiiieiieiiire e 43
24.2.1. SECURITY PROBLEMScouviuriiiiiriniisiisieseere s 43
24.2.2. COMPOSITION PROBLEMS.......ueiviiiiiiieiisieiesie s 45
2.4.2.3. SEMANTIC PROBLEMS.....coviiiiiiiriniisiisiieeeie s 46
2.5. GRID COMPUTING ...cutiieectieeeeeieeeeeciteeeeetteeeestaeessstteeesesseseesensanaesnns 48
2.5.1. INTERFACES TO LOCAL CONTROL ..vcuvviieiieiirenie s 49
2.5.2. CONNECTIVITY: COMMUNICATING EASILY AND SECURELYc.... 51
2.5.3. RESOURCE: SHARING SINGLE RESOURCEScccuviiiieieiineniesreninns 53
2.5.4. COLLECTIVE: COORDINATING MULTIPLE RESOURCES..........ccccvriinine 54
2.5.5. APPLICATIONS. ...ttt ittt st 57
2.5.6. CURRENT DEVELOPMENTS AND LIMITATIONScovvivieiiniieieniiiresinsnns 59
2.6. AGENTS AND MULTIAGENT SYSTEMS ..oeiiiitieeeeieeeeettee e eeteee e 61
2.6.1. MULTI-AGENT SYSTEMS ..oviivieiiresie sttt 62
2.7. SUMMARY AND CONCLUSIONS ...cccoovveeeetreeeeerrereeerreeeessneeeesnneneens 65
3. AGENTS AND M VLTIAGENT SYSTEMS .eovtirierienierienierienieeeenee s 69
3.1. AGENTS THEORY ..ettiieeitee e ettteeeettee e e tte e e eetae e e arae e s enrae e e enaeeeeenres 70
3.1.1 AGENT ATTRIBUTES ...ttt sresie st 75
3.1.1.1 SITUATEDNESS ... tttttietieneerestesre st snesn et nnesn e anens 75
3.1.1.2. AUTONOMY Lottt 76
3.1.13. FLEXIBILITY AND ADAPTABILITY ...vvviiviiiinieie e 78

X7V

3.1.1.4. Y0101 1= [1 SRR 80

3.1.2. AGENT ARCHITECTURESevverieiesneesie e 82
3.1.3. APPLICABILITY OF AGENTSvvviieierreesie s 84
3.2. MULTIAGENT SYSTEMS ..ciiiiiiiieeiiteeecrreeesiree e seitee e svree s savee e e 87
3.2.1. AGENT SOCIETIES. ..cuvtiviiiiiiieiie it sre e st 88
3.2.2. COORDINATION IN MULTIAGENT SYSTEMScovviiviiiiiiinieie s 93
3.2.3. COMMUNICATION. ...cuiiiiiiiie it 95
3.3. SUMMARY AND CONCLUSIONS ...ccceiuviieeeiieeeeeireeeeerreeeesnveeeesaneeeeas 98
ORGANIZATIONS OF AGENTS ..cociiiiiiiiiiiiiiic i 101
4.1. CONCEPT OF ORGANIZATIONvvvieeirreeeeiireeeeereeeeeitreeeessnreeesenenas 104
4.1.1. HUMAN ORGANIZATIONSooviiviiiiiiieie i 104
41.2. ORGANIZATIONS OF AGENTScvveiiireeeienrereeiesreseeiesnereeiesreseenenneneas 106
4.2. ORGANIZATION FACTORS ..veiiiiiieeeeiieeeeciveeeecireeessirreeesnseeeesavnee s 108
42.1. STRUCTURE ...ttt 109
4.2.2. FUNCTIONALITY Lottt 111
4.2.3. COORDINATION ...ttt e 113
4.24. SYSTEM DYNAMICS ...t 114
4.25. ENVIRONMENT L.viiiiiiiiii s s 115
4.3. SUMMARY AND CONCLUSIONSceeiuiieeeiireeeeirieeeeireeeeeireeeeeaveeas 116
THE OBAMADE ARCHITECTVRE .oceiiiiiiiiiiiiiiiccccecc s 119

5.1. ARCHITECTURE DESCRIPTION.....cciiitttrteeeeeeeetrreeeeeeeesirnreeeeeeeenns 121
5.2. INTERFACE AGENTS ORGANIZATION ...cceeevieeeeiieeeeeiieeeeeveee e e 127
5.3. COMMUNICATION ORGANIZATION ...uvereeiireeeeeiieeeeereeeeeeireeeeennns 129
5.4. CBR SERVICES ORGANIZATION ...ccciuvteeecireeeecrieeeeireeesenveeeenavenas 133
54.1. ORGANIZING THE CASE BASE......cccviiiiiiiiiiireesee e 135
5.4.2. DATA ENTRANCE AGENTviviivieiiiieie s s 140
5.4.3. SOLUTION REQUEST AGENT ..iiiiiiiiiittiiiiie e s ieiiitiees s e s ssssibesseeessssnnns 141
5.4.4. REVISION AGENTcviiiiiiiii i s 143
5.5. ADDITIONAL SERVICES ORGANIZATIONcvvieeeerieeeeciieeeeecieeee e 144

XV

5.6. APPLICATIONSeiiuvieiieeeieeestteesteesteeeteeesseeesnsessseeesseessssesssessnses 145

5.6.1. PREDICTION GENERATIONcciitiuiiiiiiiie it sre s s 146
5.6.2. CLASSIFICATION AND CLUSTERING ...cvvevviieriisrcnie s 147
5.6.3. PLANNING ...ttt s 148

5.7 SUMMARY AND CONCLUSIONScccereetrnririereesneeeeseeseeeeessesseenes 149
6. APPLICATION ~ CASE STVDIES .ciiiiiiiiiiiiiiiicseeec e 153
6.1. OIL SPILL PREDICTIONerutitetinuteiesiestteie e siteneesiesaeeneesiesaseneesees 154
6.1.1. PROBLEM DESCRIPTIONviiviiiiiiieiiiieie e 155
6.1.1.1. DETECTIONciiiiiiiiiie i 158
6.1.1.2. RESPONSEoitiiiiiiiie it s 159
6.1.1.3. FORECASTINGocviiiiiiiii st 160
6.1.2. DATA USED AND APPLICATION OF OBAMADEccccoovneiinne. 160
6.1.3. RESULTS 1.ttt 163

6.2. FIRE PROPAGATION PREDICTIONeetertiniirienienieeiesiesieeeesiesieene 169
6.2.1. PROBLEM DESCRIPTIONciiviiiiiiiiiiiieie et 169
6.2.1.1. DETECTION ...ttt 170
6.2.1.2. PREDICTION ..ottt s 171
6.2.1.3. MODELS AND SYSTEMS....ccviiiiiviiiiiieie i 172
6.2.2. DATA USED AND APPLICATION OF OBAMADE ..o 173
6.2.3. RESULTS 1.ttt 174

6.3. SUMMARY AND CONCLUSIONScceruieiinierienienieeiesiesieeeesieseeens 178
7. ARCHITECTVRE EVALVATION AND CONCLVSiONS ...covverreennene 181
7.1. THEORETICAL MODEL EVALUATIONcceecteiiriirieriesieeeeie e 183
7.2, MODEL ANALYSISiiitiiirieetenienieete st sieete e it et st eee e saeesae e 185
7.3, CONCLUSIONS ...coutirieeiieieeteeeeiesteeeeseeseeeneentestesneensesneseessesneensenees 188
T4, FUTURE WORKooiiieieiisiieeeieseeetestesteessesiestesssensesnessessesseessesees 190
REFERENCES .ecutteiteitesiienieesitesiee sttt st st s st sre st sn e sn e sr e re e neesneesmeesns 193
APPENDIX A. CORBA ..o, 231
AL ORB CORE....oiuiiieiieietertt ettt see ettt eee s saeseeeneesesseeneenes 232

XVl

A.2. OMG INTERFACE DEFINITION LANGUAGE (OMG IDL)ccuveuene 234

A.3. LANGUAGE MAPPINGScttiieectiie e et e ectteeeeeteeeeeeitreeesareeeeeraeaaeans 235
A.4. INTERFACE REPOSITORYuttiiiiiiieeeiiieeeeitieeeeeiteeesstreeesnreeesssseesenns 236
A.5. STUBS AND SKELETONScutiiiiiiiieeeeieeeeeeireeeeetreeeeearaeeesareeeesssseeaenns 238
A.6. DYNAMIC INVOCATION AND DISPATCHcvvveeeiiieeeciieeeeciiee e 239
A.6.1. DYNAMIC INVOCATION INTERFACEcoiviiiiiiieiieieie s 239
A.6.2. DYNAMIC SKELETON INTERFACEocviiiiiiiiiiiiis i s 240
A.7. OBIECT ADAPTERSuttiiiieitieeeeeiteeeeeiteeeeeiteeeeeetaeeesesteeeesseseesessaeaesans 241
A.8. INTER-ORB PROTOCOLSuvvtieetrieeereeeeeireeeeetreeeeereeeeeereeeeeenveeeenns 243
APPENDiX B. TAXONOMY OF ORGANIZATIONS .c.ovcvvrrerrieieeieeieenieennens 245
B.1. HIERARCHIES ...ttt eetteee ettt e ettt e e ettt e e et e e e satae e e enaa e e eesaaeeennaeaaan 246
B.1.1. CHARACTERISTICS....cttterttirestesieesressisresiesresie e esse e s snesne s esneseesnennesneas 248
B.1.2. FORMATIONutiiiiiiiiiri ittt bbbt sre 249
B.2. HOLARCHIES ...ttt ettt e st e e ara e e naee e 251
B.2.1. CHARACTERISTICS. ..cviteeeiesrereeiesreseeiesneseesesneseesesneseesesne s sneseenesneseenesne e 254
B.2.2. FORMATIONctiteietiirereeiesre ettt sttt nne e 254
B.3. COALITIONS ...vvtieitreeeeetreeeeeteeeeeetreeeeeetreeeessaeeeestseeseenssseeessseeeennnseeenn 256
B.3.1. CHARACTERISTICS....ctiitiitiitiniisiieiie it s 257
B.3.2. FORMATIONuiiiiiiiiiiiii ittt 258
B4, TEAMS ..ottt ettt et 261
B.4.1. CHARACTERISTICS....cutitiitiirisiisiieiie ittt sre s sre st sneas 262
B.4.2. FORMATIONctiuiiiiiiiiri ittt sre 263
B.5. CONGREGATIONSciiiittiteeeiteeeectteeeeeteeeeeetreeeestreeeeeasseeeeasseeeeenseeann 267
B.5.1. CHARACTERISTICS. ...eiveeeierrereetesreseeiesrereeiesreseesesneseesesre et sneseenesneseenesne e 269
B.5.2. FORMATIONctitiiiieiitirie sttt sttt sr e 270
B.6. SOCIETIES ...utveiieetreeeeetree ettt ettt e eetre e e eeraeeeestareeeesseeeenntseeeennnreeenn 273
B.6.1. CHARACTERISTICS....cviitiitiitiniiiiieiie it s s 274
B.6.2. FORMATIONciiiiiiiiiiiii it e 276
B.7. FEDERATIONS ...cocttiieeitiieeeeiteeeecitteeesitteeeessaeeessnsaeeessssesesnsseeesnnnseeann 279

B.7. 1. CHARACTERISTICS. cutttriiiieeiieiitrieieeesssiitbreeeeessssiabbeseeesesssabbsbasssesssessnsrenes 280

B.7.2. FORMATIONctitiietiirereeiesre ettt e nne e 281
B.8. MARKETS ...ttt ettt ettt sttt sbe et st sbe e 283
B.8.1. CHARACTERISTICS....cuiiviitiiriniiiiieiie it stesre s sre e snea 286
B.8.2. FORMATIONctiuiiiiiiiiri ittt 288
B.9. MATRIX ORGANIZATIONS......uttieeiuiiieeeiireeeeeiteeeesirreeeeenseeesssseeessnseeeas 290
B.9.1. CHARACTERISTICS....c.vttirtiarentesieesressissestearesie s esee s snssresne e e snennesneas 291
B.0.2. FORMATIONctiiiiiiiiireite sttt bt snea 292
B.10. COMPOUND ORGANIZATIONSvvteeeireeeeeerrreeeirrereesrreeenisreeeennnenes 294
B.10.1. CHARACTERISTICS.....veeeteireeerenrereeiesreseesesneseesesneseesesreseesesneseesesneseesesnenea 295
B.10.2. EXAMPLE COMPOUND ORGANIZATIONS......cveiirereerenrereeresrereeresreesnenneneas 296
B.11. OTHER ORGANIZATIONAL TYPES...cciicttieeiiieeeecireeeereeeeeireeeeeveeas 298
APPENDiX C. CASE~BASED REASONING .cceeveeniieniienierienieeeeeeeeeeeees 303
C.1. CASE-BASED REASONING AS A PROBLEM SOLVING APPROACH....... 306
C.2. CASE DEFINITION AND CASE BASE CREATIONcccevcuvieeeiireeesiiieeeenns 307
C.3. RECOVERING DATA FROM THE CASE BASEovvieitiieeeieeee e, 311
C.4. ADAPTATION OF THE RETRIEVED CASESocoeetveieeirreeeeereeeeeetveeeenns 313
C.5. REVIEW OF THE PROPOSED SOLUTIONcuttiietiieeeiiereeecireeeeereeeeennns 316
C.6. RETAIN OF THE SOLUTION AND CASE BASE MAINTENANCE 317

C.7.1. ARTIFICIAL NEURAL NETWORKcvtiviiviniiiiieiieriiirenie s snens 320
C.7.2. RULE-BASED EXPERT SYSTEMS ...c.vtiviivisiiniieieieiire s sneas 321
C.7.3. MODEL BASED SYSTEMScoviuviiiiiriniiirisisiieie e 322
APPENDiX D. RESVMEN DE LA INVESTIGACION c.eoveeveeiriirierieieieieeinne 325
D.1. OBIETIVOS FUNDAMENTALESuttiieectieeceireee ettt e ecreee e areee e 326
D.2. ENTORNOS DISTRIBUIDOSceeecitiiieeiiireeeiireeesitrreeesaseeeensnesesssnees 328
D.2.1.CARACTERISTICAS FUNDAMENTALES.coiiviiiiniiie i 328
D.2.2.VENTAJAS Y DESVENTAJASoviviiiiiiiisiise i 331

D.3. AGENTES, SISTEMAS MULTIAGENTE Y ORGANIZACIONES 332

xvii

D.3.1. SISTEMAS MULTIFAGENTE .uuttiiiieiiiiiiiiieiee e ssiitieeeee s s s s saibssesesessssassssssssessns 335
D.3.2. METODOLOGIAS MULTI-AGENTE ORIENTADAS A LAS ORGANIZACIONES....... 337

D4. ARQUITECTURA BASADA EN ORGANIZACIONES PARA ENTORNOS

DISTRIBUIDOSuttvtiieeeieiiiirieeeeeeeieiireeeeesesesisssseessessesssrssesssessssssssssseesenans 339
D.4.1. ELEMENTOS FUNDAMENTALEScviiireiarinreeeresreesre s 339
D.4.2. RAZONAMIENTO BASADO EN CASOS........covivinreiaiinrereniesreesesre e 340
D.4.3. CAMPOS DE APLICACION DE OBAMADEccooiiiiieieeeeeeeeeeee 344

D5. RESULTADOS ...c.eiuteuiiiieitenieniesitente sttt st st este st sbeetesbesbeeneesaesaeeneenee 346
D.5.1. MAREAS NEGRASooitiiiiiiiiiiiis i 346
D.5.2. INCENDIOS FORESTALESccuiiiiiiiieitiirisie s 351

D6. CONCLUSIONES Y TRABAJO FUTUROueiieiiieeeiiee et 353

XX

XX

LiST OF FiGVRES

Figure 1. OMA Reference Model Interface Categories.cccoovevvevverreereenenne. 20
Figure 2. OMA Reference Model Interface Usage.cccoceevvevereeceevenneenennn. 22
Figure 3. Basic Service-Oriented ArchiteCture..........cceccevvveeveniceeceseeeenen, 26
Figure 4.Components of basic Service-Oriented Architecture. 27
Figure 5. Service interaction in a service-oriented environment.................... 30
Figure 6. A multi-step client/service interaction...........cccoceeveevevveceevesennennn, 34
Figure 7. The SOA MOGEL.......ccveieiieieeeee et 36

Figure 8. The layered Grid architecture and its relationship to the Internet
ProtoCol arChiteCUNE.ocvieieeceee e 49

Figure 9. Collective and Resource layer protocolos, service, APIs and SDKs.

.. 57
Figure 10. Software development kits (SDKs) implement specific APIs......... 58
Figure 11. Agent SKEIEON.cceeeeveeieciecece e 74
Figure 12. The BDI agent model.c.cocoveveeveeienneeceecee e 84

X7

Figure 13. OBaMADE framework.ccccecervrieriereneerese e 122

Figure 14. OBaMADE basiC SChemMa.ccccevereerierenieese e 125
Figure 15. OBaMADE basic information flow.ccccooceieninieienineens 126
Figure 16. Interface Organization activity.ccccceeeeeveneeieneneeere s 127
Figure 17. Communication Organization SChema.ccoccevveeevnrercennnns 130
Figure 18. Communication Organization dataflow.ccceeveeevvrercennnne 133
Figure 19. CBR Services Organization dataflow............ccceeevervevenencennnns 134

Figure 20. SAR image of the north west of Spain, showing oil spills near the
COASLAL ZONES. ...vvtiniieieic ettt 156

Figure 21. Comparison of the efficiency of the results of a basic neural
network (RBF), the evolution of that basic network (GRBF)..........c.ccceueu.... 165

Figure 22. Comparison of the recovery time of a basic CBR and that of
OBAMADEttt 166

Figure 23. Comparison of the case base size of a basic CBR and that of
OBAMADE. ...ttt bttt 166

Figure 24. Comparison of the efficiency of the results of a basic neural
network (RBF), a basic CBR and OBaMADE.ccccceeererieneerereeeens 167

Figure 25. Comparison of the efficiency of the results of a basic neural
network (RBF), a basic CBR and OBaMADE, applied to the forest fires case
SEUTY. .ttt sttt b ettt et b et 175

Figure 26. Comparison of the case base size of a basic CBR and that of
OBaMADE, applied to the forest fires case StUAY........ccceeeeerirerciereneeiennn. 175

Figure 27. Comparison of the recovery time of a basic CBR and that of
OBaMADE, applied to the forest fires case StUdy.........ccceeveevieeeceereseenenne. 176

XX7L

Figure 28. Comparison of the efficiency of the results of a basic neural
network (RBF), the evolution of that basic network (GRBF), applied to the
TOrest fireS CaSe StUAY.......coerererieieieieriesesee et 177

Figure 29. Comparison of the results obtained predicting in the two case
SEUTIES. .ttt 179

Figure 30. Graphical comparison between OBaMADE and other
architectural MOGEIS.covevuieiieceecececee e e 184

Figure 31. Time needed to solve the requests by just one service or by five
SErVICes SIMUIANEOUSIY........ocveeieiieeeeee e 186

Figure 32. Number of crashes produced using one and five instances of the

SErVICeS and the AgENTS.ccecveeieriieecere et 187
Figure 33. OBAMADE 10g0.ccieiieieeiiriieeetesieeeee st 189
Figure 34. Common Object Request Broker Architecture.ccccceeveuvennnne 232
Figure 35. Role of an Object Adapter.........coecveveeveeveereeseecee e 242
Figure 36. Hierarchical organization...........cccceccveveevieenieenieesieeseeseeseesenens 247
Figure 37. Holarchical organization.cccceeoveveevieinieeseeseeseeceeseesenens 252
Figure 38. Coalition-based organization...........c.ccceceeveeevveeecresciescecceeieenenn 256
Figure 39. Team-based organization..........cccocceevveveeveenieeseeseeseeceesee s 262
Figure 40. Congregations of agents.ccccveveeveereevieenie e seee e 268
Figure 41. An @gent SOCIELY.cccveveereerierie et e e aeeseeeseeens 274
Figure 42. An agent federation.ccoecvevveeviencenceeceee e 279
Figure 43. A multi-agent marketplace.ccccvevveevieevieenee e 284
Figure 44. A multi-agent matrix organization.ccceevevveeveeveeveeseeennnn, 291
Figure 45. A multi-agent compound organization...........cccccceeveeveeveeneeennen. 294

XX7IE

Figure 46. Case-Based Reasoning basic StruCture.ccecceveeeevervncennnns 304
Figura 47. Esquema basico de las organizaciones de OBaMADE............... 340
Figura 48. Ciclo basico del Razonamiento Basado en Casos.c........ 343

Figura 49. Imagen de satélite de manchas originadas en el accidente del
o = (o= SU 347

Figura 50. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de 1as Mareas NEgras.coceverererreeeenereneeeee e 350

Figura 51. Imagen de los experimentos llevados a cabo en Gestosa, Portugal.

Figura 52. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de 1os incendios forestales.cccevvveeverieeeseseeese e 352

XY

LiST OF TABLES

Table 1. Variables used in the oil spill problem.c.ccccoevveviiiiiiieieees 161

Table 2. Percentage of good predictions obtained with different techniques —

Ol SPIlT PrOBIEM. ... 168
Table 3. Multiple comparison procedure among different techniques. 169
Table 4. Variables used in the forest fire problem..........cccccevvninenenee. 174

Table 5. Percentage of good predictions obtained with different techniques —
FOrest fires Problem.ooe e e 178

Table 6. Advantages and disadvantages of the OBaMADE architecture. 188

XXV

XXVL

LiST OF ALGORiTHMS

Algorithm 1. Weighted Voting Superposition (WeVo0S).c.ccceeveverveeennnne. 138
Algorithm 2 . Growing Radial Basis Function pseudocode.............cccuee..... 142
Algorithm 3. Explanations pseudocode.ccccevereecienineeciereseeece e 144

XXVIE

XXV

“Wisdom begins in wonder.” Socrates

1. INTRODVCTiON

This chapter briefly introduces the concepts treated in the
remainder of the document. The main problems solved and
the ways they are faced are explained first, allowing for a
concise description of the elements that make result in the
final solution proposed in this thesis. The methodology
carried ont all through the development of this document is
also explained here. Finally, the structure of the whole
document is also presented.

istributed environments represent complex situations where

multiple parameters are involved and where a series of

different elements may interact. Those elements can be from

the different persons implicated in the environment (that will be the users in a

computer system) to the diverse external elements that must be taken into

account when facing situations like those represented by distributed
environments.

Artificial intelligence (Al) [Turing, 1950] have solved distributed

problems applying its abilities and capabilities in different ways [Moulin and

Chaib-Draa, 1996]. Various kinds of distributed systems operate today, each

aimed at solving different kinds of problems. The challenges faced in building

Onganization Based Multiagent Architecture For Distributed Environments

a distributed system vary depending on the requirements of the system. In

general, however, most systems will need to handle the following issues
[Coulouris et al., 2005, Van Steen and Tanenbaum, 2002].

Various entities in the system must be able to interoperate with one
another, despite differences in hardware architectures, operating
systems, communication protocols, programming languages, software
interfaces, security models, and data formats.

The entire system should appear as a single unit and the complexity
and interactions between the components should be typically hidden
from the end user.

Failure of one or more components should not bring down the entire
system, and should be isolated.

Scalability. The system should work efficiently with increasing
number of users and addition of a resource should enhance the
performance of the system.

Concurrency. Shared access to resources should be made possible.
Openness and Extensibility. Interfaces should be cleanly separated and
publicly available to enable easy extensions to existing components
and add new components.

It is also important to allow the movement of tasks within a system
without affecting the operation of users or applications, and distribute
load among available resources for improving performance.

Security. Access to resources should be secured to ensure only known
users are able to perform allowed operations.

In this PhD Thesis document a new architecture to solve problems

related with distributed environments is presented. It is called OBaMADE:

Organization Based Multiagent Architecture for Distributed Environments. It

is a multiagent architecture that is based on the organizations of agents

Chapter 1. Introduction

paradigm and that employs the Case-Based Reasoning (CBR) methodology

[Watson and Marir, 1994] as the solution generation core.

1.1. HYPOTHESIS OF WORK AND MAIN
OBJECTIVES

The fundamental hypothesis of this study is to develop an architecture
to solve problems related with distributed environments. The architecture
should face those problems offering different interfaces to different users with
different devices in a transparent way. The architecture has to be based in
organizations of agents. The agents that make those organizations must be
designed as dynamic agents. The agents being part of the inner organizations,
which are in charge of the generation of the solutions, should incorporate
reasoning mechanisms based on the Case-Based Reasoning methodology.
That methodology is based in the reuse of past information, adapting past
solutions given to solve past problems to solve new problems arriving to the
architecture. The solutions given to past problems are stored in the system
related with the problems solved by those solutions.

To achieve the main hypothesis of this work it is necessary to analyze
the state of the art of the distributed environments and its possible solutions, as
well as agents and multi-agent systems (MAS) and organizations of agents.
The main specific objectives that underlie the development of this architecture
are:

— Make a study of the existing methodologies and technologies used to
solve problems related with the distributed environments.

— Study the different approaches related with agents, multi-agent
systems and organizations of agents and their evolutions, to properly
choose the most appropriate one to be applied to this specific

architecture.

Onganization Based Multiagent Architecture For Distributed Environments

— Apply the organization of agents theory to solve the distributed
environment problem proposing an architecture that could be applied
to solve different kind of problems in that kind of environments.

— Theoretically compare the advantages and disadvantages of the
proposed architecture with the existing techniques and methodologies.

— Apply the presented architecture to real-life case studies, adapting the
architecture to the problems by developing a prototype that could
generate application results.

— Empirically evaluate the results obtained after applying the prototypes
created based on the architecture to real-life environments, and
comparing the results obtained with other existing techniques.

It is important to point out that the architecture generated in the
investigation presented in this PhD. thesis is not only intended to solve the
kinds of problems presented in the results section (natural distributed
environments). The presented architecture is aimed at being able to adapt itself
to different kinds of problems whose common characteristic is the existence of

an underlying distributed environment.
1.2. METHODOLOGY

The investigation process followed in this PhD thesis uses the
ActionResearch methodology. In this methodology the problem is first
identified and then a hypothesis is proposed so that any further development
will be based on that hypothesis. After the proposal, a compilation,
organization and analysis of information is carried out, continuing with the
design of a proposal focused to solve the problem. Finally, the conclusions are
generated, after evaluating the results of the investigation. Six different
activities were defined to follow this investigation model. They are necessary
in order to achieve the objectives proposed.

First, the problem to be solved and its main characteristics should be

Chapter 1. Introduction

defined. This activity consists of the presentation of the problem, defining its
characteristics and proposing a hypothesis to solve the problem totally or
partially. The main objectives needed to solve the problem are also identified
here. In this occasion the main objective is to design and construct an
architecture to face distributed environment situations. The creation of an
architecture of that type implies the analysis of the typical situations that will
face. That analysis has implied the understanding of the inner characteristics
of the distributed environments, which has helped to design the architecture
presented here.

There should be an actualization and complete revision of the state of
the art. The main areas, technologies and developments related with the
present investigation are analyzed and the mayor developments in each of
them are compiled. The state of the art is constantly revised, increasing the
amount of information stored and considered. A theoretical layout is obtained
that may enhance the knowledge and improve the development process.
Focusing on distributed environments, in this investigation it has been
necessary to analyze the different methodologies and technologies currently
used to solve problems occurred in distributed environments. Once the
organizations of agents theory was chosen as the one to be applied in the final
design of the architecture, all the theory and applications of the agents, multi-
agents systems and organizations of agents were analyzed.

The proposal should be gradually and iteratively designed and
developed. Taking into account the information obtained in the previous
activities, a model is designed and developed. That model integrates the
components needed to generate a useful and innovative solution to the
proposed problem. The solutions should achieve the objectives previously
indicated. The architecture presented in this document has evolved from a
simple local application, which could solve distributed problems in a quite

restricted way, to a complex architecture formed by different organizations of

5

Onganization Based Multiagent Architecture For Distributed Environments

agents that collaborate to achieve a common aim, working together and
exchanging information.

Incremental prototype systems should be created to experiment and
implement the proposed solution. The functionalities, components, behaviours
and interactions are formalized. Prototypes are developed to be implemented
in specific application scenarios, within the scope of the problem,
experimenting with those prototypes to obtain result data that will help to
evaluate the proposed solution. The OBaMADE architecture has been applied
to two different case studies. First, the oil spill problem where the architecture
has been adapted to generate predictions of the situation of a specific oceanic
area after an oil spill. Once the architecture demonstrated its validity applied
to that problem, a second case study was chosen, applying the architecture to
the case of the forest fires evolution prediction. In this occasion the
architecture should forecast the situation of a forest area once a fire was
nearby started.

The results achieved with the proposed solution must be analyzed and
conclusions regarding those results must be formulated. A thorough analysis
is done of the results obtained, evaluating the evolution of the outcomes
through the development of the investigation. Conclusions are formulated,
based on the initial hypothesis and the objectives achieved. The presented
architecture has generated optimistic results after being applied to the two case
studies cited before. In both situations, using historical data, the architecture
has been able of generating precise and accurate predictions of the evolution
of the oil slicks produced after an oil spill and of the fires in a forest
environment.

The knowledge achieved, and also the results and experiences
obtained should be constantly disseminated. This activity consists on the
publication of contributions in journals, presentation of papers in conferences

and workshops, revealing the advances and partial results of the investigation,

6

Chapter 1. Introduction

as well as the experience acquired through the development process. From the
first steps of the investigation, where the designed architecture could face
problems in distributed environments being a local software, it has been
published both in journals [Mata and Corchado, 2009, Baruque et al., 2010,
Corchado et al., 2010] and in different workshops and conferences[Corchado
and Mata, 2008, Mata et al., 2009], evolving to the final state presented in this

document.
1.3. THESIS STRUCTURE

This document begins with the introduction, where the main elements
covered by this thesis are briefly initiated. In this introduction, the main
objectives and the central hypothesis of this work are briefly described. After
introducing the main elements of the investigation, it is necessary to develop
them, which is done following the structure explained next.

The architecture presented here is designed to work in distributed
environments, so the first analysis done in this document was about the
existing technologies applied to that kind of environments. This analysis is
done in the second chapter, where the description of the distributed
environments is presented, detailing the main features and the issues usually
handled to face the problems originated in such environments. Then, the most
important technologies applied to the distributed systems are explained. These
include the following: CORBA, SOA, web services, grid computing and
MAS.

To face the distributed environments, the architecture designed in this
thesis uses organizations of agents, which are an evolution of the multi-agent
systems focused on the organizational capabilities of those systems. So, prior
to present the characteristics of the organizations of agents, the multi-agent
systems where introduced in the third chapter. The explanation begins with

the description of the concept of an agent and its attributes, followed by the

7

Onganization Based Multiagent Architecture For Distributed Environments

main characteristics of the multiagent systems and the agent societies, and
ending with the coordination and communication of the multiagent systems.

As cited before, organizations of agents have been chosen to structure
the architecture created through this PhD investigation. After explaining
agents and multi-agent systems in the third chapter, the organizations of agents
are exposed in the fourth chapter. Organizations of agents are a specific type
of multi-agent system, where the agents forming part of the system follow a
particular structure. The organizations of agents are based on human
organizations, which are also explained at the beginning of this chapter. The
main characteristics of the organizations are then described. Finally, the main
types of organizations and their complete characteristics are specified in one
of the appendixes: hierarchies, holarchies, coalitions, teams, congregations,
societies, federations, markets, matrices and compound organizations.

Once introduced the main technologies used to solve distributed
environments situations, and the ones used to design the architecture presented
in this document, it is time to explain it, OBaMADE, which is done in the fifth
chapter of this document. First, the main structure, composed of an interface
organization, a communication organization and two service organizations is
described. Then, the implemented reasoning services are detailed. Those
services follow a CBR methodology in order to solve the problems to be faced
with this architecture.

After explaining the main elements of the OBaMADE architecture it is
necessary to check it, what is done in the sixth chapter. The OBaMADE
architecture is applied to two different case studies. The first one is the oil spill
problem, where there are different sources of information and different kinds
of users that may interact with the system. The second case study is the
application of the architecture to forest fires evolution prediction. This second
use of the architecture is also dynamic and distributed with the involvement of

different people. The forest fires problem serves as standard against which the

8

Chapter 1. Introduction

correction of the architecture is measured.

Finally, the model presented in this document is theoretically
evaluated and both the final conclusions and future work are explained in the
seventh chapter, presenting the conclusions and final analysis of the
architecture as well as the intention for future work to be done based on the
architecture developed.

Following the evolution of this document, a complete set of references
walk alongside the different explanations done through the document. Those
references are compiled after the conclusions and future work, in the
references section. An important effort was required to compile such a vast
selection of references (almost five hundred of them) related to the different
parts of this document.

Finally, the appendixes have been included. They cover some
technical explanations that could not be included in the main document. The
first appendix is dedicated to explain the main elements and features of
CORBA, one of the distributed environments techniques used for comparison
with the OBaMADE architecture. The appendix B deeply explains the
taxonomy of organizations which are the inspiration for the structure of the
OBaMADE architecture. The third appendix is in charge of a complete
explanation of the CBR methodology, which is used by OBaMADE to
implements its internal solution generation services. The final appendix is a

complete resume of the document in Spanish language.

”Nothing is particularly hard if you divide it into small jobs.” Henry Ford

2. DiSTRiBVTED
ENViR ONMENTS

The architecture presented in this thesis mainly covers
Sitnations genmerated in distributed dynamic environments.
In this chapter, the main characteristics of those systems
are explained, as long as the existing solutions to face
distributed environments, in the different possible situations
that cover those kinds of environments. Finally, the main
characteristics chosen to design the architecture presented in

this thesis are exposed.

everal definitions and different points of view exist on what
distributed systems are. Coulouris defines a distributed system
as “a system in which hardware or software components
located at networked computers communicate and coordinate their actions
only by message passing” [Coulouris et al., 2005]; and Tanenbaum defines it
as “A collection of independent computers that appear to the users of the
system as a single computer” [Van Steen and Tanenbaum, 2002]. Leslie
Lamport — a famous researcher on timing, message ordering, and clock

synchronization in distributed systems — once said that ““a distributed system is

11

Onganization Based Multiagent Architecture For Distributed Environments

one on which I cannot get any work done because some machine | have never
heard of has crashed* reflecting on the huge number of challenges faced by
distributed system designers. Despite these challenges, the benefits of
distributed systems and applications are many, making it worthwhile to
pursue.

Various types of distributed systems and applications have been
developed and are being used extensively in the real world. Here, the main
characteristics of distributed systems are presented and look at some of the
challenges that are faced by designers and implementers of such systems, and
also introduce an example af a distributed system.

A common misconception among people when discussing distributed
systems is that it is just another name for a network of computers. However,
this overlooks an important distinction. A distributed system is built on top of
a network and tries to hide the existence of multiple autonomous computers. It
appears as a single entity providing the user with whatever services are
required. A network is a medium for interconnecting entities (such as
computers and devices) enabling the exchange of messages based on well-
known protocols between these entities, which are explicitly addressable
(using an IP address, for example).

In this chapter, first the distributed environment problem will be
described defining the main characteristics of those environments. Then, after
introducing the kind of problems to be solved, different existing approaches to
solve them will be explained, including some of the techniques and
methodologies most commonly used. The solutions to the distributed
environment problems explained in this chapter are: CORBA, SOA, web
services, grid computing and multiagent systems. Then, a brief introduction to
the technologies employed in this investigation to design the proposed

architecture is done.

12

Chapter 2. Distributed Environments

2.1. PROBLEM DEFINITION

There are various types of distributed systems, such as Clusters
[Buyya, 2002], Grids [Foster and Kesselman, 1999], P2P (Peer-to-Peer)
networks [Subramanian and Goodman, 2005], distributed storage systems and
so on. A cluster is a dedicated group of interconnected computers that appears
as a single super-computer, generally used in high performance scientific
engineering and business applications. A grid is a type of distributed system
that enables coordinated sharing and aggregation of distributed, autonomous,
heterogeneous resources based on users’ QoS (Quality of Service)
requirements. Grids are commonly used to support applications emerging in
the areas of e-Science and e-Business, which commonly involve
geographically distributed communities of people who engage in collaborative
activities to solve large scale problems and require sharing of various
resources such as computers, data, applications and scientific instruments. P2P
networks are decentralized distributed systems, which enable applications
such as file-sharing, instant messaging, online multi-user gaming and content
distribution over public networks. Distributed storage systems such as NFS
(Network File System) provide users with a unified view of data stored on
different file systems and computers which may be on the same or different

networks.

2.1.1. DISTRIBUTED SYSTEMS’ MAIN FEATURES

There are many different types of distributed computing systems
and many challenges to overcome in successfully designing one. The main
goal of a distributed computing system is to connect users and resources in
a transparent, open and scalable way. Ideally this arrangement is
drastically more fault tolerant and more powerful than many combinations

of stand-alone computer systems.

13

Onganization Based Multiagent Architecture For Distributed Environments

The main features of a distributed system include [Coulouris et al.,
2005, Van Steen and Tanenbaum, 2002]:

— Functional Separation: based on the functionality/services
provided, capability and purpose of each entity in the system.

— Inherent distribution: entities such as information, people, and
systems are inherently distributed. For example, different
information is created and maintained by different people. This
information could be generated, stored, analysed and used by
different systems or applications which may or may not be aware
of the existence of the other entities in the system.

— Reliability: long term data preservation and backup (replication) at
different locations.

— Scalability: addition of more resources to increase performance or
availability.

— Economy: sharing of resources by many entities to help reduce the
cost of ownership.

As a consequence of these features, the various entities in a
distributed system can operate concurrently and possibly autonomously.
Tasks are carried out independently and actions are co-ordinated at well-
defined stages by exchanging messages. Also, entities are heterogeneous,
and failures are independent. Generally, there is no single process, or

entity, that has the knowledge of the entire state of the system.

2.1.2. MAIN ISSUES HANDLED BY DISTRIBUTED
SYSTEMS

Various kinds of distributed systems operate today, each aimed at
solving different kinds of problems. The challenges faced in building a

distributed system vary depending on the requirements of the system. In

14

Chapter 2. Distributed Environments

general, however, most systems will need to handle the following issues
[Coulouris et al., 2005, Van Steen and Tanenbaum, 2002]:

Heterogeneity: various entities in the system must be able to
interoperate with one another, despite differences in hardware
architectures, operating systems, communication protocols,
programming languages, software interfaces, security models, and
data formats.

Transparency: the entire system should appear as a single unit and
the complexity and interactions between the components should be
typically hidden from the end user.

Fault tolerance and failure management: Failure of one or more
components should not bring down the entire system, and should
be isolated.

Scalability: the system should work efficiently with increasing
number of users and addition of a resource should enhance the
performance of the system.

Concurrency: shared access to resources should be made possible
at the same time by different elements.

Openness and Extensibility: interfaces should be clearly separated
and publicly available to enable easy extensions to existing
components and add new components by evolving the systems to a
more complete state.

Migration and load balancing: allow the movement of tasks within
a system without affecting the operation of users or applications,
and distribute load among available resources for improving
performance.

Security: access to resources should be secured to ensure only

known users are able to perform allowed operations.

15

Onganization Based Multiagent Architecture For Distributed Environments

Several software companies and research institutions have
developed distributed computing technologies that support some or all of

the features described above.

2.1.3. DISTRIBUTED COMPUTING TECHNOLOGIES

Over the years, technologies such as CORBA and DCOM have
provided the means to build distributed component-based systems. Such
technologies allow systems to interoperate at the component level, by
providing a software layer and protocols that offer the interoperability
needed for components developed in different programming languages to
exchange messages. However, such technologies present scalability issues
when applied to, for instance, the Internet and some restrict the developer
to a specific programming language. Hence, approaches based on Web
protocols and XML (eXtensible Markup Language) have been proposed to
allow interoperable distributed systems irrespective the programming
language in which they are developed.

Web Services are based on XML and provide a means to develop
distributed systems that follow a Service Oriented Architecture (SOA).
Services are described in an XML-based dialect (WSDL). In a similar
fashion, the request and reply messages exchanged in such systems are
formatted according to the Simple Object Access Protocol (SOAP). SOAP
messages can be encoded and transmitted by using Web protocols such as
the Hypertext Transfer Protocol (HTTP). Various industrial technologies
and application platforms such as .NET from Microsoft, J2EE from Sun,
and WebSphere from IBM are targeted at supporting the development of
applications based on Web Services.

Along with Web Services, Grid computing is another emerging
paradigm for creating wide-area distributed applications. Web Services are

foundation technologies that can be used in building many types of

16

Chapter 2. Distributed Environments

distributed systems and applications including Grid systems. Web
Services are in the core of the current implementations of Grid
technologies such as Globus from Argonne National Laboratory in USA
and the Gridbus from the University of Melbourne, Australia. Grid
computing scales from an enterprise/organisation to a global level. Global
Grids are established over the public Internet infrastructure, and are
characterized by a global presence, comprise of highly heterogeneous
resources, present sophisticated security mechanisms, focus on single
sign-on and are mostly batch-job oriented.

To enable global Grids, one requirement is that current enterprise
and campus Grids are able to interoperate. Enterprise and campus Grids
consist of resources spread across an enterprise and provide services to
users within that organisation and are managed by a single administrative
domain. Such Grids are more concerned with cycle stealing from unused
desktops and use virtualization of resources in order to provide better
means to manage and utilize them within an enterprise. For example,
Oracle 10g uses a virtualization approach to split data storage from the
database transaction and process layer. However, scalability and the
design of security mechanisms are not as difficult as they are for global
Grids.

Next, some of those main technologies used to face different

situations in distributed environments will be explained in detail.

2.2. CORBA

An important characteristic of large computer networks such as the

Internet, the World Wide Web (WWW), and corporate intranets is that they

are heterogeneous. For example, a corporate intranet might be made up of

mainframes, UNIX workstations and servers, PC systems running various

17

Onganization Based Multiagent Architecture For Distributed Environments

flavours of Microsoft Windows, IBM OS/2, or Apple Macintosh, and perhaps
even devices such as telephone switches, robotic arms, or manufacturing test
beds. The networks and protocols underlying and connecting these systems
might be just as diverse: Ethernet, FDDI, ATM, TCP/IP, Novell Netware, and
various remote procedure call (RPC) [Birrell and Nelson, 1984] systems, for
example. Fundamentally, the rapidly-increasing extents of these networks are
due to the need to share information and resources within and across diverse
computing enterprises.

Heterogeneity in such computing systems is the result of several
factors. The first one is engineering trade-offs. There is rarely only a single
acceptable solution to a complex engineering problem. As a result, different
people across an enterprise often choose different solutions to similar
problems.

Cost effectiveness is also crucial. Vendors vary in their abilities to
provide the ““best” systems at the lowest cost. Though there is some amount of
“prand name loyalty”’, many consumers tend to buy the systems that best
fulfil their requirements at the most reasonable price, regardless of who makes
them.

Finally, legacy systems must be taken into account. Over time,
purchasing decisions accumulate, and already-purchased systems may be too
critical or too costly to replace. For example, a company that has been
successfully running its order fulfilment applications, which are critical to its
day-to-day operations, on its mainframe for the last fifteen years is not likely
to simply scrap their system and replace it with the latest fad technologies.
Alternatively, a company may have spent large sums of money on its current
systems, and those systems must be utilized until the investment has paid off.

Ideally, heterogeneity and open systems enable to use the best
combination of hardware and software components for each portion of an

enterprise. When the right standards for interoperability and portability

18

Chapter 2. Distributed Environments

between these components are in place, the integration of the components
yields a system that is coherent and operational.

Unfortunately, dealing with heterogeneity in distributed computing
enterprises is rarely easy. In particular, the development of software
applications and components that support and make efficient use of
heterogeneous networked systems is very challenging. Many programming
interfaces and packages currently exist to help ease the burden of developing
software for a single homogeneous platform. However, few help deal with the
integration of separately-developed systems in a distributed heterogeneous
environment.

In recognition of these problems, the Object Management Group
(OMG) was formed in 1989 to develop, adopt, and promote standards for the
development and deployment of applications in distributed heterogeneous
environments. Since that time, the OMG has grown to become the largest
software consortium in the world, with over 700 developers, vendors, and end
users on its membership roster. These members contribute technology and
ideas in response to Requests For Proposals (RFPs) issued by the OMG.
Through responses to these RFPs, the OMG adopts specifications based on
commercially-available object technology. Here the OMG’s Object
Management Architecture (OMA) [OMG, 1996] is described, focusing on one
of its key components, the Common Object Request Broker Architecture
(CORBA) specification [OMG, 1996].

In this chapter, only the main elements of CORBA are going to be
described, analyzing the interest of this methodology to solve the problems
generated in distributed environments. The rest of the technical explanation of
CORBA will be developed in Appendix A, where a complete description will
be held.

19

Onganization Based Multiagent Architecture For Distributed Environments

2.2.1. THE OBJECT MANAGEMENT ARCHITECTURE
(OMA)

The OMA [OMG, 1996] is composed of an Object Model and a
Reference Model. The Object Model defines how objects distributed
across a heterogeneous environment can be described, while the Reference
Model characterizes interactions between those objects. The OMG RFP
process is used to adopt technology specifications that fit into the Object
Model and the Reference Model and work with the other previously-
adopted specifications. Through adherence to the OMA, these
specifications allow for the development and deployment of interoperable

distributed object systems in heterogeneous environments.

Common

Application Facilities

Domain
Interfaces

llTJI-

Object Req:xest Broker

Interfaces

1rr¢

Object
Services

Figure 1. OMA Reference Model Interface Categories.

In the OMA Object Model, an object is an encapsulated entity with
a distinct immutable identity whose services can be accessed only through

well-defined interfaces. Clients issue requests to objects to perform

20

Chapter 2. Distributed Environments

services on their behalf. The implementation and location of each object
are hidden from the requesting client.

Figure 1 shows the components of the OMA Reference Model. The
Object Request Broker (ORB) component is mainly responsible for
facilitating communication between clients and objects. Utilizing the ORB
component are four object interface categories:

— Obiject Services (OS): these are domain-independent interfaces that
are used by many distributed object programs. For example, a
service providing for the discovery of other available services is
almost always necessary regardless of the application domain. Two
examples of Object Services that fulfil this role are:

o0 The Naming Service — which allows clients to find objects

based on names.

0 The Trading Service — which allows clients to find objects

based on their properties.

There are also Object Service specifications for lifecycle
management, security, transactions, and event notification, as well
as many others [OMG, 1995b].

— Common Facilities (CF): like Object Service interfaces, these
interfaces are also horizontally-oriented, but unlike Object Services
they are oriented towards end-user applications. An example of
such a facility is the Distributed Document Component Facility
(DDCF) [OMG, 1995a], a compound document Common Facility
based on OpenDoc. DDCF allows for the presentation and
interchange of objects based on a document model, for example,
facilitating the linking of a spreadsheet object into a report

document.

21

Onganization Based Multiagent Architecture For Distributed Environments

— Domain Interfaces (DF): these interfaces fill roles similar to Object

Services and Common Facilities but are oriented towards specific
application domains. For example, one of the first OMG RFPs
issued for Domain Interfaces is for Product Data Management
(PDM) Enablers for the manufacturing domain. Other OMG RFPs
will soon be or already have been issued in the
telecommunications, medical, and financial domains. In figure 2,
multiple boxes are shown for Domain Interfaces to indicate the

existence of many separate application domains.

Al= Application Interfaces CF= Common Facilities
DI= Domain Interfaces 0S= Object Services

Figure 2. OMA Reference Model Interface Usage.

— Application Interfaces (Al): these are interfaces developed

specifically for a given application. Because they are application-
specific, and because the OMG does not develop applications (only
specifications), these interfaces are not standardized. However, if
over time it appears that certain broadly useful services emerge out
of a particular application domain, they might become candidates

22

Chapter 2. Distributed Environments

for future OMG standardization.

Figure 2 illustrates the other part of the OMA Reference Model, the
concept of Object Frameworks. These are domain-specific groups of
objects that interact to provide a customizable solution within that
application domain. These frameworks are typically oriented towards
domains such as telecommunications [Siegel, 1998], medical systems
[Moreno et al., 2008], finance [Jian-dong and Shang-liang, 2007], and
manufacturing [Lai, 2007]. In figure 2, each circle represents a component
that uses the ORB to communicate with other components.

The interfaces supported by each component are indicated on its
outer circle. As figure 2 shows, some components support application-
specific interfaces, as well as domain interfaces, common facilities
interfaces, and object services. Other components support only a subset of
these interfaces.

Within an object framework like the one shown in figure 2, each
component communicates with others on a peer-to-peer basis. That is,
each component is both a client of other services and a server for the
services it provides. In CORBA, the terms “client” and “server” are
merely roles that are filled on a per-request basis. Very often, a client for
one request is the server for another.

Throughout most of its existence, much of the OMG’s attention
was focused on the ORB component of the OMA. This was necessary

because everything else in the OMA depends on the ORB.

2.2.2. CORBA APPLICATIONS AND INTEREST FIELDS

Areas that are currently being investigated by OMG task forces
include:
— Medical (Master Patient Indexing): patient identification can be

surprisingly difficult, due to multiple people with the same name,

23

Onganization Based Multiagent Architecture For Distributed Environments

illegal use of identification numbers, etc. At the time of this
document has been written, the CORBAmMed Medical Task Force
was very close to issuing a RFP for technology related to the
identification of patients.

Telecommunications (Isochronous Streams): streams for audio and
video data have special quality of service requirements due to their
isochronous nature. The CORBAtel Telecommunications Task
Force recently issued an RFP seeking technology for the
management and manipulation of isochronous streams.

Business (Business Objects): portions of many business processes
are very similar, and thus can be abstracted out into frameworks.
The Business Objects Task Force will soon begin evaluating
responses to its Business Objects RFP, which seeks object
frameworks to support business processes.

Common Facilities (Systems Management Facility): the OMG has
nearly completed the adoption of the X/Open systems management
specification, which defines a set of extended services for the
monitoring and management of distributed systems. These services
complement those specified in the existing OMG Common Object
Services Lifecycle Specification [OMG, 1995b].

ORBOS (Objects by value): CORBA currently allows object
references to be passed as arguments and return values, but it does
not allow objects to be passed by value. This makes the use of
encapsulated data types (e.g., linked lists) difficult to use from
languages such as C++. The ORBOS Task Force will soon begin
evaluating responses to its Objects by Value RFP, which will
describe technology for passing objects by value between CORBA

applications.

24

Chapter 2. Distributed Environments

2.3. SOA

Over the last four decades, software architectures have attempted to
deal with increasing levels of software complexity. As the level of complexity
continues to evolve, traditional architectures do not seem to be capable of
dealing with the current problems. While traditional needs of IT organizations
persist, the need to both respond quickly to new requirements of the business
and continually reduce the IT cost, and the ability to absorb and integrate new
business partners and new customer sets become more in demand. The
industry has gone through multiple computing architectures designed to allow
fully distributed processing, programming languages designed to run on any
platform, greatly reducing implementation schedules, and a myriad of
connectivity products designed to allow better and faster integration of
applications. Service Oriented Architecture (SOA) is being advocated in the
industry as the next evolutionary step in software architecture to help IT
organizations meet their ever more complex set of challenges
[Channabasavaiah et al., 2003].

The existence of Web services technologies has stimulated the
discussion of Services Oriented Architecture (SOA), which has been
advocated for more than a decade now, ever since CORBA extended the
promise of integrating applications on disparate heterogeneous platforms.
Problems of integrating those applications arise, often because of so many
different (and non-CORBA-compliant) object models. Architects and
engineers alike became so bogged down in solving technology problems,
constantly in search for a more robust architecture that would allow simple,
fast, and secure/seamless integration of systems and applications was lost.
Meanwhile, the distributing computing model opens the way of cross-platform
and cross-programming language interoperability. SOAP is a great distribution

computing solution because it achieves interoperability through open

25

Onganization Based Multiagent Architecture For Distributed Environments

standards at the specification level as well as the implementation level.
Meanwhile, basic business needs such as lowering costs, reducing
cycle times, integration across the enterprise, B2B and B2C integration,
greater ROI, creating an adaptive and responsive business model demands
better solutions. "Point solutions” won't work as desired solutions for the lack
of a consistent architectural framework within which applications can be
rapidly developed, integrated, and reused. Thus an architectural framework
must be developed to allow the assembly of components and services for the
rapid, and even dynamic, delivery of solutions; an architectural view

unconstrained by technology.

2.3.1. DEFINITION OF SOA

A service-oriented architecture is essentially a collection of
services, among which the communication can involve either simple data
passing or it could involve two or more services coordinating some
activity, requiring means of connecting services to each other [Krafzig et
al., 2004]. The first service-oriented architecture in the past was with the
use DCOM or Object Request Brokers (ORBs) based on the CORBA

specification.

Service
Provider

Service Request

' Service Response '

Figure 3. Basic Service-Oriented Architecture.

26

Chapter 2. Distributed Environments

To understand service-oriented architecture must begin with a clear
understanding of the term service. A service is a function that is well
defined, self-contained, and does not depend on the context or state of
other services. The technology of Web services is the most likely
connection technology of service-oriented architectures. Web services
essentially use XML to create a robust connection.

Figure 3 illustrates a basic service-oriented architecture. It shows a
service consumer at the right sending a service request message to a
service provider at the left. The service provider returns a response
message to the service consumer. The request and subsequent response
connections are defined in some way that is understandable to both the
service consumer and service provider. How those connections are defined
is explained in Web Services explanation [Erickson and Siau, 2008]. A

service provider can also be a service consumer.

invoice receive

find service

Figure 4.Components of basic Service-Oriented Architecture.

27

Onganization Based Multiagent Architecture For Distributed Environments

As a distributed software model, a SOA is usually comprised of
three primary parts: provider (of services), consumer (of services) and
directory (of services), as shown in figure 4. Web Services are considered
an example of Service Oriented Architecture. Service Networks take on

the properties of a SOA.

Considering the term service-oriented architecture, it is useful to
review the key terms, as it is done in the following paragraphs.

An architecture is a formal description of a system, defining its
purpose, functions, externally visible properties and interfaces. It also
includes the description of the system’s internal components and their
relationships, along with the principles governing its design, operation,
and evolution.

A service is a software component that can be accessed via a
network to provide functionality to a service requester.

The term service-oriented architecture refers to a style of building
reliable distributed systems that deliver functionality as services, with the
additional emphasis on loose coupling between interacting services.

Technically, then, the term SOA refers to the design of a system,
not to its implementation. It is common place for the term to be used in
referring to an implementation. For example, in phrases such as ““building
a SOA” and using the adjective service-oriented in contexts such as
*““service-oriented environment” or *“service-oriented grid”.

SOA is considered as an architectural style that emphasizes
implementation of components as modular services that can be discovered
and used by clients [Mahmoud, 2005].

Services may be individually useful, or they can be integrated
(composed) to provide higher-level services. Among other benefits, this

promotes reuse of existing functionality. Services communicate with their

28

Chapter 2. Distributed Environments

clients by exchanging messages. They are defined by the messages they
can accept and the responses they can give. Services can participate in a
workflow, where the order in which messages are sent and received affects
the outcome of the operations performed by a service. This notion is
defined as “service choreography”.

Services may be completely self-contained, or they may depend on
the availability of other services, or on the existence of a resource such as
a database. In the simplest case, a service might perform a calculation
such as computing the cube root of a supplied number without needing to
refer to any external resource, or it may have pre-loaded all the data that it
needs for its lifetime.

Conversely, a service that performs currency conversion would
need real-time access to exchange-rate information in order to yield
correct values. Services advertise details such as their capabilities,
interfaces, policies, and supported communications protocols.
Implementation details such as programming language and hosting
platform are of no concern to clients, and are not revealed.

Figure 5 illustrates a simple service interaction cycle, which begins
with a service advertising itself through a well-known registry service (1).
A potential client, who may or may not be another service, queries the
registry (2) to search for a service that meets its needs. The registry
returns a (possibly empty) list of suitable services, and the client selects
one and passes a request message to it, using any mutually recognized
protocol (3). In this example, the service responds (4) either with the
result of the requested operation or with a fault message.

The illustration shows the simplest case, but in a real-world setting
such as a commercial application the process may be significantly more
complex. For example, a given service may support only the HTTPS

protocol, be restricted to authorized users, require Kerberos authentication,

29

Onganization Based Multiagent Architecture For Distributed Environments

offer different levels of performance to different users, or require payment

for use.

Figure 5. Service interaction in a service-oriented environment.

Services can provide such details in a variety of ways, and the
client can use this information to make its selection. Some attributes, such
as payment terms and guaranteed levels of service, may need to be
established by a process of negotiation before the client can make use of
the service it has selected.

And, while this illustration shows a simple synchronous, bi-
directional message exchange pattern, a variety of patterns are possible.
For example, an interaction may be one-way, or the response may come
not from the service to which the client sent the request, but from some

other service that completed the transaction.

30

Chapter 2. Distributed Environments

2.3.2. LOOSE COUPLING

When talking about and defining SOA, the term loose coupling is
included [Natis and Schulte, 2003]. This term implies that the interacting
software components minimize their in-built knowledge of each other:
they discover the information they need at the time they need it. For
example, having learned about a service’s existence, a client can discover
its capabilities, its policies, its location, its interfaces and its supported
protocols. Once it has this knowledge, the client can access the service
using any mutually acceptable protocol. The word “frictionless” has been
used to describe the ultimate goal of loose coupling, and the word aptly
conjures up a vision of components that communicate almost without
contact. The benefits of loose coupling include:

— Flexibility: a service can be located on any server, and relocated as
necessary. As long as it maintains its registry entry, prospective
clients will be able to find it.

— Scalability: services can be added and removed as demand varies.

— Replaceability: Provided that the original interfaces are preserved,
a new or updated implementation of a service can be introduced,
and outdated implementations can be retired, without disruption to
users.

— Fault tolerance: if a server, a software component, or a network
segment fails, or the service becomes unavailable for any other
reason, clients can query the registry for alternate services that
offer the required functionality, and continue to operate without
interruption.

Clearly, all these benefits have great value in a dynamic distributed
environment. However, while the vision of loose coupling is appealing, it

is some way from broad-based realization. For example, common Web

31

Onganization Based Multiagent Architecture For Distributed Environments

service integrated development environments (IDEs) provide for rapid and
easy development of service clients by reading the description of a service
and generating a client-side “proxy” or ““stub” class with methods that
correspond to the service’s interfaces. If the interfaces change, the proxy
must be regenerated and the client code may need to be altered to invoke
the changed methods. While development in this type of environment may
be fast and easy, the result is far from frictionless.

Does this mean that services and clients built using such an IDE are
not loosely coupled? Well, the word *loose” is presumably chosen
because it is a relative term. It might be said that a truly frictionless
relationship is zero-coupled, and adding some friction simply moves it
further toward the other end of the scale. The point at which it becomes

tightly coupled is a subjective decision.

2.3.3. STATE AND STATELESSNESS

A key notion of loose coupling is statelessness, which is a topic that
has been much-discussed and is often mentioned as a critical requirement,
sometimes without a clear understanding of its significance [Stal et al.,
2006].

Simply, the benefits of loose coupling, as listed above, are derived
from the fact that a client can choose to go to any service that is capable of
fulfilling its need. If its choice is restricted to a single service then a tight
coupling exists between the client and the server, and the benefits of loose
coupling are diminished.

In the simple case of a calculator or a stock-price service it is easy
to see that once a client has requested and received information, the
transaction is completed, and the client has no particular need to revisit the
same service for its future needs. From this perspective, the client and

service are loosely coupled.

32

Chapter 2. Distributed Environments

For a more complex transaction that requires several steps,
however, the design of the service might be such that the service retains in
its local memory some information (‘“‘state’’) about the first step,
expecting to make use of it when the client contacts it for the next step. In
this case, the service is “stateful””, and the client must return to the same
service for the next step. This might result in a delay if many clients are
using the same service or in a transaction failure if the node hosting the
service fails between steps.

A better approach to the design of the service not to retain the state
about the transaction, to be “stateless™. This implies that in a multi-step
transaction, at the end of each intermediate step, the service must hand
back to the client sufficient state information to enable any qualified
service to identify and continue the transaction. The client must hand the
state information to whichever service it selects to process the next step of
the transaction.

The selected service must be able to accept and handle the state
information supplied by the client, regardless of whether it processed the
earlier steps itself.

Figure 6 shows a client engaged in a three-step transaction with
several services, each of which might be capable of handling any part or
all of the transaction. The service that handles Step 1 stores the details of
the in-progress transaction in the database, and returns requested
information to the client, along with a transaction identifier. The client
might request confirmation from the user before passing the transaction
identifier to another service, which uses it to retrieve the state information
from the database and initiates Step 2. This service then updates the
database and returns additional information to the client. Finally, the client
passes the transaction identifier back to a third service with a request to

complete the transaction.

33

Onganization Based Multiagent Architecture For Distributed Environments

Advertise

Figure 6. A multi-step client/service interaction.

Most non-trivial applications require access to some amount of state
information, and the debate is not so much about whether state should
exist as about where it should be stored. The approach outlined above
enhances loose coupling by separating the transaction’s state from the
services that operate on it. In the example, both the account data and the
details of the transaction can be considered to be state information, but the
account data is permanent, while the transaction details only need to exist
while the transaction is in progress. To minimize the amount of state that
needs to be passed between the clients and the services, the critical
account data and the details of the transaction are held in the database: the
common requirement for all participating services is that they must be able
to access the database, given a simple token such as a customer’s account
number, which can easily be passed between the client and the services.

34

Chapter 2. Distributed Environments

2.3.4. SERVICE-ORIENTED ARCHITECTURE (SOA)
MODEL

The potential concept of SOA was found to have merit by
companies like IBM and Microsoft who recognized that for SOA to
succeed where other distributed computing concepts had failed, it must be
implemented on open standards. Thus, the recent cooperation between
these companies on recommended standards like UDDI and WSDL
[Schroth and Christ, 2007]. According to IBM, SOA is comprised of three
participants and three fundamental operations, regardless of its
implementation, (see Figure 7).

A service provider is a network node that provides a service
interface for a software asset that manages a specific set of tasks. A
service provider node can represent the services of a business entity or it
can simply represent the service interface for a reusable subsystem.

A service requestor is a network node that discovers and invokes
other software services to provide a business solution. Service requestor
nodes will often represent a business application component that performs
remote procedure calls to a distributed object, the service provider. In
some cases, the provider node may reside locally within an intranet or in
other cases it could reside remotely over the Internet. The conceptual
nature of SOA leaves the networking, transport protocol, and security
details to the specific implementation.

The service broker is a network node that acts as a repository,
yellow pages, or clearing house for software interfaces that are published
by service providers. A business entity or an independent operator can

represent a service broker.

35

Onganization Based Multiagent Architecture For Distributed Environments

Find

Figure 7. The SOA model.

These three SOA participants interact through three basic
operations: publish, find, and bind. Service providers publish services to a
service broker. Service requesters find required services using a service
broker and bind to them. The interactive process among these three agents
calls/centres on the service components (rather than objects which

characterizes object paradigm).

2.3.5. BUSINESS ROLES

Because of the role-based nature, SOA strives to meet services and
business needs much more effectively. In the service-oriented architecture
(SOA) of Web services, three distinct actors the provider, the requestor,
and the broker interact to help an organization make a choice among five
possible business roles [Pasley, 2005].

— Service Requestor: for a business to identify with this SOA role, it

must find some commonality between their business activity and

36

Chapter 2. Distributed Environments

the actions of a requestor. There are two clear business activities
that would allow a business to benefit from implementing the role
of a service requestor: Content Aggregation and Service
Aggregation. Content Aggregation is an activity where a business
entity interacts with a variety of content providers to process or
reproduce such content in the desired presentation format of its
customers (such as Internet portal or information service provider).
Service Aggregation is an activity where a business entity interacts
with a variety of service providers to re-brand, host, or offer a
composite of services to its customers (such as a mobile portal and
the alike of OnStar).

Service Provider: for a business to identify with this SOA role, it
must view itself as performing some degree of an electronic
service. Whether that service is defined as the processing of data or
the act of carrying out a specific task, the business entity must
believe it is performing work for others as an occupation or a
business.

Registry: if a business entity finds itself collecting and cataloguing
data about other businesses and then selling that data to others, it
may identify well with a registry, a form of SOA Broker. Usually,
a registry would collect data such as business name, description,
and contact information. In UDDI terms, this SOA role is often
referred to as the White Pages.

Broker: building on the concept of a registry, business entities may
also be able to identify with the notion of a broker, which in UDDI
terms is often referred to as Yellow Pages. Brokers usually extend
the value proposition of a registry by offering intelligent search

capability and business classification or taxonomy data.

37

Onganization Based Multiagent Architecture For Distributed Environments

— Aggregator/Gateway: any business entity that provides Broker
capabilities plus the ability to describe actual policy, business
processes and binding descriptions would be able to identify itself

as Green Pages.
2.4. WEB SERVICES

In recent years, distributed programming paradigms have emerged,
that allow generic software components to be developed and shared. Whilst
early versions were little more than shared libraries of functions with little user
documentation and unpredictable side effects, it wasn’t until the advent of
object-oriented programming and architectures such as CORBA, that self
contained components could be reliably defined, documented and shared
within a distributed environment. Although ideal for some enterprise
integration and eCommerce, it has only been with the adoption of XML as
common data syntax that the underlying principals have gained wide scale
adoption, through the definition of Web Service standards. Web services are
well defined, reusable, software components that perform specific,
encapsulated tasks via standardized Web-oriented mechanisms. They can be
discovered, invoked, and the composition of several services can be
choreographed, using well defined workflow modelling frameworks.

Whilst promising to revolutionize eCommerce and enterprise-wide
integration, current standard technologies for Web services (e.g. WSDL
[Christensen et al., 2001]) provide only syntactic-level descriptions of their
functionalities, without any formal definition to what the syntactic definitions
might mean. In many cases, Web services offer little more than a formally
defined invocation interface, with some human oriented metadata that
describes what the service does, and which organization developed it (e.g.
through UDDI descriptions). Applications may invoke Web services using a

common, extendable communication framework (e.g. SOAP). However, the

38

Chapter 2. Distributed Environments

lack of machine readable semantics necessitates human intervention for
automated service discovery and composition within open systems, thus
hampering their usage in complex business contexts.

Semantic Web Services (SWS) relax this restriction by augmenting
Web services with rich formal descriptions of their capabilities, thus
facilitating automated composition, discovery, dynamic binding and
invocation of services within an open environment. A prerequisite to this,
however, is the emergence and evolution of the Semantic Web, which
provides the infrastructure for the semantic interoperability of Web Services.
Web Services will be augmented with rich formal descriptions of their
capabilities, such that they can be utilized by applications or other services
without human assistance or highly constrained agreements on interfaces or
protocols. Thus, Semantic Web Services have the potential to change the way
knowledge and business services are consumed and provided on the Web.

Current efforts in developing Semantic Web Service infrastructures
can be characterized along three orthogonal dimensions: usage activities,
architecture and service ontology. Usage activities define the functional
requirements, which a framework for Semantic Web Services ought to
support. The architecture of SWS describes the components needed for
accomplishing the activities defined for SWS, whereas the service ontology
aggregates all concept models related to the description of a Semantic Web

Service.

2.4.1. DEFINITION

Web Services are changing the way applications communicate with
each other on the Web. They promise to integrate business operations,
reduce the time and cost of Web application development and
maintenance as well as promote reuse of code over the World Wide Web.

By allowing functionality to be encapsulated and defined in a reusable

39

Onganization Based Multiagent Architecture For Distributed Environments

standardized format, Web services have enabled businesses to share (or
trade) functionality with arbitrary numbers of partners, without having to
prenegotiate communication mechanisms or syntax representations. The
advent of discovery has enabled vendors to search for Web services,
which can then be invoked as necessary. For example, a book-selling
company may look for shipping services, which they may later invoke to
ensure that books are delivered to the customers. This flexibility is
achieved through a set of well-defined standards that define syntax,
communication protocol, and invocation signatures, which allow programs
implemented on diverse, heterogeneous platforms to interoperate over the
internet.

A Web Service is a software program identified by an URI
(Uniform Resource Identifier), which can be accessed via the internet
through its exposed interface. The interface description declares the
operations which can be performed by the service, the types of messages
being exchanged during the interaction with the service, and the physical
location of ports, where information should be exchanged. For example, a
Web service for calculating the exchange rate between two money
currencies can declare the operation ““getEx changeRate” with two inputs
of type string (for source and target currencies) and an output of type float
(for the resulting rate). A binding then defines the machine and ports
where messages should be sent. Although there can be many ways of
implementing Web services, it is basically assumed that they are deployed
in Web servers such that they can be invoked by any Web application or
Web agent independently of their implementations. In addition Web
services can invoke other Web services.

The common usage scenario for Web services can be defined by
three phases: Publish, Find and Bind, and three entities: the service

requester, which invokes services, the service provider which responds to

40

Chapter 2. Distributed Environments

requests, and the registry where services can be published or advertised. A
service provider publishes a description of a service it provides to a
service registry. This description (or advertisement) includes a profile on
the provider of the service (e.g. company name and address); a profile
about the service itself (e.g. name, category), and the URL of its service
interface definition (e.g. WSDL description).

When a developer realizes a need for a new service, he finds the
desired service either by constructing a query, or browsing the registry.
The developer then interprets the meaning of the interface description
(typically through the use of meaningful label or variable names,
comments, or additional documentation) and binds to (i.e. includes a call
to invoke) the discovered service within the application they are
developing. This application is known as the service requester. At this
point, the service requester can automatically invoke the discovered
service (provided by the service provider) using Web service
communication protocols (e.g. SOAP).

Key to the interoperation of Web services is an adoption of a set of
enabling standard protocols. Several XML-based standards have been
proposed to support the usage scenario previously described.

XML schema (XML-S) [Biron and Malhotra, 2001] provides the
underlying framework for both defining the Web Services Standards, and
variables, objects and data types etc that are exchanged between services.
SOAP [Mitra, 2003] is W3C’s recommended XML-data transport
protocol, used for data exchange over Web-based communications
protocols (http). SOAP messages can carry an XML payload defined using
XML-S, thus ensuring a consistent interpretation of data items between
different services.

WSDL [Christensen et al., 2001] is the W3C recommended

language for describing the service interface. Two levels of abstraction are

41

Onganization Based Multiagent Architecture For Distributed Environments

used to describe Web services. The first level defines atomic method calls,
or operations, in terms of input and output messages (each of which
contain one or more parameters defined in XML-S). Operations define the
way in which messages are handled e.g. whether an operation is a one-way
operation, request-response, solicit-response or notification. The second
abstraction maps operations and associated messages to physical
endpoints, in terms of ports and bindings. Ports declare the operations
available with corresponding inputs and outputs. The bindings declare the
transport mechanism (usually SOAP) being used by each operation.
WSDL also specifies one or more network locations or endpoints at which
the service can be invoked.

As services become available, they may be registered with a UDDI
registry [Dialani, 2002] which can subsequently be browsed and queried
by other users, services and applications. UDDI Web service discovery is
typically human oriented, based upon yellow or white-page queries (i.e.
metadata descriptions of service types, or information about the service
providers). UDDI service registrations may also include references to
WSDL descriptions, which may facilitate limited automation of discovery
and invocation. However, as no explicit semantic information is normally
defined, automated comprehension of the WSDL description is limited to
cases where the provider and requester assume pre-agreed ontologies,
protocols and shared knowledge about operations.

A service might be defined as a workflow describing the
choreography of several operations. Such a workflow may determine: the
order of operation execution, what operations may be executed
concurrently and alternative execution pathways (if conditional operators
are included in the workflow modelling language). Conversely, workflows
are required to orchestrate the execution of several simple services that

may be composed together to form a more complex service. Various

42

Chapter 2. Distributed Environments

choreography and orchestration languages have been proposed such as
BPEL4WS [Andrews et al., 2003], and are currently being evaluated by

various industry standardization bodies.

2.4.2. WEB SERVICES PROBLEMS

SOAP, WSDL, and UDDI are important technologies to enable
Web services. However, to fully satisfy the requirements of business
applications, the current technologies have shortcomings. Here, the three
major problems and research directions to upgrade the existing

technologies will be discussed.

2.4.2.1. SECURITY PROBLEMS

Now, a simple travel scenario will be used to illustrate the
security problem of Web services. More than three pieces of the Web
services framework are required to interact properly to complete the
travel scenario.

At the very least, it is necessary to ensure that transactions like
the electronic check-ins were conducted in a secure environment and
that messages were reliably delivered to the destinations. The main
reason to built additional security when there are technologies such as
Secure Multipurpose Internet Mail Extensions (S-MIME), HTTP
Secure (HTTPS), and Kerberos available is the difference between
end-to-end and single-hop usage.

Business messages typically originate from one application and
then are transferred to another one. Mechanisms such as Secure
Sockets Layer are great for securing (for confidentiality) a direct
connection from one machine to another, but they are of no help if the

message has to travel over more than one connection.

43

Onganization Based Multiagent Architecture For Distributed Environments

It is well known in the penetration testing community that
attacks to modern systems are usually not at the network level but
within the application protocols (e.g., HTTP in the case of Web
systems). This means that the firewall will simply pass the attack
traffic along with any legitimate HTTP requests as it looks for port 80
traffic only, and does not concern the malformed HTTP traffic or
application specific attacks (such as SQL injection). In many cases
where SSL is used, the firewall cannot see into the traffic stream. In
some respects, Web services have adopted the HTTP’s tunnelling
idea, by allowing all systems, both internal and external, to
communicate on HTTP ports so flexibility is obtained. What is
removed is the control the firewall may have, and ultimately the
application servers are opened up to “application level” attacks in
exactly the same way as insecure and vulnerable Web servers today.

Basically, the security problems that are likely to affect Web
services are the same as those that have affected the conventional
Web-based systems. Security is critical to the adoption of Web
services by enterprises, but, as it stands today, the Web services
framework does not meet basic security requirements.

The fact that Web services involve exchange of messages
means that securing the message exchange is an important issue to
consider when building and using Web services. In the Web services
context, security means that the recipient of a message should be able
to verify the integrity of the message and to make sure that it has not
been modified. The recipient should have received a message
confidentially so that unauthorized users could not read it, know the
identity of the sender and determine whether or not the centre is
authorized to carry out the operation requested in the message. These

are usually met through encrypting messages.

44

Chapter 2. Distributed Environments

On the other hand, because Web services allow all systems,
both internal and external, to communicate on HTTP ports, the
application servers are inevitably opened up to “application level”
attacks.

A few standards have come out to alleviate the message
security problem, including WS Security and various other initiatives
(mostly from the major vendors and PKI suppliers) towards enabling
digital signatures on XML messages and transactions. But the

“application level” attacks were hardly concerned.

2.4.2.2. COMPOSITION PROBLEMS

Complex business interactions require support for higher levels
of business functionality. Business interactions are typically long
execution processes and involve multiple interactions between
partners. To deploy and effectively use these types of services, it is
necessary to represent business processes and states of services and to
create service compositions (complex aggregations) in a standardized
and systematic fashion. Several proposals for accomplishing this task
exist; see, for example, Web Services Flow Language, XLANG
[Thatte, 2001] and BPEL4WS.

The industry has used a number of terms to describe how
components can be connected together to build complex business
processes. Workflow and document management systems have existed
as a means to handle the routing of work between various resources in
an IT organization. These resources might include people, systems or
applications and typically involve some human intervention. Business
process management systems (BPMS) have also been used to enable a
business to build a top-down process design model, consisting of

various integration activities (e.g., integration to a legacy system).

45

Onganization Based Multiagent Architecture For Distributed Environments

BPMS systems [Lee et al., 2002] would typically cover the full
lifecycle of a business process, including modelling, executing,
monitoring, management and optimization tasks. With the
introduction of Web services, terms such as ‘“Web services
composition” and “Web services flow” were used to describe the
composition of Web services in a process flow. More recently, the
terms orchestration and choreography have been used to describe this
too. Orchestration describes how Web services can interact with each
other at the message level, including business logic and execution
order of the interactions. These interactions may span applications
and/or organizations, and result in a long-lived, transactional, multi-

step process model.

2.4.2.3. SEMANTIC PROBLEMS

The current Web services technology basically provides a
syntactical solution and still lacks the semantic part. A Web service is
described in WSDL, outlining what input the service expects and what
output it returns. To exploit their potentials (beyond the enterprise
application integration), Web services must be able to orchestrate
themselves into more complex services. Thus, methods to combine
individual Web services into a distributed, higher-level service are
needed. The Web Service Flow Language (WSFL), which can express
the sequencing of individual services, is taking the first steps. WSFL
lets the user decide which Web services to combine and in what order.
However, a framework that semantically describes services so that
software agents can locate, identify and combine these services is still
needed.

Many researchers believe that the Semantic Web vision of the

next-generation Web, that enables computers unambiguously

46

Chapter 2. Distributed Environments

interpreting the Web content, addresses precisely this problem
[Gibbins et al., 2004, Hendler, 2001, Mcllraith and Zeng, 2001]. The
Semantic Web project is Tim Berners-Lee's brainchild, seeking to
create a machine processable Web. Semantic Web has advocates
predominantly from the more research-oriented members of the Web
community. Due to commercial interests, industrial player, including
Microsoft, IBM and BEA, on the other hand, have largely driven the
development of Web Services.

In his opening lecture at the Twelfth International World Wide
Web conference, the Director of the World Wide Web Consortium
explained how to make the two main thrusts of the development of the
Web not compete, but work together. Berners-Lee claimed that Web
Services meet immediate technology needs, while the Semantic Web
has the potential for future exponential growth. There are many ways
in which the two areas could interact in the future, and the W3C does
not intend to limit their work to one area or the other.

Current Web services standards, such as SOAP, WSDL,
XLANG, WSFL, BPEL4WS, WSCI and BPML describe Web service
content in terms of XML syntax. Unfortunately, XML alone lacks
both a well-defined semantics and sufficient expressive power to
realize the vision of diverse Web services having wide-scale
interoperability. Seamless interoperability between services that have
not been pre-designed to work together requires programs to describe
their own capabilities and understand other services’ capabilities. To
realize this vision, Web content, particularly Web service content and
capabilities, may need to be described in a language that goes beyond
XML. This problem is well addressed in the Semantic Web vision of

the next-generation Web.

47

Onganization Based Multiagent Architecture For Distributed Environments

2.5. GRID COMPUTING

The main goal in describing the Grid architecture is not to provide a
complete enumeration of all required protocols (and services, APIls, and
SDKSs) but rather to identify requirements for general classes of component.
The result is an extensible, open architectural structure within which can be
placed solutions to key VO (Virtual Organization) requirements. The
architecture described here and the subsequent discussion organizes
components into layers, as shown in figure 8. Components within each layer
share common characteristics but can build on capabilities and behaviours
provided by any lower layer.

In specifying the various layers of the Grid architecture, the principles
of the “hourglass model” [Kleinrock, 1994] are followed. The neck of the
hourglass defines a fundamental set of core abstractions and protocols, onto
which many different high-level behaviours can be mapped (the top of the
hourglass), and which themselves can be mapped onto many different
underlying technologies (the base of the hourglass).

By definition, the number of protocols defined at the neck must be
small. In this architecture, the neck of the hourglass consists of Resource and
Connectivity protocols, which facilitate the sharing of individual resources.
Protocols at these layers are designed so that they can be implemented on top
of a diverse range of resource types, defined at the Fabric layer, and can in
turn be used to construct a wide range of global services and application-
specific behaviours at the Collective layer. Figure 8 shows that, because the
Internet protocol architecture extends from network to application, there is a
mapping from Grid layers into Internet layers. The architectural description is

high level and places few constraints on design and implementation.

48

Chapter 2. Distributed Environments

Application

Collective

Resource

Transport

=
=

Connectivity

Internet

Fabric I Link

Figure 8. The layered Grid architecture and its relationship to the Internet
protocol architecture.

2.5.1. INTERFACES TO LOCAL CONTROL

Internet Protocol Architecture

Grid Protocol Architecture

The Grid Fabric layer provides the resources to which shared
access is mediated by Grid protocols: for example, computational
resources, storage systems, catalogues, network resources, and sensors. A
“resource” may be a logical entity, such as a distributed file system,
computer cluster, or distributed computer pool; in such cases, a resource
implementation may involve internal protocols (e.g., the NFS storage
access protocol or a cluster resource management system’s process
management protocol), but these are not the concern of Grid architecture.

Fabric components implement the local, resource-specific
operations that occur on specific resources (whether physical or logical) as
a result of sharing operations at higher levels. There is thus a tight and
subtle interdependence between the functions implemented at the Fabric
level, on the one hand, and the sharing operations supported, on the other.
Richer Fabric functionality enables more sophisticated sharing operations;

49

Onganization Based Multiagent Architecture For Distributed Environments

at the same time, placing few demands on Fabric elements, then
deployment of Grid infrastructure is simplified. For example, if resources
support advance reservations, then it is straightforward to implement
higher-level services that co-schedule multiple resources. However, as in
practice few resources support advance reservation “out of the box”, a
requirement for advance reservation increases the cost of incorporating
new resources into a Grid.

Experience suggests that at a minimum, resources should
implement enquiry mechanisms that permit discovery of their structure
and state, on the one hand, and resource management mechanisms that
provide some control of delivered quality of service, on the other. The
following brief and partial list provides a resource-specific
characterization of capabilities.

— Computational resources: mechanisms are required for starting
programs and for monitoring and controlling the execution of the
resulting processes. Management mechanisms that allow control
over the resources allocated to processes are useful, as are advance
reservation mechanisms. Enquiry functions are needed for
determining hardware and software characteristics as well as
relevant load information such as current load and queue state in
the case of scheduler-managed resources.

— Storage resources: mechanisms are also required for putting and
getting files. Third-party and high-performance (e.g., striped)
transfers are useful [Thompson et al., 1999]. So are mechanisms
for reading and writing subsets of a file and/or executing remote
data selection or reduction functions [Beynon et al., 2000].
Management mechanisms that allow control over the resources
allocated to data transfers (space, disk bandwidth, network

bandwidth, CPU) are wuseful, as are advance reservation

50

Chapter 2. Distributed Environments

mechanisms. Enquiry functions are needed for determining
hardware and software characteristics as well as relevant load
information such as available space and bandwidth utilization.

— Network resources: management mechanisms that provide control
over the resources allocated to network transfers (e.g.,
prioritization, reservation) can be useful. Enquiry functions should
be provided to determine network characteristics and load.

— Code repositories: this specialized form of storage resource
requires mechanisms for managing versioned source and object
code: for example, a control system such as CVS.

— Catalogues: this specialized form of storage resource requires
mechanisms for implementing catalogue query and update

operations: for example, a relational database [Baru et al., 1998].

2.5.2. CONNECTIVITY: COMMUNICATING EASILY AND
SECURELY

The Connectivity layer defines core communication and
authentication protocols required for Grid-specific network transactions.
Communication protocols enable the exchange of data between Fabric
layer resources. Authentication protocols build on communication services
to provide cryptographically secure mechanisms for verifying the identity
of users and resources.

Communication requirements include transport, routing and
naming. While alternatives certainly exist, in almost all practical situations
these protocols will be drawn from the TCP/IP protocol stack: specifically,
the Internet (IP and ICMP), transport (TCP, UDP), and application (DNS,
OSPF, RSVP, etc.) layers of the Internet layered protocol architecture
[Baker, 1995].

51

Onganization Based Multiagent Architecture For Distributed Environments

With respect to security aspects of the Connectivity layer, it can be
observed that the complexity of the security problem makes it important
that any solutions be based on existing standards whenever possible. As
with communication, many of the security standards developed within the
context of the Internet protocol suite are applicable.

Authentication solutions for Virtual Organizations (VO)
environments should have the following characteristics [Butler et al.,
2000]:

— Single sign on: users must be able to “log on” (authenticate) just
once and then have access to multiple Grid resources defined in the
Fabric layer, without further user intervention.

— Delegation [Foster et al., 1998, Gamma et al., 1995, Howell et al.,
2000]: a user must be able to endow a program with the ability to
run on that user’s behalf, so that the program is able to access the
resources on which the user is authorized. The program should
(optionally) also be able to conditionally delegate a subset of its
rights to another program (sometimes referred to as restricted
delegation).

— Integration with various local security solutions: each site or
resource provider may employ any of a variety of local security
solutions, including Kerberos and UNIX security. Grid security
solutions must be able to interoperate with these various local
solutions. They cannot, realistically, require wholesale replacement
of local security solutions but rather must allow mapping into the
local environment.

— User-based trust relationships: in order for a user to use resources
from multiple providers together, the security system must not

require each of the resource providers to cooperate or interact with

52

Chapter 2. Distributed Environments

each other in configuring the security environment. For example, if

a user has the right to use sites A and B, the user should be able to

use sites A and B together without requiring that A’s and B’s

security administrators interact.

Grid security solutions should also provide flexible support for
communication protection (e.g., control over the degree of protection,
independent data unit protection for unreliable protocols, and support for
reliable transport protocols other than TCP) and enable stakeholder control
over authorization decisions, including the ability to restrict the delegation

of rights in various ways.

2.5.3. RESOURCE: SHARING SINGLE RESOURCES

The Resource layer builds on Connectivity layer communication
and authentication protocols to define protocols (and APIs and SDKs) for
the secure initiation, monitoring, and control of sharing operations on
individual resources. Resource layer implementations of these protocols
call Fabric layer functions to access and control local resources. Resource
layer protocols are concerned entirely with individual resources and hence
ignore issues of global state and atomic actions across distributed
collections; such issues are the concern of the Collective layer discussed
next.

Two primary classes of Resource layer protocols can be
distinguished:

— Information protocols are used to obtain information about the
structure and state of a resource, for example, its configuration,
current load, and usage policy.

— Management protocols are used to negotiate access to a shared
resource, specifying, for example, resource requirements (including

advanced reservation and quality of service) and the operation(s) to

53

Onganization Based Multiagent Architecture For Distributed Environments

be performed, such as process creation, or data access. Since
management protocols are responsible for instantiating sharing
relationships, they must serve as a ““policy application point™,
ensuring that the requested protocol operations are consistent with
the policy under which the resource is to be shared. Issues that
must be considered include accounting and payment. A protocol
may also support monitoring the status of an operation and
controlling (for example, terminating) the operation.

While many such protocols can be imagined, the Resource (and
Connectivity) protocol layers form the neck of the hourglass model, and as
such, it is required a small and standard set. These protocols must be
chosen so as to capture the fundamental mechanisms of sharing across
many different resource types (for example, different local resource
management systems), while not overly constraining the types or

performance of higher-level protocols that may be developed.

2.5.4. COLLECTIVE: COORDINATING MULTIPLE
RESOURCES

While the Resource layer is focused on interactions with a single
resource, the next layer in the architecture contains protocols and services
(and APIs and SDKs) that are not associated with any one specific
resource but rather are global in nature and capture interactions across
collections of resources. For this reason, the next layer of the architecture
is named as the Collective layer. Because Collective components build on
the narrow Resource and Connectivity layer “neck’ in the protocol
hourglass, they can implement a wide variety of sharing behaviours
without placing new requirements on the resources being shared.

Directory services allow VO participants to discover the existence

and/or properties of VO resources. A directory service may allow its users

54

Chapter 2. Distributed Environments

to query for resources by name and/or by attributes such as type,
availability, or load.

Co-allocation, scheduling, and brokering services allow VO
participants to request the allocation of one or more resources for a
specific purpose and the scheduling of tasks on the appropriate resources.
Examples include AppLeS [Berman, 1999, Berman et al., 1996], Condor-
G, Nimrod-G [Abramson et al., 1995], and the DRM broker [Beiriger et
al., 2000].

Monitoring and diagnostics services support the monitoring of
VO resources for failure, adversarial attack (“intrusion detection™),
overload, and so forth.

Data replication services support the management of VO storage
(and perhaps also network and computing) resources to maximize data
access performance with respect to metrics such as response time,
reliability, and cost [Allcock et al., 2001, Hoschek et al., 2000].

Grid-enabled programming systems enable familiar programming
models to be used in Grid environments, using various Grid services to
address resource discovery, security, resource allocation, and other
concerns. Examples include Grid-enabled implementations of the Message
Passing Interface [Foster and Karonis, 1998, Gabriel et al., 1998] and
manager-worker frameworks [Casanova et al., 2000, Goux et al., 2000].

Software discovery services discover and select the best software
implementation and execution platform based on the parameters of the
problem being solved [Casanova et al., 1998]. Examples include NetSolve
[Casanova and Dongarra, 1997] and Ninf [Nakada et al., 1999].

Community authorization servers enforce community policies
governing resource access, generating capabilities that community
members can use to access community resources. These servers provide a

global policy enforcement service by building on resource information,

55

Onganization Based Multiagent Architecture For Distributed Environments

and resource management protocols (in the Resource layer) and security
protocols in the Connectivity layer. Akenti [Thompson et al., 1999]
addresses some of these issues.

Collaboratory services support the coordinated exchange of
information within potentially large user communities, whether
synchronously or asynchronously. Examples are CAVERNsoft [DeFanti
and Stevens, 1999, Leigh et al., 1997], Access Grid [Childers et al., 2000],
and commodity groupware systems.

These examples illustrate the wide variety of Collective layer
protocols and services that are encountered in practice. Notice that while
Resource layer protocols must be general in nature and are widely
deployed, Collective layer protocols span the spectrum from general
purpose to highly application or domain specific, with the latter existing
perhaps only within specific VOs.

Collective functions can be implemented as persistent services,
with associated protocols, or as SDKs (with associated APIs) designed to
be linked with applications. In both cases, their implementation can build
on Resource layer (or other Collective layer) protocols and APIs. For
example, figure 9 shows a Collective co-allocation API and SDK (the
middle tier) that uses a Resource layer management protocol to
manipulate underlying resources. Above this, a co-reservation service
protocol is defined and implements a co-reservation service that speaks
this protocol, calling the co-allocation API to implement co-allocation
operations and perhaps providing additional functionality, such as
authorization, fault tolerance, and logging. An application might then use
the co-allocation service protocol to request end-to-end network
reservations.

Collective components may be tailored to the requirements of a

specific user community, VO, or application domain, for example, an

56

Chapter 2. Distributed Environments

SDK that implements an application-specific coherency protocol, or a
co-reservation service for a specific set of network resources. Other
Collective components can be more general-purpose, for example, a
replication service that manages an international collection of storage
systems for multiple communities, or a directory service designed to
enable the discovery of VOs. In general, the larger the target user
community, the more important it is that a Collective component’s

protocol(s) and API(s) be standards based.

Co-allocation Protocol

Collective Layer

Resource Layer Resource Mgmt I_l Protocol

Figure 9. Collective and Resource layer protocolos, service, APIs
and SDKs.

2.5.5. APPLICATIONS

The final layer in the Grid architecture comprises the user
applications that operate within a VO environment. Figure 9 illustrates an

application programmer’s view of Grid architecture. Applications are

57

Onganization Based Multiagent Architecture For Distributed Environments

constructed in terms of, and by calling upon, services defined at any layer.
At each layer, there are well-defined protocols that provide access to some
useful service: resource management, data access, resource discovery, and
so forth. At each layer, APIs may also be defined whose implementation
(ideally provided by third-party SDKs) exchange protocol messages with
the appropriate service(s) to perform desired actions.

Applications -

Ky:

Collective Service '_ Protocols

Resource Service

Connectivity '_ Protocols

Figure 10. Software development kits (SDKSs) implement specific APIs.

Figure 10 shows the implemented specific APIs use Grid
protocols to interact with network services that provide capabilities to the
end user. Higher level SDKs can provide functionality that is not directly
mapped to a specific protocol, but may combine protocol operations with
calls to additional APIs as well as implement local functionality. Notice
the additional ““Languages and Frameworks” component introduced in

58

Chapter 2. Distributed Environments

figure 10. While the preceding discussion has focused on protocols as a
means of achieving interoperability and APIs as a way of promoting code
sharing and portability, effective application development can often
benefit from the use of higher-level languages and frameworks (e.g., the
Common Component Architecture [Armstrong et al., 1999], SciRun
[Casanova et al., 1998], CORBA [Gannon and Grimshaw, 1998], [Lopez
et al., 2000], Legion [Grinshaw and Wm, 1996], Cactus [Benger et al.,
1999]). These higher-level systems can build on protocols, services and

APIs provided within the Grid architecture.

2.5.6. CURRENT DEVELOPMENTS AND LIMITATIONS

The infrastructure that focuses on management of distributed
application data is commonly labelled a Data Grid [Chervenak et al.,
2000]. An increasing number of scientific disciplines manage large data
collections generated by measurements and derivation of measurement
data. As a result, many Data Grids are currently being deployed [Avery
and Foster, 2000], [Avery et al., 2001]. Infrastructure targeting resource
information is often referred to as a Grid Information Service [Czajkowski
et al., 2001]. A number of research groups have designed and prototyped
components for collecting, indexing and publishing Grid information. The
problems of indexing, discovering, and accessing such “Grid information
services™ is in some respects quite similar to those encountered when
indexing, discovery and accessing other data sources.

For both infrastructures, appropriate data schemas must be
defined so that information can be encoded, stored and searched in an
efficient manner. A number of recent developments have made
contributions in that area. In the Data Grid context, the Chimera system

[Foster et al., 2002] targets a data schema that can be used to establish a

59

Onganization Based Multiagent Architecture For Distributed Environments

virtual data catalogue that describes all ways in which data in the
catalogue has been derived. This is a generic solution that should be
applicable to many different VOs and has been demonstrated for high-
energy physics and astronomy applications. In the context of Grid
Information Services, schemas are being developed for various Grid
resource types as part of the GGF activities in the Grid Information
Services working group. Commonalities with Common Information
Model (CIM) are also being explored.

The definition of schemas is an important, but in some sense
mundane, issue. More challenging is the design and implementation of a
distributed system that implements mechanisms to publish information,
disseminate information, notify participant of information changes, locate
information, and retrieve information. Initial Grid infrastructure efforts
have engineered software solutions for those mechanisms (e.g. [Fitzgerald
et al., 1997]). Those mechanisms have made it possible to take the first
steps in Grid computing and have been crucial to making the Grid a
plausible platform. However, a large part of those efforts were focused on
““getting it to work™, without directly addressing issues of scalability,
reliability and information quality.

Now, to face VOs that contain thousands of individuals in
hundreds of institutions world-wide, issues such as scalability and
usability are becoming a near-term concern. These issues are being
increasingly recognized by the Grid computing community and recent
work explores avenues of research that are strongly connected to
distributed systems and distributed computing research questions. In that
sense, Grid computing presents a key opportunity for distributed systems
and distributed computing researchers. Grid developers are implementing
large scale infrastructures such as GriPhyn, and those infrastructures

provide a great “playground” to explore research issues in a concrete

60

Chapter 2. Distributed Environments

setting that will have a major impact on disciplinary science. Furthermore,
information dissemination techniques developed in the distributed systems
community (e.g. wide-area group communications) have shortcomings

that must be addressed for Grid computing.

2.6. AGENTS AND MULTIAGENT SYSTEMS

It is necessary to begin by defining an agent. What actually constitutes
an agent, and how it differs from a normal program, has been heavily debated
for several years now. While this debate is by no means over, there are a lot of
agents loosely defined as programs that assist people and act on their behalf.
This is what it is better to call the ““end-user perspective” of software agents.

Considering an end-user perspective, an agent can be defined as a
program that assists people and acts on their behalf. Agents function by
allowing people to delegate work to them.

While this definition is basically correct, it does not really get under
the hood. Agents come in myriad different types and in many settings. They
can be found in computer operating systems, networks, databases, and so on.
What properties do these agents share that constitute the essence of being an
agent?

This is not the place to examine the characteristics of the numerous
agent systems made available to the public by many research labs. But if you
looked at all these systems, you would find that a property shared by all agents
is that fact that they live in some environment. They have the ability to interact
with their execution environment, and to act asynchronously and
autonomously upon it. No one is required either to deliver information to the
agent or to consume any of its output. The agent simply acts continuously in
pursuit of its own goals.

In contrast to software objects of object-oriented programming, agents

o1

Onganization Based Multiagent Architecture For Distributed Environments

are active entities that work according to the so-called Hollywood Principle:

"Don't call us, we'll call you!"

Considering a system’s perspective, an agent can be defines
as: a software object that
v' s situated within an execution environment;
v" possesses the following mandatory properties:
= Reactive: senses changes in the environment and acts
accordingly to those changes;
= Autonomous: has control over its own actions;
= Goal driven: is pro-active;
= Temporally continuous: is continuously executing;
v and may possess any of the following orthogonal properties:
= Communicative: able to communicate with other
agents;
= Mobile: can travel from one host to another;
= Learning: adapts in accordance with previous
experience;

= Believable: appears believable to the end-user.

2.6.1.MULTI-AGENT SYSTEMS

A multi-agent system (MAS) [Wooldridge, 2002] is a system
composed of multiple interacting intelligent agents. Multi-agent systems
can be used to solve problems which are difficult or impossible for an
individual agent or monolithic system to solve. Examples of problems
which are appropriate to multi-agent systems research include online
trading, disaster response, and modelling social structures.

MAS systems tend to find the best solution for their problems
"without intervention”. There is high similarity here to physical

phenomena, such as energy minimizing, where physical objects tend to

62

Chapter 2. Distributed Environments

reach the lowest energy possible, within the physical constrained world.
For example: many of the cars entering a metropolis in the morning will
be available for leaving that same metropolis in the evening.

It would be foolish to claim that MAS should be used when
designing all complex systems. Like any useful approach, there are some
situations for which it is particularly appropriate, and others for which it is

not.

The most important reason to use MAS when designing a system
is that some domains require it. In particular, if there are different people
or organizations with different (possibly conflicting) goals and proprietary
information, then a multiagent system is needed to handle their
interactions. Even if each organization wants to model its internal affairs
with a single system, the organizations will not give authority to any
single person to build a system that represents them all: the different
organizations will need their own systems that reflect their capabilities and

priorities.

For example, consider a manufacturing scenario in which
company X produces tires, but subcontracts the production of lug-nuts to
company Y. In order to build a single system to automate (certain aspects
of) the production process, the internals of both companies X and Y must
be modelled. However, neither company is likely to want to relinquish
information and/or control to a system designer representing the other
company. Perhaps with just two companies involved, an agreement could
be reached, but with several companies involved, MAS is necessary. The
only feasible solution is to allow the various companies to create their own
agents that accurately represent their goals and interests. They must then
be combined into a multiagent system with the aid of some of the

techniques described here.

63

Onganization Based Multiagent Architecture For Distributed Environments

Another example of a domain that requires MAS is an hospital
scheduling as presented in Decker’s and Li’s system [Decker and Li,
1998]. This domain from an actual case study requires different agents to
represent the interests of different people within the hospital. Hospital
employees have different interests, from nurses who want to minimize the
patient's time in the hospital, to x-ray operators who want to maximize the
throughput on their machines. Since different people evaluate candidate
schedules with different criteria, they must be represented by separate
agents if their interests are to be justly considered.

Even in domains that could conceivably use systems that are not
distributed, there are several possible reasons to use MAS. Having
multiple agents could speed up a system's operation by providing a
method for parallel computation. For instance, a domain that is easily
broken into components--several independent tasks that can be handled by
separate agents--could benefit from MAS. Furthermore, the parallelism of
MAS can help deal with limitations imposed by time-bounded reasoning
requirements.

While parallelism is achieved by assigning different tasks or
abilities to different agents, robustness is a benefit of MAS that have
redundant agents. If control and responsibilities are sufficiently shared
among different agents, the system can tolerate failures by one or more of
the agents. Domains that must degrade gracefully are in particular need of
this feature of MAS: if a single entity--processor or agent--controls
everything, then the entire system could crash if there is a single failure.
Although a MAS does not need to be implemented on multiple processors,
to provide full robustness against failure, its agents should be distributed
across several machines.

Another benefit of MAS is their scalability. Since they are

inherently modular, it should be easier to add new agents to a multiagent

64

Chapter 2. Distributed Environments

system than it is to add new capabilities to a monolithic system. Systems
whose capabilities and parameters are likely to need to change over time
or across agents can also benefit from this advantage of MAS.

From a programmer's perspective the modularity of multiagent
systems can lead to simpler programming. Rather than tackling the whole
task with a centralized agent, programmers can identify subtasks and
assign control of those subtasks to different agents. The difficult problem
of splitting a single agent's time among different parts of a task solves
itself. Thus, when the choice is between using a multiagent system or a
single-agent system, MAS is often the simpler option. Of course there are
some domains that are more naturally approached from an omniscient
perspective--because a global view is given--or with centralized control--
because no parallel actions are possible and there is no action uncertainty.
Single-agent systems should be used in such cases.

Agent and multi-agent systems will be deeply explained in next
chapter, beginning with the main characteristics of a single agent, and
passing to the organizational characteristics that share the agents within a

multi-agent system.

2.7. SUMMARY AND CONCLUSIONS

After explaining the main methodologies used to face the problems

generated by the distributed models, now, the structure of the model explained

in this document are going to be detailed. The methodologies explained

before, show that there are a great variety of different approaches to cope with

the different circumstances which source is the intrinsic characteristics of the

distributed environments.

As it was explained before, agents represent the most flexible way to

solve problems originated by distributed environments. Specially, when

65

Onganization Based Multiagent Architecture For Distributed Environments

treating different sources of information, simultaneous request and when it is
necessary to be adaptable to different kind of problems. In this occasion, an
organization of agents has been chosen to create this new architecture. The
main reason to choose an organization of agents as the structure of this
architecture is that it is a very open way of organizing heterogeneous elements
as those that make part of this architecture (interfaces, communication agents
and services).

The organization of agents represents the internal structure of the
presented architecture. On the other hand there are a series of services that
implement the different services that cover the phases of a Case-Based
Reasoning cycle, used to treat the information introduced in the system, and to
generate the solutions to the different proposed problems. Those services are
requested from the interface agents through the internal communication
structure.

Both elements (the organization of agents and the CBR services) will
be explained in the fifth chapter, where the OBaMADE architecture is fully
explicated.

In this second chapter, different approximations to the distributed
environments have been explained. First, the main characteristics of the
distributed environments have been explained, taking special attention in the
problematic aspects of those environments, and the difficulties that those
aspects generate in order to face those situations.

After describing the issues handled by distributed systems, the
different methodologies used to cope with that kind of systems have been
explained. The methodologies chosen to be explained have been the
following: CORBA, SOA, Web services, Grid computing and Multiagent
systems.

These techniques represent current approaches to solve the distributed

environment problems. As explained in the previous subsection, the

66

Chapter 2. Distributed Environments

architecture proposes here uses some of them introducing the organizations of
agents and the case-based reasoning methodology as novelties. The
combination of those methodologies with some artificial intelligence (Al)
techniques [Gale, 2009, Haupt et al., 2008] produces a powerful architecture
that may be applied to different scenarios.

After having explained those technologies, the methodologies used in
the architecture presented in this document will be explained in detail. First,
multiagent systems will be specified, including the main characteristics of the
agents themselves, and the composition of multiagent systems. Then, the
organizations of agents will be described, starting with the concept of

organization and finishing with a complete classification of organizations.

67

”There are no great limits to growth because there are no
limits of human intelligence, imagination, and wonder.” Ronald Reagan

3. AGENTS AND
M VITiAGENT
SOYSTEMS

Within this chapter, the general concept of agency will be
elaborated upon. First of all, the question of what makes
an agent to be an agent is discussed. Having identified the
crucial requirements for agenthood, several different
attributes associated with the scientific considerations of
agents will be discussed in this chapter. This basic
information will support the understanding of the particular
features of interacting, intelligent agents.

he major issues confronting users of increasingly complex
knowledge and information systems include access and
availability of information and knowledge resources,
confidence in the veracity and applicability of information provided, and
assessment of the trustworthiness of the provider [Klusch, 1999]. Intelligent

agents are a new paradigm for developing software applications and are

69

Onganization Based Multiagent Architecture For Distributed Environments

currently the focus of intense interest on the part of several fields of computer
science and artificial intelligence [Jennings et al., 1998]. Agents have made it
possible to support the representation, coordination, and cooperation between
heterogeneous processes and their users. A growing number of researchers and
organizations are using agents in an increasingly wide variety of applications.
Current ‘real world’ agent applications cover several domains in industry,
commerce, health care and entertainment, and range from comparatively small
systems such as e-mail filters to large, open, complex, mission critical systems
such as air traffic control.

Agents represent an intuitive way to solve distributed problems such
the ones solved through the investigation reflected in this document. As
explained in the previous chapter, distributed environments generate quite
complex problems that must be solved with appropriated methodologies and
technologies. Agents are one of the approaches commonly used to solve
distributed environment problems. Agents are the basic element that structures
the architecture presented in this document. As it will be explained in next
chapters, agents can arrange themselves into organizations that help to achieve
the objectives they were designed to accomplish. But first it is necessary to
introduce the main concepts regarding agents, their attributes and how they
can interact with each other. That is what will be explained in this chapter,
paying special attention to the benefits of the agents to face distributed
situations. The associative capabilities of the agents are also considered in this
chapter, as an advance to the organizations of agents, which will be deeply

explained in next chapter and in an appendix.
3.1. AGENTS THEORY

As already introduced in the previous chapter, software agents are
commonly defined as [Wooldridge and Jennings, 1995]: An agent is an

encapsulated computer system that is situated in some environment and that is

70

Chapter 3. Agents and MultiAgent Systems

capable of flexible, autonomous action in that environment in order to meet its
design objectives.

A few of the notions introduced in this definition are worth further
explanation. By ‘encapsulated computer system’ is meant that there is a clear
distinction between the agent and its environment. Moreover, the definition
implies that there is a well-defined boundary and concrete interface between
the agent and its environment. The key aspect of the definition is autonomy,
which refers to the principle that agents can operate on their own without the
need for human guidance. An autonomous agent has the control over its own
actions and internal state, that is, an agent can decide whether to perform a
requested action. The definition situates an agent in a particular environment,
which the agent can sense and effect. This indicates responsive behaviour.
Furthermore, the definition implies that agents are problem solving entities,
with well-defined boundaries and interfaces, designed to fulfil a specific
purpose, which is, having particular goals to achieve, and exhibiting flexible
and pro-active behaviour.

Agents are often regarded as socio-cognitive entities capable of
individual social behaviour [Weber, 1978]. For an agent to be termed
cognitive it must be endowed with mental attitudes representing the world and
motivating action [Panzarasa et al., 2002], [Wooldridge, 2000]. Further, for a
cognitive agent to be deemed socio-cognitive it must not only have an
intentional stance towards the environment, but also assume other agents to be
cognitive entities similarly endowed with mental attitudes for representational
and motivational purposes [Dennet, 1987]. Social behaviour is characterized
by the ability to communicate and cooperate with others and with users.
Lastly, for agents to be truly intelligent, they must be able to learn as they
react and interact with their external environment [Nwana et al., 1999].
Considering these characteristics of agents, and their applications, agents can

be classified in different categories, [Franklin and Graesser, 1997]. Agent

71

Onganization Based Multiagent Architecture For Distributed Environments

taxonomies classify different agent types including software agents, life-like
agent (like humans and artificial life types) and robots.

The concept of describing problem solving in terms of agents is
becoming more and more popular in a variety of different research disciplines
within Al, mainstream computer science and neighbouring disciplines, such as
psychology, sociology, economics, etc. [Jennings, 1999, Weiss, 1999].
Already the wide and diverse use of the term agent within common life (e.g. in
the sense of travel agent, secret agent, or softening agent), makes it difficult to
provide an exact definition of this notion. The common dictionaries provide,
in general, several distinctive definitions. For example, Webster’s New
Encyclopaedic Dictionary [Harkavy, 1996] distinguishes:

— 1la: something that produces or is capable of producing an effect (a

cleansing agent);

— 1b: a chemically, physically, or biologically active principle;

2: one that acts or exerts power;

3: one who acts for or in place of another and by the other’s
authority (government agents, a real estate agent).

In general, 1a and 2 are strongly related because they express the same
basic property of an agent from two perspectives. Of course, ‘one that acts’ is
likely to “produce an effect” and normally, the purpose of acting is to produce
an effect. Thus, la can be considered as a goal-directed description of
definition 2 and both definitions could even be combined, for example, as
‘one/something that acts (or exerts power) with the purpose/goal of producing
an effect (and possibly the capability of producing this effect)’. Thus, the basic
property of an agent, that can be determined from 1a and 2, is ‘to act in order
to produce an effect’. In regard to 1b, from the perspective of computer
science, an agent could also be considered as a computational active principle,

although, without reference to a definition of what an active principle is

72

Chapter 3. Agents and MultiAgent Systems

considered to be, such a definition would not be sufficient. 3 is often used in
order to describe agents in the contexts of personal assistants [Maes, 1994],
[Decker et al., 1997]. Such agents, for example, act as email filterers [Lashkari
et al., 1997], [Maes, 1997], meeting schedulers [Kautz et al., 1994], [Garrido
and Sycara, 1995], [Jennings, 1995] or mobile agents (or softbots), which
search through the Internet [Etzioni and Weld, 1994], [Wayner, 19953],
[Wayner, 1995b]. They are supposed to act on behalf of and by the user’s
authority. However, such personal assistants are only one of the many
different kinds of agents used within the scientific community. Therefore, 3
does not add any commonly agreed property of an agent besides the basic
property of acting.

Due to the multi-disciplinary interest in the agent concept, it is also
difficult to provide a sound scientific definition [Bond and Gasser, 1988],
[Franklin and Graesser, 1997] and until now researchers were not able to agree
upon a universal consensus [Jennings and Wooldridge, 1999]. However,
recently Russell and Norvig’s definition:

“An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through
effectors.” [Russell et al., 1995] establishes itself as general but widely
accepted and used definition because it concentrates on the most basic features
of an agent (namely, the representation as an encapsulated entity situated in an
environment which perceives and acts upon this environment). This definition
provides the basic agent skeleton with the minimum necessary conditions for
agenthood (see figure 11).

Additionally, it supplies two black boxes representing the internal
structure of the agent and the environment that the agent is situated in. Any
controversially discussed features and properties of particular agents (such as
autonomy, intelligence and rationality) and particular demands on the

environment (such as being of physical nature) are explicitly excluded from

73

Onganization Based Multiagent Architecture For Distributed Environments

the general definition of agency/agenthood. They can be additionally
introduced, explained and added (or explicitly excluded) as appropriate. For
example, autonomy is an attribute often quoted to be a necessary requirement
for agents [Wooldridge and Jennings, 1995], [Nwana and Ndumu, 1998],
[Huhns and Singh, 1998], [Sycara, 1998a], whereas mobility is a property
needed only for very specific domains, for example, to search through the
Internet [Wayner, 1995b], [Wayner, 1995a].

perceiving
Bujjoe

Figure 11. Agent skeleton.

Concentrating on the presented essentials allows the consideration of
human agents, as well as artificial agents (both software agents and robotic
agents) and, therefore, enables a broad scope of agent research within a variety
of research disciplines to be covered. Russell and Norvig’s definition also by-
passes the formidable question and lengthy discussion on what an agent is and
what makes it distinct, for example, from any software program (for a
discussion without a sufficient answer, the interested reader is referred to
[Franklin and Graesser, 1997]). This definition provides the basics for the
pragmatic answer, adopted from Shoham, that what makes any entity an agent

is precisely the fact that one has chosen to analyse it with this concept

74

Chapter 3. Agents and MultiAgent Systems

[Shoham et al., 1997]. Thus, if something can and is represented as an agent in

the sense of Russell and Norvig, then it is an agent.

3.1.1. AGENT ATTRIBUTES

As mentioned previously, Russell and Norvig’s definition does not
include any properties or attributes associated with the agent metaphor
which are not universally agreed. However, for any branch of research that
is working with the agent concept, this definition can be considered as at
least a necessary, if not as a sufficient, description of agenthood.
Depending on the main purpose for which the agents are constructed,
particular attributes need to be added for a useful agent definition. For the
demands of this thesis, the key attributes that will be focused upon are
those associated with intelligent agents in terms of DAI research. For DAI
research, in general, an intelligent agent is a software computer system
with the following attributes [Wooldridge and Jennings, 1995, Jennings
and Wooldridge, 1999, Sycara, 1998a], that will be explained next:
situatedness, autonomy, adaptability and for the case of the intelligent

agent being situated within a multi-agent system sociability.

3.1.1.1. SITUATEDNESS

Considering Russell and Norvig’s definition, roughly speaking,
anything that can be viewed as obtaining an input and producing an
output, can be viewed as an agent. To this extent, any function or any
kind of software can be considered an agent.

However, this consideration neglects to emphasise an important
characteristic that constitutes agenthood, and that is included in
Russell and Norvig’s definition, namely, the situatedness of the agent
within an environment [Jennings et al., 1998, Sycara, 1998a]. The

emphasis that an agent can be viewed as an encapsulated entity

75

Onganization Based Multiagent Architecture For Distributed Environments

situated in an environment that interacts with the environment only via
its sensors and effectors is the reason for the widespread acceptance of
Russell and Norvig’s definition as description of a standard agent
[Wooldridge, 1999].

3.1.1.2. AUTONOMY

Besides situatedness, autonomy is the second crucial property
which provides the underlying power of the agent paradigm. There
exist many slightly different definitions of what constitutes an
autonomous agent [Castelfranchi, 1990, Russell et al., 1995,
Wooldridge and Jennings, 1995].

For example, Huhns and Singh identify five different varieties
of autonomy, which serve different purposes in the study and design
of agents [Huhns and Singh, 1998]. However, for the remainder of this
thesis, the following description is sufficient: autonomy means “that
agents are able to act without the intervention of humans or other
systems: they have control both over their own internal state and over
their behaviour”. [Wooldridge, 1999].

Therefore, an agent is autonomous to the extent that its
behaviour depends on its own situational experience at run-time (i.e.
its own perceptions of the environment), rather than on built-in
knowledge of the environment initially provided by the agent’s
designer at design-time. So, the agent lacks autonomy if it does not
need to pay attention to its possible perceptions because its action
choices are determined solely by the designer’s built-in knowledge
[Russell et al., 1995].

To illustrate that autonomy is a crucial characteristic of
intelligent agents, consider the example of an agent that would

permanently act blindly (i.e. regardless of the possible perceptions

76

Chapter 3. Agents and MultiAgent Systems

from the environment) and still always perform successful actions.
Besides the fact that such an agent would not be very successful as
soon as the environment changes in an unexpected manner, the
intelligence behind its apparently intelligent behaviour must be
credited solely to the agent’s designer who would have been able to
predict the best possible actions for all possible situations in advance.
Therefore, an intelligent agent needs at least a small degree of
autonomy to justify that the intelligence is credited to the agent.

However, an autonomous agent does not need to be intelligent.
For example, any monitoring process control system (ranking from
simple thermostats to complex nuclear reactor control systems) and
any software daemon (such as the UNIX xbiff email-program)
performs actions on the basis of the perception of its environment
without direct human intervention, and therefore, can be considered as
an autonomous agent [Wooldridge and Jennings, 1995, Jennings and
Wooldridge, 1999].

Nevertheless, these autonomous agents are typically not
considered intelligent agents because they are designed to perform
clearly-specified actions within a specific problem domain, whereas
“an intelligent agent is a computer system that is capable of flexible
autonomous action in order to meet its design objectives” [Jennings
and Wooldridge, 1999] and moreover ““a truly autonomous intelligent
agent should be able to operate successfully in a wide variety of
environments, given sufficient time to adapt”. [Russell et al., 1995].
Thus, autonomy is a necessary prerequisite of intelligent agenthood,
but for a sufficient characteristic of intelligent agenthood, additional
attributes such as flexibility and, more generally, adaptability need to

be addressed.

77

Onganization Based Multiagent Architecture For Distributed Environments

3.1.1.3. FLEXIBILITY AND ADAPTABILITY

From an Al standpoint of intelligent agents, flexibility requires
two, to some extent opposing, properties: responsiveness and
pro-activeness [Wooldridge and Jennings, 1995, Jennings and
Wooldridge, 1996, Jennings and Wooldridge, 1999]. In this context,
responsiveness is defined as the property that ““agents should perceive
their environment (which may be the physical world, a user, a
collection of agents, the Internet, etc.) and respond in a timely fashion
to changes that occur in it” [Jennings and Wooldridge, 1996].
Whereas pro-activness means that ““agents should not simply act in
response to their environment, they are able to exhibit opportunistic,
goal-directed behaviour and take the initiative where appropriate”
[Jennings and Wooldridge, 1996].

Then, flexibility is obtained by an effective balance between
reactive and goal-directed behaviour. However, a good balance is hard
to obtain (even for humans) and provides the essence of intelligent
behaviour [Wooldridge, 1999].

In general, if possible, an intelligent agent should try to achieve
its goals in a systematic long-term manner, which may involve
complex procedure-like patterns of actions. However, if necessary,
such an agent should be able to react within an appropriate time-scale
to present changes in its environment which necessitate changing,
postponing, or dropping the currently envisaged goal-achievement. So,
the difficulty is to decide when it is best to keep focussed on a goal
long enough to eventually achieve it, and when it is better to react
differently because the current circumstances make it necessary to

adapt immediately to the new situation.

78

Chapter 3. Agents and MultiAgent Systems

For a truly autonomous intelligent agent, the knowledge about
how to balance reactive and goal-directed behaviour should not be
entirely specified as initial built-in knowledge at design-time but at
run-time obtained from the environment and the agent’s own
experience [Russell et al., 1995, Nwana and Ndumu, 1998, Sycara,
1998a].

Therefore, some scientists do not only assume flexibility to be
an essential requirement of intelligent agents but additionally, the
ability to learn from its own experience and its environment [Nwana
and Ndumu, 1998, Sycara, 1998a]. Following this view, Sycara
extended Jennings and Wooldridge’s widely used list of key
characteristics for intelligent agents [Wooldridge and Jennings, 1995,
Jennings and Wooldridge, 1999]. She determined situatedness,
autonomy, and adaptability as the main characteristics of intelligent
agents and identified three basic requirements for adaptability
[Sycara, 1998a]: responsiveness, pro-activeness, and the ability to

learn.

It is assumed that these attributes uniquely characterise an
intelligent agent. So, when a single software entity possesses these
attributes, it can be considered an intelligent agent. However, these

properties are not independent of each other.

For example, to be able to adapt to the environment, an agent
needs to be able to behave in a flexible manner. However, a lack of
autonomy implies a lack of flexibility, because no possibility exists to
react to unexpected changes in the environment [Russell et al., 1995],
and, therefore, a lack of autonomy also implies a lack of adaptability
[Sycara, 1998a, b].

79

Onganization Based Multiagent Architecture For Distributed Environments

3.1.1.4. SOCIABILITY

The aforementioned attributes are sufficient to characterise an
intelligent agent within an agent-based system [Wooldridge and
Jennings, 1995]. However, for interacting agents situated within a
multiple agent environment, a further property is essential, namely:
sociability. In this context, sociability means “that an agent is capable
of interacting in a peer-to-peer manner with other agents or humans.”
[Sycara, 1998a].

Therefore, “agents should be able to interact, when they deem
appropriate, with other software agents and humans in order to
complete their own problem solving and to help others with their
activities where appropriate” [Jennings and Wooldridge, 1996]. Such
agents can, for example, interact by coexistence, cooperation,
negotiation, or competition [Moulin and Chaib-Draa, 1996, Jennings
et al., 1998]. In the case of pure coexistence, interactions take place
indirectly through the environment, for example, by performing
actions that change the environment so that other agents may become
affected, or by observing one another [Weiss, 1999]. However, for
most high-level forms of interaction, such as cooperation and
negotiation, interaction can also take place directly, for example, by
communication through a shared agent-communication language
[Genesereth and Ketchpel, 1994, Jennings and Wooldridge, 1995]. To
engage in an intelligent manner in sophisticated patterns of interaction,
the agents must not only be able to follow simple communication
strategies such as information exchanges and requests for particular
actions to be performed, but the agents must be able to participate and
follow complex communication, negotiation and other interaction
protocols [Huhns and Singh, 1998].

80

Chapter 3. Agents and MultiAgent Systems

Therefore, the sociability attribute implies that intelligent agents
situated within a multi-agent system need at least the following
requirements to interact in an intelligent manner: the ability to become
aware of the possible co-existence of other agents, a possibility to
represent and reason about each other (for example, in terms of the
other agents’ knowledge, goals, plans, and possible actions), and
facilities to communicate with one another in an appropriate manner
[Bond and Gasser, 1988, Huhns and Singh, 1998].

As it is the case with some of the others, the sociability attribute
is not independent of the other key properties of intelligent agents. In
principle, from a technical standpoint, sociability does not even need
to be added as an extra property of the character of an intelligent
agent, but it can be incorporated in the other properties. Firstly, the
other agents are part of the overall environment of an agent, and
therefore, any interactions with the other agents can only happen by
performing actions (which is already addressed by the situatedness
aspect). For example, to communicate with other agents in the
environment, the agent needs to perform some form of communicative
actions, such as speech acts [Austin, 1962, Searle, 1969, Genesereth
and Ketchpel, 1994]. Secondly, by assuming that the other agents
might be acting autonomously, the environment may be changed in a
flexibly way by actions caused by the other agents, and therefore, an
agent should be able to react flexible to environmental changes caused
by the other agents and, ultimately, an intelligent agent should be able
to adapt to (and influence) the behaviour of the others [Jennings et al.,
1998, Sycara, 1998a, Castelfranchi, 1998].

Because the sociability attribute only becomes important in the
context of multiple agent environments, it is legitimate to address it as

an additional key property of intelligent agents, although it can be

81

Onganization Based Multiagent Architecture For Distributed Environments

entirely incorporated into the other key aspects of intelligent

agenthood. However, sociability is the central focus of research in

intelligent agents from the DAI perspective.

3.1.2. AGENT ARCHITECTURES

Concerning the implementation of agents, several architectures

have been proposed that can be roughly classified into the following types

[Wooldridge, 1999], increasingly less abstract:

Logic-based agents: reasoning and decision making are realized
through logical deduction [Genesereth and Nilsson, 1987,
Lesperance et al., 1996, Fisher, 1994].

Reactive agents: in which decision making is implemented as some
direct mapping from situation to action [Brooks, 1986, Maes,
1990].

Belief-desire-intention (BDI) agents: decision making depends on
the manipulation of some representation of the beliefs, desires and
intentions of the agent [Bratman et al., 1988, Rao and Georgeff,
1992].

Layered agents: decision making is realized via several software
layers, each explicitly reasoning about the environment at different
levels of abstraction [Miiller et al., 1995, Ferguson, 1995].

Of the above architectures, special attention will be paid to the BDI

architecture. On the one hand, this architecture has become a de facto

standard for agent models and is at the basis of namely the FIPA standard,

and, on the other hand, it is generic enough to enable the modelling of

both natural as artificial agents. Being a generic architecture, BDI provides

the best approach to this requirement.

The BDI model has its roots in the philosophical tradition of

understanding practical reasoning in humans (e.g. [Bratman et al., 1988,

82

Chapter 3. Agents and MultiAgent Systems

Cohen and Levesque, 1990]). Practical reasoning involves two important
processes: deciding what goals to achieve (deliberation), and how to
achieve those goals (means-ends analysis). The process starts by analyzing
the options available, which depend on the agent’s beliefs and desires, and
deciding which ones to choose.

These chosen options became the agent’s intentions, which then
determine its actions. Intentions play a crucial role in the practical
reasoning process, as they lead to action. Important aspects of intentions
are [Bratman, 1987, Wooldridge, 2000]:

— Lead the means-ends reasoning process: once an intention is
formed, the attempt to achieve it involves deciding how.

— Constrain future deliberation: a rational agent will not entertain
options that are inconsistent with its intentions.

— Persistency: agents will not give up their intentions without a good
reason. Intentions persist until they are achieved or found
impossible to achieve.

— Influence beliefs: Plans for the future will be based in the belief
that the intentions will be achieved.

In summary, agents have a set of beliefs, which are based on their
perception of the environment. Beliefs and intentions are used to
determine the current options (desires) available to the agent. A
deliberation process determines the agent’s intentions based on its beliefs,
desires and intentions. Intentions are the current focus of the agent: the
states it is committed to bring about, and for which the agent will specify a
plan on how to reach them.

Finally, an action selection function, determines which action to
perform based on the current intentions. This process of practical

reasoning in a BDI agent is described in figure 12.

83

Onganization Based Multiagent Architecture For Distributed Environments

Figure 12. The BDI agent model.

BDI models have been applied to a number of practical problems
including air traffic control, spacecraft handling and telecommunications
management and a great deal of effort has been devoted to their
formalization [Rao and Georgeff, 1992]. The best known implementation
of the BDI model is the PRS system [Georgeff and Lansky, 1987]. Finally,
BDI models have been extended by many researchers, for example to
include communication between agents [Haddadi, 1996, Dignum et al.,

20001, or normative behaviour [Broersen et al., 2001].

3.1.3. APPLICABILITY OF AGENTS

Having briefly introduced agents and their characteristics, it is
important now to describe in which cases the agent paradigm can or
should be used. That is, what do agents have to offer? According to
[Jennings and Wooldridge, 1998] the usefulness of any technology should
be judged in two directions: first, its ability of solving new types of
problems, and second its ability to improve the efficiency of current

solutions.

84

Chapter 3. Agents and MultiAgent Systems

The agent paradigm provides a natural way to view and
characterize intelligent and/or reactive systems [Weiss, 1999]. Intelligence
and interaction are deeply and inevitably coupled, and multi-agent systems
reflect this insight. Multi-agent systems can provide insights and
understanding about poorly understood interactions between natural,
intelligent beings, as they organize themselves into groups, societies and
economies in order to achieve improvement.

Systems that maintain an ongoing interaction with some
environment are inherently quite difficult to design and correctly
implement. Process control systems and network management systems are
examples of such reactive systems. Applications of the agent paradigm
can be broadly divided in three classes: open systems, complex systems
and ubiquitous systems.

Open systems are systems in which the structure of the system is
capable of dynamically changing. Their components are not known in
advance, can change overtime, and may be highly heterogeneous. An
excellent example of an open system is the Internet. Any computer system
that must operate in the Internet must be capable of dealing with many and
very different organizations and agendas, without constant guidance from
users. Such functionality is almost certain to require techniques based on
negotiation and co-operation, which lie firmly in the domain of multi-
agent systems.

Complex systems relate to particularly complex, large or
unpredictable domains. The most powerful tools to deal with complexity
in systems are modularity and abstraction. Application of the agent
paradigm entails that the overall problem can be partitioned into a number
of sub-problems of less complexity that are easier to handle. This
decomposition allows agents to employ the most appropriate paradigm to

solve a sub-problem. The notion of an autonomous agent is also a

85

Onganization Based Multiagent Architecture For Distributed Environments

powerful abstraction, in just the same way as data types or objects.

Ubiquitous systems have the goal of enhancing computer use by
making many computers available throughout the physical environment,
but making them effectively invisible to the user. Ubiquitous systems are
roughly the opposite of virtual reality. Where virtual reality puts people
inside a computer-generated world, ubiquitous computing forces the
computer to live out there in the world with people [Weiser, 1993]. In
ubiquitous systems the need for an equal partnership between the system
and its user is paramount. The system has to cooperate with the user to
reach their goal. It has been predicted that in the future, delegating to,
rather than manipulating computers [Negroponte, 1996] will drive
computing. Software applications to deliver such functionality need to be
autonomous, pro-active, responsive and adaptive. In other words, such
applications need to behave as an intelligent agent. This gives rise to the
idea of ‘expert assistants’, which are agents knowledgeable about both the
application and the user.

Agent technology has been successfully applied to several of the
above types of systems. However, the fact that a system can be designed
as a (multi-)agent system does not mean that an agent-based solution is
always the most appropriate one. Other pitfalls to the development of
agent-based systems have been discussed in [Wooldridge and Jennings,
1999].

These include political (overselling agents), management (using
agents no matter what), conceptual (the risk of the silver bullet), and
development (yet another agent architecture) pitfalls. From a software
engineering perspective, there are basically four limitations to the use of
agents [Jennings and Wooldridge, 1998]:

— Agent systems have no overall system controller. An agent-based

solution may thus not be appropriate in situations where global

86

Chapter 3. Agents and MultiAgent Systems

constraints have to be maintained.

Agents have local perspective. Agent actions are determined by its
own local state. Since in most applications, agents do not maintain
complete global knowledge, this may mean that agents make global
sub-optimal decisions. One of the aims of multi-agent systems
research is to reconcile decision making based on local knowledge
with the desire to achieve globally optimal performance [Bond and
Gasser, 1988].

Trust and delegation limitations. Both individuals and
organizations have to be confident that agents will work on their
behalf. The process of learning to trust an agent and to learn how to
delegate tasks to an agent takes time.

Careful personalization limitations. Profiles that an agent makes of
its user must be comprehensive, accurate, require minimal user
input, and enforce privacy issues. Furthermore an agent must know

its limitations and be trustworthy.

3.2. MULTIAGENT SYSTEMS

Multi-agent environments extend single-agent architectures with an

infrastructure for interaction and communication. Ideally, MAS exhibit the

following characteristics [Huhns and Stephens, 1999]:

Are typically open and have no centralized designer.

Contain autonomous, heterogeneous and distributed agents, with
different ‘personalities’ (cooperative, selfish, honest, etc.).

Provide an infrastructure to specify communication and interaction

protocols.

Agents in a MAS are expected to coordinate by exchanging services

and information, to be able to negotiate and agree on commitments, and to

87

Onganization Based Multiagent Architecture For Distributed Environments

perform other complex social operations. Coordination and communication
are therefore extremely important issues of MAS, but not really relevant in the
case of single-agent systems. In MAS agents have to be able to find each
other, announce their possibilities and pose questions or requests.
Furthermore, MAS infrastructure must provide security services, to ensure that
agents do not misbehave.

Several architectures and models for MAS have been proposed that
handle coordination in different ways. One of the initial and most widely used
architectures is based on mediators. The concept of mediator was first
introduced by Gio Wiederhold [Wiederhold, 1992] as a way to deal with the
integration of knowledge from heterogeneous sources. Mediators are
facilitation agents that can provide a number of intermediate information
services to other agents. They may suggest collaboration between users with
common interests, or provide information about tools and resources available.
An example of a MAS infrastructure based on the concept of mediators is
RETSINA [Sycara et al., 2003]. RETSINA was implemented based on the
idea that agents in the system form a community of peers that engage in peer
to peer relations. Coordination should emerge from the relations between
agents rather than be imposed by the infrastructure, and as such does not
employ centralized control but provides (mediation) services that facilitate the

relations between agents.

3.2.1. AGENT SOCIETIES

The term society is used in a similar way in agent societies research
as in human or ecological societies. The role of any society is to allow its
members to coexist in a shared environment and pursue their respective
roles in the presence and/or in cooperation with others. Main aspects in
the definition of society are purpose, structure, rules and norms. Structure

is determined by roles, interaction rules and communication language.

88

Chapter 3. Agents and MultiAgent Systems

Rules and norms describe the desirable behaviour of members and are
established and enforced by institutions that often have a legal standing
and thus lend legitimacy and security to members. A further advantage of
the organization-oriented view on designing multi agent systems is that it
allows for heterogeneity of languages, applications and architectures
during implementation.

Organizations can be seen as sets of entities regulated by
mechanisms of social order and created by more or less autonomous actors
to achieve common goals. Multi-agent systems that model and support
organizations should therefore be based on coordination frameworks that
mimic the structure of the particular organization and be able to
dynamically adapt to changes in organization structure, aims and
interactions. The structure of the organization determines important
autonomous activities that must be explicitly organized into autonomous
entities and relationships in the conceptual model of the agent society
[DignumWeigand et al., 2002].

In a business environment, the behaviour of the global system and
the collective aspects of the domain —such as stability over time,
predictability and commitment to overall aims and strategies— must be
considered. That is, the concept of desirable social behaviour is of utmost
importance when multi-agent systems are considered from an
organizational point of view. This leads to a rising awareness that multi-
agent systems and cyber-societies can best be understood and developed if
they are inspired by human social phenomena [Artikis et al., 2001,
Castelfranchi, 2000, Zambonelli et al., 2001]. This is, in many ways, a
novel concept within agent research, even if sociability has always been
considered an important characteristic of agents.

When multi-agent systems are considered from an organizational

point of view, the concept of desirable social behaviour becomes of

89

Onganization Based Multiagent Architecture For Distributed Environments

utmost importance. That is, from the organizational point of view, the
behaviour of individual agents in a society should be understood and
described in relation to the social structure and overall objectives of the
society. Until recently, multi-agent systems were mainly viewed from an
individualistic perspective, that is, as aggregations of agents that interact
with each other, and how an agent can affect the environment or be
affected by it [Ferber and Gutknecht, 1998]. This view looks at the
behaviour of multi-agent systems from the perspective of the agent itself,
in terms of how an agent can affect the environment or be affected by it.

The term agent society will be used to refer to MAS considered
from a social perspective. In an individualistic view of Multi-Agent
Systems, agents are individual entities socially situated in an environment,
that is, their behaviour depends on and reacts to the environment, and to
other agents on it [Dautenhahn, 2000]. It is not possible to impose
requirements and objectives to the global aspects of the system, which is
paramount in business environments. However, organization-oriented
agent societies require a collectivist view on the relation between agent
and environment. That is, agents are considered as being socially
embedded [Edmonds, 1999]. If an agent is socially embedded it needs to
consider not only its own behaviour but also the behaviour of the system
as a whole and how agents in the system influence each other. Davidsson
has proposed a classification for artificial societies based on the following
characteristics [Davidsson, 2001]:

— Openness, describing the possibilities for any agent to join the
society.
— Flexibility, indicating the degree agent behaviour is restricted by
society rules and norms.

— Stability, defining the predictability of the consequences of actions.

90

Chapter 3. Agents and MultiAgent Systems

— Trustfulness, specifying the extent to which agent owners may trust
the society.

Depending on its purpose, a society needs to support these
characteristics in different degrees. In one extreme, there are open
societies that impose no restrictions on agents joining the society. Popper
has defined open societies as systems in a state, far from equilibrium, that
shows no tendency towards an increase in disorder [Popper, 1982]. That
is, open societies support flexibility and openness very well but lack on
stability and trustfulness. The most obvious example of an open society is
the WWW. Open agent societies assume that participating agents are
designed and developed outside the scope and design of the society itself
and therefore the society cannot rely on the embedding of organizational
and normative elements in the intentions, desires and beliefs of
participating agents but must represent these elements explicitly. These
considerations lead to the following requirements for engineering
methodologies for open agent societies [Dignum and Dignum, 2001].

Agent societies must include formalisms for the description,
construction and control of the organizational and normative elements of a
society (roles, norms and goals) instead of just the agents’ states [Artikis
et al., 2001, Zambonelli et al., 2001].

The methodology must provide mechanisms to describe the
environment of the society and the interactions between agents and the
society, and to formalize the expected outcome of roles in order to verify
the overall animation of the society.

The organizational and normative elements of a society must be
explicitly specified since an open society cannot rely on its embedding in
the intentions, desires and beliefs of each agent [Dellarocas and Klein,
2000b, Ossowski, 1999].

91

Onganization Based Multiagent Architecture For Distributed Environments

Methods and tools are needed to verify whether the design of an
agent society satisfies its design requirements and objectives [Jonker et
al., 2000].

The methodology should provide building directives concerning
the communication capability and ability to conform to the expected role
behaviour of agents participating in the society.

In closed societies, on the other extreme, it is not possible for
external agents to join the society. Agents in closed societies are explicitly
designed to cooperate towards a common goal and are often implemented
together with the society [Zambonelli et al.,, 2001]. Closed societies
provide strong support for stability and trustfulness properties, but only
allow for very little flexibility and openness. The large majority of
existing MAS are closed.

[Davidsson, 2001] introduces two new types of agent societies,
semi-open and semi-closed, that combine the flexibility of open agent
societies with the stability of closed societies. This balance between
flexibility and stability results in systems where trust is achieved by
mechanisms that enforce ethical behaviour between agents

In semi-open societies the access of external agents is explicitly
regulated. This allows deciding on the acceptance or not of new members
and to monitor which agents are currently in the society. An example of a
semi-open society is the Napster systemT5T. Semi-open societies slightly
limit the openness and flexibility characteristics of open societies, but are
able to provide greater stability and trustfulness.

Semi-closed societies do not allow for the participation of external
agents but provide the possibility for external parties to initiate a new
agent within the society to act on their behalf. This extends the flexibility
and openness of the society, without losing on stability and trustfulness,

since participating agents are still designed following the society

92

Chapter 3. Agents and MultiAgent Systems

requirements and the owner of the society still controls the overall
architecture of the system. Semi-closed societies are as open as semi-open
society but less flexible. This is the approach taken in the ISLANDER
platform where external agents are provided with an API as interface to
the institution, which regulates and controls all interaction [Esteva et al.,
2002].

3.2.2. COORDINATION IN MULTIAGENT SYSTEMS

Multi-agent systems that are developed to model and support
organizations need coordination frameworks that mimic the coordination
structures of the particular organization. The organizational structure
determines important autonomous activities that must be explicitly
organized into autonomous entities and relationships in the conceptual
model of the agent society [DignumWeigand et al., 2002]. Furthermore,
the multi-agent system must be able to dynamically adapt to changes in
organization structure, aims and interactions.

Coordination can be defined as the process of managing
dependencies between activities [Malone and Crowston, 1994].
Organizational science and economics have since long researched
coordination and organizational structures [Williamson, 1975, Powell,
1991]. Drawing on disciplines such as sociology and psychology, research
in organization theory focuses on how people coordinate their activities in
formal organizations. On the other hand, it is also generally recognized
that coordination is an important problem inherent to the design and
implementation of multi-agent systems [Bond and Gasser, 1988].

The challenge of coordination in MAS has been recognized by
many authors and several approaches have been developed and advocated.
Such approaches take either a bottom-up (e.g. goal management in which

members of the group take control of the definition of their work [Malone

93

Onganization Based Multiagent Architecture For Distributed Environments

and Crowston, 1994]) or a top-down view of coordination (e.g. shared
ontologies [Fox and Gruninger, 1998] and the hierarchical assignment of
responsibilities used in many human organizations). Coordination is one
of the cornerstones of agent societies and is considered an important
problem inherent to the design and implementation of MAS [Bond and
Gasser, 1988, Dignum and Dignum, 2001]. However, the implications of
coordination models to the architecture and design of agent societies are
not often considered. Other examples of coordination theories in MAS are
joint-intentions [Cohen and Levesque, 1990, Dunin-Keplicz and
Verbrugge, 2002], shared plans [Grosz and Kraus, 1996] and domain-
independent teamwork models [Tambe, 1997].

Behavioural approaches to the design of multi-agent systems are
gaining terrain in agent research and several research groups have
presented different kind of models. Recent developments recognize that
the modelling of interaction in MAS cannot simply rely on the agent’s
own (communicative) capabilities. Furthermore, organizational
engineering of MAS cannot assume that participating agents will act
according to the needs and expectations of the system design. Concepts as
organizational rules [Zambonelli, 2002], norms and institutions [Esteva et
al., 2001] and social structures [Parunak and Odell, 2002] all start from
the idea that the effective engineering of MAS needs high-level, agent-
independent concepts and abstractions that explicitly define the
organization in which agents live [Zambonelli et al., 2001].

Relating society models to the organizational perception of the
domain can facilitate the development of organization-oriented multi-
agent systems. This means that the development of agent society models
for organizations must be a concerted effort between MAS engineers and
domain specialists. A common ground of understanding is therefore

needed between MAS engineers and organizational practitioners.

94

Chapter 3. Agents and MultiAgent Systems

Coordination aspects are relevant both in agent research as in
organizational theory. Therefore, coordination is considered the way to
bridge both communities and create an initial common ground for

cooperation.

3.2.3. COMMUNICATION

The main challenge of coordination and collaboration among
heterogeneous and autonomous intelligent systems (taking into account
both humans and software) in an open, information-rich environment is
that of mutual understanding. Only by sharing a mutual understanding of
the domain will agents be able to exchange and combine information from
heterogeneous sources. Communication and social interaction are
therefore the core characteristics of autonomous agents. A mechanism for
communication must include both a knowledge representation language
(to specify the internal behaviour of agents) and a communication protocol
(to specify the interactions among agents). Knowledge representation
models are based on ontologies that define the domain model and
vocabulary of a particular domain of discourse, and shared using content
languages that represent the agent’s mental model of the world (e.g.
beliefs, desires, and intentions). Given a particular domain of discourse
and a particular community of agents that know and do something in this
domain, a communication language is needed that can model the flow of
knowledge and attitudes about such knowledge within the agent
community. In the following communication protocols and knowledge
representation languages are described in more detail.

An Agent Communication Language (ACL) provides language
primitives that implement the agent communication model. ACLs are
commonly thought of as wrapper languages in that they implement a

knowledge-level communication protocol that is unaware of the choice of

95

Onganization Based Multiagent Architecture For Distributed Environments

content language and ontology specification mechanism. Most work done
in the area of agent communication languages is based on the Language
Action Perspective [Winograd, 1987] and Speech Act Theory [Searle,
1969], a formal model of human communication developed by
philosophers and linguists.

Speech Act Theory [Austin, 1962, Searle, 1969] sees human
natural language as actions, such as requests, suggestions, commitments
and replies. Speech Act theory states that a language is used not only for
making a statement but it also performs actions. For example, when
someone asks someone else to do something, he/she is already causing an
action. In Speech Act Theory, organizational communication is seen as the
exchange of speech acts for the purpose of coordinating organizational
activities. The theory provides the means to analyze communication in
detail at three levels: content (locution), intention (illocution) and effect
(perlocution). Locution is the information contained in an utterance.
Illocution is the purpose that an utterance has, like informing, convincing,
requesting, or demanding. Perlocution is the actual effect that a statement
has. Form (syntax) of communication is less important than ‘why’ and
‘what’ is communicated.

Speech Act Theory is relevant to agent communication in that it
serves as one (but not the only) formal basis for deciding on agent
communication language primitives. Using speech act theory eases
ambiguous semantic resolution, as compared to the natural languages.
Speech acts are useful in that one can formally represent the intent of the
speaker and the effect on the hearer. It is up to the agent theory and the
agent infrastructure to ensure that agents in the community are ethical and
trustworthy, and therefore that the perlocutionary behaviour of a speech
act on the hearing agent is predictable. All this is not the concern of ACLs,

which are merely providing the language primitives. Still, the semantics of

96

Chapter 3. Agents and MultiAgent Systems

speech acts for a particular agent completely depends on the agent’s
belief, intention, knowledge about how to carry out the operation, and the
society to whom an agent belongs. These semantics are represented using
the knowledge representation language. The Language Action Perspective
(LAP) is a practical application of the Speech Act Theory, which is used as
a linguistic tool to model communication in Cooperative Information
Systems [Flores and Ludlow, 1976]. The basic assumptions underlying the
Language Action Perspective are [Verharen, 1997].

The primary dimension of human cooperative activity is language.
Action is performed through language in a world constituted by language.
The meaning of sentences for the actors in a social setting is revealed by
the kinds of acts performed. Cooperative work is coordinated through
language acts. The speech act is the basic unit of communication. Speech
acts obey socially determined rules.

The design of IT systems has a focus on getting things done,
whenever work involves communication and coordination among people.
The act of doing something, the patterns of interaction and their
articulation are the primary concern of information systems design.

Recent developments in the area of agent communication have
resulted in the definition of two different ACLs based on the Speech Act
Theory. The first one is KQML (Knowledge Query and Manipulation
Language) developed in the context of the ARPA Knowledge Sharing
Effort [Finin et al., 1994]. KQML consists of a set of communication
primitives (called performatives, in accordance to Speech Act Theory
terminology) which aim to support cooperation among agents in
distributed applications. The KQML performatives enable agents to
exchange and request knowledge, and to cooperate during problem
solving. KQML doesn’t care about the content language used to represent

the mental. Its goal is to provide knowledge transportation protocol for

97

Onganization Based Multiagent Architecture For Distributed Environments

blobs of content, in some ontology that the sending agent can point to and
the receiving agent can access.

The second language is FIPA-ACL, the Agent Communication
Language framework proposed by the Foundation for Intelligent Physical
Agents [Fipa, 2002]. FIPA ACL is associated with FIPA’s open agent
architecture. As with KQML, FIPA-ACL is based on Speech Act Theory
and is independent from the content language and is designed to work
with any content language and any ontology specification approach.
Furthermore, FIPA-ACL limits itself to primitives that are used in
communications between agent pairs. The FIPA architecture has an Agent
Management System that specifies services that manage agent
communities.

Both FIPA-ACL and KQML are languages similar to those in the
family of so-called coordination languages [Carriero and Gelernter, 1992].
These extend sequential languages with constructs to support concurrency
and coordination. In a similar way, FIPA-ACL and KQML extend
knowledge representation formalisms with knowledge communication
primitives, and focus on defining knowledge level coordination languages,
which can be used to specify a range of cooperation strategies. Knowledge
level coordination languages are situated at a higher level of abstraction
with respect ‘normal’ coordination languages of distributed computing, as
they support coordination not at the symbol-level but at the knowledge-
level [Newell, 1994].

3.3. SUMMARY AND CONCLUSIONS

In this chapter, the multi-agent systems have been described. First, a
definition of agent have been exposed, indicating the agent attributes, the

existing agent architectures and an approximation to the environments where

98

Chapter 3. Agents and MultiAgent Systems

agents may be used. The main described characteristics of the agents are:
situatedness, autonomy, flexibility and sociability.

Then, after describing the characteristics of the agents, the multiagent
systems are specified. First agent societies are presented, and then the
coordination in multiagent systems and the communication required to work
correctly, are illustrated.

Agents represent the simple element, the basic element of the structure
of the architecture presented in this document. Agents are structured into
organizations, which will be explained next. Agents work together to achieve
common objectives and allow the architecture to be flexible and fast, to
respond to different requests at the same time, without wondering what kind of
request it is necessary to respond at a time.

In this chapter, agents and multi-agent systems have showed their
capabilities and how they could represent a useful methodology to designing
an architecture as the one presented in this document.

In the next chapter, the organizations of agents will be explained.
Organizations assume the advantages of agents and multiagent systems, but
introduce and organizational point of view in the set of agents implied.
Organizations enrich the multiagent point of view, and introduce, at the same
time, a big amount of flexibility, in order to be applied to different situations,
just by changing the way the agents are organised. The organizations of agents
paradigm is the methodology that has been chosen to design the OBaMADE

architecture presented here.

99

”Science is nothing but trained and organized
common sense.” Thomas H. Huxley

4. ORGANiZATiONS
OF AGENTS

The organizational design employed by an agent system can
have a significant, quantitative effect on its performance
characteristics. A range of organizational strategies have
emerged from this line of research, each with different
strengths and weaknesses. In this chapter the organizations
of agents are introduced describing the concept of

organigation and the main factors of the organigations.

rganizations represent a pass forward in agents’ evolution. The
agent paradigm has evolved from an individualization of the
work to the coordination of small entities produced in
multiagent systems. Those systems considered the collaboration between
agents in order to obtain a general, global, common objective, by dividing the
work to do in separated pieces that can collaborate. Organizations establish an
inner structure within the group of agents and determine different kind of
relationships, depending on the way the agents are organized or depending on

the goal they should accomplish.

101

Onganization Based Multiagent Architecture For Distributed Environments

The organization of a multi-agent system is the collection of roles,
relationships, and authority structures which govern its behaviour. All multi-
agent systems possess some or all of these characteristics and therefore all
have some form of organization, although it may be implicit and informal.
Just as with human organizations, such agent organizations guide how the
members of the population interact with one another, not necessarily on a
moment-by-moment basis, but over the potentially long-term course of a
particular goal or set of goals. This guidance might influence authority
relationships, data flow, resource allocation, coordination patterns or any
number of other system characteristics [Hayden et al., 1999, Carley and
Gasser, 1999]. This can help groups of simple agents exhibit complex
behaviours and help sophisticated agents reduce the complexity of their
reasoning. Implicit in this concept is the assumption that the organization
serves some purpose — which the shape, size and characteristics of the
organizational structure can affect the behaviour of the system [Galbraith,
1974].

It has been repeatedly shown that the organization of a system can
have significant impact on its short and long-term performance [Carley and
Gasser, 1999, Sandholm et al., 1999, Durfee et al., 1987, Horling et al., 2004,
Matson et al., 2003, So and Durfee, 1996, Brooks and Durfee, 2003],
dependent on the characteristics of the agent population, scenario goals and
surrounding environment. Because of this, the study of organizational
characteristics, generally known as computational organization theory, has
received much attention by multi-agent researchers.

It is generally agreed that there is no single type of organization that is
suitable for all situations [Ishida et al., 1992, Corkill and Lander, 1998, Lesser,
1998, Carley and Gasser, 1999]. In some cases, no single organizational style
is appropriate for a particular situation, and a number of different,

concurrently operating organizational structures are needed [Gasser, 1991,

102

Chapter 4. Organizations of Agents

Horling et al., 2003]. Some researchers go so far as to say no perfect
organization exists for any situation, due the inevitable tradeoffs that must be
made and the uncertainty, lack of global coherence and dynamism present in
any realistic population [Romelaer, 2002].

What is clear is that all approaches have different characteristics which
may be more suitable for some problems and less suitable for others.
Organizations can be used to limit the scope of interactions, provide strength
in numbers, reduce or manage uncertainty, reduce or explicitly increase
redundancy or formalize high-level goals which no single agent may be aware
of [Lesser and Corkill, 1981, Fox, 1981].

At the same time, organizations can also adversely affect computational
or communication overhead, reduce overall flexibility or reactivity, and add an
additional layer of complexity to the system [Horling et al., 2004]. By
discovering and evaluating these characteristics, and then encoding them using
an explicit representation [Fox et al., 1998], one can facilitate the process of
organizational-self design [Corkill and Lesser, 1983] whereby a system
automates the process of selecting and adapting an appropriate organization
dynamically [Lesser, 1998, Schwaninger et al., 2000]. This approach will
ultimately enable suitably equipped agent populations to organize themselves,
eliminating at least some of the need to exhaustively determine all possible
runtime conditions a priori. Before this can occur, the space of organizational
options must be mapped, and their relative benefits and costs understood.

These benefits and costs, and the potential advantages that could be
provided by technologies able to make use of such knowledge, motivate the
need to determine the characteristics of organizations and under what
circumstances they are appropriate. While no two organizational instances are
likely to be identical, there are identifiable classes of organizations which
share common characteristics [Romelaer, 2002]. Several organizational

paradigms suitable for multi-agent systems have emerged from this line of

103

Onganization Based Multiagent Architecture For Distributed Environments

research [Fox, 1981]. These cover particularly common, useful or interesting

structures that can be described in some general form. Several of these

paradigms will be described next, giving some insight into how they can be

used and generated, and comparing their strengths and weaknesses.

4.1. CONCEPT OF ORGANIZATION

In order to better know how to model organizations in multiagent

systems, it is necessary to understand the concepts related with human

organizations. Thus, in this sub-section human organizations are first

anal

yzed, and then organizations of agents, will be explained in following sub-

sections.

4.1.1.HUMAN ORGANIZATIONS

Human organizations represent the inspiration and clear model to
develop any other kind of ‘artificial’ organizations. This is why human
organizations are first explained here and then, and taking this
organizations as a model, organizations of agents will be developed.

An organization ““is a social arrangement which pursues collective
goals, which controls its own performance, and which has a boundary
separating it from its environment™.

J.M. Peiré defines organization as a ““formation or social entity with
a precise number of members and with an inner differentiation of the tasks
dealt by every member” [Peird, 1995].

I. Guzman, considers an organization as ‘““‘the coordination of the
activities of all the individuals that make part of an enterprise with the
purpose of obtaining the best possible gain of the material, technical or

human means, to achieve the goals of the enterprise” [Valdivia, 1983].

104

Chapter 4. Organizations of Agents

Another similar definition is proposed by J. Massie, where an
organization is a ““cooperative group of human beans where the tasks are
assigned among its members and where the relationships are identified
and its activities are integrated to achieve common objectives in a
structured way’” [Massie, 1973].

Thus, an organization is composed by a series of individuals that
make some specific and differentiated tasks or activities. Besides, those
individuals are structured following some determined rules that allow
them to achieve the objectives of the organization.

The goals should be commonly known, guiding the efforts of the
members to be achieved [Peir6, 1995]. The organization should also
proportionate a source to legitimate the adequate actions in the
organization, establishing the minimum levels or standards to acquire.

A human organization can be characterized by the following
characteristics [Hodge et al., 1998]:

— Itis formed by people.

— Follows a determined goal, which guides the activities of the
members of the organization, through the coordination and control
of the action mechanisms.

— There is a subdivision of the work among the individuals, by
specialization and division of tasks.

— Requires a formal structure, with defined roles (independent of the
person that carries that role); responsibilities associated with those
roles; and certain previously established relationships between the
members of the organization.

— All the established activities should be related with global objects
within the organization. The existence of certain role is only

justified if it is useful to achieve those goals.

105

Onganization Based Multiagent Architecture For Distributed Environments

— An organization has defined limits, establishing the members of the
organization (directly naming each member or indicating the

situation where the activity takes place).

4.1.2.ORGANIZATIONS OF AGENTS

In the multiagent knowledge field, the term organization has been
mainly used to describe a set of agents that, using some kind of roles,
interact with each other coordinating themselves to achieve the global
objectives of the system.

L. Gasser assumes that organizations are structured systems with
activity, knowledge, culture, history, and ability pattern, different of any
particular agent [Gasser, 2001]. Organizations exist in a completely
different level than individual agents that make up the organizations
themselves. Individual agents are replaceable. Organizations are
established in a space; it either is geographical, temporal, symbolic, etc.
So, an organization of agents proportionates a kind of workspace for the
activity and interaction of the agents by defining roles, behavioural
expectatives and relations.

F. Zambonelli [Zambonelli et al., 2003] considers the organizations
of agents as a set of roles that keep the relationships among them, and that
generates interaction patterns with other roles in an institutionalized and
systematic way.

Ferber indicates that organizations proportionate a way to divide the
system, crating groups or units that form the interaction context of the
agents [Ferber et al., 2004]. The organization is then based in two main
aspects: structural and dynamic. The structure of the organization
represents the remaining components when the individual elements enter
or leave the organization. The organization is composed by the set of

relationships that allow seeing a number of different elements as unique.

106

Chapter 4. Organizations of Agents

The structure defines the way the agents are grouped in organizational
units and how those units are related with each other. The roles needed to
develop the activities of the organization are also defined in the structure,
as long as the relationships and restrictions.

The organizational dynamics is centred in the interaction patterns
defined for the roles, describing the way to get into or to leave the
organization, the parameters of the roles and the way the roles are
assigned to the agents.

For V. Dignum, the organizations of agents assume that there are
global objectives, different from the individual agents’ objectives
[Dignum and Dignum, 2007b]. Roles represent organizational positions
that help to achieve those global objectives. Agents may have their own
objectives and decide if they take any specific system role or not,
determining which among the available protocols is more suitable to
achieve their chosen objectives.

Finally, J. Hubner considers the organizations as a set of
behavioural restrictions adopted by a group of agents to control their own
autonomy and to help to easier accomplish their global objectives [Hubner
et al., 2005].

It is then possible to distinguish an organization of agents by the
following characteristics:

— It is composed by agents (software, physical or human),
independently of their inner characteristics and individual
objectives.

— Follows a global common objective that does not directly depend
on the individual objectives of the particular agents that make part
of the organization in every moment.

— The tasks assigned to the agents are divided in roles, which

describe the activities and functionality of the organization.

107

Onganization Based Multiagent Architecture For Distributed Environments

— Organizations proportionate a disaggregation of the system in
groups or units, where the interaction between agents takes place.

— Organizations have clearly defined limits, determined by: the
organization environment, the internal and external agents and the
functionality of the organization and the services offered.
Comparing the resumed characteristics of human and agent

organizations, both have quite similar features, motivated by the fact that
the organizations of agents are normally developed from the simulation
and adaptation of the organizational human behaviours. Thus, is quite
reasonable to assume that improving the knowledge of human
organizations will help to obtain methods and design guides, as well as
new concepts, dimensions and aspects to take into account to analyze,

design and implement organizations of agents.

4.2. ORGANIZATION FACTORS

When analysing the organizations, it is important to take into account
not only the entities that form the organization, but also their relationships
and the objectives they want to achieve. Some other factors are also
important when analyzing an organization. They could be: the functionality
of the system, the environment where it is place and to which it is related and
the behavioural rules that guide the behaviour of their components. Then, the
main elements to consider when modelling an organization are the following:

— Structure: it is formed by all the elements that remain in the

organization independently of the final individual that form the
organization in every moment. It is defined by the roles, groups,
dependences and relational schemes.

— Functionality: specify the main objectives of the organization, the

functionalities offered by the organization, the smaller objectives

108

Chapter 4. Organizations of Agents

followed by the different members of the organization and what
tasks and plans should be carried out to achieve them.

— Normalization: determines the set of rules and actions defined to
control the behaviour of the members of the organization. The rules
about the way the members should act are also included here
(specifying the obligations, prohibitions and permissions of every
member, also including penalties and rewards according to their
acts).

— System dynamics: explains how the organization evolves through
the time, indicating the way the agents get into the organization or
leave it in a dynamic way. The agents may adopt different roles in
according to their capabilities and abilities. Agents make part of
those groups of the organization where they are admitted.

— Environment: it is formed by the resources to whose the
organization depends on; like the providers of those resources, the
clients or beneficiaries of the existence of the organization.

Next, all these elements that make part of the organizations will be

explained more detailed, paying special attention to the relationship between

the agents that form the organizations.

4.2.1. STRUCTURE

In human organizations, the structure of the organization defines
how the working tasks are divided, grouped and coordinated. Thus, a key
element in the composition of the organizations are the groups [Peir6,
1991], composed by a limited number of individuals that interact with
each other and that share a set of values and norms (conduct standards).

The main elements that characterize the structure of an organization
are: the specialization, the division into departments, the hierarchy, the

control, the centralization and decentralization and the formalization of the

109

Onganization Based Multiagent Architecture For Distributed Environments

tasks [Hodge et al., 2003].

The specialization or work division indicates the degree of
division of the tasks of the organization into separated jobs. The
bigger the specialization is, the more repetitive the tasks are in the
organization.

The division into departments groups different jobs that may
coordinate their common tasks. That grouping can be done in
different ways:

— By functions, where all the specialists are grouped in the same
departments.

— By product, grouping tasks in departments by the product or
service generated by the organization, increasing the responsibility
by the achievement of the service.

— By geography, organising the departments by regions or territories.

— By processes; every department is specialized in one of the
production phases.

— By the type of client, better satisfying the problems and needs of the
clients.

The centralization is also an important element in the structure of
the organizations, indicating where the decisions are taken. Centralized
organizations take the decisions in only one place. In decentralised
organizations the decisions are delegated to managers, located closer to
the action.

The analysis of the structure determines the way the members of the
organization are grouped, where the decisions are taken, and the
relationships between the members of the organization.

In organizations of agents, the structure of the organization is

normally defined in terms of roles and groups. Roles represent the

110

Chapter 4. Organizations of Agents

functionalities or activities of the agents. Groups specify the context for
the activities of the agents. The communication is carried on within the
groups [Dignum and Dignum, 2007a]. Thus, different dependencies are
normally specified among the roles: heritage, compatibility,
communication and coordination, authority, control, etc. These
dependencies determine the relationships between the roles, which
coordinate the actions of the agents.

The modelling language MOISE-Inst [Gateau et al., 2005], offers
one of the most complete specifications of the structure of an organization
of agents. The structure of the MAS is defined by terms of roles, groups
and relationships.

A role consists in a series of restrictions that an agent should follow
to accept to be part of a group carrying that role. Those restrictions affect
its relationships with other roles and its objectives and plans to follow.

A group is a set of relationships and roles, determining the
cardinality restrictions (minimum and maximum number of agents playing
a certain role in a group). The relationships of heritance and compatibility
are also defined. Subgroups are also allowed.

Finally, social relationships determine the knowledge connections
(what agents can obtain information from other agents), communication
links (who is allowed to communicate with other agents) and authority

relationships (who has control over others).

4.2.2. FUNCTIONALITY

In human organizations, the mission describes the reason for the
existence of the organization, specifying the results (products or services)
that proportionate. The groups of interest to whose it is dedicated and the
global benefits expected to achieve are also specified. It determines the

global objectives of the system; the services offered or required, as long as

111

Onganization Based Multiagent Architecture For Distributed Environments

the products associated to those services and the clients, users, etc.
affected by the system.

Once the general purpose of an organization is known, it is possible
to identify the basic functions needed to its achievement. The complexity
of the design of the organization consists in reducing the general activity
categories to specific subcategories. The final objective is to obtain
individual tasks, that should be grouped to obtain the maximum
productivity and efficiency with the minimum cost [Peird, 1995].

In a similar way, in organizations of agents global objectives are
also defined. Those objectives specify the general desired behaviour of the
system. There are also particular objectives for roles and groups that
establish a set of tasks and actions to achieve them.

In MOISE-Inst [Gateau et al., 2005], the global objectives of the
system are decomposed, through the use of plans, in specific objectives
distributed among the agents. The plans describe the sequences of the
objectives. Roles are assigned with a series of coherent objectives. The
agent that plays that role must undertake to achieve those objectives.

Another important aspect in organizations is the concept of service.
It is defined by a coherent block of functionality that is carried on by
serving to other entity. Detailing the services offered by an organization
will allow the agents of the system to discover, invoke, monitor or even
compose them.

The specification of services has not been deeply considered by
methodologies of agents, which are mainly centred in interaction protocols
and in the tasks of roles and agents. Only AML [Cervenka and
Trencansky, 2007], allows to specify what services are offered or required
by the different entities of the system (roles, agents or organizing units).

This Language uses its own models, based in UML.

112

Chapter 4. Organizations of Agents

4.2.3. COORDINATION

In human organizations, the coordination of tasks is obtained by
three different mechanisms [Wagner, 2004]:

— Mutual adaptation: the members share the information related with
their job and decide how to perform a tasks and who should
perform it.

— Direct supervision: a person assumes the responsibility of the work
of a group, acquiring the authority to decide what tasks must be
done, who should perform them and how to relate the tasks to
obtain the final result.

— Normalization: proportionate the standards and procedures to help
the members of the organization to determine how to perform the
tasks.

In organizations of agents, the coordination is generated by the use
of social regulations. They must describe the expected behaviour of its
members; the allowed, required and needed actions and those to be
avoided. The sanctions to apply if not desirable actions are carried on
should also be specified as well as the rewards to offer to the actions
carried out by the procedure established in the regulations. Rules are
normally defined and controlled by institutions with a legal status. Rules
are essential to solve coordination problems in big and heterogeneous
systems, where the social and direct control cannot be carried out [Lopez
et al., 2006].

In MOISE-Inst [Gateau et al., 2005], regulations define the
permissions, obligations and prohibitions of the agents while playing a
determined role or while being part of a group. Rules are related with the
execution of certain objectives satisfying their mission, within a particular

context and during an established period of time. The performance of the

113

Onganization Based Multiagent Architecture For Distributed Environments

rules is supervised by a specific role that may sanction a role affected by a
rule.

In Electronic Institutions [Esteva et al., 2001], there is a social layer
formed by internal agents that know the interaction rules and grant that the
interactions will be carried out according to those rules.

OperA [Dignum, 2004] proposes the establishment of interaction
contracts to control the behaviour of the agents when they interact with
each other. Those contracts describe the conditions and rules to apply

while that interaction is produced.

4.2.4. SYSTEM DYNAMICS

In human organizations, every organization must allow its member
to enter and leave the organization in a dynamic way. The organization
incorporates members depending on their abilities, knowledge or aptitudes
to obtain their purposes [Peird, 1995].

In organizations of agents, control mechanisms should be
established. Those mechanisms should control when the agents can enter
the organization and their position within the organization (their roles and
the groups in which they will enter). Expulsion processes must also be
considered, when an agent carries out some anomalous behaviour within
the organization. The dynamic aspect of the organization also implies the
process of creation and elimination of the groups and units contained in
the organization.

In Electronic Institutions [Esteva et al., 2001], the agent institution
manager controls the arrival of external agents. It creates an internal
representative agent, called governor, for every external agent authorized
to participate in the institution.

In OperA [Dignum, 2004], the agents are associated to the roles by

establishing social contracts. Every contract describes the conditions and

114

Chapter 4. Organizations of Agents

rules that acquires an agent to play a role.

4.2.5. ENVIRONMENT

In human organizations, the environment covers all the elements
outside the organization: suppliers, clients, rivals, government organisms,
financial institutions and investors and the job market that provides the
employees. Economic, geographical and political conditions are also part
of the environment [Wagner, 2004].

The environment is, then, the source of needed resources to survive
[Hodge et al., 1998], providing the materials, technology and the members
required to develop the products and services, as long as the enough
number of clients to consume those products offering benefits to the
organization.

In multiagent systems, the environment is mainly associated with
the resources and applications that use the agents. In Gaia [Wooldridge et
al., 2000], the access modes to the resources are established (to read,
interact, extract information, etc.).

AML [Cervenka and Trencansky, 2007] considers the sensors and
actuators of the agents with their environment. Sensors should model the
ability of the agents to observe, perceive states or receive signals; while
actuators model their ability to produce certain effect over other objects or
entities.

OMNI [Vézquez-Salceda et al., 2005] establishes who are the
stakeholders or groups of interest; those entities with certain requirements
or needs over the system. The objectives and dependencies about the

organization are also identified.

115

Onganization Based Multiagent Architecture For Distributed Environments

4.3. SUMMARY AND CONCLUSIONS

This fourth chapter develops the characteristics of the organizations of
agents. First, the main features of the organizations are described, starting
from the concept of organization, related with the human organizations,
which are the origin of the organization of agents. Then the main factors of
the organizations are developed, paying special attention to the following:
structure, functionality, normalization, dynamicity, and environment.

As explained in this chapter, human organizations establish a series of
mechanisms to restrict and control the activities to perform in order to
coordinate them.

First, the specification of the objectives of the organization determines
the tasks to be carried out. Those tasks require certain roles well
differentiated, each of those has one or more activities assigned for specific
situations. Those roles generate a structure that allows the coordination of the
activities and the transmission of information.

In second place, the organization has selection systems to incorporate
new members. Those whose conducts are more appropriated are chosen.

Finally, the organization has training and socialization mechanisms,
not only related with the tasks, but also about roles, rules and values, to
create a group environment. Groups are composed by a limited number of
individuals with common interactions and certain degree of shared rules.

Organizations are a useful paradigm to analyze and design MAS [Van
Den Broek et al., 2006], limiting the range of the interactions of the agents
and providing interaction patrons previously established. Organizations also
offer mechanisms to divide the tasks and to generate a more specialized
work. Thus they allow formalizing the objectives of the system at a high
level, establishing the purpose of the organization. Units or groups contained

in the organization, generate certain visibility limits, allowing the internal

116

Chapter 4. Organizations of Agents

agents of every unit to know its internal structure, but it is not visible to
external agents [Ferber et al., 2004].

V. Dignum affirms that the organizations of agents represent a step
forward for multiagent systems, allowing the coordination and collaboration
of open systems [Dignum and Dignum, 2007a]. The organization exists
independently of the agents that participate in it. Those agents will enter or
leave the organization in a dynamic way. Thus, it is assumed the existence of
global objectives that determine the existence of the organization. As an open
system, it allows the arrival of new agents that will require a registration by
contracts, specifying their interests and abilities.

Organizations represent one crucial aspect in the architecture
presented in this document. The fact that the agents can work together and
can share objectives and a way of responding to requests it is important in
this architecture. Agents are simpler elements that could have solved the
same problem but in a more complicated and risky way. Using organizations
allow the architecture to simplify the interaction between the agents by
grouping them. As it will be explained in the next section, the main
organizations that form the OBaMADE architecture can communicate among
them by using communication mechanisms that could not have been possible
(or, at least, it would have been much harder to achieve) by using only
individual agents.

Now, after explaining the main characteristics of the distributed
environments, and the specific features both of the multiagent systems and of
the organizations of agents, the OBaMADE architecture will be explained in
the next chapter. That architecture will be applied to dynamic distributed
environments, where different people are involved at the same time with

different roles, and with different kind of interaction with the system.

117

”Our problems are man-made, therefore they may be
solved by man. And a man can be as big as he wants. No
problem of human destiny is beyond human beings.” Jobn F. Kennedy

S. THE OBAMADE
ARCHIiTECTVRE

In this chapter the OBaMADE (Organization Based
MultiAgent Architecture for Distributed Environments)
architecture is fully described. First the main structure of
the architecture is developed. Then, the different elements
are explained, including all the components, from external
interface agents to the innmer service oriented structure,
where all the requests are solved.

BaMADE (Organization Based Multiagent Architecture for

Distributed Environments) represents a new architecture to

face problems that involve a great variety of people, data that

can originate from different sources, and solutions that may be requested from
different locations at the same time.

The OBaMADE architecture exposed in this thesis uses the distributed

capabilities of an organization of agents combined with the generalization and

knowledge extraction power of the Case-Based Reasoning methodology.

Thus, the architecture is divided in distinctly different parts, where the

119

Onganization Based Multiagent Architecture For Distributed Environments

external agents are in charge of the communications with the external sources
of information or requests. The internal elements of the architecture represent
the communication components and the services that treat the information and
the request, following the CBR paradigm.

The OBaMADE architecture makes use of the techniques explained in
previous chapters. Its aim is to solve problem in distributed environments,
where information may change in real time and where there are different
sources of information and of requests to the system. The main elements of the
architecture explained in this chapter are:

— The Interface Agent Organization: a set of agents that recover the
information that may be entered into the system. That information
can be either an input of new data, a request of a service or an
answer from a request done by the system.

— The CBR-Services Organization: a set of services coordinated by
communication and control agents. This organization uses an
internal CBR methodology to extract all the possible knowledge
from the available data.

— The Additional Services Organization: the services covering the
CBR basic methodology may involve some other services that may
be needed by the systems developed with this architecture. These
specific services, which can be modelled for any application, are
coordinated and communicated by agents that share part of the
information with the CBR services.

— The Communication Organization: serves as an interconnection
between the other elements of the architecture, helping to
interchange the information and solving the needs of services from

the agents.

120

Chapter 5. The OBaMADE Architecture

The current chapter begins with the description of the main structure
of the architecture, where the different components will be shown, and the
basic interaction between them will be explained. Next, the agents involved in
the organization will be fully described, giving details of the way they work in
their different tasks. Afterwards, the services that comprise the core of the
system will be explained, with special attention to the way the information is
treated in order to obtain proper solutions to the proposed problems. Finally,
the applications of the OBaMADE architecture are detailed, explaining how it
can be adapted to solve different kind of problems regarding information

treatment.
5.1. ARCHITECTURE DESCRIPTION

The OBaMADE architecture was primarily designed to develop
Distributed System applications. These applications must be dynamic,
flexible, robust, adaptable to changes in context, scalable and easy to use and
maintain. However, the architecture can be used to develop any kind of
complex systems because it is capable of integrating almost any service and
application desired, with no dependency on any specific programming
language. Because the architecture acts as an interpreter, the users can run
applications and services programmed in virtually any language, but have to
follow a communication protocol that all applications and services must
incorporate.

Another important functionality is that, because of the agents’
capabilities, the systems developed can make use of reasoning mechanisms
or learning techniques to handle services and applications according to
context characteristics, which can change dynamically over time. Agents,
applications and services can communicate in a distributed way, even from
mobile devices. This makes it possible to use resources no matter their

location. It also allows the starting or stopping of agents, applications,

121

Onganization Based Multiagent Architecture For Distributed Environments

services or devices separately, without affecting the rest of resources, so the

system has an elevated adaptability and capacity for error recovery.

|OBaMADE
framework

User
Defined

Figure 13. OBaMADE framework.

As can be seen on figure 13, the OBaMADE framework defines four

basic blocks: Applications, Services, Agents Platform and Communication

Protocol. These blocks provide all the functionalities of the architecture:

— Applications. These represent all the programs that can be used to

exploit the system functionalities. Applications are dynamic and
adaptable to context, reacting differently according to the particular
situations and the services invoked. They can be executed locally
or remotely, even on mobile devices with limited processing
capabilities, because computing tasks are largely delegated to the

agents and services.

— Agents Platform. This is the core of OBaMADE, integrating a set

of agents, each one with special characteristics and behaviour. An
important feature in this architecture is that the agents act as
controllers and administrators for all applications and services,
managing the adequate functioning of the system, from services,
applications, communication and performance to reasoning and

decision-making. In OBaMADE, services are managed and

122

Chapter 5. The OBaMADE Architecture

coordinated by deliberative BDI agents. The agents modify their
behaviour according to the users’ preferences, the knowledge
acquired from previous interactions, as well as the choices
available to respond to a given situation.

Services. These represent the activities that the architecture offers.
They are the bulk of the functionalities of the system at the
processing, delivery and information acquisition levels. Services
are designed to be invoked locally or remotely. Services can be
organized as local services, web services, GRID services, or even
as individual stand alone services. Services can make use of other
services to provide the functionalities that users require.
OBaMADE has a flexible and scalable directory of services, so
they can be invoked, modified, added, or eliminated dynamically
and on demand. It is imperative that all services follow the
communication protocol to interact with the rest of the architecture
components.

Communication Protocol. This allows applications and services to
communicate directly with the agents platform. The protocol is
completely open and independent of any programming language.
This protocol is based on SOAP specification to capture all
messages between the platform and the services and applications
[Cerami, 2002]. Services and applications communicate with the
agents platform via SOAP messages. A response is sent back to the
specific service or application that made the request. All external
communications follow the same protocol, while the
communication among agents in the platform follows the FIPA
Agent Communication Language (ACL) specification. This is
especially useful when applications run on limited processing

capable devices (e.g. cell phones or PDAs). Applications can make

123

Onganization Based Multiagent Architecture For Distributed Environments

use of agents platforms to communicate directly (using FIPA ACL
specification) with the agents in OBaMADE, so while the
communication protocol is not needed in all instances, it is
absolutely required for all services.

Users can access the system through distributed applications, which
run on different types of devices and interfaces (e.g. computers, cell phones,
PDA). Figure 14 shows the basic schema of OBaMADE where all requests
and responses are handled by the agents in the platform. The agents analyze
all requests and invoke the specified services either locally or remotely.
Services process the requests and execute the specified tasks. Then, services
send back a response with the result of the specific task.

OBaMADE is a modular multi-agent architecture, where services and
applications are managed and controlled by deliberative BDI (Belief, Desire,
Intention) agents [Bratman et al., 1988, Pokahr et al., 2003]. Deliberative
BDI agents are able to cooperate, propose solutions on very dynamic
environments, and face real problems, even when they have a limited
description of the problem and few resources available.

These agents depend on beliefs, desires, intentions and plan
representations to solve problems [Bratman, 1987, Georgeff and Rao, 1998].
Deliberative BDI agents are the core of OBaMADE. There are different
kinds of agents in the architecture, each one with specific roles, capabilities
and characteristics. This fact facilitates the flexibility of the architecture in
incorporating new agents.

The agents that form part of the agents’ platform interact with each
other to coordinate the requests received and to communicate between the
interface agents and the services provided by the architecture. The location of

those agents in the agents’ platform can be seen in figure 14.

124

Chapter 5. The OBaMADE Architecture

Mobile e

Figure 14. OBaMADE basic schema.

125

Onganization Based Multiagent Architecture For Distributed Environments

The information flow is started by the users, which introduce in the
system, through the Interface Organization, their requests. Once the request
is processed by the Interface Organization, it is send to the Communication
Organization, that decides which service is in charge of the tasks required by
the user. Then, the request is sent to one of the Services Organizations,
depending on the request generated by the user.

When the request is accomplished, it is returned back to the user
through both the Communication Organization and the Interface
Organization. A basic schema of this information flow is shown in figure 15.
The elements and transfers in figure 15 will be deeply explained in next sub-

sections.

Usuario Interface Organization | | Communicafion Organization ‘Swimﬂrmizm‘

Service selection

Service senl

Service request

| Service answer

-

Answer sent

Answer sent

Figure 15. OBaMADE basic information flow.

126

Chapter 5. The OBaMADE Architecture

5.2. INTERFACE AGENTS ORGANIZATION

Interface agents were designed to be embebbed in user applications.
Interface agents communicate directly with the agents in the communication
organization, so there is no need to employ the communication protocol, the
FIPA ACL specification is used indeed.

The requests are sent directly to the Security Agent, which analyzes
the requests and sends them to the Manager Agent. The rest of the process
follows the same guidelines for calling any service. These agents must be

simple enough to allow them to be executed on mobile devices, such as cell

phones or PDAs.
User Interface Organization
1
|
Starts application :
B > Detects device
Displays interface ==
Requesls service
: o
I
I Sends service
: l S
r - —-— p — b — - » - P - —_ 3 p— p — J— » J

Waiting for the answer

L

) Receives answer

Rl S
|
|
|

Sends answer

|

H |
|

|

' |

|

Figure 16. Interface Organization activity.

127

Onganization Based Multiagent Architecture For Distributed Environments

The Interface Organization receives information from the users. When
a users starts an application, it should detect the kind of device that is
requesting a service to properly sent it the interface according to the used
device. Then, the users introduces the kind of requests that is demanding.
The Interface Organization receives the request and sends it to the
Communication Organization, that will solve it by using different services of
the available Services Organizations. When the Communication
Organization sends request answer to the Interface Organization that sends it
finally to the user. This sequence of transfers can be seen in figure 16.

OBaMADE is an open architecture that allows developers to modify
the structure of these agents, so that agents are not defined in a static manner.
Developers can add new agent types or extend the existing ones to conform
to their project needs. However, most of the agents’ functionalities should be
modelled as services, releasing them from tasks that could be performed by
services. Services represent all functionalities that the architecture offers to
users and uses itself. As previously mentioned, services can be invoked
locally or remotely. All information related to services is stored into a
directory which the platform uses in order to invoke them, i.e., the services.
This directory is flexible and adaptable, so services can be modified, added
or eliminated dynamically. Services are always on “listening mode” to
receive any request from the platform. It is necessary to establish a
permanent connection with the platform using sockets.

Every service must have a permanent listening port open in order to
receive requests from the platform. Services are requested by users through
applications, but all requests are managed by the platform, not directly by
applications. When the platform requests a service, the CommServ Agent
sends an XML message to the specific service. The message is received by
the service and creates a new thread to perform the task. The new thread has

an associated socket which maintains open communication with the platform

128

Chapter 5. The OBaMADE Architecture

until the task is finished and the result is sent back to the platform. This
method provides services capable of managing multiple and simultaneous
tasks, so services must be programmed to allow multi-threading.

However, there could be situations where multi-tasks are not being
permitted, for instance high demanding processes where multiple executions
could significantly reduce the services performance. In these cases, the
Manager Agent asks the CommServ Agent to consult the status of the service,
which informs the platform that it is busy and cannot accept other requests
until finished. The platform must then seek another service that can handle
the request, or wait for the service to be idle. To add a new service, it is
necessary to manually store its information into the directory list managed by
the Directory Agent. Then, CommServ Agent sends a ping message to the
service. The service responds to the ping message and the service is added to
the platform. A service can be virtually any program that performs a specific
task and shares its resources with the platform. These programs can provide
methods to access data bases, manage connections, analyze data, get
information from external devices (e.g. sensors, readers, screens, etc.),
publish information, or even make use of other services. Developers are free
to use any programming language. The only requirement is that they must
follow the communication protocol based on transactions of XML (SOAP)

messages.
5.3. COMMUNICATION ORGANIZATION

In the middle of the OBaMADE structure there is an organization
designed to establish correct communications between the rest of the
elements of the architecture. Figure 17 shows a schema of how the agents
that form this organization may be structured within the organization. The
interchange of information from the interface organization to the

organizations in charge of the service passes through this organization, where

129

Onganization Based Multiagent Architecture For Distributed Environments

specific agents must make certain decisions, as will be explained next.

Communication
protocol

,ommunication
protocol

Figure 17. Communication Organization schema.

The agents that form this organization have the following descriptions

and tasks to perform:

— CommApp Agent. This agent is responsible for all communications

between applications and the platform. It manages the incoming
requests from the applications to be processed by services. It also
manages responses from services (via the platform) to applications.
CommApp Agent is always on “listening mode”. Applications send
XML messages to the agent requesting a service, after which the
agent creates a new thread to start communication by using
sockets. The agent sends all requests to the Manager Agent, which
processes the request. The socket remains open until a response to
the specific request is sent back to the application using another
XML message. All messages are sent to Security Agent for their
structure and syntax to be analyzed.

CommServ Agent. It is responsible for all communications between
services and the platform. The functionalities are similar to

CommApp Agent but backwards. This agent is always on ““listening

130

Chapter 5. The OBaMADE Architecture

mode” waiting for responses of services. Manager Agent signals to
CommServ Agent which service must be invoked. Then, CommServ
Agent creates a new thread with its respective socket and sends an
XML message to the service. The socket remains open until the
service sends back a response. All messages are sent to Security
Agent for their structure and syntax to be analyzed. This agent also
periodically checks the status of all services to know if they are
idle, busy, or crashed.

Directory Agent. It manages the list of services that can be used by
the system. For security reasons [Snidaro and Foresti, 2007], the
list of services is static and can only be modified manually;
however, services can be added, erased or modified dynamically.
The list contains the information of all trusted available services.
The name and description of the service, parameters required, and
the IP address of the computer where the service is running are
some of the information stored in the list of services. However,
there is dynamic information that is constantly being modified: the
service performance (average time to respond to requests), the
number of executions, and the quality of the service. This last data
is very important, as it assigns a value between 0 and 1 to all
services. All new services have a quality of service (QoS) value set
to 1. This value decreases when the service fails (e.g. service
crashes, no service found, etc.) or has a subpar performance
compared to similar past executions. QoS is increased each time
the service efficiently processes the tasks assigned. Information
management is especially important in distributed environments
because the data processed is very sensitive and personal. Thus,
security must be a major concern when developing systems related

with distributed environments. For this reason OBaMADE does not

131

Onganization Based Multiagent Architecture For Distributed Environments

implement a service discovery mechanism requiring systems to
employ only the specified services from a trusted list of services.
However, agents can select the most appropriate service (or group
of services) to accomplish a specific a task.

Supervisor Agent. This agent supervises the correct functioning of
the other agents in the system. Supervisor Agent periodically
verifies the status of all agents registered in the architecture by
sending ping messages. If there is no response, the Supervisor
Agent Kills the agent and creates another instance of that agent.
Security Agent. This agent analyzes the structure and syntax of all
incoming and outgoing XML messages. If a message is not correct,
the Security Agent informs the corresponding agent (CommApp or
CommServ) that the message cannot be delivered. This agent also
directs the problem to the Directory Agent, which modifies the
QoS of the service where the message was sent.

Manager Agent. Decides which agent must be called by taking into
account the QoS and user preferences. Users can explicitly invoke
a service, or can let the Manager Agent decide which service is
best to accomplish the requested task. If there are several services
that can resolve the task requested by an application, the agent
selects the optimal choice. An optimal choice has higher QoS and
better performance. Manager Agent has a routing list to manage
messages from all applications and services. This agent also checks
if services are working properly. It requests the CommServ Agent
to send ping messages to each service on a regular basis. If a
service does not respond, CommServ informs Manager Agent,
which tries to find an alternate service, and informs the Directory

Agent to modify the respective QoS.

132

Chapter 5. The OBaMADE Architecture

The Communication Organization receives the user’s request from the
Interface Organization. When the request arrives at the Communication
Organization it should send it to the appropriate service. That service can be
on in the CBR Services Organization or in the Additional Services
Organization. The Communication Organization should coordinate the
dataflow from the exterior of the system and to the internal services. This

dataflow can be seen in figure 18.

Communication Organization || CBR Services Organization || Add. Services Organizafion

|
User request |

-_,» Type of request

Type of request . CBR Service
| > []

i ¢

Additional Service

" Request solution
== [T ——
_» Request solution

Solution sent

- —

Solution sentU

-

Figure 18. Communication Organization dataflow.

5.4. CBR SERVICES ORGANIZATION

The reasoning capabilities of the OBaMADE architecture are based on
the Case-Based Reasoning methodology. The main basic aspects of this
methodology are explained in Appendix C. The CBR methodology uses past

information to solve new problems. The use of past information combined

133

Onganization Based Multiagent Architecture For Distributed Environments

with an appropriate set of artificial intelligence techniques produces a
successful knowledge extraction. It is essential to transform the information,
i.e. the data, into knowledge. When data can be used to solve problems, then
it is more than data. This transformation can be properly executed with a
methodology like CBR.

The four main phases of the basic CBR cycle should be taken into
account in order to accomplish the CBR methodology. In this case, the
phases are transformed into services that respond to requests made by the
interface agents, being redirected by the communication organization. The
data flow from the communication organization into the CBR services is
shown in figure 19. There can be seen the input of the request from the
communication organization and how it is treated by the different services of

the CBR services organization.

Data Entrance Agent Prediction Agent | | Revision Agent Case Base

T
|
|
Request input |

1

|

|

_D Data sent !
T

|

'll -

|

|

|

* |
|

> Type of request

Prediction Request /‘-_frediction?_
Yy

I

I

I

I

I

I

I

l T .
| > Prediction Generation
g

I

l —
Revision Request

™ i . T lel L
L Extemal revisor? > Revislon Generation
e — u |

-—— -
Revision sent

Solution Sent
e it

Figure 19. CBR Services Organization dataflow.

134

Chapter 5. The OBaMADE Architecture

Next, the adaptation of the CBR phases to the OBaMADE architecture
is explained, focusing on the artificial intelligence techniques employed to
obtain the best results from the available information. First, the organization
and creation of the case base are explained, paying special attention to the
structure of the case base and the advantages of properly organizing the
stored data. Then the introduction of information is analyzed, specifying the
process carried out to enrich the case base. The third phase described is the
generation of a solution from a request arrived at the system; the main steps
taken by the request until the arrival of the final solution are described.
Finally, the revision process, where the proposed solution is validated, is

described.

5.4.1. ORGANIZING THE CASE BASE

Case-Based Reasoning is a methodology that depends on past stored
data from which knowledge is extracted in order to solve new problems. It
is thus critical to properly organize the case base, the structure where the
information is kept [Sun et al., 2004]. Here, a new extension on the well-
known Self-Organizing Map algorithm is presented [Kohonen, 1995]. The
algorithm has a double purpose: first, it is used to sort out all the
information that is stored in the case base. Then, it is used to retrieve the
most similar cases to the problem introduced in the system that needs to be
solved.

The SOM is based on a type of unsupervised learning called
competitive learning; an adaptive process in which the neurons in a neural
network gradually become sensitive to different input categories, sets of
samples in a specific domain of the input space. The main feature of the
SOM algorithm is that the neighbours on the lattice, as well as the winning
neuron, are also allowed to learn — i.e. to adapt their characteristics to the

input. Thus, the neighbouring neurons gradually come to represent similar

135

Onganization Based Multiagent Architecture For Distributed Environments

inputs, and their representations become ordered on the map lattice.

The difference between the SOM and the WeVOS hence lies in the
update of the weights of the neighbours of the winner neuron as can be
seen from Eqgs. (1) and (2).

Update of neighbourhood neurons in SOM:

W (t+1) = w, (t) + aO)n(v.k, (xE) - w, t)))
Update of neighbourhood neurons in WeVOS:

d
W (t+D =, (t)+a(t)n(v,km)[[x(t)—wv O]+, (O -w, (t)(ﬁ —1]) @

where w, is the winning neuron, o the learning rate of the
algorithm,n(v,k,t) is the neighbourhood function (usually, the Gaussian
function or a difference of Gaussians), where v represents the position of
the winning neuron in the lattice and k the positions of the neurons in the
neighbourhood of this one, x is the input to the network and A is a
“resolution” parameter, dx and Ay are the distances between the neurons
in the data space and in the map space respectively.

The idea behind the WeVoS meta-algorithm is to apply the scheme
of an ensemble of classifiers working together to solve a single
classification problem [Heskes, 1997, Ayd et al., 2009] to the topology
preserving algorithms. An ensemble of maps can be trained on a dataset,
and a final map summarizing the main features detected by each one can be
calculated.

The WeVoS fusion algorithm presented in this study aims to obtain
the final map by using the information contained in the maps composing
the ensemble on a unit-by-unit basis. Usually, the final characteristics

vectors of a single map are calculated from a single training over the

130

Chapter 5. The OBaMADE Architecture

dataset.

The WeVoS algorithm tries to generate the final characteristics
vector for each unit by relying on an informed decision about the
adaptation of its homologous units from an ensemble of maps, each of
which has been trained on slightly different parts of the dataset [Breiman,
1996]. This vector is also recalculated for the neighbours of the unit.

As a result, the final map obtained not only determines the best
position for each unit based on an informed decision, but also maintains
one of the most important features of this type of algorithms: its
topological ordering. WeVoS is an improved version of the superposition
algorithm presented in several previous works [Baruque et al., 2007].
Although it has been successfully applied to the analysis of real-life data
[Baruque et al., 2008], in this study it is applied for the first time to solve
this kind of practical problem.

The first step in this meta-algorithm is to calculate the *“*quality” of
each of the units comprising each map, in order to rely on some kind of
informed decision for the fusion of units. This “quality”” measure (or error
measure) could be any one of the many “quality of map” measures
presented in scientific literature regarding Self-Organizing Maps [Polani,
2001, Polzlbauer, 2004]; provided that it may be calculated on a unit-by-
unit basis.

The final map is obtained again on a unit-by-unit basis. Firstly, the
units of the final map are initialized by calculating the centroids of the units
in the same position of the map grid in each of the trained maps. Then, the
final position of that unit is recalculated using the information associated
with the units in that same position in each of the ensemble maps. For each

unit, a voting process is performed as shown in Eq. 3:

137

Onganization Based Multiagent Architecture For Distributed Environments

of the ensemble, in its position p; M is the total number of maps in the
ensemble; by is the binary vector used for marking the dataset entries

recognized by the unit in position p of map m; and, g, is the value of the

v = 2D o

. Zhil bpvi Zhil q p.i

where, V,n is the weight of the vote for the unit included in map m

desired quality measure for the unit in position p of map m.

Algorithm 1. Weighted Voting Superposition (WeVoS).

1: train several networks by using the bagging (re-sampling with
replacement) meta-algorithm
2: for each map (m) in the ensemble
3: for each unit position (p) of the map
4: calculate the quality measure/error chosen for the current
unit
5:end
6: end
7: calculate an accumulated total of the quality/error for each position
Q(p) on all maps
8: calculate an accumulated total of the number of data entries
recognized by a position on all maps D(p)
9: for each unit position (p)
10: initialize the fused map (fus) by calculating the centroid (w’) of
the units of all maps in that position (p)

11: end

138

Chapter 5. The OBaMADE Architecture

12: for each map (m) in the ensemble
13: for each unit position (p) of the map
14: calculate the vote weight of the (p) in the map (m) by
using Eq. 2
15: feed the weights vector of the (p) to the fused map
(fus), as if it were a network input, using the weight of the
vote calculated in step 14 as the learning rate and the
index of that same (p) as the index of the BMU.
16: end
17: end

The weights of each unit are fed into the final network in the same
way as the data inputs during the training phase of a SOM, considering the
‘homologous’ unit in the final map as the Best Matching Unit (BMU). The
weights of the final unit will be updated towards the weights of the
composing unit. The difference in the updating performed for each
homologous unit that forms part of the map depends on the quality measure
calculated for each unit: the higher the quality (or the lower the error) of
the unit in the composing map, the stronger the updating of the unit in the
summary map towards the weights of that particular unit. With respect to
quality determination, a single quality measure or a linear combination of
several measures may be used. The number of data inputs recognized by
each unit is also taken into account in the quantization of the ‘most
suitable’ unit among those competing for the same position in the final
map. In short, the summarization algorithm considers the most suitable
weights of a composing unit to be the weights of the unit in the final map,
according to both the number of inputs recognized and the adaptation
quality of the unit. The model, referred to as WeVoS, is described in detail

in the algorithm 1.

139

Onganization Based Multiagent Architecture For Distributed Environments

This new approach not only takes the characteristics of each unit
into account, but also the topographic ordering of its neighbourhood. The
approach is intended to generate more meaningful maps by representing the
inner structure of the dataset more faithfully. Those capabilities are a great
added value to a CBR system since they facilitate the creation of the
structure of the case base, where grouping similar cases together is a great
advantage. They are also important when trying to recover the most similar
cases to the problem introduced in the system, because of the increased
speed of the recovery that results when similar cases are close one to

another.

5.4.2. DATA ENTRANCE AGENT

Case-Based Reasoning systems are highly dependent on stored
information. The novel algorithm presented here, Weighted Voting
Summarization of SOM ensembles (WeV0S-SOM) [Baruque et al., 2009]
is used to organize the data that is accumulated in the case base. It is also
used to recover the most similar cases to the proposed problem.

The main objective of the WeVo0S-SOM is to generate a final map
processing several other similar maps unit by unit. Instead of trying to
obtain the best position for the units of a single map trained over a single
dataset, it aims to generate several maps over different parts of the dataset.
Then, it obtains a final summarized map by calculating by consensus which
is the best set of characteristics vector for each unit position in the map. To
perform this calculation, this meta-algorithm must first obtain the
“quality”” [Polzlbauer, 2004] of every unit that composes each map, so that
it can relay in some kind of informed resolution for the fusion of neurons.

The final map obtained is generated unit by unit. The units of the
final map are first initialized by determining their centroids in the same

position of the map grid in each of the trained maps. Afterwards, the final

140

Chapter 5. The OBaMADE Architecture

position of that unit is recalculated using data related to the unit in that
same position in each of the maps of the ensemble. For each unit, a sort of
voting process is carried out as shown in Eq. 3.

The final map is fed with the weights of the units, as it is done with
data inputs during the training phase of a SOM [Kohonen, 1995],
considering the “homologous” unit in the final map as the BMU. The
weights of the final unit will be updated towards the weights of the
composing unit. The difference of the updating performed for each
“homologous’ unit in the composing maps depends on the quality measure
calculated for each unit. The higher the quality (or the lowest error) of the
unit of the composing map, the stronger the unit of the summary map will
be updated towards the weights of that unit. The summarization algorithm
will consider the weights of the “most suitable” composing unit to be the
weights of the unit in the final map according to both the number of inputs
recognized and the quality of adaptation of the unit (Eqg. 3). The expected
result of this new approach is to obtain maps that are more true to the inner

structure of the dataset.

5.4.3. SOLUTION REQUEST AGENT

When a prediction is requested by a user, the system begins by
searching the case base to recover the most similar cases to the problem
proposed. Then, it creates a prediction using artificial neural networks.
Once the most similar cases are recovered from the case base, they are used
to generate the solution. Growing RBF networks [Ros et al., 2007] are used
to obtain the predicted future values corresponding to the proposed
problem.

This adaptation of the RBF networks allows the system to grow
during training, gradually increasing the number of elements (prototypes)

which play the role of the centres of the radial basis functions. The creation

141

Onganization Based Multiagent Architecture For Distributed Environments

of the Growing RBF must be made automatically, which implies an
adaptation of the original GRBF system. The error for every pattern is
defined by (Eg. 3).

| Pl — v
o= JpZ b .

where tj is the desired value of the kg, output unit of the iy, training pattern,
yik the actual values of the k, output unit of the iy, training pattern.

The Growing RBF pseudocode is as follows in Algorithm 2:

Algorithm 2 . Growing Radial Basis Function pseudocode.

1: Calculate the error, e; (Eq. 3) for every new possible prototype.

a. If the new candidate is not among those selected and the error
calculated is less than a threshold error, then the new candidate is
added to the set of accepted prototypes.

b. If the new candidate already belongs to the accepted ones and the
error is less than the threshold error, then modify the weights of the
units in order to adapt them to the new situation.

2: Select the best prototypes from the candidates
v" If there are valid candidates, create a new cell centred on the valid
candidate.
v" Else, increase the iteration factor. If the iteration factor reaches
10% of the training population, freeze the process.
3: Calculate global error and update the weights.
v' If the results are satisfactory, end the process. If not, go back to

step 1.

Once the GRBF network is created, it is used to generate the
solution to the proposed problem. The solution proposed is the output of
the GRBF network created with the retrieved cases. The GRBF network

receives the values stored in the case base as input. With those values, the

142

Chapter 5. The OBaMADE Architecture

network generates the proposed solution, using only the data recovered

from the case base in previous phases.

5.4.4. REVISION AGENT

After generating a prediction, the system needs to validate its
correction. OBaMADE can also query an expert user to confirm the
automatic revision previously done. The system also provides an automatic
method of revision that must be checked as well by an expert user which
confirms the automatic revision.

Explanations are a recent revision methodology used to check the
correction of the solutions proposed by CBR systems [Plaza et al., 2005].
Explanations are a kind of justification of the solution generated by the
system. To obtain a justification to the given solution, the cases selected
from the case base are used again. As explained before, a relationship
between a case and its future situation can be established.

If both the situations defined by a case and the future situation of
that case are considered as two vectors, a distance between them can be
defined, calculating the evolution of the situation in the considered
conditions. That distance is calculated for all the cases retrieved from the
case base that are similar to the problem to be solved. If the distance
between the proposed problem and the solution given is not greater than the
average distances obtained from the selected cases, then the solution is a
good one, according to the structure of the case base.

If the proposed prediction is accepted, it is considered to be a good
solution to the problem and can be stored in the case base in order to solve
new problems. It will have the same category as the historical data

previously stored in the system.

143

Onganization Based Multiagent Architecture For Distributed Environments

Algorithm 3. Explanations pseudocode.

1: For every selected case in the retrieval phase, the distance between the case
and its solution is calculated.

2: The distance between the proposed problem and the proposed solution is
also calculated.

3: If the difference between the distance of the proposed solution and that of
the selected cases is below a certain threshold value, then the solution is

considered to be valid.

4: If not, the user is informed and the process goes back to the retrieval phase,
where new cases are selected from the case base.

5: If after a series of iterations the system does not produce a good enough
solution, then the user is asked to consider accepting the best of the generated

solutions.

5.5. ADDITIONAL SERVICES
ORGANIZATION

The CBR services organization includes all the services related to the
CBR methodology, with the four phases of the CBR cycle. The case base is
only consulted by the services contained in that organization.

But there are more possible services that may use some other kind of
information. The knowledge repository stores all the information treated by
the architecture, including not only the cases, but also all the requests
performed, and the consults made by the experts. It is a kind of big
repository, containing an updated version of the case base and a complete log

of all the activities carried out by the architecture.

144

Chapter 5. The OBaMADE Architecture

So, depending on the specific application of the architecture, this
organization may contain different services, most of them regarding the
knowledge repository information.

Some of the possible services contained in this organization are:

— Specific log reports: every user of the system can consult its
interactions with the system. The administrators can consult all the
information stored in the knowledge repository. It can be used to
create activity reports or to check the correct working the systems.

— Information retrieval: some historical information about a specific
problem can be retrieved from the knowledge repository without
necessarily being a request for a solution. It can be employed to
consult information about the problem, to create statistical reports
or to check the information stored and compare it with present
values...

— Consult previous actuations: experts, that are requested to validate
the solutions automatically generate by the system, can consult
their previous validations to confirm their impressions or even to
confirm the way to proceed.

— Consult previous solutions: when requesting a solution to a
problem, it can be applied to consult previous solutions given to
the similar problems.

These and other services can be created and included in the additional

services organization to adapt the OBaMADE architecture to the specific

problems it can be applied to.
5.6. APPLICATIONS

The OBaMADE architecture integrates organizational capabilities that
allow the systems created based on this architecture to structure their

components (mainly agents and services). The different elements integrated

145

Onganization Based Multiagent Architecture For Distributed Environments

in the architecture ensure the capability of offering communication services
to different users and an internal structure of information that may be adapted
to different problems. The kinds of problems that this architecture can solve
are normally related to distributed environments, where the information can
be obtained from different sources at the same time. Knowledge extraction is
also one of the main fields where this architecture may be applied. The
internal CBR structure of the services and of the management of the
information allows the system to apply the capabilities of the CBR
methodology to different fields.

The main applications of this architecture are the following: prediction
generation, classification, clustering and planning.

This application fields will be explained next, developing how the
described architecture may be easily adapted in order to solve the different

kind of problems proposed.

5.6.1. PREDICTION GENERATION

The application field was tested with the two case studies that will be
explained in the next chapter. This application of OBaMADE has produced
great results, which will be explained in the next chapter.

The next section explains the adaptation of the architecture to this
application, focusing on the data stored in the case base, the entrance of
information and the generation of a solution.

The case base stores information with temporal parameters, in order
to create temporal relationships between one moment and the immediate
subsequent moment. The case base simultaneously stores the information
about the knowledge field that is treated, and parameters regarding the time
(date, hour... depending on the problem to be solved). This is how the CBR
system structures the proposed problem (present situation) and its solution

(future situation). Given a proposed problem, the system searches the case

146

Chapter 5. The OBaMADE Architecture

base for future situations associated with the introduced problem.

The information is introduced in the case base by different means. It
is possible to acquire information directly from users, who will introduce the
information through their devices. But it is also possible to obtain
information from satellites with online information services, and from
specific sensors that may measure some interesting parameters. All that
information is structured into the case base, keeping the temporal relationship
between the parameters stored.

The system generates a solution after a solution request is received.
The data introduced in the system to obtain a solution is a present situation,
with values for some of the stored parameters. Then the system tries to
recover the rest of the information, if possible, from other sources, like
sensors or satellites. Once the information is organized, then the system
recovers from the case base those situations more similar to the introduced.
The system then generates a solution, applying the artificial intelligence

techniques previously explained, by treating the recovered cases.

5.6.2. CLASSIFICATION AND CLUSTERING

Classification consists of structuring the information into one of a
certain number of possible classes depending on its characteristics.
Clustering consists of determining the possible different groups of elements
from a set of elements. Those two techniques are highly related, and the
OBaMADE architecture may serve to combine them to generate complex
data mining applications.

In the case base creation phase, the available data is structured into the
case base. If the existing data can be organized into clusters, the internal
structure of the case base will reflect it.

Case base creation: this is the phase when the system determines the

cluster in which the data is divided. While the information is incorporated

147

Onganization Based Multiagent Architecture For Distributed Environments

into the case base, it is located depending on the values stored, after which
the clusters appear. Visualization algorithms may be needed to check the
existence of the clusters and to give visual evidence of their creation. A new
parameter can be stored into the case base, identifying the cluster in order to
simplify the retrieval and the categorization of the information.

The case base stores the introduced data according to its
characteristics. Similar data will be located close one to another. This will
help to identify the clusters and to perform the classification tasks.

When new data arrives to the system, it is categorized and located in
a specific cluster, if possible. New data may create a new cluster or, in case
of strange data that the system does not consider to be compatible with the
stored information, it can be rejected (the user is previously consulted to
validate the decision taken by the system). So when new information is
stored in the system, classification is automatically performed.

If a new element needs to be classified, it is compared to the
elements stored in the case base. Then, the most similar elements to the new
one will be identified with a cluster. The new element will now belong to the
same cluster as those similar cases stored in the case base. The new case will
be stored in the case base, to be used in future problems as part of the

solution.

5.6.3. PLANNING

Planning may be integrated in the OBaMADE architecture. It consists
only of changing the internal methodology from case-based reasoning, to
case-based planning. The methods are quite similar, since in the case base
plans are stored according to the conditions where these plans were carried
out.

In the case base plans are stored as a consequence of a situation

composed by a series of elements. It cannot be a general planner; it has to be

148

Chapter 5. The OBaMADE Architecture

related to a certain knowledge field. Different knowledge fields should have
different implementations of the architecture. So, the plans stored in the case
base have a series of related circumstances that determine the execution of that
plan. The case base is organized according to the parameters determining the
initial situation.

When a new situation is introduced into the system, it is included with
the plan that solves that situation. The new situation will be placed close to
similar situations stored in the case base. The cases must have a kind of metric
factor in order to determine their position into the case base, and the proximity
of the elements will be directly proportional to their similarity.

When a new situation arrives to the system, the most similar situations
stored in the case base are retrieved. The solution to the situation will be an
adaptation of the plans stored in the case base. If, there are any changes during
the execution of the plan, or the plan fails, there should be mechanisms to

modify the solution plan according to the changes produced.
5.7. SUMMARY AND CONCLUSIONS

The OBaMADE architecture represents an evolution in the concept of
multiagent systems by introducing an organizational element among the
agents and incorporating a CBR methodology as a reasoning core.

This chapter explained the OBaMADE architecture, describing the
organizations that compose the architecture and the internal elements of all
the existing organizations. Interfaces, communication and services were also
explained, indicating the way all of them work in an individual way, as well
as how they cooperate to achieve a common objective.

The external element of the architecture, the interface, was solved by
the use of light interface agents that take the information given by the users
or the systems where they are located, and send it to the system. The

interfaces showed to the users are decided by the internal interface

149

Onganization Based Multiagent Architecture For Distributed Environments

organization, depending on the type of device used by the user and also
depending on the type of request done .Once in the system, the information
passes through the communication organization that processes the data, to
determine what will be done with the information received. Depending on
the type of communication established between the interface agents and the
communication organization, the agents within the communication
organization choose where to send the information and decide if a response
is required from the internal organizations of the system. The communication
organization chooses from the two services organizations, and sends to one
of them the request received by the system.

The core of the system is composed by a Case-Based Reasoning group
of services that encapsulate the CBR methodology. The implemented
services cover the four main phases of the methodology and give solutions
by reusing the stored information, extracting knowledge adapted to the
problem to be solved. Those services are included in the CBR services
organization where a set of agents solve the requests received from the
communication organization and sends the response, if needed, back to the
communication organization, which finally sends it to the user through the
interface organization.

The additional services organization cover a series of needed services
that do not necessary follow the CBR methodology and that are not directly
related with the solution generation. Those services are important but, in
terms of resource allocation, are not so crucial as the solved by the CBR
services organization, where solutions are required and where the speed and
reliability is higher than in this complementary organization.

The organizations of agents used to design the OBaMADE
architecture represent an evolution of the multi-agent systems, where the
structuring capabilities of the agents are taken to a higher extent by

improving their socialization properties. The agents being part of those

150

Chapter 5. The OBaMADE Architecture

organizations collaborate to obtain a common aim and share their objectives
in a transparent way, without interfering with the normal dataflow within the
systems.

In the next chapter, the results obtained with the OBaMADE
architecture will be shown. Two case studies were chosen to apply the
architecture. The application chosen to check the correction of the
architecture was a prediction generation, where historical data is used to

obtain new predictions to new problems.

151

”Advice is judged by results, not by intentions.” Cicero

6. APPLIiCATIiON ~
CASE STVDiES

The OBaMADE architecture has been successfully applied
to two case studies. The first one involves the application of
the OBaMADE architecture to the oil spill problem. To
present the application of the architecture to the problem,
the problem itself is first explained, including the methods
for acquiring the data, the transformation, and the methods
used to apply the technology to solve the problem. The
second case study, which was applied to forest fires, served
to more extensively check the OBaMADE architecture.

hen a new architecture is created, it is necessary to
apply it to solve the problems it is intended to solve.
In this chapter, the application of the OBaMADE
architecture to two different case studies is explained. While showing the
application of the architecture, its prediction capabilities are shown. Those
case studies are, both of them, located in natural environments, where different
real-time parameters are involved and where different type of users interact

with the systems at the same time, but playing different roles, interacting

153

Onganization Based Multiagent Architecture For Distributed Environments

among themselves and with the system in a concurrent way.

The first case study where the OBaMADE architecture was applied is
the oil spill problem. When an oil spill occurs, the natural risks are evident
and complicated decisions must be made in order to keep the risk from
becoming a great natural disaster. The ability to predict if an area is going to
be affected by the slicks generated after an oil spill will be highly useful in
making those decisions.

The second case study to which the OBaMADE architecture was
applied is the forest fire propagation prediction. This problem is similar to
the first one analyzed, the oil spill. This second case study served as a
validation procedure to check the correction of the architecture. The
OBaMADE architecture was successfully applied to this second case study,
generating a prediction consisting on the probability of finding fires in
certain geographic area.

In both cases, the application of the OBaMADE architecture has
generated quite optimistic results, predicting the future situation in a high

degree of success.

6.1. OIL SPILL PREDICTION

The ocean is a highly variable environment where accurate predictions
are difficult to achieve. The complexity of the modelling system is increased
if external elements are introduced into the analysis. In this case, oil spill data
is added to the inherent complexity of the ocean, generating a rough set of
elements. To model an environment similar to what is obtained after adding
oceanic variables, weather conditions and oil spills, it is necessary to measure
different parameters such as wind, current, pressure, etc. To predict the
presence or absence of oil spills in a certain area their previous positions

must be known. That knowledge is provided by the analysis of satellite

154

Chapter 6. Application: Two Case Studies

images, from which the position and size of the slicks are obtained.

6.1.1. PROBLEM DESCRIPTION

After an oil spill, it is necessary to determine if an area is going to be
contaminated or not. To determine the presence or absence of
contamination in an area, it is necessary to understand the behaviour of the
slicks generated by the spill.

First of all, the position, shape and size of the oil slicks must be
identified. The most precise way to acquire that information is by using
satellite images. SAR images are the most commonly used to automatically
detect this kind of slick [Solberg et al., 1999]. SAR images have been
interpreted using CBR systems both for monitoring [Li and Yeh, 2004] or
classification [Chen et al., 2007] purposes. The satellite images show
certain areas where there seems to be nothing, such as zones with no
waves, that are in fact oil slicks. Figure 20 shows a SAR image of a
portion of the western Galician coast, as along with some black areas
corresponding to the oil slicks. With SAR images it is possible to
distinguish between normal sea variability and slicks.

It is also important to make a distinction between oil slicks and look-
alikes. Qil slicks are quite similar to quiet sea areas, so it is not always easy
to discriminate between them. If there is not enough wind, the difference
between the calm sea and the surface of a slick is less evident, which may
lead to and more mistakes when trying to differentiate between an oil slick
and something that it is not a slick. This is a crucial aspect in this problem
that can also be automatically performed by a series of computational
tools.

Once the slicks are identified, it is also crucial to know the
atmospheric and maritime situation that is affecting the slick at the moment

that it is being analysed. Information collected from satellites is used to

155

Onganization Based Multiagent Architecture For Distributed Environments

obtain the atmospheric data needed. That is how different variables such as
temperature, sea height and salinity are measured in order to obtain a
global model [Stammer et al., 2003] that explains how slicks evolve.

Figure 20. SAR image of the north west of Spain, showing oil spills near
the coastal zones.

There have been different ways to analyze, evaluate and predict
situations after an oil spill. One approach is by simulation [Brovchenko et
al., 2002], where a model of a certain area is created, introducing specific
parameters (weather, currents and wind) and working with a forecasting
system. Using this methodology, it is easy to obtain a good solution for a
certain area [Elhakeem et al., 2007], but it is quite difficult to generalize in
order to solve the same problem in new zones. It is also possible to create a
model for a specific and problematic area[Periafiez and Pascual-Granged,

2008], which is a great help, albeit limited, because it is not possible to

156

Chapter 6. Application: Two Case Studies

apply that same solution to different geographical areas. Current data must
be considered in order to create contingency plans that could help to
minimize environmental risks [Copeland and Thiam-Yew, 2006].

Another way to obtain a trajectory model is to replace the oil spill by
drifters [Price et al., 2003] comparing the trajectory followed by the
drifters with the already known oil slick trajectories. If the drifters follow a
trajectory similar to the one that followed the slicks, then a model can be
created and there will be a possibility of creating more models in different
areas. Another way of predicting oil slicks trajectories is to study previous
cases to obtain a trajectory model for a certain area with different weather
conditions [Vethamony et al., 2007]. Another trajectory model is created to
accomplish the NOAA standards [Beegle-Krause, 1999], where both the
‘best guess’ and the ‘minimum regret’ solutions are generated.

One step beyond the solutions previously explained are the systems
that combine a major set of elements in order to generate response models
to solve the oil spill problem.

A different view is given by complex systems [Douligeris et al., 1995]
that analyze large data bases (environmental, ecological, geographical and
engineering) using expert systems. This way, an implicit relationship
between problem and solution is obtained, but with no direct connection
between past examples and current decisions. Nevertheless arriving at
these kinds of solutions requires a great deal of data mining effort.
Monitoring the spills [Benmecheta and Lansari, 2007] also gives a good
quantity and quality of information, using the variety of techniques
available [Qingling and Ying, 2007].

Once the oil spill is produced there should be contingency models that
make a fast solution possible [Reed et al., 1999]. Expert systems have also
been used, whereby the stored information from past cases is used as a

repository where future applications can find structured information. Other

157

Onganization Based Multiagent Architecture For Distributed Environments

complete models have been created, with the aim of integrating the

different variables affecting the spills [Belore, 2005], always trying to get

better benefits than the sum of the possible costs generated by all the

infrastructure needed to respond to a generated problematic situation.

The final objective of all these systems is to become decision support

systems that can help to take all the decisions that need to be taken in an

organized manner. To achieve such a great objective, different techniques

have been used, from fuzzy logic [Liu and Wirtz, 2007] to negotiation with

multi-agent systems [Liu and Wirtz, 2005].

6.1.1.1. DETECTION

The first step in the solution of this kind of problems is to detect
the oil spills in the ocean. There are different methods and techniques
that can be applied to detect the slicks in the ocean. Most of them use
information obtained from different satellites.

It is possible to detect oil spills by analyzing images generated
by radiometers [Cai et al., 2007], where the sea surface temperature is
analyzed to determine where the oil slicks are. There are different kind
of sensors used to remotely detect the presence of an oil spill, from
visible sensors to satellite remote sensing (also using infrared,
ultraviolet, radar, microwave and laser) [Jha et al., 2008].

However, the most common images used to determine the
presence of oil spills are SAR images SAR [Solberg et al., 2007],
where different techniques have been applied to distinguish the oil
slicks. The main objective is to create systems that may detect the
slicks in an automatic way [Keramitsoglou et al., 2006, Tello et al.,
2006]. Other investigations use supervised methods or partially
supervised methods to create systems that may detect oil spills
[Montali et al., 2006, Mercier and Girard-Ardhuin, 2006].

158

Chapter 6. Application: Two Case Studies

It is very important to discriminate between oil spills and look-
alikes, so as to not generate unnecessary alarms [Topouzelis et al.,
2007]. Finally, it is also possible to monitor the ocean and the
evolution of the oil spills by using satellite data [Cotton, 2007, Nelson
et al., 2006].

6.1.1.2. RESPONSE

Once the spill has been produced, it is crucial to generate quick
and accurate responses to minimize the environmental damages
created by the spill.

Data about the ocean currents must also be considered in order
to create contingency plans that could help to minimize environmental
risks [Copeland and Thiam-Yew, 2006]. Specific models can be
created for special geographical zones, where the oceanic behaviour is
quite unusual [Periafiez, 2007]. If an oil spill is produced, it is
important to analyze the response given to a specific situation [Tuler
et al., 2006] in order to improve possible future accidents by
discovering faults and avoiding mistakes.

Monitoring the dangerous geographical areas can be a great
help to create models that can evaluate the various possibilities in
which the situations can evolve. This monitoring process can be
carried out by using different techniques [Benmecheta and Lansari,
2007, Qingling and Ying, 2007].

If by chance there are no accidents to monitor or to use,
simulations can generate useful information that can be used for future
situations [Wirtz et al., 2007]. When performing a simulation, natural
conditions are reproduced and the accident is substituted by artificial

elements that attempt to model the real evolution of the slicks.

159

Onganization Based Multiagent Architecture For Distributed Environments

6.1.1.3. FORECASTING

Perhaps the most difficult task when treating natural
information related with dynamic environments is to forecast their
evolution. The ocean is a complex environment and predicting the
evolution of oil spills (an artificial agent added to the water) is a
complicated task.

Hybrid models can forecast trajectories and evaluate possible
risks after an oil spill [Jordi et al., 2006]. Those models integrate
different techniques to try to reduce the damage caused by the spills.
Combining wind driven drifts and climactic variables can produce a
robust forecasting model [Carracedo et al., 2006]. Drifts simulate the
actual evolution of the oil slicks in the ocean, as their movements are
mostly driven by wind, at least in open ocean. To predict the evolution
in specially complicated areas, a specific model can be created for that
geographical area, to simplify the generation of results [Periafiez and
Pascual-Granged, 2008].

Finally, it is important to know what happens when an error is
produced in systems such as those that have been previously explained
[Jorda et al., 2007]. It is important to know the effects that an error
will introduce into both the system and the predictions in order to help

solve future problems in real situations.

6.1.2. DATA USED AND APPLICATION OF OBAMADE

To evaluate the correction of the application of the OBaMADE

architecture to the oil spill problem, a series of historical data taken from

the Prestige accident were used. The solution proposed in this study

generates the probability (between 0 and 1) for different geographical areas

of finding oil slicks after an oil spill. The proposed system was constructed

160

Chapter 6. Application: Two Case Studies

using historical data and checked by using the data acquired during the
Prestige oil spill between November 2002 and April 2003. Most of the data
used to develop the proposed system was acquired from the ECCO
(Estimating the Circulation and Climate of the Ocean) consortium
[Menemenlis et al., 2005]. The position and size of the slicks was
obtained by using SAR (Synthetic Aperture Radar) satellite images

[Palenzuela et al., 2006].

Table 1. Variables used in the oil spill problem.

Longitude Geographical longitude Degree

Latitude Geographical latitude Degree
Day, month and year of the

Date y.m y dd/mm/yyyy
analysis

Sea Height Height of the wavesinopensea m

ol Atmospheric pressure in the Newton/m?
open sea

. t (parts per
Salinity Sea salinity ppt (parts p
thousand)

Temperature Celsius temperature in the area °C

Area of the slicks Surface <.:overed by the slicks Kin?
present in the analyzed area

Meridional Wind M.erldlonal direction of the Degree
wind

Zonal Wind Zonal direction of the wind Degree

Wind Strenght Wind strength m/s

Meridional Meridional component of the /

m/s

Current ocean current
Zonal f th

Zonal Current onal component of the ocean m/s
current

Current Strenght ~ Ocean current strength m/s

161

Onganization Based Multiagent Architecture For Distributed Environments

Table 1 shows the parameters used to create the case base that will
provide the data used to solve new problems. Past solutions are stored in
the system, in the case base. In the system created, the cases contain
information about the oil slicks (size and number) as well as atmospheric
data (wind, current, salinity, temperature, ocean height and pressure). The
system generated combines the efficiency of the CBR systems with
artificial intelligence techniques in order to improve the results and to
better generalize from past data.

The system developed determines the probability of finding oil
slicks in a certain area. To generate the predictions, the system divides the
area to be analyzed into squares of approximately half a degree per side.
The system then determines the number of slicks present in a given square.
The squares where the slicks are located are coloured with different
gradation depending on the quantity of the squared area covered by oil
slicks.

The squared zone determines the area that is going to be analyzed
independently. The values of the different variables in a square area at a
certain moment as well as the value of the possibility of finding oil slicks
on the following day is called a case, which defines the problem and
proposes the solution.

The parameters used in this case studied will now be explained in
detail:

— Longitude and Latitude: it is crucial to know the position where an
oil slick is located. But it is also important to decide in which
direction the slicks are going to move. The position itself it is not
as critical in determining the final result, at least in open ocean,
where there do not are any specific models determined by the

variations of the coast.

162

Chapter 6. Application: Two Case Studies

— Date: this is an important element as it establishes the temporal
relationship between past situations (problems) and future
situations (solutions) for the same location.

— Sea Height, temperature bottom pressure and salinity: atmospheric
and weather parameters that may help the neural networks used in
the reuse phase to enrich the solution proposed.

— Area of the slicks: represents the proportion of the square area
affected by the oil slicks. It is an important parameter because it
represents the evolution of the slick in the area. If this parameter
increases its value, it indicates that new slicks are coming from
neighbouring areas. If its value decreases, then the slicks in this
area are moving to other neighbouring areas.

— Wind: an important element, as it is the most responsible for the
movement of the slicks. The wind is divided into three
components, meridional (the component of the wind parallel to one
meridian), zonal (the component of the wind parallel to one parallel
of latitude) and strength (representing how strong is the wind).

— Current: like the wind, it is also important for determining the
movement of the slicks. It is also divided into three components,

following the same structure of the wind components.

6.1.3. RESULTS

The data used to train the system were obtained from different
satellites. Temperature, salinity, bottom pressure, sea height, number and
area of the slicks, along with the location of the squared area and the date
were all used to create a case. All these data define the problem case and
also the solution case. The solution to a problem defined by an area and its
variables is the same area, but with the values of the variables changed

according to the prediction obtained from the CBR system.

163

Onganization Based Multiagent Architecture For Distributed Environments

The WeVoS algorithm has proved to be more efficient than other
existing algorithms used to organize, classify and visualize information
[Barugue and Corchado, 2007]; it has obtained better results than simple
ensembles of SOMs, fusion Euclidean Distance, Voronoi Polygon
Similarity and Ordered Similarity. The main feature of this novel algorithm
is the reliable visual representation of the dataset, which is measured by the
distortion, rather than the classification accuracy or the reduction of the
quantization error; thus maintaining the topology preservation feature,
which is one of the most important for the original model that it is intended
to improve.

When the developed system was used with a subset of the data that
had not been previously used to train the system, it produced quite
optimistic results. The predicted situation was contrasted with the actual
future situation. The future situation was known, as past data was used to
train the system and also to test the correction of its results. In most of the
variables, the proposed solution had an accuracy rate of nearly 90%. When
using the system created with the OBaMADE architecture, the efficiency
of the results was better than what was obtained by using previous and
simpler applications; those improvements can be seen in the figures shown
in this section.

In figure 21, the system results are compared with those obtained
with two other systems. The first one, “RBF”, is a simple RBF network,
where data is introduced by training the network, and the results are
obtained by a generalized application of the information internally stored in
the network. The ““ Basic CBR” system represents a CBR system applied to
forecast oceanographic methods [Corchado and Aiken, 2002]. This system
uses neural networks, specifically the Radial Basis Function network,
during the adaptation process of the recovered cases. The neural network

has a process for recovering elements from a network knowledge base,

164

Chapter 6. Application: Two Case Studies

from where the neural network retrieves the parameters to calibrate the
network. This CBR system has been applied to oceanographic problems.
As can be seen in figure 21 the proposed system is better than the other

systems.

Efficiency of results

Percentage of good predictions

>

RBF CBR OBaMADE

Techniques

ral

Figure 22 compares the system developed under the OBaMADE
architecture with the ““Basic CBR”™ previously explained, in terms of the
time required to recover the most similar cases from the case base. As
shown, the new system is better than the basic one.

In figure 23 there is a comparison between the size of the “Basic
CBR” where no analysis of the store information is done, and that of
“OBaMADE” where data is structured and analyzed before being stored.
Figure 24 provides a comparison between the results obtained in the reuse
phase by a “RBF’" neural network, which represents the classic version of
this network, and the “GRBF”’, where the growth of the neural network is

progressive and adapted to the data.

165

Onrganization Based Multiagent Architecture For Distributed Environments

Recovery time

0,5

0,4
0,3
0,2
0,1

Time employed (in seconds)
o

Basic CBR OBaMADE

Technigues

that of

Case base size

6000
5000
4000
3000
2000
1000

Number of stored cases

Basic CBR OBaMADE

Techniques

d that of

166

Chapter 6. Application: Two Case Studies

Neural network results

87
85
83
81
79
77
75

N\

Percentage of good predictions

RBF GRBF

Techniques

ieural

For each problem defined by an area and its variables, the system
offers nine solutions: the same area, with its proposed variables, and the
eight closest neighbours. This type of prediction is used in order to clearly
observe the direction of the slicks, which can be useful in determining the
coastal areas that will be affected by the slicks generated after an oil spill.
The proposed solution does not generate a trajectory, but a series of
probabilities in different areas, which is far more similar to the real
behaviour of the oil slicks.

Table 2 shows a summary of the results obtained in which different
techniques are compared. The table shows the evolution of the results
along with the increase in the number of cases stored in the case base. The
results for each of the techniques being analyzed improved when the
number of cases stored was increased. The “RBF”’ column represents a

simple Radial Basis Function Network that is trained with all the available

167

Onganization Based Multiagent Architecture For Distributed Environments

data. The network gives an output that is considered a solution to the
problem. The “Basic CBR”” column represents a pure CBR system, with no
additional techniques included. It is the “Basic CBR” described before.
The “GRBF + CBR” column corresponds to the possibility of using a
GRBF network combined with a simple CBR system. The recovery from
the CBR is achieved by using the Manhattan distance to determine the
closest cases to the introduced problem. The RBF network works in the
reuse phase, adapting the selected cases to obtain the new solution. The
results of the “GRBF+CBR”” column are normally better than those of the
“CBR”’, mainly because useless data are eliminated prior to generating the
solution. Finally, the “OBaMADE” column shows the results obtained by
the proposed system, which are better still than the three previous solutions

analyzed.

Table 2. Percentage of good predictions obtained with different techniques — Qil
spill problem.

100 45 % 39 % 42 % 43 %
500 48 % 43 % 46 % 46 %
1000 51% 47 % 58 % 64 %
2000 56 % 55 % 65 % 72%
3000 59 % 58 % 68 % 81%
4000 60 % 63 % 69 % 84 %
5000 63 % 64 % 72 % 87 %

Table 3 shows a multiple comparison procedure (Mann-Whitney
test) used to determine which models are significantly different from the
others. The asterisk indicates that these pairs show statistically significant

differences at the 99.0% confidence level. Table 3 shows that the

168

Chapter 6. Application: Two Case Studies

OBaMADE system presents statistically significant differences compared
to the other models.

Table 3. Multiple comparison procedure among different techniques.

RBF
CBR %*

GRBF+CBR = =

OBaMADE % * %*

6.2. FIRE PROPAGATION PREDICTION

The second case study is presented here. The OBaMADE was also
applied to predict the evolution of forest fires, considering the areas that
could be eventually affected by the fires.

The structure of this subsection is similar to the previous one. First the
problem will be introduced, describing the main characteristics of this kind
of problem and also a brief revision of the different techniques and systems
used to solve this problem. Then, the data used to check the OBaMADE
architecture is described, and finally the application of the architecture and

the results obtained are shown.

6.2.1. PROBLEM DESCRIPTION

Forest fires are a very serious hazard that, every year, cause
significant damage around the world from an ecological, social,
economical and human point of view [Long, 2001]. These hazards are
particularly dangerous when meteorological conditions are extreme with
dry and hot seasons or strong wind. For example, fire is a recurrent factor

in Mediterranean areas.

169

Onganization Based Multiagent Architecture For Distributed Environments

Fires represent a complex environment, where multiple parameters are

involved. In this sub-section, a series of applications and possible solutions

are explained. They are different approaches to the forest fire problems,

including all the main phases existing in the evolution of this kind of

problem.

The causes that produce forest fires are many, and the great majority

are related with one or another form of human factors (more than 90% of

forest fires are provoked by human action); in addition, fires in degraded

forests are worse than those that occur in more intact forests [Cochrane,
2002].

6.2.1.1. DETECTION

Detection is the first step, it is necessary to detect where a fire
has started, in order to act as quickly as possible. So, detection
systems and techniques are crucial to quickly determine where the fire
is and to fight against it. There have been multiple ways and systems
of detecting forest fires. Some of these will now be described.

Some techniques, previously applied to the monitoring of major
natural and environmental risks, have been transformed to forest fire
detection [Mazzeo et al., 2007]; in this case it is a multi-temporal
robust satellite technique (RST). This system uses AVHRR MIR
images, to detect the fires.

MODIS (Moderate Resolution Imaging Spectro-radiometer)
offers high quality images that have been used to which a detection
algorithm is applied [Giglio et al., 2003]. It allows the detection of
small fires and the reduction of false alarms. False alarm reduction can
also be done by infrared forest fire detection [Arrue et al., 2000]. In
this case artificial vision, neural networks and expert fuzzy rules are

combined to reduce the number of false alarms in that kind of image

170

Chapter 6. Application: Two Case Studies

analysis. Satellite images can also be used to detect forest fires
analyzing those images (NOAA/16-AVHRR) with a perceptron neural
network [Mufioz et al., 2007].

Black and white cameras can also be used to obtain an
autonomous fire detection [Den Breejen et al., 1998]. In this case,
images are compared, and if something new appears, it is analyzed to
check if it is a smoke plume. If it is, an alarm is sent and the process to
fight the fire begins.

It is also important to check the correction of simulations,
which is possible to do when there is a large enough quantity of data
available [Damoah et al., 2004]. In this case the simulation models
have been compared with a real smoke transport situation, where the
smoke plumes circumnavigated the globe in seventeen days.

Finally, animals were also used to carry specific sensors
(thermo and radiation sensors with GPS features) so that they can

serve as Mobile Biological Sensors to detect forest fires [Sahin, 2007].

6.2.1.2. PREDICTION

Forest fires can be estimated, as a kind of prediction, by using a
fuzzy system to create decision support systems for a forest [lliadis,
2005]. Parallel computing has also been applied to the prediction
problem in this knowledge field. In this occasion an adaptive system
could help to generate predictions by changing at the same time that

the environment changes [Rodriguez et al., 2008].

The spread of the fire highly depends on whether parameters
[Martins Fernandes, 2001]. Simulating variations on the parameters, it
is possible to determine the evolution of the fire in different

conditions.

171

Onganization Based Multiagent Architecture For Distributed Environments

One easy way to analyze the great amount of data generated in
such environmental related problems is to divide the data into smaller
pieces [Brillinger et al., 2003]. The results obtained with the smaller
elements may be generalized to obtain future predictions.

Graphical models and interfaces help to create realistic models
and simulations [Seron et al., 2005]. The existence of a graphical
representation makes it easier for experts to introduce their knowledge
into the systems.

Statistics are a great help in predicting problems. If more than
one solution is considered, the probabilities of being in the right path
increase. [Bianchini, 2006]. If no possibility is rejected, then the scope
is bigger, but also the potential amount of data available for further

analysis.

6.2.1.3. MODELS AND SYSTEMS

As stated in the description of the existing applications for
solving the oil spill problem, models and systems represent the most
evolved situations, offering the most complex solutions and involving
the highest number of elements.

Simple models can be generated by using automata
[Karafyllidis and Thanailakis, 1997], representing the spread of the
fires according to the states of the automata, and adapting their
evolution to external parameters. Mathematical models can also be
applied but with a more complicated introduction of the external
parameters (such as weather conditions) into the models created
[Montenegro et al., 1997]. Decision support systems are one of the
first high level approaches to this kind of problems [Wybo et al.,
1998]. They normally use different sources of information to generate

decisions based on the variety of data available.

172

Chapter 6. Application: Two Case Studies

6.2.2. DATA USED AND APPLICATION OF
OBAMADE

The data used to check the validity of the OBaMADE architecture
was applied to the forest fire problem. The data used is part of the
SPREAD project [Spread, 2004], in particular the Gestosa field
experiments that took place in 2002 and 2004 [Gestosa, 2005]. The
experiments of the Gestosa field began in 1998 and were completed in
December 2004. They aimed to collect experimental data to support the
development of new concepts and models, and to validate existing methods
or models in various fields of fire management. The study area is located
in Central Portugal (Gestosa, 40° 15°N, 8° 10” O) in a hillside of the Serra
de Lousa, whose altitude is between 800 and 950m above sea level.

To safeguard the safety of the burns and to carry out different sorts of
tests and measurements, the terrain was divided into dedicated plots with
regular shapes and dimensions separated by firewalls to limit the spread of
the fire and to keep it inside the desired boundaries during each burn.
Those experimental burning plots were established in forest service lands,
in the Gestosa forestry perimeter. In general, these experimental plots are
located together in the same vegetation mosaic, which contains shrubs and
some isolated Pinus pinaster trees. Three arboreal species are dominant in
the area: Erica umbellate, Erica australis and Chamaespartium
tridentatum.

The application of OBaMADE to this new problem followed the same
process as the application to the oil spill problem. First, the areas analyzed
were divided into squares, where meteorological parameters were
measured and registered. All of the data obtained are used to create the
case base and train the neural networks. On this occasion the data used are

shown in table 4.

173

Onganization Based Multiagent Architecture For Distributed Environments

Table 4. Variables used in the forest fire problem.

Longitude Geographical longitude Degree
Latitude Geographical latitude Degree
Date Day, month and year of the analysis dd/mm/yyyy
Bottom pressure Atmospheric pressure in the open sea NEW'EON/mZ
Temperature Celsius temperature in the area eC
Area of the fires Surface covered by the fires present in ,

the analyzed area Km
Meridional Wind Meridional component of the wind m/s
Zonal Wind Zonal component of the wind m/s
Wind Strenght Wind strength m/s

As shown in table 4, most of the data used in this problem are the
same as in the oil spill problem. In fact there are some parameters that are
not present here, as the problem is located on land and not in open sea.
Nevertheless, the variability and complexity of the problem is high; the
wind conditions can change faster in forest lands than in open ocean and
the variability of the temperature is also higher, which implies a smaller
reaction time limit in order to adapt to the changes. The combination of
natural parameters and predictions needs make it more complicated to be

accurate.

6.2.3. RESULTS

The experiments and comparisons performed with the forest fire
problem are equivalent to those performed with the oil spill problem. A
summary of the results of those experiments will be presented, focusing on
the size of the case base and on the efficiency of results, the response time,

and the results of the neural network.

174

Chapter 6. Application: Two Case Studies

Efficiency of results

Percentage of good predictions

RBF CBR OBaMADE

Techniques

1etwork
tudy.

Figure 25 shows the improvement obtained with the system based on
the OBaMADE architecture, compared with the “Basic CBR” explained
before, when developing the results of the oil spill problem. The results are
quite better with the new application; the use of specific neural networks

and an effective communication improves the overall results of the system.

Case base size

6000

4000

2000

Number of stored cases

Basic CBR OBaMADE

Techniques

1at of

175

Onrganization Based Multiagent Architecture For Distributed Environments

Figure 26 shows the reduction of the case base produced by
organizing the case base with a specific neural network system. Reducing
the number of parameters to store and organizing the stored information
generate a great reduction in the size of the case base, which is also crucial
for the results shown in figure 27, where a comparison of the recovery time
is seen. If the case base is smaller and better organized, then the recovery
time and effort needed to retrieve the most similar cases from the case base

is much quicker.

1at of

Finally, figure 28 shows the improvement obtained by using a
GRBF network to the reuse phase instead of the classic RBF. This
new adaptation of the RBF standard is better suited for the inner
structure of the case base, which implies an improvement of the
results. If both the data used to train the neural network and the
neural network itself share a common inner philosophy of growing,

the final result can be better than without avoiding that equivalence.

176

Chapter 6. Application: Two Case Studies

Neural network results

Percentage of good predictions

RBF GRBF

Techniques

eural
1to the

Table 5 shows the comparative results obtained. The techniques used
for comparison are the same as in the oil spill case study. As occurred in
the previous case study, the results are better when the quantity of
information stored in the case base is higher. The increase in the number of
cases stored improves the results, having the possibility of recovering
better cases from the case base to use them to generate the predictions. The
results are better when applying a system created under the OBaMADE
architecture than using other simpler techniques. That quality of the results
is quite hopeful and creates quite optimistic spectations to apply the
OBaMADE architecture to other case studies, to other knowledge fields
and to other kind of problems related with the distributed environments.
OBaMADE shows here, again, its prediction capabilities, being
successfully able to generate accurate predictions to a real-life problem in a

complex environments.

177

Onganization Based Multiagent Architecture For Distributed Environments

Table 5. Percentage of good predictions obtained with different techniques —
Forest fires problem.

100 43% 37% 43% 45%
500 46% 42% 48% 50%
1000 52% 44% 56% 66%
2000 57% 53% 66% 75%
3000 59% 56% 69% 82%
4000 62% 60% 71% 86%
5000 64% 62% 72% 90%

6.3. SUMMARY AND CONCLUSIONS

It has been demonstrated that the presented architecture represents an
evolution of previous existing techniques. It could be applied to different kinds
of problems, offering great adaptation and generalization capabilities. It is a
flexible architecture, capable of generating solutions to different kinds of
problems in a great variety of situations.

The two case studies presented in this chapter prove the theoretical
improvements predicted in the previous evaluation. The evolution of the
situation of the oil spills in some geographical areas can be predicted by
reusing historical data stored in the inner case base. Past information is used to
solve new problems. Previous evolution data related with the oil spills is
reused to generate new solutions. Different neural networks are used both to
organize the case base and to generate the solution. The organization of the
case base through a neural network improves the recovery time and makes it
possible to employ a smaller number of cases that are more useful. The use of

neural networks in the reuse phase generates great results by adapting the

178

Chapter 6. Application: Two Case Studies

retrieved cases to generate the new solution to the new problem.

T

ase

179

Onganization Based Multiagent Architecture For Distributed Environments

The same process is carried out with the forest fire case study.
Historical data is stored, changing the parameters and adapting the architecture
to the new problem. The system is requested to make predictions in which the
cases are also structured in the case base, and retrieved to generate the proper
solutions. The positive results obtained with the forest fire problem confirm
the correction of the results obtained with the oil spills.

Figure 29 graphically shows the evolution of the results in the two
case studies analyzed in this chapter. It can be clearly seen how the accuracy
of the results improved while the case base size grow. At the same time, it is
important to pay attention to the results obtained applying the OBaMADE
architecture, that are always better than with the rest of the techniques
analyzed for comparison.

In the next chapter, the model proposed will be analyzed from a more
abstract point of view. Some conclusions to the work presented in this
document will also be presented, while evaluating the process of the creation
of this architecture. Some future possibilities of the OBaMADE architecture
will also be presented, including new possible investigations that can be
performed by applying this architecture without requiring a great amount of

changes.

180

”The best way to predict the future is to invent it.” Alan Kay

7. ARCHNIiTECTVRE
FVALVATiIiON AND
CONCLVSiONS

The OBaMADE architecture presented in this document is
evalunated here, and the model represented by this
architecture is analyzed, comparing it to other possible
approaches to the distributed environments problem. After
considering the study in its entirety, some conclusions and
Suture research are explained, indicating the expected
evolution of the architecture, and its possible future
applications.

rior to this chapter, the OBaMADE architecture was presented
and explained. A complete state of the art of the technologies
and methodologies used in this architecture were performed,
both in previous chapters of this document and in the appendices. The results
obtained applying the OBaMADE architecture were also shown in the

previous chapter, analyzing the results obtained after applying the OBaMADE

181

Onganization Based Multiagent Architecture For Distributed Environments

architecture to two case studies.

The architecture proposed in this document achieves the main
objectives that were initially proposed and improves previous approaches to
solve this kind of problems. OBaMADE also uses case-based reasoning as the
methodology for generating solutions to the different problems to which it
may be applied. The CBR methodology makes great use of the information
available. Past information is used to solve new problems, as with the two case
studies presented in this chapter. Past solutions to past problems are used and
adapted to solve new problems.

The OBaMADE architecture integrates the advantages of the
multiagent systems, allowing it to solve similar problems. Structuring the
agents of the architecture into organizations adds organizational capabilities to
the architecture and makes it easier for the different parts of OBaMADE to
communicate. Organizations allow the architecture to divide the different
groups of agents according to their respective functionality and objectives.
Being divided into groups (organizations) with the same common objectives,
the communication between the organizations is easier, as only one agent in
each organization is in charge of the communications tasks, reducing the
complexity of the remaining agents.

This chapter will analyze and compare the OBaMADE architecture
with other techniques usually employed to solve distributed environment
problems. The advantages and disadvantages of the different techniques
compared are also explained. It will also present the final conclusions of the
investigation, showing the achievement of the initial objectives explained in
the introduction of this document. Finally, some future lines of work and
possible evolutions of the architecture are presented, introducing some
possible new applications of the architecture to new knowledge fields, based

on the main characteristics of the architecture.

182

Chapter 7. Architecture Evaluation and Conclusions

7.1. THEORETICAL MODEL EVALUATION

OBaMADE represents an evolution of the existing models and
architectures that have been solving the problems generated in distributed
environments in recent years. Nevertheless, there are some important
differences between the OBaMADE architecture and other models of
distributed architectures. For the development of OBaMADE a balance
between decentralization and intelligence was achieved. Decentralization is
defined as the result of distributing the functionalities. A reuse feature can be
obtained with this distribution and the independence that exists in the
programming languages.

Intelligence is defined here as the result of the reasoning capabilities
and the ability to adapt the behaviour in an autonomous way, and the ability to
perceive stimulus from the context and react to them in a personalized way.
While OBaMADE tries to achieve a balance between intelligence and
decentralization, alternatives like SOA or Web Services present important
limitations regarding the level of negotiation between services and context
sensibility. CORBA is not sufficiently independent from programming
languages, and the developed applications are not always compatible.

Finally, although multiagent platforms can provide quite useful tools
to obtain intelligent systems, they do not facilitate the compatibility between
platforms, nor do they offer the needed tools to obtain a more efficient
decentralization of functionalities. Figure 30 graphically shows the differences
between the models explained here, showing the benefits of the OBaMADE
architecture, compared with the other techniques explained here. The balance
offered by OBaMADE between intelligence and decentralization is what

makes it effective and able to be applied to different scenarios.

183

Onganization Based Multiagent Architecture For Distributed Environments

Balance

Decentralization
(Distribution + Reuse + Language Independence)

Intelligence
(Reasoning + Adaptability + Context Sensibility)

Figure 30. Graphical comparison between OBaMADE and other
architectural models.

CORBA has some well known problems, as the complexity of being,
at the same time, language-independent, platform-independent, suitable for
distributed-systems development and maintaining backward compatibility.
There are some interface problems between versions. Error handling is not
extensible. The synchronization between client and server is crucial and not
always well solved. Most of these problems are solved by open multi-agent
based systems, such as organization based systems.

Optimal utilization of SOA requires additional development and
design attempts as well as infrastructure which translate into costs escalation.
When it comes to applications, Web Services and Service Oriented
Architecture is not recommended for applications in which one way

asynchronous communication is necessary, and where loose coupling is

184

Chapter 7. Architecture Evaluation and Conclusions

considered undesirable and unnecessary. It is also not a good solution for
homogenous application environments, like, for instance, an environment
wherein all applications were built utilizing J2EE components. In these
instances, it is not a good idea to introduce XML over HTTP for inter-
component communications rather than utilizing Java remote method
invocation. And, finally, for applications that need GUI based functionality it
is not a proper solution. Like, for instance, a map manipulation application
that has lots of geographical data manipulation. Such an application is not

suited for heavy data exchange that is service based.
7.2. MODEL ANALYSIS

As explained in the previous chapter, the OBaMADE architecture
improves both the theoretical and practical results of the existing architectures
dedicated to distributed environments. Now it is time to compare the
architecture with previous versions of the systems, analyzing the advantages
acquired by transforming applications from local to distributed, and by
integrating the organizations of agents and their services.

The performance of the OBaMADE architecture was compared with a
previous local version of the system, with the same artificial intelligence
techniques implemented, but without the use of agents and services. The tests
performed consisted of the execution of the same series of predictions in both
systems. There were 50 different problems to be solved. The executions were
divided by introducing 1, 5, 10, 20, 30 or 50 requests at the same time. These
executions were done 50 times and in the OBaMADE version, there were 5
different agents for each the type of problem.

Figure 31 shows the average time needed by the two systems to
execute a series of requests. OBaMADE was able to improve the results
obtained with the local version of the system. For small workloads in a local

system, having no agents and communication involved can even be a little

185

Onrganization Based Multiagent Architecture For Distributed Environments

faster than a distributed system with agents involved. But when facing higher
workloads, the distributed approach shows its capabilities and is much
quicker.

Time needed to solve the requests

200
180
160
140
120
100
80
60
40
20

Time needed (seconds)

30
50

5 Prediction Services
Number of requests
01 Prediction Service

Figure 31. Time needed to solve the requests by just one service or by five
services simultaneously.

One of the main contributions of OBaMADE to the problems related
with distributed environments is the improvement of the performance and the
robustness of the system. Figure 32 shows the number of agents that crashed
during the simulations. OBaMADE generates a smaller number of crashes and
provides a bigger recovery capacity from crashes.

It is important to indicate that even after the great work done to reduce
or even eliminate the crashes from the OBaMADE architecture, they do still
occur, and it is then important to continue working to obtain the best possible

results. Nevertheless, the results obtained up to now are quite hopeful.

180

Chapter 7. Architecture Evaluation and Conclusions

Number of crashes produced

9
8
1)
§ 7
5 6
s 5
g 4
IS 3
3 2
1
0
05 Prediction Services (Agents) 30 50
05 Prediction Services (Services) Number of requests

B 1 Prediction Service (Agents)

B1 Prediction Service (Services)

of the

Any new development faces advantages and disadvantages. It is
necessary to analyze them and improve the week aspects of any system. Table
6 presents the main advantages and disadvantages of OBaMADE. In that
table, the elements that make OBaMADE powerful are analyzed, and also the
elements that may be improved in future developments to make the
architecture better.

The OBaMADE architecture is still being developed, but preliminary

results show that it is possible to apply it to complex systems, as the used
before as case studies. Those case studies represent only one of the main fields
where OBaMADE can be applied.

187

Onganization Based Multiagent Architecture For Distributed Environments

Table 6. Advantages and disadvantages of the OBaMADE architecture.

v’ Optimization of the use and v’ Itis still under development
distribution of the resources. and it is not fully debugged or
v' Programming languages formalized.
independence. v It depends on agents
v' Services and applications support platforms.
the computational effort. v It has only been applied to
v Facilitates the reuse of the two different case studies. It
functionalities. is necessary to implement to
v’ It has been successfully applied to different scenarios.
two different case studies. v’ There have not been applied
v' Defines a set of technologies and standardized evaluations.

methodologies that can be used in
future similar developments.

7.3. CONCLUSIONS

In this section the achievement of the objectives defined for this
investigation is described, and it evaluates the initial hypothesis of the study:
“develop an architecture to solve problems related with distributed
environments. The architecture should face those problems offering different
interfaces to different users with different devices in a transparent way. The
architecture has to be based in organizations of agents. The agents that make
those organizations must be designed as dynamic agents. The agents being
part of the inner organizations, which are in charge of the generation of the
solutions, should incorporate reasoning mechanisms based on the Case-Based
Reasoning methodology””. Within the framework defined by this research
project the ability of the OBaMADE architecture to solve different problems
in different scenarios has been tested, with a high scalability and reuse of
resources. Thus, the architecture has demonstrated to be able to extract and

model the functionalities of the agents as individual services, creating lighter

188

Chapter 7. Architecture Evaluation and Conclusions

agents. Because it is more adaptable on execution time, the distributed
approach given to the architecture makes it more flexible and failure tolerant.
The OBaMADE architecture, presented in this paper, achieves some important
objectives with regards to the fields related with this investigation.

OBaMADE provides a robust framework flexible enough to cover the
requirements of systems designed to solve distributed environment problems.
Dynamic scenarios with a great user interaction are properly solved by the
architecture. Its computing elements work in a distributed way, collaborating
to obtain a common result.

The core of the system is formed by a CBR set of services integrated
with some artificial intelligence techniques designed to extract knowledge
from the information. The agents within the architecture are part of
organizations that communicate with each other to obtain a common objective

and to make the proper decisions.

O OBaMAUE

One of the lasts additions in the evolution of the OBaMADE
architecture was its logo, which is shown in figure 33. It is also important to
have a graphical representation of the architecture, and the one chosen to
represent OBaMADE is a dynamic one, with the colours chosen to show the
figures all through the document, with a graphical design inspired in the

coordination of the elements that are part of OBaMADE and with a

189

Onganization Based Multiagent Architecture For Distributed Environments

typography adapted to that inspiration.

Lighter agents make it possible to expand the possibilities of
development of applications based on the OBaMADE architecture to devices
that do not necessarily have high computing power (PDAs, mobile phones,
independent sensors...).

The functionalities of the systems based on OBaMADE are
implemented as individual services or applications. This is how they can be
used in different applications, making small modifications to adapt them to the
different situations they could face. The functionalities can also be replicated
to obtain a better performance in high demanding scenarios.

The distributed point of view of OBaMADE allows the system to
initialize or stop services in an independent way, without affecting the rest of
the components of the system. The presented architecture represents an open
proposal that can be easily applied to different kind of problems and that can
be adapted to cover different needs and knowledge fields. The OBaMADE
architecture has successfully been applied to two different case studies,

demonstrating the theoretical advantages previously analyzed.
/.4. FUTURE WORK

The investigation presented in this PhD. thesis represents an
innovation in the distributed environment field and generates a significant
number of future possibilities where this new architecture can be applied and
improved. Next, some of the future lines of work are explained.

As outlined before, some crashes were produced in the system when a
high number of requests are made at the same time. It is important to reduce
the number of crashes, or even to completely eliminate them, to avoid user
frustration and bad results in a real life scenario.

The two case studies presented in this document are the current

applications made with this architecture. Its validity has been demonstrated,

190

Chapter 7. Architecture Evaluation and Conclusions

but it is necessary to apply the prediction model to other knowledge fields to
completely check the appropriateness of the architecture in terms of
generalization and flexibility.

OBaMADE can be applied to solve different kinds of problems.
Currently it has helped to solve prediction generation problems. But, as
explained in previous chapters, the architecture proposed in this document can
be applied to solve other kinds of problems, such as classification, clustering,
planning, etc. It is important to create new applications where the architecture
should be slightly modified to be adapted to the new conditions and problems
to be solved.

The artificial intelligence techniques applied in the OBaMADE
architecture have proved to be useful to solve the proposed problems. But it
will be interesting to have new techniques at our disposal (which are
constantly appearing) or even more than one possibility for the different steps
carried out. Increasing the number of possible solutions will enrich the final
solution and the evolution of the architecture.

It is necessary to perform more exhaustive tests to evaluate every
single detail of the proposed architecture in terms of time, simplicity and
quality of analysis and design. The quality of the results generated by the

systems created within the structure of this architecture must also be validated.

191

” No man is wise enough by himself.” Titus Maccius Plantus

R EFER ENCES

Aamodt, A. (1991) A Knowledge-Intensive, Integrated Approach to Problem
Solving and Sustained Learning. Knowledge Engineering and Image
Processing Group. University of Trondheim.

Aamodt, A. & Plaza, E. (1994) Case-Based Reasoning: Foundational Issues,
Methodological ~ Variations, and System Approaches. Al
Communications, 7, 39-59.

Abdallah, S. & Lesser, V. (2004) Organization-based cooperative coalition
formation. Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Techonology, IAT.

Abramson, D., Sosic, R., Giddy, J. & Hall, B. (1995) Nimrod: a tool for
performing parametrised simulations using distributed workstations.
Proc. 4th IEEE Symp. on High Performance Distributed Computing.

Aha, D. W., Molineaux, M. & Ponsen, M. (2005) Learning to Win: Case-
Based Plan Selection in a Real-Time Strategy Game. Case-Based
Reasoning Research and Development.

Ahuja, M. K. & Carley, K. M. (1999) Network structure in virtual
organizations. Organization Science, 741-757.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S. & Foster, I. (2001)
Secure, efficient data transport and replica management for high-
performance data-intensive computing. Mass Storage Conference.

Allende, 1. (2003) El Reino del Drag6on de Oro, Barcelona, Areté.
Allende, I. (2005) La ciudad de las bestias, Barcelona, Areté.

193

Onganization Based Multiagent Architecture For Distributed Environments

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F.,
Liu, K., Roller, D., Smith, D. & Thatte, S. (2003) Business process
execution language for web services, version 1.1. Standards proposal
by BEA Systems, International Business Machines Corporation, and
Microsoft Corporation.

Aurditi, D. & Tokdemir, O. B. (1999) Comparison of case-based reasoning and
artificial neural networks. Journal of computing in civil engineering,
13, 162-169.

Argente, E., Julian, V. & Botti, V. (2006) Multi-agent system development

based on organizations. Electronic Notes in Theoretical Computer
Science, 150, 55-71.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., Mcinnes, L.,
Parker, S. & Smolinski, B. (1999) Toward a common component
architecture for high-performance scientific computing. Proc. 8th
IEEE Symp. on High Performance Distributed Computing.

Arrue, B. C., Ollero, A. & Matinez De Dios, J. R. (2000) An intelligent
system for false alarm reduction in infrared forest-fire detection.
Intelligent Systems and Their Applications, IEEE 15, 64-73.

Artikis, A. (2003) Executable specification of open norm-governed
computational systems. Department of Electrical & Electronic
Engineering. London, Imperial College

Artikis, A., Kamara, L. & Pitt, J. (2001) Towards an open agent society model
and animation. Proc. of the 2nd. Agent-Based Simulation Workshop.

Auel, J. M. (2005) El clan del oso cavernario, Madrid, El Pais.
Austin, J. L. (1962) How to Do Things with Words Harvard University.

Avery, P. & Foster, 1. (2000) The griphyn project: Towards petascale virtual
data grids. The 2000 NSF Information and Technology Research
Program.

Avery, P., Foster, I., Gardner, R., Newman, H. & Szalay, A. (2001) An
International Virtual-Data Grid Laboratory for Data Intensive
Science. Technical Report GriPhyN-2001-2.

Axelrod, R. (1986) An evolutionary approach to norms. The American
Political Science Review, 1095-1111.

Ayd, N, U., Murat, S., Olcay Taner, Y., Ld & Ethem, A. (2009) Incremental
construction of classifier and discriminant ensembles. Information
Sciences, 179, 1298-1318.

Baker, F. (1995) Requirements for IP version 4 routers. RFC 1812, June 1995.
Barbery, M. (2007) La elegancia del erizo, Barcelona, Seix Barral.

194

References

Baru, C., Moore, R., Rajasekar, A. & Wan, M. (1998) The SDSC storage
resource broker. Proc. CASCON'98 Conference. IBM Press.

Baruque, B. & Corchado, E. (2007) Fusion of Visualization Induced SOM.
Innovations in Hybrid Intelligent Systems, 151.

Baruque, B., Corchado, E., Mata, A. & Corchado, J. M. (2010) A forecasting
solution to the oil spill problem based on a hybrid intelligent system.
Information Sciences, 180, 2029-2043.

Baruque, B., Corchado, E., Rovira, J. & Gonzalez, J. (2008) Application of
Topology Preserving Ensembles for Sensory Assessment in the Food
Industry. Intelligent Data Engineering and Automated Learning
(IDEAL 2008).

Baruque, B., Corchado, E. & Yin, H. (2007) ViSOM Ensembles for
Visualization and Classification. International Work Conference on
Artificial Neural Networks (IWANN’07), San Sebastian, Spain,
Springer, Heidelberg.

Baruque, B., Corchado, E. S., Mata, A. & Corchado, J. M. (2009) Ensemble
Methods for Boosting Visualization Models. 10th International Work-
Conference on Artificial Neural Networks (IWANN2009).

Bayly, J. (2005) Y de repente, un angel, Barcelona, Planeta.

Beavers, G. & Hexmoor, H. (2001) Teams of agents. Proceedings of the IEEE
Systems, Man, and Cybernetics Conference.

Beegle-Krause, C. J. (1999) GNOME: NOAA's next-generation spill
trajectory model. OCEANS'99 MTS/IEEE. Riding the Crest into the
21st Century, 3, 1262-1266.

Beiriger, J. 1., Bivens, H. P., Humphreys, S. L., Johnson, W. R. & Rhea, R. E.
(2000) Constructing the ASCI computational grid. Proc. 9th IEEE
Symposium on High Performance Distributed Computing.

Belore, R. (2005) The SL Ross oil spill fate and behavior model: SLROSM.
Spill Science and Technology Bulletin.

Benger, W., Foster, I., Novotny, J., Seidel, E., Shalf, J., Smith, W. & Walker,
P. (1999) Numerical relativity in a distributed environment. Proc. 9th
SIAM Conference on Parallel Processing for Scientific Computing.

Benmecheta, A. & Lansari, A. (2007) Monitoring of Oil Pollution by GIS and
Remote-Sensing case Of West Algeria Harbours. Signal Processing
and Information Technology, 2007 IEEE International Symposium on,
874-879.

Berman, F. (1999) High-performance schedulers. The Grid: Blueprint for a
New Computing Infrastructure, 279-309.

195

Onganization Based Multiagent Architecture For Distributed Environments

Berman, F. D., Wolski, R., Figueira, S., Schopf, J. & Shao, G. (1996)
Application-level scheduling on distributed heterogeneous networks.
Conference on High Performance Networking and Computing.
Pittsburgh, Pennsylvania, IEEE Computer Society Washington, DC,
USA.

Beynon, M., Ferreira, R., Kurc, T., Sussman, A. & Saltz, J. (2000) DataCutter:
Middleware for filtering very large scientific datasets on archival
storage systems. Proc. 8th Goddard Conference on Mass Storage
Systems and Technologies/17th IEEE Symposium on Mass Storage
Systems.

Bianchini, G. (2006) Wildland Fire Prediction based on Statistical Analysis of
Multiple Solutions. Computer Architecture and Operating Systems
Department. Barcelona, Autonomous University of Barcelona.

Biron, P. V. & Malhotra, A. (2001) XML schema part 2: Datatypes. W3C
recommendation, 2, 2-20010502.

Birrell, A. D. & Nelson, B. J. (1984) Implementing remote procedure calls.
ACM Transactions on Computer Systems (TOCS), 2, 39-59.

Boggino, A. S. G. (2005) ANEMONA: una metodologia multi-agente para
sistemas holénicos de fabricacion. PhD Thesis. Universidad
Politécnica de Valencia.

Boissier, O., Hubner, J. F. & Sichman, J. S. (2007) Organization Oriented
Programming, from closed to open organizations. Engineering
Societies in the Agents World VI, Sixth International Workshop,
ESAWO06. Dublin, Ireland, Springer.

Bond, A. H. & Gasser, L. (1988) An analysis of problems and research in
DAL in ALAN H. BOND AND LES GASSER (Ed.) Readings in
Distributed Artificial Intelligence.

Bongaerts, L. (1998) Integration of scheduling and control in holonic
manufacturing systems. PhD Thesis. Belgium, Katholieke Universiteit
Leuven.

Bratman, M. E. (1987) Intentions, plans and practical reason, Cambridge,
MA, USA, Harvard University Press.

Bratman, M. E., Israel, D. J. & Pollack, M. E. (1988) Plans and resource-
bounded practical reasoning. Computational intelligence, 4, 349-355.

Breban, S. & Vassileva, J. (2001) Long-term coalitions for the electronic
marketplace. Proceedings of Canadian Al Workshop on Novel E-
Commerce Applications of Agents.

Breiman, L. (1996) Bagging Predictions. Machine Learning, 24, 123-140.

196

References

Brillinger, D. R., Preisler, H. K. & Benoit, J. W. (2003) Risk assessment: a
forest fire example. Statistics and Science: A Festschrift for Terry
Speed, 40, 177-196.

Broersen, J., Dastani, M., Hulstijn, J., Huang, Z. & Van Der Torre, L. (2001)
The BOID architecture: conflicts between beliefs, obligations,
intentions and desires. Proceedings of the 5th International
Conference on Autonomous Agents. ACM New York, NY, USA.

Brooks, C. H. & Durfee, E. H. (2002) Congregating and market formation.
Proceedings of the first international joint conference on Autonomous
agents and multiagent systems. ACM New York, NY, USA.

Brooks, C. H. & Durfee, E. H. (2003) Congregation formation in multiagent
systems. Autonomous agents and multi-agent systems, 7, 145-170.

Brooks, C. H., Durfee, E. H. & Armstrong, A. (2000) An introduction to
congregating in multi-agent systems. Proceedings of the Fourth
International Conference on Multiagent Systems.

Brooks, R. (1986) A robust layered control system for a mobile robot. IEEE
journal of robotics and automation, 2, 14-23.

Brovchenko, 1., Kuschan, A., Maderich, V. & Zheleznyak, M. (2002) The
modeling system for simulation of the oil spills in the Black Sea. 3rd
EuroGOOS Conference: Building the European capacity in
operational oceanography., 192.

Bussmann, S. & Schild, K. (2000) Self-organizing manufacturing control: an
industrial application ofagent technology. Proceedings of the 4th
International Con- ference on Multi-Agent Systems (ICMAS 2000).

Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S., Volmer, J. &
Kesselman, C. (2000) A national-scale authentication infrastructure.
Computer, 33, 60-66.

Buyya, R. (2002) High Performance Cluster Computing: Architectures and
Systems, Volume 1. Beijing: Publishing House of People's Post and
Telecommunication.

Cai, G., Wu, J., Xue, Y., Wan, W. & Huang, X. (2007) Oil spill detection
from thermal anomaly using ASTER data in Yinggehai of Hainan,
China. Geoscience and Remote Sensing Symposium, 2007. IGARSS
2007. IEEE International, 898-900.

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P.,
Kearney, P., Stark, J. & Evans, R. (2002) Agent Oriented Analysis
using MESSAGE/UML. Lecture Notes in Computer Science, 2222,
119-135.

197

Onganization Based Multiagent Architecture For Distributed Environments

Cardoso, H. L. & Oliveira, E. (2004) Virtual enterprise normative framework
within electronic institutions. Proceedings of the 5th Int. Workshop on
Engineering Societies in the Agents World (ESAW 04). Springer.

Carley, K. M. (1997) Organizational adaptation. Annals of Operations
Research, 75, 25-47.

Carley, K. M. & Gasser, L. (1999) Computational organization theory.
Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA.

Carracedo, P., Torres-Lopez, S., Barreiro, M., Montero, P., Balseiro, C. F.,
Penabad, E., Leitao, P. C. & Pérez-Munuzuri, V. (2006) Improvement
of pollutant drift forecast system applied to the Prestige oil spills in
Galicia Coast (NW of Spain): Development of an operational system.
Marine Pollution Bulletin, 53, 350-360.

Carrascosa, C., Bajo, J., Julian, V., Corchado, J. M. & Botti, V. (2007) Hybrid
multi-agent architecture as a real-time problem-solving model. Expert
Systems With Applications, 34, 2-17.

Carriero, N. & Gelernter, D. (1992) Coordination languages and their
significance. Communications of the ACM, 35, 97-107.

Casanova, H. & Dongarra, J. (1997) NetSolve: A network-enabled server for
solving computational science problems. International Journal of
High Performance Computing Applications, 11, 212.

Casanova, H., Dongarra, J., Johnson, C. & Miller, M. (1998) Application-
specific tools. in FOSTER, I. & KESSELMAN, C. (Eds.) The Grid:
Blueprint for a New Computing Infrastructure. Morgan Kaufmann.

Casanova, H., Obertelli, G., Berman, F. & Wolski, R. (2000) The AppLeS
Parameter Sweep Template: User-level middleware for the Grid.
Scientific Programming, 8, 111-126.

Castelfranchi, C. (1990) Social power: A point missed in multi-agent, DAI
and HCI. Decentralized Al, 49-62.

Castelfranchi, C. (1998) Modeling social action for Al agents. Artificial
Intelligence, 103, 157-182.

Castelfranchi, C. (2000) Engineering social order. Lecture Notes in Artificial
Intelligence, 1972, 1-18.

Cerami, E. (2002) Web Services Essentials Distributed Applications with
XML-RPC, SOAP, UDDI & WSDL, O'Reilly & Associates, Inc.

Cervenka, R. & Trencansky, 1. (2007) The Agent Modeling Language-AML: A
Comprehensive Approach to Modeling Multi-Agent Systems,
Birkhauser.

198

References

Cochrane, M. A. (2002) Se extienden como un reguero de pélvora: Incendios
en bosques tropicales en América Latina y el Caribe: Prevencion,
evaluacion y alerta temprana. Programa de las Naciones Unidas para
el Medio Ambiente. México D.F., United Nations.

Cohen, P. R. & Levesque, H. J. (1990) Intention is choice with commitment.
Artificial Intelligence, 42, 213-261.

Colombetti, M., Fornara, N. & Verdicchio, M. (2004) A social approach to
communication in multiagent systems. Lecture Notes in Artificial
Intelligence, 2990, 191-220.

Collins, J., Tsvetovat, M., Mobasher, B. & Gini, M. (1998) MAGNET: A
multi-agent contracting system for plan execution. Proceedings of
Workshop on Artificial Intelligence and Manufacturing: State of the
Art and State of Practice. AAAI Press.

Collis, J. C. & Lee, L. C. (1999) Building electronic marketplaces with the
ZEUS agent tool-kit. Lecture Notes in Computer Science, 1571, 1-24.

Copeland, G. & Thiam-Yew, W. (2006) Current data assimilation modelling
for oil spill contingency planning. Environmental Modelling and
Software, 21, 142-155.

Corchado, E., Mata, A., Baruque, B., Corchado, J. M. & Pérez-Lancho, B.
(2010) An Hybrid Artificial Intelligence System for Forest Fire
Forecasting. International Journal of Computer Mathemathics, In
press.

Corchado, J. M. & Aiken, J. (2002) Hybrid artificial intelligence methods in
oceanographic forecasting models. IEEE SMC Transactions, 32, 307-
313.

Corchado, J. M., Bajo, J. & Abraham, A. (2008) GERAmI: Improving the
delivery of health care. IEEE Intelligent Systems. Special Issue on
Ambient Intelligence, 3, 19-25.

Corchado, J. M. & Mata, A. (2008) Predicting the Presence of Oil Slicks After
an Oil Spill. Lecture Notes in Artificial Intelligence, 573-586.

Corkill, D. D. & Lander, S. E. (1998) Diversity in agent organizations. Object
Magazine, 8, 41-47.

Corkill, D. D. & Lesser, V. R. (1983) The use of meta-level control for
coordination in a distributed problem solving network. Proceedings of
the Eighth International Joint Conference on Artificial Intelligence.

Cotton, D. (2007) MARCOAST-Operational Marine Oil Spill and Water
Quality Monitoring Services. OCEANS 2007-Europe, 1-5.

Coulouris, G. F., Dollimore, J. & Kindberg, T. (2005) Distributed systems:
concepts and design, Addison-Wesley Longman.

199

Onganization Based Multiagent Architecture For Distributed Environments

Cuni, G., Esteva, M., Garcia, P., Puertas, E., Sierra, C. & Solchaga, T. (2004)
MASFIT: Multi-agent system for fish trading. Proceedings of the
16th Eureopean Conference on Artificial Intelligence, (ECAI’2004).
I0S Press.

Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber,
T. R., Mark, W. S., Tenenbaum, J. M. & Weber, J. C. (1993) PACT.:
An experiment in integrating concurrent engineering systems.
Computer, 26, 28-37.

Czajkowski, K., Fitzgerald, S., Foster, I. & Kesselman, C. (2001) Grid
information services for distributed resource sharing. Proceedings of
the 10th IEEE International Symposium on High Performance
Distributed Computing. San Francisco.

Chandrasekaran, B. (1981) Natural and social system metaphors for
distributed problem solving: Introduction to the issue. IEEE
Transactions on Systems, Man and Cybernetics, 11, 1-5.

Chang, C. L. (2005) Using case-based reasoning to diagnostic screening of
children with developmental delay. Expert Systems With Applications,
28, 237-247.

Channabasavaiah, K., Holley, K. & Tuggle, E. (2003) Migrating to a service-
oriented architecture. IBM DeveloperWorks, 16.

Chavez, A. & Maes, P. (1996) Kasbah: An agent marketplace for buying and
selling goods. First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology
(PAAM’96). London, UK.

Chen, D. & Burrell, P. (2001) Case-based reasoning system and artificial
neural networks: a review. Neural Computing & Applications, 10,
264-276.

Chen, F., Wang, C., Zhang, H., Zhang, B. & Wu, F. (2007) SAR images
classification using case-based reasoning method. Geoscience and
Remote Sensing Symposium, IGARSS 2007.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. & Tuecke, S. (2000)
The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of
Network and Computer Applications, 23, 187-200.

Childers, L., Disz, T., Olson, R., Papka, M. E., Stevens, R. & Udeshi, T.
(2000) Access grid: Immersive group-to-group collaborative
visualization. Proc. 4th International Immersive Projection
Technology Workshop.

200

References

Chow, H. K. H., Choy, K. L., Lee, W. B. & Lau, K. C. (2006) Design of a
RFID case-based resource management system for warehouse
operations. Expert Systems With Applications, 30, 561-576.

Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001) Web
services description language (WSDL) 1.1.

Chua, D. K. H., Li, D. Z. & Chan, W. T. (2001) Case-based reasoning
approach in bid decision making. Journal of construction engineering
and management, 127, 35.

Chun, S. H. & Park, Y. J. (2005) Dynamic adaptive ensemble case-based
reasoning: application to stock market prediction. Expert Systems
With Applications, 28, 435-443.

Chvatal, V. (1979) A greedy heuristic for the set-covering problem.
Mathematics of operations research, 233-235.

Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U.,
Beirle, S., Wagner, T. & Stohl, A. (2004) Around the world in 17
days—hemispheric-scale transport of forest fire smoke from Russia in
May 2003. Atmospheric Chemistry and Physics, 4, 1311-1321.

Dautenhahn, K. (2000) Reverse engineering of societies: a biological
perspective. Proc. of AISB Symposium “Starting from Society -
application of social analogies to computational systems™. University
of Birmingham, England, AISB.

Davidsson, P. (2001) Categories of artificial societies. Engineering Societies
in the Agents World I, LNAI 2203, 1-9.

Davis, R. & Smith, R. G. (1980) Negotiation as a metaphor for distributed
problem solving. Communication in Multiagent Systems. Agent
Communication Languages and Conversation Policies, 51-97.

De Méntaras, R. L. & Plaza, E. (1997) Case-Based Reasoning: An Overview.
Al Communications, 10, 21-29.

Decker, K. (1996) TAEMS: A Framework for Environment Centered
Analysis & Design of Coordination Mechanisms. in JENNINGS, G.
0. H. A. N. (Ed.) Foundations of Distributed Artificial Intelligence.
Wiley Inter-Science.

Decker, K., Lesser, V., Prasad, M. V. N. & Wagner, T. (1995) MACRON: an
architecture for multi-agent cooperative information gathering.
Proccedings of the CIKM Workshop on Intelligent Information
Agents.

Decker, K. & Li, J. (1998) Coordinated hospital patient scheduling. In
Proceedings of the 3rd International Conference on Multi-Agent
Systems (ICMAS'98). IEEE Computer Society.

201

Onganization Based Multiagent Architecture For Distributed Environments

Decker, K., Sycara, K. & Williamson, M. (1997) Middle-agents for the
internet, Lawrence Erlbaum Associates Ltd. .

Decker, K. S. & Lesser, V. R. (1992) Generalizing the partial global planning
algorithm. International Journal of Intelligent and Cooperative
Information Systems, 1, 319-346.

Decker, K. S. & Lesser, V. R. (1993) Quantitative modeling of complex
environments. International Journal of Intelligent Systems in
Accounting, Finance, and Management, 2, 215-234.

Defanti, T. & Stevens, R. (1999) Teleimmersion. in FOSTER, I. &
KESSELMAN, C. (Eds.) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann.

Delany, S. J. (2006) Using Case-Based Reasoning for Spam Filtering. Dublin
Institute of Technology.

Dellarocas, C. & Klein, M. (2000a) Civil agent societies: Tools for inventing
open agent-mediated electronic marketplaces. Lecture Notes in
Computer Science, 1788, 24-309.

Dellarocas, C. & Klein, M. (2000b) Contractual Agent Societies: Negotiated
shared context and social control in open multi-agent systems. Social
Order in Multi-Agent Systems, 113-133.

Den Breejen, E., Breuers, M., Cremer, F., Kemp, R., Roos, M., Schutte, K. &

De Vries, J. S. (1998) Autonomous Forest Fire Detection. IlI
International Conference on Forest Fire Research.

Dennet, D. C. (1987) The intentional stance, Cambridge, MA, MIT Press.

Dialani, V. (2002) UDDI-M Version 1.0 APl Specification. University of
Southampton-UK, 2.

Diaz, F., Fdez-Riverola, F. & Corchado, J. M. (2006) Gene-CBR: A case-
based reasoning tool for cancer diagnosis using microarray data sets.
Computational Intelligence, 22, 254-268.

Dignum, F., Morley, D., Sonenberg, E. A. & Cavedon, L. (2000) Towards
socially sophisticated BDI agents. Proceedings of the 4th
International Conference on Multi-Agent Systems. Boston.

Dignum, V. (2004) A Model for Organizational Interaction: based on Agents,
founded in Logic. PhD thesis. Utrecht University.

Dignum, V. & Dignum, F. (2001) Modelling agent societies: coordination
frameworks and institutions. Progress in Artificial Intelligence, LNAI,
2258, 191-204.

Dignum, V. & Dighum, F. (2007a) A landscape of agent systems for the real
world. Technical Report Utrecht University.

202

References

Dignum, V. & Dignum, F. (2007b) A logic for agent organizations. FAMAS@
Agents, 3-7.

Dignum, V., Meyer, J. J., Weigand, H. & Dignum, F. (2002) An organization-
oriented model for agent societies. Proceedings of International
Workshop on Regulated Agent-Based Social Systems: Theories and
Applications

Dignum, V., Weigand, H. & Xu, L. (2002) Agent Societies: Towards
framework-based design in WOOLDRIDGE, M., WEISS, G. & P., C.
(Eds.) Agent-Oriented Software Engineering Il. LNCS, Springer-
Verlag.

Douligeris, C., Collins, J., lakovou, E., Sun, P., Riggs, R. & Mooers, C. N. K.
(1995) Development of OSIMS: An oil spill information management
system. Spill Science & Technology Bulletin, 2, 255-263.

Dunin-Keplicz, B. & Verbrugge, R. (2002) Collective intentions. Fundamenta
Informaticae, 51, 271-295.

Durfee, E. H. & Lesser, V. R. (1991) Partial global planning: a coordination
framework for distributedhypothesis formation. IEEE Transactions on
Systems, Man and Cybernetics, 21, 1167-1183.

Durfee, E. H., Lesser, V. R. & Corkill, D. D. (1987) Coherent cooperation
among communicating problem solvers. IEEE Transactions on
computers, 36, 1275-1291.

Durfee, E. H., Lesser, V. R. & Corkill, D. D. (1989) Trends in Cooperative
Distributed Problem Solving. IEEE Transactions on Knowledge and
Data Engineering, 1, 63-83.

Edmonds, B. (1999) Capturing Social Embeddedness: a constructivist
approach. Adaptive Behavior, 7, 323-348.

Elhakeem, A. A., Elshorbagy, W. & Chebbi, R. (2007) Oil Spill Simulation
and Validation in the Arabian (Persian) Gulf with Special Reference
to the UAE Coast. Water, Air, & Soil Pollution, 184, 243-254.

Erickson, J. & Siau, K. (2008) Web Services, Service-Oriented Computing,
and Service-Oriented Architecture: Separating Hype from Reality.
Journal of Database Management, 19, 42-54.

Esteva, M., De La Cruz, D. & Sierra, C. (2002) ISLANDER: an electronic
institutions editor. Proceedings of the First International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2002). ACM New York, NY, USA.

Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Garcia, P. & Arcos, J. L.
(2001) On the formal specifications of electronic institutions. Lecture
Notes in Computer Science, 126-147.

203

Onganization Based Multiagent Architecture For Distributed Environments

Etzioni, O. & Weld, D. (1994) A softbot-based interface to the internet.
Communications of the ACM, 37, 72-76.

Excelente-Toledo, C. B. & Jennings, N. R. (2004) The dynamic selection of
coordination mechanisms. Autonomous agents and multi-agent
systems, 9, 55-85.

Fatima, S. S. & Wooldridge, M. (2001) Adaptive task resources allocation in
multi-agent systems. Proceedings of the Fifth International
Conference on Autonomous Agents. Montreal, Canada, ACM New
York, NY, USA.

Fdez-Riverola, F. & Corchado, J. M. (2004) FSfRT: Forecasting System for
Red Tides. Applied Intelligence, 21, 251-264.

Fdez-Riverola, F., Diaz, F. & Corchado, J. M. (2007) Reducing the Memory
Size of a Fuzzy Case-Based Reasoning System Applying Rough Set
Techniques. Systems, Man and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 37, 138-146.

Fdez-Riverola, F., Iglesias, E. L., Diaz, F., Méndez, J. R. & Corchado, J. M.
(2007a) Applying lazy learning algorithms to tackle concept drift in
spam filtering. Expert Systems With Applications, 33, 36-48.

Fdez-Riverola, F., Iglesias, E. L., Diaz, F., Méndez, J. R. & Corchado, J. M.
(2007b) SpamHunting: An instance-based reasoning system for spam
labelling and filtering. Decision Support Systems, 43, 722-736.

Ferber, J. & Gutknecht, O. (1998) A meta-model for the analysis and design
of organizations in multi-agent systems. Proc. of the 3rd.
International Conference on Multi-Agent Systems. IEEE Computer
Society.

Ferber, J., Gutknecht, O. & Michel, F. (2004) From agents to organizations:
an organizational view of multi-agent systems. Lecture Notes in
Computer Science, 214-230.

Ferguson, I. A. (1995) Integrated control and coordinated behaviour: A case
for agent models. Lecture Notes in Artificial Intelligence, 890, 203-
203.

Finin, T., Fritzson, R., Mckay, D. & Mcentire, R. (1994) KQML as an agent
communication language. Proceedings of the third international
conference on Information and knowledge management.
Gaithersburg, Maryland, United States, ACM New York, NY, USA.

Fipa, T. C. (2002) Communication, FIPA Communicative Act Library
Specification, SC00037J.

Fischer, K. (1999) Agent-based design of holonic manufacturing systems.
Robotics and autonomous Systems, 27, 3-13.

204

References

Fisher, M. (1994) A Survey of Concurrent METATEM-the Language and its
Applications. Lecture Notes in Computer Science, 827, 480-480.

Fitoussi, D. & Tennenholtz, M. (2000) Choosing social laws for multi-agent
systems: Minimality and simplicity. Artificial Intelligence, 119, 61-
102.

Fitzgerald, S., Foster, I., Kesselman, C., Von Laszewski, G., Smith, W. &
Tuecke, S. (1997) A directory service for configuring high-
performance distributed computations. Proceedings of the 6th IEEE
International Symposium on High Performance Distributed
Computing.

Flores, F. & Ludlow, J. J. (1976) Doing and Speaking in the Office. Decision
Support Systems: Issues and Challenges, 95-118.

Follett, K. (2007) Un mundo sin fin, Barcelona, Plaza y Janés.

Foster, 1., Jennings, N. R. & Kesselman, C. (2004) Brain meets brawn: Why
grid and agents need each other. Proceedings of the 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004). IEEE Computer Society.

Foster, 1. & Karonis, N. T. (1998) A grid-enabled MPI: Message passing in
heterogeneous distributed computing systems. Proc. SC'98. IEEE
Computer Society Washington, DC, USA.

Foster, I. & Kesselman, C. (1999) The grid: blueprint for a future computing
infrastructure, Morgan Kaufmann Publishers USA.

Foster, 1., Kesselman, C., Tsudik, G. & Tuecke, S. (1998) A security
architecture for computational grids. ACM Conference on Computers
and Security. ACM New York, NY, USA.

Foster, 1., Vockler, J., Wilde, M. & Zhao, Y. (2002) Chimera: A virtual data
system for representing, querying, and automating data derivation.
Proceedings of the 14th International Conference on Scientific and
Statistical Database Management. Edinburgh.

Fox, M. S. (1979) Organization structuring: Designing large complex
software, Carnegie-Mellon University, Dept. of Computer Science.

Fox, M. S. (1981) An organizational view of distributed systems. IEEE
Transactions on Systems, Man and Cybernetics, 11, 70-80.

Fox, M. S., Barbuceanu, M., Gruninger, M. & Lin, J. (1998) An organization
ontology for enterprise modelling. Simulating organizations:
Computational models of institutions and groups, 131-152.

Fox, M. S. & Gruninger, M. (1998) Enterprise modeling. Al magazine, 19,
109-121.

205

Onganization Based Multiagent Architecture For Distributed Environments

Franklin, S. & Graesser, A. (1997) Is it an Agent, or just a Program? A
Taxonomy for Autonomous Agents. Lecture Notes in Computer
Science, 1193, 21-36.

Gabriel, E., Resch, M., Beisel, T. & Keller, R. (1998) Distributed computing
in a heterogeneous computing environment. Proc. EuroPVM/MPI'98.

Galbraith, J. R. (1974) Organization design: An information processing view.
Interfaces, 28-36.

Gale, W. A. (2009) Statistical applications of artificial intelligence and
knowledge engineering. The Knowledge Engineering Review, 2, 227-
247.

Galushka, M. & Patterson, D. (2006) Intelligent index selection for case-based
reasoning. Knowledge-Based Systems, 19, 625-638.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995) Design patterns:
elements of reusable object-oriented software, Reading, MA,
Addison-Wesley.

Gannon, D. & Grimshaw, A. (1998) Object-based approaches. in FOSTER, I.
& KESSELMAN, C. (Eds.) The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann.

Garrido, L. & Sycara, K. (1995) Multi-agent meeting scheduling: Preliminary
experimental results. International Conference on Multi-Agent
Systems (ICMAS’95).

Gasser, L. (1991) Social conceptions of knowledge and action: DAI
foundations and open systems semantics. Artificial Intelligence, 47,
107-138.

Gasser, L. (2001) Perspectives on organizations in multi-agent systems. in
LUCK, M., MARIK, V., STEPANKOVA, O. & TRAPPL, R. (Eds.)
Multi-agent Systems and Applications. 9th ECCAI Advanced Course,
EASSS 2001. Springer.

Gateau, B., Boissier, O., Khadraoui, D. & Dubois, E. (2005) MOISE-Inst: An
organizational model for specifying rights and duties of autonomous
agents. 1st International Workshop on Coordination and
Organisation.

Genesereth, M. R. (1997) An agent-based framework for interoperability. in
BRADSHAW, J. (Ed.) Software agents. MIT Press.

Genesereth, M. R. & Ketchpel, S. P. (1994) Software agents. Communications
of the ACM 37, 48-53, 147.

Genesereth, M. R. & Nilsson, N. J. (1987) Logical foundations of artificial
intelligence, Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA.

206

References

Georgeff, M. & Rao, A. (1998) Rational software agents: from theory to
practice. in JENNINGS, N. R. & WOOLDRIDGE, M. J. (Eds.) Agent
Technology: Foundations, Applications, and Markets. Secaucus, NJ,
Springer-Verlag New York.

Georgeff, M. P. & Lansky, A. L. (1987) Reactive reasoning and planning.
Proceedings of the 6th National Conference in Al Seattle, WA.

Gestosa (2005) http ://www.adai.pt/ceif/Gestosa/. ADAI-CEIF(Center of
Forest Fire Studies).

Gibbins, N., Harris, S. & Shadbolt, N. (2004) Agent-based semantic web
services. Web Semantics: Science, Services and Agents on the World
Wide Web, 1, 141-154.

Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. (2003) An
Enhanced Contextual Fire Detection Algorithm for MODIS. Remote
Sensing of Environment, 87, 273-282.

Giret B., A. (2005) Anemona: Una metodologia multi-agente para sistema
holénicos de fabricacién. Departamento de Sistemas Informaticos v,
Computacion. Universidad Politécnica de Valencia.

Gironella, J. M. (1952) Los cipreses creen en Dios; novela, Barcelona,
Editorial Planeta.

Glass, A. & Grosz, B. J. (2003) Socially conscious decision-making.
Autonomous agents and multi-agent systems, 6, 317-339.

Gnanasambandam, N., Lee, S., Gautam, N., Kumara, S. R. T., Peng, W.,
Manikonda, V., Brinn, M. & Greaves, M. (2004) Reliable mas
performance prediction using queueing models. Proceedings of the
IEEE Multi-agent Security and Survivability Symposium (MASS).

Gokhale, A. & Schmidt, D. C. (1996) The performance of the CORBA
dynamic invocation interface and dynamic skeleton interface over
high-speed ATM networks. Proceedings of GLOBECOM'96. London,
England.

Goux, J. P., Kulkarni, S., Linderoth, J. & Yoder, M. (2000) An enabling
framework for master-worker applications on the Computational Grid.
Proc. 9th IEEE Symp. on High Performance Distributed Computing.
IEEE Press.

Griffiths, N. (2003) Supporting cooperation through clans. Intelligence,
Challenges and Advances — Proceedings of the 2nd IEEE Systems,
Man and Cybernetics.

Grinshaw, A. S. & Wm, A. (1996) Wulf and the whole Legion Team.
Legion—A view From 50000 Feet. Proc. 5th IEEE Symposium on
High Performance Distributed Computing,. IEEE Press.

207

Onganization Based Multiagent Architecture For Distributed Environments

Grosz, B. J. & Kraus, S. (1996) Collaborative plans for complex group action.
Artificial Intelligence, 86, 269-357.

Grosz, B. J. & Sidner, C. L. (1990) Plans for discourse. Intentions in
communication, 417-444.

Gupta, U. G. (1994) How case-based reasoning solves new problems.
Interfaces, 110-119.

Guttman, R. H., Moukas, A. G. & Maes, P. (2001) Agent-mediated electronic
commerce: A survey. The Knowledge Engineering Review, 13, 147-
159.

Haddadi, A. (1996) Communication and cooperation in agent systems: a
pragmatic theory, Springer.

Harkavy, M. (1996) Webster’s new encyclopedic dictionary. Black Dog &
Leventhal publishers Inc, 151.

Haupt, S. E., Pasini, A. & Marzban, C. (2008) Artificial Intelligence Methods
in the Environmental Sciences, Springer Publishing Company,
Incorporated.

Hayden, S. C., Carrick, C. & Yang, Q. (1999) A catalog of agent coordination
patterns. AGENTS ’99: Proceedings of the third annual conference
on Autonomous Agents. ACM New York, NY, USA.

Hendler, J. (2001) Agents and the semantic web. IEEE Intelligent Systems, 16,
30-37.

Heskes, T. (1997) Balancing between bagging and bumping. Advances in
Neural Information Processing Systems, 9, 466-472.

Hewitt, C. (1986) Offices are open systems. ACM Transactions on
Information Systems (TOIS), 4, 271-287.

Hexmoor, H. & Beavers, G. (2001) Towards teams of agents. Proceedings of
the International Conference in Artificial Intelligence (1C-Al’2001).
CSREA Press.

Hodge, B. J., Anthony, W. P., Gales, L. M. & Ruiz, D. (1998) Teoria de la
organizacion: Un enfoque estratégico, Prentice Hall.

Horling, B. (2003) Using autonomy, organizational design and negotiation in
a distributed sensor network. Distributed Sensor Networks: A
multiagent perspective, 139-183.

Horling, B., Benyo, B. & Lesser, V. (2001) Using self-diagnosis to adapt
organizational structures. Proceedings of the 5th International
Conference on Autonomous Agents ACM New York, NY, USA.

Horling, B. & Lesser, V. (2005) Analyzing, modeling and predicting
organizational effects in a distributed sensor network. Journal of the

208

References

Brazilian Computer Society, Special Issue on Agents Organizations,
11, 9-30.

Horling, B., Mailler, R. & Lesser, V. (2004) A case study of organizational
effects in a distributed sensor network. Computer Science Technical
Report, 04-03.

Horling, B., Mailler, R., Shen, J., Vincent, R. & Lesser, V. (2003) Using
autonomy, organizational design and negotiation in a distributed
sensor network. Distributed Sensor Networks: A multiagent
perspective, 139-183.

Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H. & Stockinger, K.
(2000) Data management in an international data grid project. Proc.
1st IEEE/ACM International Workshop on Grid Computing.

Howell, J., Design, C. & Kotz, D. (2000) End-to-end authorization. Proc.
Symposium on Operating Systems Design and Implementation.
USENIX Association.

Huang, M. J., Chen, M. Y. & Lee, S. C. (2007) Integrating data mining with
case-based reasoning for chronic diseases prognosis and diagnosis.
Expert Systems With Applications, 32, 856-867.

Hubner, J. F., Sichman, J. S. & Boissier, O. (2002) A model for the structural,
functional, and deontic specification of organizations in multiagent
systems. Proceedings of the Brazilian Symposium on Artificial
Intelligence (SBIA'02).

Hubner, J. F., Sichman, J. S. & Boissier, O. (2005) S-Moise: A Middleware
for developing Organised Multi-Agent Systems. In Proc. Int.
Workshop on Organizations in Multi-Agent Systems, from
Organizations to Organization Oriented Programming in MAS,.
Springer.

Huhns, M. N. & Singh, M. P. (1998) Agents and multiagent systems: Themes,
approaches, and challenges. Readings in agents, 1-23.

Huhns, M. N. & Stephens, L. M. (1999) Multiagent Systems and Societies of
Agents. in WEISS, G. (Ed.) Multi-agent Systems: a Modern Approach
to Distributed Artificial Intelligence. MIT Press.

lliadis, L. S. (2005) A decision support system applying an integrated fuzzy
model for long-term forest fire risk estimation. Environmental
Modelling and Software, 20, 613-621.

Im, K. H. & Park, S. C. (2007) Case-based reasoning and neural network
based expert system for personalization. Expert Systems With
Applications, 32, 77-85.

209

Onganization Based Multiagent Architecture For Distributed Environments

Ishida, T., Gasser, L. & Yokoo, M. (1992) Organization self-design of
distributed production systems. IEEE Transactions on Knowledge and
Data Engineering.

Jennings, N. & Wooldridge, M. (1996) Software agents. IEEE review, 42, 17-
20.

Jennings, N. R. (1995) Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions. Artificial Intelligence, 75,
195-240.

Jennings, N. R. (1999) Agent-based computing: Promise and perils, Lawrence
Erlbaum Associates Ltd.

Jennings, N. R., Sycara, K. & Wooldridge, M. (1998) A Roadmap of Agent
Research and Development. Autonomous Agents and Multi-Agent
Systems Journal, 1, 7-38.

Jennings, N. R. & Wooldridge, M. (1995) Applying agent technology.
Applied Artificial Intelligence, 9, 351-361.

Jennings, N. R. & Wooldridge, M. (1999) Agent-oriented software
engineering. Lecture Notes in Computer Science, 4-10.

Jennings, N. R. & Wooldridge, M. J. (1998) Agent technology: foundations,
applications, and markets, Springer-Verlag New York, Inc. Secaucus,
NJ, USA.

Jensen, D. & Lesser, V. (2002) Social pathologies of adaptive agents. Safe
Learning Agents: Papers from the 2002 AAAI Spring Symposium.
AAAI Press.

Jha, M. N., Levy, J. & Gao, Y. (2008) Advances in Remote Sensing for Oil
Spill Disaster Management: State-of-the-Art Sensors Technology for
Oil Spill Surveillance. Sensors, 8, 236-255.

Jian-Dong, G. U. O. & Shang-Liang, Z. (2007) Multi threading
implementations in real-time CORBA [J]. Computer Engineering and
Design, 2.

Jonker, C. M., Klusch, M. & Treur, J. (2000) Design of collaborative
information agents. Lecture Notes in Computer Science, 262-284.

Jorda, G., Comerma, E., Bolanos, R. & Espino, M. (2007) Impact of forcing
errors in the CAMCAT oil spill forecasting system. A sensitivity
study. Journal of Marine Systems, 65, 134-157.

Jordi, A., Ferrer, M. |., Vizoso, G., Orfila, A., Basterretxea, G., Casas, B.,
Alvarez, A., Roig, D., Garau, B. & Martinez, M. (2006) Scientific
management of Mediterranean coastal zone: A hybrid ocean
forecasting system for oil spill and search and rescue operations.
Marine Pollution Bulletin, 53, 361-368.

210

References

Juan, T., Pearce, A. & Sterling, L. (2002) ROADMAP: Extending the Gaia
Methodology for Complex Open Systems. Proceedings of the 1st
ACM Joint Conference on Autonomous Agents and Multi-Agent
Systems. ACM Press.

Jung, H., Tambe, M. & Kulkarni, S. (2001) Argumentation as distributed
constraint satisfaction: Applications and results. AGENTS ’01:
Proceedings of the fifth international conference on Autonomous
agents. ACM New York, NY, USA.

Kaminka, G. A., Pynadath, D. V. & Tambe, M. (2002) Monitoring teams by
overhearing: A multi-agent plan-recognition approach. Journal of
Artificial Intelligence Research, 17, 83-135.

Karafyllidis, 1. & Thanailakis, A. (1997) A model for predicting forest fire
spreading using cellular automata. Ecological Modelling, 99, 87-97.

Kautz, H., Selman, B., Coen, M., Ketchpel, S. & Ramming, C. (1994) An
experiment in the design of software agents, John Wiley & sons Ltd. .

Keramitsoglou, 1., Cartalis, C. & Kiranoudis, C. T. (2006) Automatic
identification of oil spills on satellite images. Environmental
Modelling and Software, 21, 640-652.

Khedro, T. & Genesereth, M. R. (1995) Facilitators: A networked computing
infrastructure for distributed software interoperation. Working Notes

of the 1JCAI-95 Workshop on Artificial Intelligence in Distributed
Information Networks.

Klein, M., Rodriguez-Aguilar, J. A. & Dellarocas, C. (2003) Using domain-
independent exception handling services to enable robust open multi-
agent systems: The case of agent death. Autonomous agents and
multi-agent systems, 7, 179-1809.

Kleinrock, L. (1994) Realizing the information future: the Internet and
beyond, National Academy Press.

Klusch, M. (1999) Intelligent information agents: agent-based information
discovery and management on the Internet, Springer-Verlag New
York, Inc. Secaucus, NJ, USA.

Klusch, M. & Gerber, A. (2002) Dynamic coalition formation among rational
agents. IEEE Intelligent Systems, 17, 42-47.

Koestler, A. (1968) The ghost in the machine. Psychiatric communications,
10, 45.

Kohonen, T. (1995) Self-Organizing Maps. Springer Series in Information
Sciences. Berlin, Germany, Springer.

Kolodner, J. L. (1991) Improving human decision making through case-based
decision aiding. Al Magazine, 12, 52-68.

211

Onganization Based Multiagent Architecture For Distributed Environments

Kolodner, J. L. (1993) Case-based Reasoning, Morgan Kaufmann.

Kolp, M., Giorgini, P. & Mylopoulos, J. (2003) Multi-agent architectures as
organizational structures. Autonomous Agents and Multi-Agent
Systems, 13, 3-25.

Krafzig, D., Banke, K. & Slama, D. (2004) Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series), Prentice Hall PTR
Upper Saddle River, NJ, USA.

Kurbel, K. & Loutchko, 1. (2003) Towards multi-agent electronic
marketplaces: what is there and what is missing? The Knowledge
Engineering Review, 18, 33-46.

Lai, H. (2007) A Service-Oriented Architecture Based Platform to Integrate
Information System for Semiconductor Manufacturing. Extension
Education Master Program of Information & Electrical Engineering.
Fench Chia University.

Larson, K. S. & Sandholm, T. W. (2000) Anytime coalition structure
generation: An average case study. Journal of Experimental &
Theoretical Artificial Intelligence, 12, 23-42.

Larsson, S. (2008) La chica que sofiaba con una cerilla y un bidén de
gasolina, Barcelona, Ediciones Destino.

Larsson, S. (2009a) La reina en el palacio de las corrrientes de aire,
Barcelona, Destino.

Larsson, S. (2009b) Los hombres que no amaban a las mujeres, Barcelona,
Ediciones Destino.

Lashkari, Y., Metral, M. & Maes, P. (1997) Collaborative interface agents.
Readings in agents, 111-116.

Leake, D. B. (1996) Case-based reasoning: Experiences, lessons and future
directions, MIT Press Cambridge, MA, USA.

Lee, J., Yang, J. & Chung, J. Y. (2002) Winslow: A Business Process
Management System with Web Services. Technical Paper. Electronic
Commerce Research Center, National Sun Yat-sen University.

Leigh, J., Johnson, A. & Defanti, T. A. (1997) CAVERN: A distributed
architecture for supporting scalable persistence and interoperability in
collaborative virtual environments. Virtual Reality: Research,
Development and Applications, 2, 217-237.

Lerman, K. & Galstyan, A. (2001) A general methodology for mathematical
analysis of multi-agent systems. USC Information Sciences Technical
Report ISI-TR-529.

212

References

Lerman, K. & Shehory, O. (2000) Coalition Formation for Large-Scale
Electronic Markets. Int. Conference on Multi-Agent Systems.

Lesperance, Y., Levesque, H. J., Lin, F., Marcu, D., Reiter, R. & Scherl, R. B.
(1996) Foundations of a logical approach to agent programming.
Intelligent Agents 1l Agent Theories, Architectures, and Languages.
Springer.

Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B.,
Neiman, D., Podorozhny, R., Prasad, M. N. & Raja, A. (2004)
Evolution of the GPGP/TAEMS domain-independent coordination
framework. Autonomous agents and multi-agent systems, 9, 87-143.

Lesser, V. R. (1991) A retrospective view of FA/C distributed problem
solving. IEEE Transactions on Systems Man and Cybernetics, 21,
1347-1362.

Lesser, V. R. (1998) Reflections on the nature of multi-agent coordination and
its implications for an agent architecture. Autonomous agents and
multi-agent systems, 1, 89-111.

Lesser, V. R. & Corkill, D. D. (1981) Functionally accurate, cooperative
distributed systems. IEEE Transactions on Systems, Man and
Cybernetics, 11, 81-96.

Lesser, V. R. & Corkill, D. D. (1983) The distributed vehicle monitoring
testbed. Al magazine, 4, 63-109.

Lesser, V. R. & Erman, L. D. (1980) Distributed interpretation: A model and
experiment. IEEE Transactions on computers, 100, 1144-1163.

Levesque, H. J., Cohen, P. R. & Nunes, J. H. T. (1990) On acting together.
Proceedings of the Eighth National Conference on Artificial
Intelligence. Boston, MA.

Li, H. (1996) Selecting KBES development techniques for applications in the
construction industry. Construction Management and Economics, 14,
67-74.

Li, H., Hu, D., Hao, T., Wenyin, L. & Chen, X. (2007) Adaptation Rule
Learning for Case-Based Reasoning. Third International Conference
on Semantics, Knowledge and Grid, 44-49.

Li, J. Y., Ni, Z. W., Liu, X. & Liu, H. T. (2006) Case-Base Maintenance
Based on Multi-Layer Alternative-Covering Algorithm. Machine
Learning and Cybernetics, 2006 International Conference on, 2035-
2039.

Li, X. & Yeh, A. G. (2004) Multitemporal SAR images for monitoring
cultivation systems using case-based reasoning. Remote Sensing of
Environment, 90, 524-534.

213

Onganization Based Multiagent Architecture For Distributed Environments

Lin, Z. & Carley, K. M. (1995) DYCORP: A computational framework for
examining organizational performance under dynamic conditions. The
Journal of mathematical sociology, 20, 193-217.

Liu, X. & Wirtz, K. W. (2005) Sequential negotiation in multiagent systems
for oil spill response decision-making. Marine Pollution Bulletin, 50,
469-74.

Liu, X. & Wirtz, K. W. (2007) Decision making of oil spill contingency
options with fuzzy comprehensive evaluation. Water Resources
Management, 21, 663-676.

Long, D. G. (2001) Mapping fire regimes across time and space:
Understanding coarse and fine-scale fire patterns. International
Journal of Wildland Fire, 10, 329-342.

Lopez, F. L. Y., Luck, M. & D’inverno, M. (2006) A normative framework
for agent-based systems. Computational & Mathematical
Organization Theory, 12, 227-250.

Lopez, 1., Follen, G., Gutiérrez, R., Foster, I., Ginsburg, B. & Larsson, O.
(2000) S. Martin and Tuecke, S., NPSS on NASA's IPG: Using
CORBA and Globus to Coordinate Multidisciplinary Aeroscience
Applications. NASA HPCC/CAS Workshop. NASA Ames Research
Center.

Luger, G. F. (2002) Artificial intelligence: structures and strategies for
complex problem solving, Addison Wesley Publishing Company.

Lybéack, D. (1999) Transient diversity in multi-agent systems. Department of
Computer and Systems Sciences. Stockholm University and the Royal
Institute of Technology.

Maes, P. (1990) Designing autonomous agents: theory and practice from
biology to engineering and back, MIT press.

Maes, P. (1994) Agents that reduce work and information overload.
Communications of the ACM, 37, 30-40.

Maes, P. (1997) Intelligent software. Proceedings of the 2nd international
conference on Intelligent user interfaces. Orlando, Florida, United
States, ACM New York, NY, USA.

Mahmoud, Q. H. (2005) Service-oriented architecture (SOA) and web
services: The road to Enterprise Application Integration (EAI).
Technical article, Sun Developer Network.

Mailler, R. & Lesser, V. (2004) Solving distributed constraint optimization
problems using cooperative mediation. Proceedings of Third
International Joint Conference on Autonomous Agents and
Multiagent Systems IEEE Computer Society Washington, DC, USA.

214

References

Mailler, R., Lesser, V. & Horling, B. (2003) Cooperative negotiation for soft
real-time distributed resource allocation. Proceedings of Second
International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2003). Melbourne, ACM New York,
NY, USA.

Malone, T. W. & Crowston, K. (1994) The interdisciplinary study of
coordination. ACM Computing Surveys (CSUR), 26, 87-119.

Malone, T. W. & Smith, S. A. (1988) Modeling the performance of
organizational structures. Operations Research, 421-436.

Malzieu, M. (2009) La mecénica del corazén, Barcelona, Random House
Mondadori.

March, J. G., Simon, H. A. & Guetzkow, H. S. (1958) Organizations, John
Wiley & Sons Inc.

Marsella, S., Tambe, M., Adibi, J., Al-Onaizan, Y., Kaminka, G. A. &
Muslea, 1. (2001) Experiences acquired in the design of RoboCup
teams: A comparison of two fielded teams. Autonomous agents and
multi-agent systems, 4, 115-129.

Martins Fernandes, P. A. (2001) Fire spread prediction in shrub fuels in
Portugal. Forest Ecology and Management, 144, 67-74.

Massie, J. L. (1973) Bases esenciales de la Administracion, México D.F.,
Edicorial Diana.

Mata, A. & Corchado, J. M. (2009) Forecasting the probability of finding oil
slicks using a CBR system. Expert Systems With Applications, 36,
8239-8246.

Mata, A., Pérez-Lancho, B., Génzalez, A., Barugue, B. & Corchado, E. S.
(2009) MACSDE: Multi-Agent Contingency Response System for
Dynamic Environments. HAIS 20009.

Mathieu, P., Routier, J. C. & Secq, Y. (2002) Dynamic organization of multi-
agent systems. Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems. ACM
New York, NY, USA.

Matson, E., Deloach, S. & Kansas State Univ, M. (2003) Using dynamic
capability evaluation to organize a team of cooperative, autonomous
robots. Proceedings of The 2003 International Conference on
Artificial Intelligence (IC-AI’03).

Maturana, F., Shen, W. & Norrie, D. H. (1999) MetaMorph: an adaptive
agent-based architecture for intelligent manufacturing. International
Journal of Production Research, 37, 2159-2173.

215

Onganization Based Multiagent Architecture For Distributed Environments

Mazzeo, G., Marchese, F., Filizzola, C., Pergola, N. & Tramutoli, V. (2007) A
Multi-temporal Robust Satellite Technique (RST) for Forest Fire
Detection. Analysis of Multi-temporal Remote Sensing Images, 2007.

Mccourt, F. (2006) El profesor, Madrid, Maeva.

Mcilraith, S. A. & Zeng, T. C. H. (2001) Semantic web services. IEEE
Intelligent Systems, 16, 46-53.

Menemenlis, D., Hill, C., Adcroft, A., Campin, J. M., Cheng, B., Ciotti, B.,
Fukumori, I., Heimbach, P., Henze, C. & Kohl, A. (2005) NASA
Supercomputer Improves Prospects for Ocean Climate Research. EOS
Transactions, 86, 89-95.

Mercier, G. & Girard-Ardhuin, F. (2006) Partially Supervised Oil-Slick
Detection by SAR Imagery Using Kernel Expansion. Geoscience and
Remote Sensing, IEEE Transactions on, 44, 2839-2846.

Meérida-Campos, C. & Willmott, S. (2004) Modelling coalition formation over
time for iterative coalition games. Proceedings of the 3rd
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004). IEEE Computer Society
Washington, DC, USA.

Mitra, N. (2003) Soap version 1.2 part 0: Primer. W3C recommendation, 24.

Montali, A., Giacinto, G., Migliaccio, M. & Gambardella, A. (2006)
Supervised pattern classification techniques for oil spill classification
in SAR images: preliminary results. Proceedings of the SeaSAR,
2006.

Montani, S. (2007) Case-based Reasoning for managing non-compliance with
clinical guidelines. International Conference on Case-Based
Reasoning, ICCBR 2007, Proceedings.

Montani, S. & Anglano, C. (2008) Achieving self-healing in service delivery
software systems by means of case-based reasoning. Applied
Intelligence, 28, 139-152.

Montenegro, R., Plaza, A., Ferragut, L. & Asensio, M. I. (1997) Application
of a nonlinear evolution model to fire propagation. Nonlinear
Analysis, 30, 2873-2882.

Montgomery, T. A. & Durfee, E. H. (1993) Search reduction in hierarchical

distributed problem solving. Group Decision and Negotiation, 2, 301-
317.

Moreno, R. A., Do Santos, M., Bertozzo, N., De Sa Rebelo, M., Furuie, S. S.
& Gutierrez, M. A. (2008) Medical Image distribution and
visualization in a hospital using CORBA. Engineering in Medicine

216

References

and Biology Society, 2008. EMBS 2008. 30th Annual International
Conference of the IEEE Vancouver, Canada.

Moses, Y. & Tennenholtz, M. (1995) Artificial social systems. Computers and
Artificial Intelligence, 14, 533-562.

Moulin, B. & Chaib-Draa, B. (1996) An overview of distributed artificial
intelligence. Foundations of distributed artificial intelligence, 1, 3—
55.

Mowshowitz, A. (1997) On the theory of virtual organization. Systems
research and behavioral science, 14.

Maller, J. E., Pischel, M. & Thiel, M. (1995) Modelling reactive behaviour in
vertically layered agent architectures. Proceedings of the workshop on
agent theories, architectures, and languages on Intelligent agents.
Amsterdam, The Netherlands, Springer.

Mui, L., Halberstadt, A. & Mohtashemi, M. (2002) Notions of reputation in
multi-agents systems: a review. Proceedings of the First International
Conference on Autonomous Agents and MAS. Bologna, Italy.

Mufioz, C., Acevedo, P., Salvo, S., Fagalde, G. & Vargas, F. (2007) Forest
fire detection using NOAA/16-LAC satellite images in the Araucania
Region, Chile. Bosque, 28, 119-128.

Mustafaraj, E. (2007) Knowledge Extraction and Summarization for Textual
Case-Based Reasoning. Fachbereich Mathematik und Informatik.
Philipps-Universitat Marburg.

Nagendra Prasad, M. V. & Lesser, V. R. (1999) Learning situation-specific
coordination in cooperative multi-agent systems. Autonomous agents
and multi-agent systems, 2, 173-207.

Nair, R., Tambe, M. & Marsella, S. (2003a) Role allocation and reallocation
in multiagent teams: Towards a practical analysis. Proceedings of
Second International Joint Conference on Autonomous Agents and
Multi-agent Systems (AAMAS-03). ACM New York, NY, USA.

Nair, R., Tambe, M. & Marsella, S. (2003b) The role of emotions in
multiagent teamwork: A preliminary investigation. Who needs
emotions: the brain meets the robot. Oxford University Press.

Nakada, H., Sato, M. & Sekiguchi, S. (1999) Design and implementations of
Ninf: towards a global computing infrastructure. Future Generation
Computer Systems, 15, 649-658.

Natis, Y. & Schulte, R. (2003) Introduction to service-oriented architecture.
Gartner Group.

Negroponte, N. (1996) Being digital, Random House Inc. New York, NY,
USA.

217

Onganization Based Multiagent Architecture For Distributed Environments

Nelson, R. K., Kile, B. M., Plata, D. L., Sylva, S. P., Xu, L., Reddy, C. M.,
Gaines, R. B., Frysinger, G. S. & Reichenbach, S. E. (2006) Tracking
the Weathering of an Oil Spill with Comprehensive Two-Dimensional
Gas Chromatography. Environmental Forensics, 7, 33-44.

Newell, A. (1994) Reflections on the knowledge level. Artificial Intelligence
in Perspective, 59, 31-38.

Ng, S. T. (2001) EQUAL.: a case-based contractor prequalifier. Automation in
construction, 10, 443-457.

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., Dang, V.
D., Nguyen, T. D., Deora, V., Shao, J. & Gray, W. A. (2004) Conoise:
Agent-based formation of virtual organisations. Knowledge-Based
Systems, 17, 103-111.

Nugent, C. & Cunningham, P. (2005) A Case-Based Explanation System for
Black-Box Systems. Artificial Intelligence Review, 24, 163-178.

Nwana, H. S. & Ndumu, D. T. (1998) A brief introduction to software agent
technology. Agent Technology: Foundations, Applications, and
Markets, 29-47.

Nwana, H. S., Ndumu, D. T., Lee, L. C. & Collis, J. C. (1999) ZEUS: a toolkit
and approach for building distributed multi-agent systems. In
Proceedings of the Third Annual Conference on Autonomous Agents
(AGENTS "99). Seattle, Washington, USA, ACM, New York, NY.

Omg (1995a) Compound Presentation and Compound Interchange Facilities,
Part I, OMG Document 95-3-31. Apple Computer, Inc. Component
Integration Laboratories, Inc., International Business Machines
Corporation, Novell Incorporated,.

Omg (1995b) CORBA Services: Common Object Services Specification,
Revised Edition. Object Management Group.

Omg (1996) Description of New OMA Reference Model, Draft 1. Object
Management Group.

Omicini, A. (2001) SODA: Societies and Infrastructures in the Analysis and
Design of Agent-based Systems. Agent-Oriented Software
Engineering, 1957, 185-193.

Ontafion, S. & Plaza, E. (2003) Collaborative Case Retention Strategies for
CBR Agents. Lecture Notes in Artificial Intelligence, 21678, 394-
405.

Ossowski, S. (1999) Coordination in artificial agent societies: social
structures and its implications for autonomous problem-solving
agents, Springer Verlag.

218

References

Ossowski, S. & Garcia-Serrano, A. (1998) Social Co-ordination among
Autonomous Problem-Solving Agents. IN WOBCKE, W,
PAGNUCCO, M. & ZHANG, C. (Eds.) In Proceedings of the
Workshops on Commonsense Reasoning, intelligent Agents, and
Distributed Artificial intelligence. Lecture Notes In Computer
Science, Springer-Verlag, London.

Palenzuela, J. M. T., Vilas, L. G. & Cuadrado, M. S. (2006) Use of ASAR
images to study the evolution of the Prestige oil spill off the Galician
coast. International Journal of Remote Sensing, 27, 1931-1950.

Panzarasa, P., Jennings, N. R. & Norman, T. J. (2002) Formalizing
collaborative decision-making and practical reasoning in multi-agent
systems. Journal of logic and computation, 12, 55-117.

Parker, L. E. (1993) Designing control laws for cooperative agent teams.
Proceedings of the IEEE International Conference on Robotics and
Automation.

Parunak, H. V. D. & Odell, J. (2002) Representing social structures in UML.
Agent-Oriented Software Engineering Il, LNCS, 2222.

Parunak, H. V. D., Savit, R. & Riolo, R. L. (1998) Agent-Based Modeling vs
Equation-Based Modeling: A Case Study and Users' Guide. Lecture
Notes in Computer Science, 1534, 10-25.

Pasley, J. (2005) How BPEL and SOA are changing Web services
development. IEEE Internet Computing, 9, 60-67.

Patterson, D., Rooney, N., Dobrynin, V. & Galushka, M. (2005) Sophia: A
novel approach for Textual Case-based Reasoning. Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence.

Pattison, H. E., Corkill, D. D. & Lesser, V. R. (1987) Instantiating
descriptions of organizational structures. Distributed artificial
intelligence, Research Notes in Artificial Intelligence, I, 59-96.

Pavén, R., Diaz, F., Laza, R. & Luzén, V. (2008) Automatic parameter tuning
with a Bayesian case-based reasoning system. A case of study. Expert
Systems With Applications, 36, 3407-3420.

Peiro, J. M. (1995) Psicologia de la Organizacion (1 y 11). Madrid: UNED.

Pérez, E. I, Coello, C. A. C. & Aguirre, A. H. (2005) Extraction and reuse of
design patterns from genetic algorithms using case-based reasoning.
Soft Computing-A Fusion of Foundations, Methodologies and
Applications, 9, 44-53.

Peridfiez, R. (2007) Chemical and oil spill rapid response modelling in the
Strait of Gibraltar—Alboran Sea. Ecological Modelling, 207, 210-222.

219

Onganization Based Multiagent Architecture For Distributed Environments

Peridfiez, R. & Pascual-Granged, A. (2008) Modelling surface radioactive,
chemical and oil spills in the Strait of Gibraltar. Computers and
Geosciences, 34, 163-180.

Plaza, E., Armengol, E. & Ontafién, S. (2005) The Explanatory Power of
Symbolic Similarity in Case-Based Reasoning. Artificial Intelligence
Review, 24, 145-161.

Pokahr, A., Braubach, L. & Lamersdorf, W. (2003) Jadex: Implementing a
BDI-Infrastructure for JADE Agents. In EXP - in search of innovation
(Special Issue on JADE), 76-85.

Polani, D. (2001) Measures for the organization of self-organizing maps.
Springer Studies In Fuzziness And Soft Computing Series, 13-44.

Policastro, C. A., Carvalho, A. C. & Delbem, A. C. B. (2006) Automatic
knowledge learning and case adaptation with a hybrid committee
approach. Journal of Applied Logic, 4, 26-38.

Polzlbauer, G. (2004) Survey and Comparison of Quality Measures for Self-
Organizing Maps. Proceedings of the Fifth Workshop on Data
Analysis (WDA’04), 67-82.

Popper, K. R. (1982) The open universe: An argument for indeterminism,
Hutchinson, London.

Powell, W. W. (1991) Neither market nor hierarchy: Network forms of
organization. Markets, Hierarchies and Networks. The Coordination
of Social Life, 265-276.

Prada, M. L. (2004) Vivir al sol, Oviedo, KRK Ediciones.

Price, J. M., Ji, Z. G., Reed, M., Marshall, C. F., Howard, M. K., Guinasso Jr,
N. L., Johnson, W. R. & Rainey, G. B. (2003) Evaluation of an oil
spill trajectory model using satellite-tracked, oil-spill-simulating
drifters. OCEANS 2003. Proceedings, 3.

Pynadath, D. V. & Tambe, M. (2002) The communicative multiagent team
decision problem: Analyzing teamwork theories and models. Journal
of Artificial Intelligence Research, 16, 389-423.

Qingling, Z. & Ying, L. (2007) Monitoring Marine Oil-spill Using Microwave
Remote Sensing Technology. Electronic Measurement and
Instruments, 2007. ICEMI'07. 8th International Conference on, 4-69.

Ramchurn, S. D., Huynh, D. & Jennings, N. R. (2005) Trust in multi-agent
systems. The Knowledge Engineering Review, 19, 1-25.

Rao, A. & Georgeff, M. P. (1992) An abstract architecture for rational agents.
Computational Intelligence, 14, 392-429.

220

References

Reed, M., Ekrol, N., Rye, H. & Turner, L. (1999) Oil Spill Contingency and
Response (OSCAR) Analysis in Support of Environmental Impact
Assessment Offshore Namibia. Spill Science and Technology Bulletin,
5, 29-38.

Reed, S. & Lesser, V. R. (1980) Division of labor in honey bees and
distributed focus of attention. University of Massachusetts/Amherst
Computer and Information Science Department Technical Report 80,
17.

Reverte, J. (2006) EI médico de Ifni, Barcelona, Areté.

Rivera De La Cruz, M. (2009) La importancia de las cosas, Barcelona,
Planeta.

Rodriguez, J. A., Noriega, P., Sierra, C. & Padget, J. (1997) FM96. 5: A Java-
based electronic auction house. Proceedings of 2nd Conference on
Practical Applications of Intelligent Agents and MultiAgent
Technology (PAAM’97),. London, UK.

Rodriguez, R., Cortés, A., Margalef, T. & Luque, E. (2008) An Adaptive
System for Forest Fire Behavior Prediction. 11th IEEE International
Conference on Computational Science and Engineering.

Romelaer, P. (2002) Organization: a diagnosis method. Cahier. University
Paris IX Dauphine, Crepa Laboratory.

Ros, F., Pintore, M. & Chrétien, J. R. (2007) Automatic design of growing
radial basis function neural networks based on neighboorhood

concepts. Chemometrics and Intelligent Laboratory Systems, 87, 231-
240.

Ros, R., Veloso, M., De Mantaras, R. L., Sierra, C. & Arcos, J. L. (2006)
Retrieving and Reusing Game Plays for Robot Soccer. Advances in
Case-Based Reasoning, 4106, 2006.

Rosenberry, W., Kenney, D. & Fisher, G. (1992) Understanding DCE,
O'Reilly & Associates, Inc. Sebastopol, CA, USA.

Russell, S. J., Norvig, P., Canny, J. F., Malik, J. & Edwards, D. D. (1995)
Artificial intelligence: a modern approach, Prentice hall Englewood
Cliffs, NJ.

Sabater, J. & Sierra, C. (2001) Social regret, a reputation model based on
social relations. ACM SIGecom Exchanges, 3, 44-56.

Sahin, Y. G. (2007) Animals as Mobile Biological Sensors for Forest Fire
Detection. Sensors, 7, 3084-3099.

Sanchez Drag6, F. (2009) Soseki : inmortal y tigre, Barcelona, Planeta.

221

Onganization Based Multiagent Architecture For Distributed Environments

Sandhlom, T. W. & Lesser, V. R. T. (1997) Coalitions among
computationally bounded agents. Artificial Intelligence, 94, 99-137.

Sandholm, T. (2002) Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 1-54.

Sandholm, T. (2006) Optimal winner determination algorithms.
Combinatorial Auctions, 337-368.

Sandholm, T., Larson, K., Andersson, M., Shehory, O. & Tohmé, F. (1999)
Coalition structure generation with worst case guarantees. Artificial
Intelligence, 111, 209-238.

Sanz, G. (2002) Modelado de Sistemas Multi-Agente. Departamento de
Sistemas Informaticos y Programacion. Universidad Complutense de
Madrid.

Savater, F. (2008) La hermandad de la buena suerte, Barcelona, Planeta.

Scerri, P., Pynadath, D. & Tambe, M. (2002) Towards adjustable autonomy
for the real world. Journal of Artificial Intelligence Research, 17,
171-228.

Schmitt, J. B. & Roedig, U. (2005) Sensor Network Calculus--A Framework
for Worst Case Analysis. Lecture Notes in Computer Science, 3560,
141-154.

Schroth, C. & Christ, O. (2007) Brave new web: Emerging design principles
and technologies as enablers of a global soa. Proceedings of the 2007
IEEE International Conference on Services Computing (SCC 2007).
Salt Lake City, USA.

Schwaninger, M., Korner, M. & Institut Fiir, B. (2000) A theory for optimal
organization, Institute of Management, University of St. Gallen
(HSG).

Searle, J. R. (1969) Speech acts: An essay in the philosophy of language,
Cambridge University Press.

Sen, S. (1996) Reciprocity: a foundational principle for promoting cooperative
behavior among self-interested agents. Proc. of the Second
International Conference on Multiagent Systems. AAAI Press.

Seroén, F. J., Gutiérrez, D., Magallon, J., Ferragut, L. & Asensio, M. I. (2005)
The Evolution of a Wildland Forest Fire Front. The Visual Computer,
21, 152-169.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C. & Ram, A.
(2007) Transfer learning in real-time strategy games using hybrid
cbr/rl. Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence.

222

References

Shehory, O. & Kraus, S. (1998) Methods for task allocation via agent
coalition formation. Artificial Intelligence, 101, 165-200.

Shehory, O., Sycara, K., Chalasani, P. & Jha, S. (1998) Agent cloning: an
approach to agent mobility and resource allocation. IEEE
Communications Magazine, 36, 58-67.

Shen, J., Zhang, X. & Lesser, V. (2004) Degree of local cooperation and its
implication on global utility. Proceedings of Third International Joint
Conference on Autonomous Agents and MultiAgent Systems (AA-
MAS 2004). New York, IEEE Computer Society Washington, DC,
USA.

Shen, W. & Norrie, D. H. (1998) A hybrid agent-oriented infrastructure for
modeling manufacturing enterprises. Knowledge Acquisition
Workshop (KAW’98).

Shiu, S. C. K. & Pal, S. K. (2004) Case-Based Reasoning: Concepts, Features
and Soft Computing. Applied Intelligence, 21, 233-238.

Shoham, Y., Computer Science, D. & Stanford, U. (1997) Agent-oriented
programming. Knowledge Representation and Reasoning Under
Uncertainty. Springer.

Shoham, Y. & Tennenholtz, M. (1995) On social laws for artificial agent
societies: Off-line design. Artificial Intelligence, 73, 231-252.

Sichman, J. S. & Demazeau, Y. (2001) On social reasoning in multi-agent
systems. Revista Iberoamericana de Inteligencia Artificial, 13, 68-84.

Siegel, J. (1998) OMG overview: CORBA and the OMA in enterprise
computing. Communications of the ACM, 41, 37-43.

Sierra, C., Sabater, J., Augusti, J. & Garcia, P. (2004) SADDE: Social agents
design driven by equations. Methodologies and software engineering
for agent systems. Kluwer Academic Publishers.

Simon, H. A. (1969) The sciences of the artificial, MIT press.

Sims, M., Corkill, D. & Lesser, V. (2004) Separating domain and
coordination in multi-agent organizational design and instantiation.
Proceedings of the International Conference on Intelligent Agent
Technology (IAT 20004). Beijing, China.

Sims, M., Goldman, C. V. & Lesser, V. (2003) Self-organization through
bottom-up coalition formation. Proceedings of Second International
Joint Conference on Au- tonomous Agents and MultiAgent Systems
(AAMAS 2003). ACM New York, NY, USA.

Smith, R. G. (1980) The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on
computers, 29, 1104-1113.

223

Onganization Based Multiagent Architecture For Distributed Environments

Snidaro, L. & Foresti, G. L. (2007) Knowledge representation for ambient
security. Expert Systems, 24, 321-333.

So, Y. & Durfee, E. H. (1996) Designing tree-structured organizations for
computational agents. Computational & Mathematical Organization
Theory, 2, 219-245.

Soh, L. K. (2003) A satisficing, negotiated, and learning coalition formation
architecture. Distributed Sensor Networks: A multiagent perspective,
109-138.

Solberg, A. H. S., Brekke, C. & Husoy, P. O. (2007) Oil Spill Detection in
Radarsat and Envisat SAR Images. Geoscience and Remote Sensing,
IEEE Transactions on, 45, 746-755.

Solberg, A. H. S., Storvik, G., Solberg, R. & Volden, E. (1999) Automatic
detection of oil spills in ERS SAR images. IEEE Transactions on
Geoscience and Remote Sensing, 37, 1916-1924.

Song, X., Petrovic, S. & Sundar, S. (2007) A Case-Based Reasoning
Approach to Dose Planning in Radiotherapy. International
Conference on Case-Based Reasoning, ICCBR 2007, Proceedings.

Sgrmo, F., Cassens, J. & Aamodt, A. (2005) Explanation in Case-Based
Reasoning—Perspectives and Goals. Artificial Intelligence Review, 24,
109-143.

Spasic, I., Ananiadou, S. & Tsujii, J. (2005) MaSTerClass: a case-based
reasoning system for the classification of biomedical terms.
Bioinformatics, 21, 2748-2758.

Spread (2004) http ://lwww.adai.pt. Forest Fire Spread Prevention and
Mitigation.

Stal, M., Technol, S. C. & Munich, G. (2006) Using architectural patterns and
blueprints for service-oriented architecture. IEEE software, 23, 54-61.

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J.,
Adcroft, A., Hill, C. N. & Marshall, J. (2003) Volume, heat, and
freshwater transports of the global ocean circulation 1993-2000,
estimated from a general circulation model constrained by World
Ocean Circulation Experiment (WOCE) data. Journal of Geophysical
Research, 108.

Stefanoiu, D., Ulieru, M. & Norrie, D. (2000) Fuzzy Modeling of Multi-Agent
Systems Behavior. Vagueness Minimization. Proceedings of World
Multiconference on Systemics, Cybernetics and Informatics
(SCI1°2000).

Stonebraker, M., Aoki, P. M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J.,
Staelin, C. & Yu, A. (1996) Mariposa: A wide-area distributed

224

References

database system. The VLDB Journal The International Journal on
Very Large Data Bases, 5, 48-63.

Subramanian, R. & Goodman, B. D. (2005) Peer-to-peer computing: the
evolution of a disruptive technology, Idea Group Pub.

Sun, Z., Finnie, G. & Weber, K. (2004) Case base building with similarity
relations. Information Sciences, 165, 21-43.

Sycara, K., Decker, K. & Williamson, M. (1997) Middle-agents for the
internet. Proceedings of the 15th International Joint Conference on
Artificial Intelligence.

Sycara, K., Paolucci, M., Van Velsen, M. & Giampapa, J. (2003) The retsina
mas infrastructure. Autonomous agents and multi-agent systems, 7,
29-48.

Sycara, K. P. (1998a) The many faces of agents. Al magazine, 19, 11-12.
Sycara, K. P. (1998b) Multiagent systems. Al magazine, 19, 79-92.

Tambe, M. (1997) Towards flexible teamwork. Journal of Artificial
Intelligence Research, 7, 83-124.

Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G. A., Marsella,
S. C. & Muslea, 1. (1999) Building agent teams using an explicit
teamwork model and learning. Artificial Intelligence, 110, 215-239.

Tello, M., Lépez-Martinez, C. & Mallorqui, J. J. (2006) A Novel Algorithm
for Automatic Ship and Oil Spill Detection Based on Time-Frequency
Methods. Advances in SAR Oceanography from Envisat and ERS
Missions, Proceedings of SEASAR Frascati, Italy, European Space
Agency.

Thatte, S. (2001) XLANG: Web services for business process design.

Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. & Essiari,
A. (1999) Certificate-based access control for widely distributed
resources. Proc. 8th Usenix Security Symposium.

Tidhar, G., Heinze, C. & Selvestrel, M. (1998) Flying together: Modelling air
mission teams. Applied Intelligence, 8, 195-218.

Tidhar, G., Rao, A. S. & Sonenberg, E. A. (1996) Guided team selection.
Proceedings of the 2nd International Conference on Multi-agent
Systems (ICMAS-96). Kyoto, Japan.

Topouzelis, K., Karathanassi, V., Pavlakis, P. & Rokos, D. (2007) Detection
and discrimination between oil spills and look-alike phenomena
through neural networks. ISPRS Journal of Photogrammetry and
Remote Sensing, 62, 264-270.

225

Onganization Based Multiagent Architecture For Distributed Environments

Tsai, C. Y. & Chiu, C. C. (2007) A case-based reasoning system for PCB
principal process parameter identification. Expert Systems With
Applications, 32, 1183-1193.

Tse, L. (2007) Tao Te Ching, Integral.

Tsvetovat, M., Sycara, K., Chen, Y. & Ying, J. (2001) Customer coalitions in
electronic markets. Proceedings of the Fourth International
Conference on Autonomous Agents. Barcelona, Spain.

Tsvetovatyy, M., Gini, M., Mobasher, B. & Ski, Z. W. (1997) MAGMA: an
agent based virtual market for electronic commerce. Applied Artificial
Intelligence, 11, 501-523.

Tuler, S., Kay, R., Seager, T. P. & Linkov, I. (2006) Objectives and
performance metrics in oil spill response: The Bouchard-120 and
Chalk Point spill responses. SERI Report.

Turing, A. M. (1950) Computer machinery and intelligence. Mind, 59, 433-
460.

Turner, R. M. (1993) The tragedy of the commons and distributed Al systems.
Dept. of Computer Science. University of New Hampshire.

Ulieru, M. (2002) Emergence of Holonic Enterprises from Multi-Agent
Systems: A Fuzzy-Evolutionary Approach. Invited Chapter in Soft
Computing Agents: A New Perspective on Dynamic Information
Systems, 187-215.

Ulieru, M., Walker, S. & Brennan, B. (2001) Holonic enterprise as a
collaborative information ecosystem. In Proc. Workshop on Holons:
Autonomous and Cooperating Agents for Industry.

Valdivia, I. G. (1983) Reflexiones en torno al orden social, Editorial Jus.

Van Den Broek, E. L., Jonker, C. M., Sharpanskykh, A., Treur, J. & Yolum,
P. (2006) Formal modeling and analysis of organizations. Lecture
Notes in Computer Science, 3913, 18.

Van Steen, M. & Tanenbaum, A. S. (2002) Distributed Systems: Principles
and Paradigms, Prentice Hall.

Vézquez-Salceda, J. & Dignum, F. (2003) Modelling Electronic
Organizations. Lecture Notes in Artificial Intelligence, 2691, 584-593.

Vazquez-Salceda, J., Dignum, V. & Dignum, F. (2005) Organizing multiagent
systems. Autonomous agents and multi-agent systems, 11, 307-360.
Verharen, E. (1997) A Language-Action Perspective on the Design of

Cooperative Information Systems. PhD Thesis. Katholieke Universieit
Brabant.

226

References

Vethamony, P., Sudheesh, K., Babu, M. T., Jayakumar, S., Manimurali, R.,
Saran, A. K., Sharma, L. H., Rajan, B. & Srivastava, M. (2007)
Trajectory of an oil spill off Goa, eastern Arabian Sea: Field
observations and simulations. Environmental Pollution, 148.

Vickrey, W. (1961) Counterspeculation, auctions, and competitive sealed
tenders. Journal of finance, 8-37.

Vinoski, S. (1993) Distributed object computing with CORBA. C++ Report,
5, 32-38.

Wagpner, J. A. (2004) Comportamiento organizativo: Consiguiendo la ventaja
competitiva, Thomson Learning Ibero.

Wagner, T. & Lesser, V. (2000) Relating quantified motivations for
organizationally situated agents. Lecture Notes in Computer Science,
1757, 334-348.

Walker, A. & Wooldridge, M. (1995) Understanding the emergence of
conventions in multi-agent systems. Proceedings of the First

International Conference on Multi-Agent Systems. San Francisco,
CA.

Watson, 1. (1999) Case-based reasoning is a methodology not a technology.
Knowledge-Based Systems, 12, 303-308.

Watson, I. & Marir, F. (1994) Case-Based Reasoning: A Review. The
Knowledge Engineering Review, 9, 327-354.

Wayner, P. (1995a) Agents Unleashed: A public domain look at agent
technology, Academic Press Professional, Inc. San Diego, CA, USA.

Wayner, P. (1995b) Free Agents. Byte, March, 105-114.

Weber, M. (1978) Economy and Society (Berkeley. University of California
Press, 1016, 308-338.

Weiser, M. (1993) Ubiquitous computing. IEEE Computer, 26, 71-72.

Weiss, G. (1999) Prologue: multiagent systems and distributed artificial
intelligence. Multiagent systems: a modern approach to distributed
artificial intelligence, MIT Press, Cambridge, Massachusetts, 1-23.

Wellman, M. P. (1993) A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of
Artificial Intelligence Research, 1, 1-23.

Wellman, M. P. (2004) Online marketplaces. Practical Handbook of Internet
Computing. . Chapman Hall & CRC Press.

Wellman, M. P., Walsh, W. E., Wurman, P. R. & Mackie-Mason, J. K. (2001)
Auction protocols for decentralized scheduling. Games and Economic
Behavior, 35, 271-303.

227

Onganization Based Multiagent Architecture For Distributed Environments

Wellman, M. P. & Wurman, P. R. (1998) Market-aware agents for a
multiagent world. Robotics and autonomous Systems, 24, 115-126.

Wellman, M. P. & Wurman, P. R. (1999) A trading agent competition for the
research community. Proceedings of the I1JCAI-99 Workshop on
Agent-Mediated Electronic Trading.

Wiederhold, G. (1992) Mediators in the architecture of future information
systems. Computer Magazine, 25, 38-49.

Wilson, D. C. (2001) Case-base Maintenance: The Husbandry of Experience.
PhD Thesis. Indiana University.

Williamson, O. E. (1975) Markets and hierarchies, analysis and antitrust
implications: a study in the economics of internal organization, Free
Press.

Willmott, S., Dale, J., Burg, B., Charlton, P. & O'brien, P. (2001) Agentcities:
a worldwide open agent network. Agentlink News, 8, 13-15.

Winograd, T. (1987) Understanding computers and cognition: A new
foundation for design, Addison-Wesley.

Wirtz, K. W., Baumberger, N., Adam, S. & Liu, X. (2007) Qil spill impact
minimization under uncertainty: Evaluating contingency simulations
of the Prestige accident. Ecological Economics, 61, 417-428.

Wooldridge, M. (1999) Intelligent Agents. in WEISS, G. (Ed.) Multiagent
System: A Modern approach to Distributed artificial intelligence.
MIT press.

Wooldridge, M. (2002) An Introduction to MultiAgent Systems, Chichester,
England, John Wiley & Sons.

Wooldridge, M. & Jennings, N. R. (1995) Intelligent Agents: Theory and
Practice. The Knowledge Engineering Review, 10, 115-152.

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000) The Gaia methodology

for agent-oriented analysis and design. Autonomous agents and multi-
agent systems, 3, 285-312.

Wooldridge, M. J. (2000) Reasoning about rational agents, MIT press.

Wooldridge, M. J. & Jennings, N. R. (1999) Software engineering with
agents: Pitfalls and pratfalls. IEEE Internet Computing, 3, 20-27.

Wu, J. & Yu, Y. (2005) Connectionism-Based CBR Method for Distribution
Short-Term Nodal Load Forecasting. TENCON 2005. IEEE Region
10, 1-6.

Wurman, P. R., Wellman, M. P. & Walsh, W. E. (2001) A parametrization of
the auction design space. Games and Economic Behavior, 35, 304-
338.

228

References

Wybo, J. L., De Paris, E. M. & Antipolis, S. (1998) FMIS: a decision support
system for forest fire prevention and fighting. Engineering
Management, IEEE Transactions on, 45, 127-131.

Yadgar, O., Kraus, S. & Ortiz, C. (2003) Scaling up distributed sensor
networks: cooperative large-scale mobile-agent organizations. in
LESSER, V., ORTIZ, C. L. & TAMBE, M. (Eds.) Distributed Sensor
Networks: A Multiagent Perspective.

Yang, B. S., Han, T. & Kim, Y. S. (2004) Integration of ART-Kohonen neural
network and case-based reasoning for intelligent fault diagnosis.
Expert Systems With Applications, 26, 387-395.

Yau, N. J. & Yang, J. B. (1998a) Applying case-based reasoning technique to
retaining wall selection. Automation in construction, 7, 271-283.

Yau, N. J. & Yang, J. B. (1998b) Case-based reasoning in construction
management. Computer-Aided Civil and Infrastructure Engineering,
13, 143-150.

Yu, W. & Liu, Y. (2006) Hybridization of CBR and numeric soft computing
techniques for mining of scarce construction databases. Automation in
Construction, 15, 33-46.

Zambonelli, F. (2002) Abstractions and infrastructures for the design and
development of mobile agent organizations. Lecture Notes in
Computer Science, 2222, 245-262.

Zambonelli, F., Jennings, N. R. & Wooldridge, M. (2001) Organizational
abstractions for the analysis and design of multi-agent systems.
Lecture Notes in Computer Science, 235-252.

Zambonelli, F., Jennings, N. R. & Wooldridge, M. (2003) Developing
multiagent systems: The Gaia methodology. ACM Transactions on
software Engineering and Methodology, 12, 317-370.

Zhang, F., Ha, M. H., Wang, X. Z. & Li, X. H. (2004) Case adaptation using
estimators of neural network. Proceedings of 2004 International
Conference on Machine Learning and Cybernetics, 4.

Zhang, X., Lesser, V. & Wagner, T. (2002) Integrative negotiation in complex
organizational agent systems. Proceedings of the 2003 IEEE/WIC
International Conference on Intelligent Agent Technology (IAT 2003).
ACM New York, NY, USA.

Zhang, X. & Norrie, D. H. (1999) Holonic control at the production and
controller levels. Proc. 2nd Int. Workshop on Intelligent
Manufacturing Systems.

229

”Only strength can cooperate. Weakness can only beg.” Duwight D. Eisenhower

APPENDiX A. COR BA

CORBA is a mechanism in software for normalizing the
method-call semantics between application objects that
reside either in the same address space (application) or
remote address space (same host, or remote host on a
network). Version 1.0 was released in October 1991.
CORBA wuses an interface definition langnage (IDL.) to
specify the interfaces that objects will present to the outside
world. In this appendix, some technical specifications are
explained, further and deeper developing the initial
explanations given in previouns chapter about CORBA.

he Common Object Requesting Broker Architecture

(CORBA) is a standard defined by the Object

Management Group(OMG) that enables software
components written in multiple computer languages and running
on multiple computers to work together. One of the first specifications
to be adopted by the OMG was the CORBA specification. It details the
interfaces and characteristics of the ORB component of the OMA. As of this
writing, the last major update of the CORBA specification was in mid-1995
when the OMG released CORBA 2.0 [OMG, 1996]. The main features of
CORBA 2.0 are: ORB Core, OMG Interface Definition Language (OMG IDL)

231

Onganization Based Multiagent Architecture For Distributed Environments

Interface Repository, Language Mappings, Stubs and Skeletons, Dynamic
Invocation and Dispatch, Object Adapters and Inter-ORB Protocols.

Most of these are illustrated in figure 34, which also shows how the

components of CORBA relate to one another. Each component is

described in detail below.

f . A \
client object implementation
; IDL
Dynamic IDL ORB psl Skel Object
Invocation Stub Intf Adapter
ORB Core
B same for all ORBs B There may be multiple
object adapters
] Interface-specific ™ ORB-private
stubs and skeletons interface|

Figure 34. Common Object Request Broker Architecture.

A.1l. ORB CORE

As mentioned above, the ORB delivers requests to objects and returns
any responses to the clients making the requests. The object that a client
wishes the ORB to direct a request to is called the target object. The key
feature of the ORB is the transparency of how it facilitates client/object
communication. Ordinarily, the ORB hides the following:

— Obiject location: The client does not know where the target object

resides. It could reside in a different process on another machine

across the network, on the same machine but in a different process,

232

Appendix A. CORBA

or within the same process.

— Obiject implementation: The client does not know how the target
object is implemented, what programming or scripting language it
was written in, or the operating system (if any) and hardware it
executes on.

— Object execution state: When it makes a request on a target object,
the client does not need to know whether that object is currently
activated (i.e., in an executing process) and ready to accept
requests. The ORB transparently starts the object if necessary
before delivering the request to it.

— Object communication mechanisms: The client does not know
what communication mechanisms (e.g., TCP/IP, shared memory,
local method call, etc.) the ORB uses to deliver the request to the
object and return the response to the client.

These ORB features allow application developers to worry more about
their own application domain issues and less about low-level distributed
system programming issues.

To make a request, the client specifies the target object by using an
object reference. When a CORBA object is created an object reference for it is
also created. When used by a client, an object reference always refers to the
same object for which it was created, for as long as that object still exists. In
other words, an object reference only ever refers to one single object.

Object references are both immutable and opaque, so a client can’t
*“reach into” the object reference and modify it. Only an ORB knows what’s
*““inside” an object reference. Object references can have standardized formats,
such as those for the OMG standard Internet Inter-ORB Protocol and
Distributed Computing Environment Common Inter-ORB Protocol, or they

can have proprietary formats.

233

Onganization Based Multiagent Architecture For Distributed Environments

A.2. OMG INTERFACE DEFINITION
LANGUAGE (OMG IDL)

Before a client can make requests on an object, it must know the types
of operations supported by the object. An object’s interface specifies the
operations and types that the object supports and thus defines the requests that
can be made on the object. Interfaces for objects are defined in the OMG
Interface Definition Language (OMG IDL). Interfaces are similar to classes in
C++ and interfaces in Java.

An important feature of OMG IDL is its language independence. Since
OMG IDL is a declarative language, not a programming language, it forces
interfaces to be defined separately from object implementations. This allows
objects to be constructed using different programming languages and yet still
communicate with one another. Language-independent interfaces are
important within heterogeneous systems, since not all programming languages
are supported or available on all platforms.

OMG IDL provides a set of types that are similar to those found in a
number of programming languages. It provides basic types such as long,
double, and boolean, constructed types such as struct and discriminated union,
and template types such as sequence and string. Types are used to specify the
parameter types and return types for operations. As seen in the example above,
operations are used within interfaces to specify the services provided by those
objects that support that particular interface type. To define exceptional
conditions that may arise during the course of an operation, OMG IDL
provides exception definitions. Like structs, OMG IDL exceptions may have
one or more data members of any OMG IDL type. The OMG IDL module

construct allows for scoping of definition names to prevent name clashes.

234

Appendix A. CORBA

A.3. LANGUAGE MAPPINGS

As mentioned before, OMG IDL is just a declarative language, not a
full-fledged programming language. As such, it does not provide features like
control constructs, nor is it directly used to implement distributed applications.
Instead, language mappings determine how OMG IDL features are mapped to
the facilities of a given programming language.

At the time of this writing, the OMG has standardized language
mappings for C, C++, Smalltalk, and Ada 95. Likewise, mappings for the
UNIX Bourne shell and for COBOL are nearing completion. A mapping for
the Java language is just beginning, but is slated to finish quickly keeping up
with the high demand for Java/CORBA integration. Language mappings for
other languages such as Perl, Eiffel, and Modula-3 have also been written by
various interested parties, but have not been submitted to the OMG for
approval.

To understand what a language mapping contains, consider the
mapping for the C++ language. Not surprisingly, OMG IDL interfaces map to
C++ classes, with operations mapping to member functions of those classes.
Object references map to objects that support the operator-> function (i.e.,
either a normal C++ pointer to an interface class, or an object instance with an
overloaded operator->). Modules map to C++ namespaces (or to nested classes
for C++ compilers that do not yet support namespaces).

Another important aspect of an OMG IDL language mapping is how it
maps the ORB interface and other pseudo-objects that are found in the
CORBA specification. Pseudo-objects are ORB interfaces that are not
implicitly derived from CORBA::Object, such as the ORB itself. In other
words, pseudo-objects are not real CORBA objects, but specifying such
interfaces just like normal object interfaces are specified allows applications to

manipulate the ORB much like they manipulate normal objects.

235

Onrganization Based Multiagent Architecture For Distributed Environments

A third important part of any language mapping specification is how
CORBA objects are implemented in the language. In object-oriented
languages such as Java, Smalltalk, and C++, for example, CORBA objects are
implemented as programming language objects. In C, objects are written as
abstract data types. For instance, a typical implementation consists of a struct
that holds the state of the object and a group of C functions (which correspond
to the OMG IDL operations supported by the object) to manipulate that state.

OMG IDL language mappings are where the abstractions and concepts
specified in CORBA meet the “real world” of implementation. Thus, their
importance for CORBA applications cannot be overstated. A poor or
incomplete mapping specification for a given language results in programmers
being unable to effectively utilize CORBA technology in that language.
Language mapping specifications are therefore always undergoing periodic
improvement in order to incorporate evolution of programming languages, as
well as to add features that fulfil new requirements discovered by writing new

applications.
A.4. INTERFACE REPOSITORY

Every CORBA-based application requires access to the OMG IDL
type system when it is executing. This is necessary because the application
must know the types of values to be passed as request arguments. In addition,
the application must know the types of interfaces supported by the objects
being used.

Many applications require only static knowledge of the OMG IDL
type system. Typically, an OMG IDL specification is compiled or translated
into code for the application’s programming language by following the
translation rules for that language, as defined by its language mapping. Then,

this generated code is built directly into the application.

236

Appendix A. CORBA

With this approach, the application’s knowledge of the OMG IDL

type system is fixed when it is built.
If the type system of the rest of the distributed system ever changes in
a way that is incompatible with the type system built into the application, the
application must be rebuilt. For example, if a client application depends on the
Factory interface, and the name of the create operation in the Factory interface
is changed to create object, the client application will have to be rebuilt before

it can make requests on any Factory objects.

There are some applications, however, for which static knowledge of
the OMG IDL type system is impractical. For example, consider a Gateway
that allows applications in a foreign object system (such as Microsoft
Component Object Model (COM) applications) to access CORBA objects.
Having to recompile and rebuild the Gateway every time someone added a
new OMG IDL interface type to the system would result in a very difficult
management and maintenance problem. Instead, it would be much better if the
Gateway could dynamically discover and utilize type information as needed.

The CORBA Interface Repository (IR) allows the OMG IDL type
system to be accessed and written programmatically at runtime. The IR is
itself a CORBA object whose operations can be invoked just like any other
CORBA object. Using the IR interface, applications can traverse an entire
hierarchy of OMG IDL information.

For example, an application can start at the top-level scope of the IR
and iterate over the entire module definitions defined there. When the desired
module is found, it can open it and iterate in a similar manner over all the
definitions inside it. This hierarchical traversal approach can be used to

examine all the information stored within an IR.

237

Onganization Based Multiagent Architecture For Distributed Environments

A.5. STUBS AND SKELETONS

In addition to generating programming language types, OMG IDL
language compilers and translators also generate client-side stubs and server-
side skeletons. A stub is a mechanism that effectively creates and issues
requests on behalf of a client, while a skeleton is a mechanism that delivers
requests to the CORBA object implementation. Since they are translated
directly from OMG IDL specifications, stubs and skeletons are normally
interface-specific.

Dispatching through stubs and skeletons is often called static
invocation. OMG IDL stubs and skeletons are built directly into the client
application and the object implementation. Therefore, they both have complete
a priori knowledge of the OMG IDL interfaces of the CORBA objects being
invoked.

Language mappings usually map operation invocation to the
equivalent of a function call in the programming language. Once the request
arrives at the target object, the server ORB and the skeleton cooperate to
unmarshal the request (convert it from its transmissible form to a
programming language form) and dispatch it to the object. Once the object
completes the request, any response is sent back the way it came: through the
skeleton, the server ORB, over the connection, and then back through the
client ORB and stub, before finally being returned to the client application.

This description shows that stubs and skeletons play important roles in
connecting the programming language world to the underlying ORB. In this
sense they are each a form of the Adapter and Proxy patterns [Gamma et al.,
1995]. The stub adapts the function call style of its language mapping to the
request invocation mechanism of the ORB. The skeleton adapts the request
dispatching mechanism of the ORB to the upcall method form expected by the

object implementation.

238

Appendix A. CORBA

A.6. DYNAMIC INVOCATION AND
DISPATCH

In addition to static invocation via stubs and skeletons, CORBA
supports two interfaces for dynamic invocation:
— Dynamic Invocation Interface (DIl) — which supports dynamic
client request invocation;
— Dynamic Skeleton Interface (DSI) — which provides dynamic
dispatch to objects.
The DIl and the DSI can be viewed as a generic stub and generic
skeleton, respectively. Each is an interface provided directly by the ORB, and
neither is dependent upon the OMG IDL interfaces of the objects being

invoked.

A.6.1. DYNAMIC INVOCATION INTERFACE

Using the DII, a client application can invoke requests on any object
without having compile-time knowledge of the object’s interfaces. For
example, consider the foreign object Gateway described above. When an
invocation is received from the foreign object system, the Gateway must turn
that invocation into a request dispatch to the desired CORBA object.
Recompiling the Gateway program to include new static stubs every time a
new CORBA object is created is impractical. Instead, the Gateway can simply
use the DII to invoke requests on any CORBA object. The DIl is also useful
for interactive programs such as browsers that can obtain the values necessary
to supply the arguments for the object’s operations from the user.

Currently, CORBA applications that require the ability to invoke
requests using something other than a synchronous or one-way model must

use the DII. This is because the deferred synchronous request invocation

239

Onganization Based Multiagent Architecture For Distributed Environments

capability is currently only provided by the DII. However, this restriction will
soon be removed. Recently, the OMG issued an RFP for an Asynchronous
Messaging Service that should result in the adoption of technology for higher-
level communications models, such as store-and-forward services for the
ORB. This RFP also requests technology for supporting deferred synchronous
request invocation via static stubs.

While the DII offers more flexibility than static stubs, users of the DII
should also be sure they are aware of its hidden costs [Vinoski, 1993, Gokhale
and Schmidt, 1996]. In particular, creating a DIl request may cause the ORB
to transparently access the IR to obtain information about the types of the
arguments and return value. Since the IR is itself a CORBA object, each
transparent IR request made by the ORB could in fact be a remote invocation.
Thus, the creation and invocation of a single DIl request could in fact require
several actual remote invocations, making a DII request several times more
costly than an equivalent static invocation. Static invocations do not suffer
from the overhead of accessing the IR since they rely on type information

already compiled into the application.

A.6.2. DYNAMIC SKELETON INTERFACE

Analogous to the DIl is the server-side Dynamic Skeleton Interface
(DSI1). Just as the DII allows clients to invoke requests without having access
to static stubs, the DSI allows servers to be written without having skeletons
for the objects being invoked compiled statically into the program.

The foreign object Gateway described above is a good example of an
application that requires DSI functionality. A bidirectional Gateway must be
able to act as both a client and a server — it must translate requests from the
foreign object system into requests on CORBA objects, and turn requests from
CORBA applications into foreign object invocations. As mentioned above, it

can use the DIl when it wants to act as a client. To act as a server, however, it

240

Appendix A. CORBA

needs a server-side equivalent of the DII, allowing it to accept requests
without requiring static skeletons for each object’s interface type to be
compiled into it. Requiring the Gateway to be recompiled each time a new
OMG IDL interface was introduced into the CORBA side of the system would
not work well in practice.

Unlike most of the other CORBA subcomponents, which were part of
the initial CORBA specification, the DSI was only introduced at CORBA 2.0.
The main reason for its introduction was to support the implementation of
gateways between ORBs utilizing different communications protocols. Even
though inter-ORB protocols were also introduced at CORBA 2.0, it was
thought by some at the time that gateways would become the method of
choice for ORB interoperation. Given that most commercially-available ORB
systems already support the standard Internet Inter-ORB Protocol (110P), this
prediction does not appear to have come true. Still, the DSI is a useful feature
for a certain class of applications, especially for bridges between ORBs and
for applications that serve to bridge CORBA systems to non-CORBA services

and implementations.
A.7. OBJECT ADAPTERS

The final subcomponent of CORBA, the Object Adapter (OA), serves
as the glue between CORBA object implementations and the ORB itself. As
described by the Adapter pattern [Gamma et al., 1995], an object adapter is an
object that adapts the interface of another object to the interface expected by a
caller. In other words, it is an interposed object that uses delegation to allow a
caller to invoke requests on an object even though the caller does not know
that object’s true interface. Figure 35 illustrates the role of an object adapter.

Object adapters represent another aspect of the effort to keep the ORB

as simple as possible. Responsibilities of object adapters include:

241

Onganization Based Multiagent Architecture For Distributed Environments

Object registration — OAs supply operations that allow
programming language entities to be registered as implementations
for CORBA objects. Details of exactly what is registered and how
the registration is accomplished depends on the programming
language.

Object reference generation — OAs generate object references for
CORBA objects.

Server process activation — If necessary, OAs start up server
processes in which objects can be activated.

Object activation — OAs activate objects if they are not already
active when requests arrive for them.

Request demultiplexing — OAs must cooperate with the ORB to
ensure that requests can be received over multiple connections
without blocking indefinitely on any single connection.

Object upcalls — OAs dispatch requests to registered objects.

interface A interface X

Caller Object
Caller expects Object Adapter adapts Object provides
interface A interface X to interface A interface X

Figure 35. Role of an Object Adapter.

242

Appendix A. CORBA

Without object adapters, the ability of CORBA to support diverse
object implementation styles would be severely compromised. The lack of an
object adapter would mean that object implementations would connect
themselves directly to the ORB to receive requests. Having a standard set of
just a few object upcall interfaces would mean that only a few styles of object
implementation could ever be supported. Alternatively, standardizing many
object upcall interfaces would add unnecessary size and complexity to the
ORB itself.

A.8. INTER-ORB PROTOCOLS

Before CORBA 2.0, one of the biggest complaints about commercial
ORB products is that they did not interoperate. Lack of interoperability was
caused by the fact that the CORBA specification did not mandate any
particular data formats or protocols for ORB communications. The main
reason that CORBA did not specify ORB protocols prior to CORBA 2.0 was
simply that interoperability was not a focus of the OMG at that time.

CORBA 2.0 introduced a general ORB interoperability architecture
that provides for direct ORB-t0o-ORB interoperability and for bridge-based
interoperability. Direct interoperability is possible when two ORBs reside in
the same domain — in other words, they understand the same object references,
the same OMG IDL type system, and perhaps shares the same security
information. Bridge-based interoperability is necessary when ORBs from
separate domains must communicate. The role of the bridge is to map ORB-
specific information from one ORB domain to the other.

The general ORB interoperability architecture is based on the General
Inter-ORB Protocol (GIOP), which specifies transfer syntax and a standard set
of message formats for ORB interoperation over any connection-oriented
transport. GIOP is designed to be simple and easy to implement while still

allowing for reasonable scalability and performance.

243

Onganization Based Multiagent Architecture For Distributed Environments

The Internet Inter-ORB Protocol (I10P) specifies how GIOP is built
over TCP/IP transports. In a way, the relationship between 11OP and GIOP is
somewhat like the relationship between an object’s OMG IDL interface
definition and its implementation. GIOP specifies protocol, just as an OMG
IDL interface effectively defines the protocol between an object and its clients.
[1OP, on the other hand, determines how GIOP can be implemented using
TCP/IP, just as an object implementation determines how an object’s interface
protocol is realized. For a CORBA 2.0 ORB, support for GIOP and IIOP is
mandatory.

The ORB interoperability architecture also provides for other
environment-specific inter-ORB protocols (ESIOPs). ESIOPs allow ORBs to
be built for special situations in which certain distributed computing
infrastructures are already in use. The first ESIOP, which utilizes the
Distributed Computing Environment (DCE) [Rosenberry et al., 1992], is
called the DCE Common Inter-ORB Protocol (DCE-CIOP). It can be used by
ORBs in environments where DCE is already installed. This allows the ORB
to leverage existing DCE functions, and it allows for easier integration of
CORBA and DCE applications. Support for DCE-CIOP or any other ESIOP
by a CORBA 2.0 ORB is optional.

244

7 Science is organized knowledge. Wisdom is organized life.” Immannel Kant

APPENDiX B.
TAXONOMY OF
(OR GANiZATiONS

Organizations represent the inner structure of the
architecture proposed in this document. In this appendix, a
complete classification of the organizations of agents is
done. These include hierarchies, holarchies, coalitions,
teams, congregations, societies, federations, markets, and
matrix organizations. A description of each will be
provided, discussing their advantages and disadvantages,
and providing examples of how they may be instantiated

and maintained.
n the fourth chapter of this document, organizations of agents
have been explained, as an evolution of multi-agent systems.
The organizations of agents represent a logic evolution of the
multi-agent systems, introducing an internal organizational element that gives

the organizations an upper point of view. The fact that the agents can work

245

Onganization Based Multiagent Architecture For Distributed Environments

together, with common objectives, sharing processes and interchanging
information is quite useful when a system must connect different users or
different services that may be located far from each other. Thus, the
organizational capabilities of the agents allow the system that employ this
methodology to structure the information and the objectives of the systems
developed, improving the results and creating a kind of specialization in the
tasks performed by the agents.

In this appendix, a complete taxonomy of the organizations of agents
is done, explaining the different possibilities of organizations. For all the
organizations exposed here, their main characteristics are explained as well as
the formation techniques in order to create an organization of agents of a

specific type.
B.1. HIERARCHIES

The hierarchy or hierarchical organization is perhaps the earliest
example of structured, organizational design applied to multi-agent system and
earlier distributed artificial intelligence architectures [Fox, 1979, Lesser and
Erman, 1980, Davis and Smith, 1980, Bond and Gasser, 1988, Malone and
Smith, 1988, Montgomery and Durfee, 1993]. Agents are conceptually
arranged in a tree-like structure, as seen in figure 36, where agents higher in
the tree have a more global view than those below them. In its strictest
interpretation, interactions do not take place across the tree, but only between
connected entities. More recent work [Mathieu et al., 2002] has explored
starting with a strict hierarchy and augmenting it with cross links to allow
more direct communication, which can reduce some of the latency that results
from repeated traversals up and down the tree.

The data produced by lower-level agents in a hierarchy typically
travels upwards to provide a broader view, while control flows downward as

the higher level agents provide direction to those below [Bond and Gasser,

246

Appendixc B. Taxonomy of Organizations

1988]. The simplest instance of this structure consists of a two-level hierarchy,
where the lower level agents’ actions are completely specified by the upper,
which produces a global view from the resulting information [Chandrasekaran,
1981]. More complex instances have multiple levels, while data flow,
authority relations or other organizationally-dictated characteristics may not be

absolute.

r - -
I,

Figure 36. Hierarchical organization.
Fox [Fox, 1979] describes several different types of organizational

hierarchies. The simple hierarchy endows a single apex member with the
decision making authority in the system. Uniform hierarchies distribute this
authority in different areas of the system to achieve efficiency gains through
locality. Decisions are made by the agents which have both the information
needed to reason about the decision, and the organizational authority to do
make the decision. Each level acts as a filter, explicitly transferring

information and implicitly transferring decisions up the hierarchy only when

247

Onganization Based Multiagent Architecture For Distributed Environments

necessary. Multi-divisional hierarchies further exploit localization by dividing
the organization along “product” lines, where products might represent
different physical artefacts, services, or high-level goals. Each division has
complete control over their product, which facilitates the decision making and
resource allocation process by limiting outside influences. The divisions
themselves may still be organized under a higher-level entity which evaluates
their performance and offers guidance, but is strictly separated from the

divisional decision process.

B.1.1. CHARACTERISTICS

The applicability of hierarchical structuring comes from the natural
decomposition possible in many different task environments. Indeed, task
decomposition trees are a popular way of modelling individual agent plan
recipes [Decker, 1996]; a hierarchical organization can be thought of as an
assignment of roles and interconnections inspired by the global goal tree. The
hierarchy’s efficiency is also derived from this notion of decomposition,
because the divide-and-conquer approach it engenders allows the system to
use larger groups of agents more efficiently and address larger scale problems
[Yadgar et al., 2003]. This type of organization can constrain agents to a
number of interactions that is small relative to the total population size. This
allows control actions and behaviour decisions become more tractable,
increased parallelism can be exploited, and because there is less potentially
distracting data they can obtain a more cohesive view of the information
pertinent to those decisions [Montgomery and Durfee, 1993].

It is not sufficient to simply aggregate increasing amounts of
information to obtain higher utility or better performance. This information
must be matched with sufficient computational power and analysis techniques
to make effective use of the information [Lesser, 1991]. Without this, the

effort to transfer the data may be wasted and the excess information distracts

248

Appendixc B. Taxonomy of Organizations

the agent from more important tasks. Alternatively, the information can be
summarized, approximated or otherwise processed on its way up the tree to
reduce the information load. However, in doing so, a new dimension of
uncertainty is introduced because of the potential for necessary details to be
lost. In this situation, the decision making authority should be correctly placed
within the structure to maximize the tractable amount of useful information
that is available that retains an acceptable level of uncertainty or imprecision
[Fox, 1979, Lesser and Corkill, 1981].

Using a hierarchy can also lead to an overly rigid or fragile
organization, prone to single-point failures with potentially global
consequences [Maturana et al., 1999]. For example, if the apex agent were to
fail the entire structure’s cohesion could be compromised. Of course this agent
could be replaced, but it may then prove costly to restore the concentrated
information possessed by its predecessor. It is similarly susceptible to
bottleneck effects if the scope of control decisions or data receipt is not
effectively managed — consider what would happen if that apex agent received

all the raw data produced by a large group of agents below it.

B.1.2. FORMATION

Although the algorithm itself does not enforce a strict hierarchy such
as the one described earlier, Smith’s contract net protocol [Smith, 1980, Davis
and Smith, 1980] provides a straightforward mechanism to construct a series
of connections with most of the same characteristics. In some of this early
contract net work, the protocol was to explicitly form long-term organizational
relationships, rather than the short-term contracts it has been typically used for
more recently.

The hierarchical structure that is produced by the process is implicitly
based on the way the high-level goal can be decomposed. Upon receipt of a

new task, an agent first chooses to perform the task itself, or search for agents

249

Onganization Based Multiagent Architecture For Distributed Environments

willing to help complete the task. As part of this search process, the agent may
decompose the task into subtasks or contracts. The agent, acting as a
contractor, announces these contracts along with a bid specification to a subset
of its peers who then decide if they wish to submit a bid. The bids which
return to the contractor contain relevant information about the potential
employee which allows it to discriminate among competing offers. An
employee is selected and notified. Upon receipt of the new task, the employee
now faces the same question — should it perform the task itself or contract it
out? Repeated invocations of this process produce a hierarchy of contractors
and employees.

Because agents individually choose which contracts to bid on, and
contractors choose which bids to accept, this strategy can effectively assign
tasks among a population of agents without the need for a global view. The
drawback to this approach is that it is myopic. Because the contracting agent
does not necessarily take into account the needs of other contractors, it may
bind scarce resource in suboptimal ways. For example, it may select a
particular bid when viable alternatives exist, even though that particular bidder
is critical to another agent [Sims et al., 2003].

As with most organizational structures, the shape of the hierarchy can
affect the characteristics of both global and local behaviours. A very flat
hierarchy where agents have a high degree of connectivity can lead to
overloading if agent resources are both limited and consumed as a result of
these connections. Conversely, a very tall structure may slow the system’s
performance because of the delays incurred by passing information across
multiple levels. One approach to making this trade-off is the use of agent
cloning [Ishida et al., 1992, Decker et al., 1997, Maturana et al., 1999].

An agent in such a system may opt to create a copy or clone of itself,
possessing the same capabilities as the original, in response to overloaded

conditions. If additional resources are available for this clone to use, this

250

Appendixc B. Taxonomy of Organizations

process allows the agent to dynamically create an assistant that can relieve
excess burden from the original, reducing load-related errors or inefficiencies
in the process. If the new agent is subordinate to the original, then a
hierarchical organization will be formed in the process. Shehory [Shehory et
al., 1998] discusses using cloning when other task-reallocation strategies are
not viable.

In this work, an agent’s overall load is a function of its local
processing, free memory and communication. It uses a dynamic programming
technique to compute an optimal time to clone, and an appropriately idle
computational node to house the new agent. The clone receives a subset of the
original task(s). The clones themselves require resources, and the results they
produce may require an additional hop to get to their ultimate destination, so
they may also be merged or destroyed when these costs outweigh their

benefits.
B.2. HOLARCHIES

The term holon was first coined by Arthur Koestler in his book The
Ghost In The Machine [Koestler, 1968]. In this work, Koestler attempts to
present a unified, descriptive theory of physical systems based on the nested,
self-similar organization that many such systems possess. For example,
biological, astrological and social systems are all comprised of multi-levelled,
grouped hierarchies. A universe is comprised of a number of galaxies, which
are comprised of a number of solar systems, and so on, all the way down to
subatomic particles.

Each grouping in these systems has a character derived but distinct
from the entities that are members of the group. At the same time, this same
group contributes to the properties of one or more groups above it. The
structure of each of these groupings is a basic unit of organization that can be

seen throughout the system as a whole. Koestler called such units holons, from

251

Onganization Based Multiagent Architecture For Distributed Environments

the Greek word holos, meaning “whole’”, and on, meaning “part”. Each holon
exists simultaneously as both a distinct entity built from a collection of
subordinates and as part of a larger entity.

Figure 37. Holarchical organization.

True to Koestler’s intent, this notion of a hierarchical, nested structure
does accurately describe the organization of many systems. This concept has
been exploited, primarily in business and manufacturing domains, to define
and build structures called holarchies or holonic organizations which have this
dual-nature characteristic. A sample such organization is shown in figure 37.
In this diagram, hierarchical relationships are represented as directed edges,
while circles represent holon boundaries.

Enterprises, companies, divisions, working groups and individuals
can each be viewed as a holons taking part in a larger holarchy. Fischer
[Fischer, 1999], Zhang [Zhang and Norrie, 1999], and Ulieru [Ulieru et al.,

2001] have each organized agent systems by modelling explicit or implied

252

Appendixc B. Taxonomy of Organizations

divisions of labour in real-world systems as holons. In doing so, they create
abstractions of these divisions, imparting capabilities to individual holons
instead of individual agents. This layer of abstraction allows other entities in
the system to make more effective use of these capabilities, by reasoning and
interacting with the group as a single functional unit.

The defining characteristic of a holarchy is the partially-autonomous
holon. Each holon is composed of one or more subordinate entities, and can be
a member of one or more superordinate holons. Holons frequently have both a
software and physical hardware component (Zhang and Norrie, 1999; Ulieru,
2002), although this does not preclude their usage in purely computational
domains. The degree of autonomy associated with an individual holon is
undefined, and could differ between levels or even between similar holons at
the same level.

There is the presumption, however, that the level of autonomy is
neither complete nor completely absent, as these extremes would lead to either
a strict hierarchy or an unorganized grouping, respectively. Within the
holarchy, the chain of command generally goes up — that is, subordinate
holons relinquish some of their autonomy to the superordinate groupings they
belong to.

However, there is also the more admitted notion that individual
holons determine how to accomplish the tasks they are given, since they are
likely the locus of relevant expertise. Many holonic structures also support
connections between holons across the organization, which can result in more
amorphous, web-like organizational structures that can change shape over time
[Fischer, 1999, Zhang and Norrie, 1999].

It would not be incorrect to conclude that a holarchy is just a particular
type of hierarchy. Relaxing the definition of hierarchy to allow some amount
of cross-tree interactions and local autonomy, the two styles share many of the

same features and can be used almost interchangeably. These richer models

253

Onganization Based Multiagent Architecture For Distributed Environments

then begin to resemble and take on the characteristics of nearly-decomposable
hierarchies [Simon, 1969], where lateral interactions are weak but still
relevant. Very flat holarchies can also begin to resemble federations, which

will be discussed next.

B.2.1. CHARACTERISTICS

As with the conventional hierarchies explained before, holarchies are
more easily applied to domains where goals can be recursively decomposed
into subtasks that can be assigned to individual holons (although this is not
essential). Given such decomposition, or a capability map of the population,
the benefits the holonic organizations provide are derived primarily from the
partially autonomous and encapsulated nature of holons. Holons are usually
endowed with sufficient autonomy to determine how best to satisfy the
requests they receive. Because the requester need not know exactly how the
request will be completed, the holon potentially has a great deal of flexibility
in its choice of behaviours, which can enable it to closely coordinate
potentially complementary or conflicting tasks.

This characteristic reduces the knowledge burden placed on the
requester and allows the holon’s behaviour to adapt dynamically to new
conditions without further coordination, so long as the original commitment’s
requirements are met. A drawback to this approach is that, lacking such
knowledge, it is difficult to make predictions about the system’s overall

performance [Bongaerts, 1998].

B.2.2. FORMATION

The challenge in creating a holonic organization revolves around
selecting the appropriate agents to reside in the individual holons. The purpose
of the holon must be useful within the broader context of the organization’s

high-level goals, and the holon’s members must be effective at satisfying that

254

Appendixc B. Taxonomy of Organizations

purpose. Zhang [Zhang and Norrie, 1999] uses a model of static holons along
with so-called mediator holons to create and adapt the organization. The static
groups consist of product, product model and resource holons, each of which
corresponds to a group of physical or information objects in the environment
(e.g. manufacturing device, design plans, conveyors, etc.). The mediator holon
ties these together, by managing orders, finding product data and coordinating
resources in a manner similar to a federation, which will be discussed next.
Each new task is represented by a dynamic mediator holon (DMH), which is
created by the mediator holon. The DMH is destroyed when the task is

completed.

Another approach to holarchy construction uses fuzzy entropy
minimization to guide the formation of individual holonic clusters [Stefanoiu
et al., 2000, Ulieru, 2002]. In this work, the collection of holons is assumed to
be initially described with a set of source-plans, each of which describes a
potential assignment of holons to clusters, along with a set of probabilities that
describe the degree of occurrence of those clusters. From this initial uncertain
information, one can derive the preferences which agents have to work with
one another, and then choose the source plan which has the minimal entropy

with respect to those preferences.

The goal of this technique is to ensure that each holon has the
necessary knowledge and expertise needed to perform its task. The preference
that one agent has for another represents this knowledge or expertise
requirement, so the minimally fuzzy set will satisfy this goal by clustering
agents which have common preferences. In [Ulieru, 2002], Ulieru adds a
genetic algorithm approach to this scheme to help explore the space of

possible clustering assignments.

255

Onganization Based Multiagent Architecture For Distributed Environments

B.3. COALITIONS

The notion of a coalition of individuals has been studied by the game
theory community for decades, and has proved to be a useful strategy in both
real-world economic scenarios and multi-agent systems. Viewing the
population of agents A as a set, then each subset of A is a potential coalition.
Coalitions in general are goal-directed and short-lived; they are formed with a
purpose in mind and dissolve when that need no longer exists, the coalition
ceases to suit its designed purpose, or critical mass is lost as agents depart.
Related research has extended this to longer-term agreements based on trust
[Breban and Vassileva, 2001] and to the iterative formation of multiple
coalitions in response to a dynamic task environment [Mérida-Campos and
Willmott, 2004]. They may form in populations of both cooperative and self-

interested agents.

Figure 38. Coalition-based organization.

256

Appendixc B. Taxonomy of Organizations

A population of agents organized into coalitions is shown in figure 38.
Within a coalition, the organizational structure is typically flat, although there
may be a distinguished “leading agent” which acts as a representative and
intermediary for the group as a whole [Klusch and Gerber, 2002]. Once
formed, coalitions may be treated as a single, atomic entity. Therefore,
although coalitions have no explicit hierarchical characteristic, it is possible to
form such an organization by nesting one group inside another.

Overlapping coalitions are also possible [Shehory and Kraus, 1998].
The agents in this group are expected to coordinate their activities in a manner
appropriate to the coalition’s purpose. Coordination does not take place among
agents in separate coalitions, except to the degree that their individual goals
interact. For example, if one coalition’s goal depends on the results of another,
these two groups might need to agree upon a deadline by which those results
are produced. In this case, it would be the leading or representative agents
forming the commitment, not arbitrary members of the coalition.

In addition to the problem of generating coalition structures, one must
also determine how to solve the goal presented to the coalition. If the
population is self-interested, a division of value to be apportioned to
participants once that goal has been satisfied must also be generated and

agreed upon [Sandhlom and Lesser, 1997].
B.3.1. CHARACTERISTICS

The motivation behind the coalition formation is the notion that the
value of at least some of the participants may be super-additive along some
dimension. Analogously, participants’ costs may be sub-additive. This implies
that utility can be gained by working in groups — this is the same rationale
behind buying clubs, co-ops, unions, public protests and the *“safety in
numbers” principle. For instance, in an economic domain, a larger group of

agents might have increased bargaining strength or other monetary reward

257

Onganization Based Multiagent Architecture For Distributed Environments

[Tsvetovat et al., 2001].

In computational domains more efficient task allocation is expected,
or the ability to solve goals with requirements greater than any single agent
can offer [Shehory and Kraus, 1998]. In physically-limited systems, coalitions
have been used to trade off the scope of agent interactions with the
effectiveness of the system as a whole [Sims et al., 2003]. This last application
directly affects the coordination costs incurred by the system.

It can be argued that all agents in the environment should always join
to form the all-inclusive grand coalition. Indeed, under certain circumstances
this is appropriate, since the structure would have the resources of all available
agents at its disposal, which theoretically would provide the maximum value.
There are costs associated with forming and maintaining such a structure
however, and in real world scenarios this can be both an impractical and
unnecessarily coarse solution [Sandhlom and Lesser, 1997].

Therefore, the problem of coalition formation becomes one of
selecting the appropriate set(s) S < A which maximizes the utility (value
minus costs) that coalition vs can achieve in the environment. The value and
cost of the coalition are generic terms, which may in fact be functions of other

domain-dependent and independent characteristics of the structure.

B.3.2. FORMATION

The complexity of the coalition formation task depends on the
conditions under which the coalitions will exist, and the types of coalitions
which are permitted. As with all organizations, operating in dynamic
environments will be harder to maintain than in static ones. Additional
complexity is also incurred if the partitioning of agents is not disjoint; that is,
agents can have concurrent membership in more than one coalition. Uncertain
rewards, self-interested agents and a potential lack of trust while coordinating

add further obstacles to the process.

258

Appendixc B. Taxonomy of Organizations

Sandholm [Sandholm et al., 1999] analyzes the worst case
performance of forming exhaustive, disjoint coalitions over a static agent
population from a centralized perspective. They show that by searching only
the two lowest levels of a complete coalition structure graph, an a-
approximate value solution can be found to the partitioning problem, where a
=|A] . Although the search of 2** possible allocations still grows exponentially
with a, the fraction of coalition structure needing to be searched approaches
zero. They also present an anytime algorithm which can meet tighter bounds
given additional time. Later work empirically evaluates the average-case
performance of three anytime search techniques [Larson and Sandholm,
2000]. The algorithms” performances varied by domain characteristics; and no
single technique were best in all conditions.

Shehory [Shehory and Kraus, 1998] has studied how coalitions may
be used to enable task achievement by a group of agents. In their scenario, a
set of interdependent (precedence) tasks must be accomplished, some of which
require multiple agents to perform. The agents are cooperative and potentially
heterogeneous in their capabilities. The strategy they employ draws on
techniques used by Chvatal’s greedy set covering algorithm [Chvatal, 1979],
which tries to find the minimum set of subsets that together contain each
member of a target set.

The initial values of all possible size-bounded coalitions are first
computed and then iteratively refined in a distributed manner by the agents,
taking into account task ordering and capability requirements. Once computed,
the highest valued coalitions either disjoint or overlapping depending on the
selection algorithm, are instantiated. This algorithm was also augmented to
support dynamically arriving tasks. A drawback to this addition is that, in the
worst case, the organization process needs to be redone for each task,
incurring a significant communication cost. Also limiting the potential

scalability of this approach is the need for each agent to have full knowledge

259

Onganization Based Multiagent Architecture For Distributed Environments

of the available agents and tasks.

Lerman [Lerman and Shehory, 2000] presents a scalable strategy
where coalitions are formed between self-interested agents based only on local
decision making. In this work agents operate in an electronic marketplace
consisting of a number of extant purchase orders, with the objective of
forming or joining a coalition of buyers that satisfied a need at the lowest
price. Coalitions form around purchase orders, where agents form or join a
coalition by adding a purchase request to an order, and can leave that coalition
by removing their request. Agents in the system can move at will between
purchase orders, searching for the one which offers the best value (lowest
cost). An analysis based on differential equations shows that this strategy
reaches equilibrium (later work [Lerman and Galstyan, 2001] expands on
these mathematical techniques to analyze other distributed behaviours). It also
has low communication and computational requirements. However, it does not
provide guarantees on the achievable value or convergence rate, which would
be affected by scale, and does not have a notion of deadlines on the purchase
orders.

Soh [Soh, 2003] presents a technique where coalitions are dynamically
created in response to the recognition of tracking tasks in a distributed sensor
network. In this work, agents are assumed to have incomplete, uncertain
knowledge and must respond to events in real time for goal achievement to be
possible. As such, coalitions are formed in a satisfying, rather than optimal
manner. An agent initiates coalition formation by first using local knowledge
to select a subset of candidate partners that it believes will satisfy its
requirements, both in terms of capabilities and willingness to cooperate. Next,
it sequentially engages these candidates, in utility-ranked order, in
argumentative negotiation, where offers and counteroffers are exchanged. This
proceeds until satisfactory membership is decided, or the candidate list is

exhausted.

260

Appendixc B. Taxonomy of Organizations

Agents are cooperative, so during this negotiation process agents
explicitly decide what coalition(s) they are willing to join based on perceived
gains in utility. This approach does not make any guarantees about coalition
value, or even that a satisfactory coalition will be found, but given the
relatively short time in which an allocation must be made it would seem to be
a reasonable strategy. In addition, reinforcement learning is used over the
course of events to estimate candidate utility more accurately and select the
most beneficial negotiation strategy, which should improve coalition value in
the long run for reasonably stable environments. By storing preferences over
multiple episodes, this learning also implicitly adds longevity to coalitions,
giving organizational structures produced by this technique an interesting mix

of dynamic and long-term characteristics.

B.4. TEAMS

An agent team consists of a number of cooperative agents which have
agreed to work together toward a common goal [Fox, 1981, Tambe, 1997,
Beavers and Hexmoor, 2001]. In comparison to coalitions, teams attempt to
maximize the utility of the team (goal) itself, rather than that of the individual
members. Agents are expected to coordinate in some fashion such that their
individual actions are consistent with and supportive of the team’s goal.

Within a team, the type and pattern of interactions can be quite
arbitrary, as seen in figure 39, but in general each agent will take on one or
more roles needed to address the subtasks required by the team goal. Those
roles may change over time in response to planned or unplanned events, while
the high-level goal itself usually remains relatively consistent (although
exception handling may promote the execution of previously dormant
subtasks).

This description of agent teams is quite general, and nearly any

cooperative agent system has characteristics that are similar to these, if only

261

Onganization Based Multiagent Architecture For Distributed Environments

implicitly. However, systems that maintain an explicit representation of their
teamwork or joint mental state are differentiated in their ability to reason more
precisely about the consequences of their teamwork decisions [Jennings, 1995,
Grosz and Kraus, 1996, Tambe, 1997]. For example, they will typically have
representations of shared goals, mutual beliefs and team-level plans.

This type of representation provides flexibility and robustness by
allowing the agents to explicitly reason about team-level behaviours, where a
less explicit system may rely on a set of assumptions that ultimately make the

system brittle in the face of unexpected situations.

@ JQ . \\\

Wglmad

\\Rxx >

— —

— —

Figure 39. Team-based organization.

B.4.1. CHARACTERISTICS

The primary benefit of teamwork is that by acting in concert, the
group of agents can address larger problems than any individual is capable of
[Grosz and Sidner, 1990]. Other potential benefits, such as redundancy, the

ability to meet global constraints, and economies of scale can also be realized

262

Appendixc B. Taxonomy of Organizations

[Hexmoor and Beavers, 2001]. However, it is the ability of the team
(members) to reason explicitly about the ramifications of inter-agent
interactions which gives the team the needed flexibility to work in uncertain
environments under unforeseen conditions.

The drawback to this tighter coupling is increased communication
[Parker, 1993], so the team and joint goal representations, domain
characteristics and task requirements are frequently used to determine what
level of cooperation (and therefore communication) is needed [Pynadath and
Tambe, 2002].

Jennings [Jennings, 1995] describes an electricity transportation
management system which employs team-work to organize the activities of
diagnostic agents. Lacking such structure, the agents were prone to incoherent
and wasteful activities, since they did not always share useful behaviour
information or propagate important environmental knowledge. By providing
agents with an explicit representation of shared tasks and the means by which
cooperation should progress, the agents were able to accurately reason about
and resolve these interactions by employing team-level knowledge. Similarly,
in [Tambe, 1997], teamwork is used to provide the structure and coordination
needed by agents to address interdependent goals in dynamic environments,
such as tactical military exercises and competitive soccer games. These works
demonstrate how pathological, but hard to predict failures can be addressed if

the plans are backed up by a general model of teamwork.

B.4.2. FORMATION

The challenges associated with team formation involve three principal
problems: determining how agents will be allocated to address the high-level
problem, maintaining consistency among those agents during execution, and
revising the team as the environment or agent population changes [Jennings,
1995, Marsella et al., 2001, Tidhar et al., 1998].

263

Onganization Based Multiagent Architecture For Distributed Environments

The selection and role-assignment of agents that will work on the
high-level problem depends on the goal’s requirements, the capabilities of the
candidate agents, and the knowledge of the selecting process itself [Tidhar et
al., 1996, Beavers and Hexmoor, 2001]. Initially, the process or agent
performing the team construction must be aware of the agents which could
potentially form the team. In the case of a static, reasonably sized agent
population this can be done off-line as part of the system design or the
members can be dynamically discovered and assessed. This latter technique
can be accomplished using well-known discovery mechanisms such as the
contract net protocol [Smith, 1980] or matchmaker intermediaries [Sycara et
al., 1997]. Once a suitable pool has been found, the capabilities and pre-
existing responsibility of those agents must be evaluated relative to the needs
of the goal.

Typically, agents are each denoted to have a set of capabilities, while
the goal’s subtask(s) are of a particular type. If an agent’s capabilities include
that sub-task’s type, it can perform the task [Tidhar et al., 1996, Fatima and
Wooldridge, 2001]. The discovery mechanisms may include an implicit
ranking technique, such as the bidding process employed in contract net,
which makes the selection process relatively straightforward. Tidhar [Tidhar et
al., 1996] suggests a different technique where the agent characteristics are
derived at compile time, either through designer input or automatic analysis of
the agent’s plan library. Candidate teams comprised of a sub-set of those
agents may also be specified, which also are marked with their characteristics.
At runtime, these characteristics are matched with the goal requirements as
part of the team allocation search. By including these characteristic labels, the
number of possible team combinations can be greatly reduced.

Tambe’s STEAM [Tambe, 1997] architecture provides a flexible
method for representing and adapting team behaviours. It is based on the joint

intentions frame-work [Levesque et al., 1990], which formally defines how

264

Appendixc B. Taxonomy of Organizations

agents should reason over joint commitments and shared goals, and
SharedPlans theory [Grosz and Kraus, 1996], which provides a formal way to
encode and reason about joint plans, intentions and beliefs. Together, these
help ensure a consistency of belief, or a desire to enact such a belief, across all
team members.

The commitments formed through the joint intentions process provide
the explicit structure needed to reason about and monitor performance on a
team level. Team plans are represented using a hierarchical decomposition
tree, with nodes representing tasks for both teams and individuals, with
associated preconditions, application and termination rules. Agents may
simultaneously take part in several different tasks, and corresponding roles.

The team’s cohesion is derived primarily from the joint intentions
created as part of executing the team plans. Upon selecting a team task, agents
first broadcast this intention to affected agents, and wait until a commitment to
that task has been established between all participants. The existence of this
commitment directs agents to propagate changes whenever the task is
perceived to be achieved, unachievable or irrelevant, before taking local action
itself.

This trades off the potential reaction speed of the team and the cost of
communication with group conformity. A decision theoretic approach is used
to guide communication acts, which explicitly trades off the costs of
communication with those of inconsistent beliefs. Nair [Nair et al., 2003b] has
also explored the possibility of using simulated emotions to provide the
motivation to enforce team-level behaviours.

In STEAM, monitoring and repair of the team is accomplished with
the use of role constraints [Tambe, 1997]. Team members are assigned a role,
based on the particular task they are working on. These roles are further
constrained such that some particular combination of them (e.g. and, or) are

needed to accomplish the task. One can then monitor if a task is achievable by

265

Onganization Based Multiagent Architecture For Distributed Environments

monitoring the health of the individual agents, and using that information to
evaluate if the role constraints are satisfied. Such monitoring can be performed
through explicit queries, environmental observations or by eavesdropping on
communication, which can reduce the increased communication usually
associated with teams.

Kaminka [Kaminka et al., 2002] has demonstrated that the latter
technique can perform well when coupled with a plan-recognition algorithm.
Failures can thus be detected, and potentially resolved through an appropriate
role-substitution, or the task abandoned if no substitution is possible.
Alternately, one could use a diagnosis system [Jennings, 1995, Horling et al.,
2001] to more precisely identify the root cause of the failure. Interestingly, this
repair operation can itself be cast as a team task, so mutual agreement that a
repair is necessary must be achieved before potentially drastic measures are
taken.

Nair [Nair et al., 2003a] shows how an MDP incorporating team and
role-allocation knowledge can improve the system’s response in cases of
multiple role failure. In this case, a suitable locally optimal policy for the
reallocation decision problem can be found by analyzing the team’s plans, and
then used to guide on-line responses to failures. This work showed that such
policies can provide improved performance versus more heuristic and analytic
techniques. A similar technique was also shown in that work to improve initial
role allocation.

Tidhar [Tidhar et al., 1998] uses a similar hierarchical plan
representation to represent teamwork in a tactical air mission scenario. Team
membership and role assignment are performed by matching agent capabilities
to one or more role’s requirements. As in STEAM, teams can be broken down
into sub-teams, and agents may use both implicit (observation) and explicit

(messaging) forms of coordination.

266

Appendixc B. Taxonomy of Organizations

The Generalized Partial Global Planning (GPGP) framework also
employs techniques that allow agents to act using team semantics [Decker and
Lesser, 1992, Lesser et al., 2004]. Where a STEAM-driven system will
typically organize in an explicit, controlled fashion in response to a perceived
goal, a GPGP-team is created in a more dynamic, emergent fashion. GPGP
agents are provided with a set of individual plans which model a range of
alternative ways that goals may be achieved. The sub-goals modelled in these
plans may affect or be affected by other agents in the environment, although
this may not be initially recognized.

By communicating with one another and exchanging plans and
schedules, these non-local interrelationships between tasks may be
recognized. For example, the results from one agent’s activity may be a strict
prerequisite for another agent’s task. They may alternately be a facilitating,
but not required input to a task. By recognizing these interrelationships, and
sharing knowledge of what goals are being pursued, agents gradually build an
internal model of how their actions may affect others. This knowledge is
similar to that created by the more formal joint intentions of STEAM, and
allows agents to influence local behaviour and communicate results as if they

were members of a common team.
B.5. CONGREGATIONS

Similar to coalitions and teams, agent congregations are groups of
individuals who have banded together into a typically flat organization in
order to derive additional benefits. Unlike these other paradigms,
congregations are assumed to be long-lived and are not formed with a single
specific goal in mind. Instead, congregations are formed among agents with
similar or complementary characteristics to facilitate the process of finding
suitable collaborators, as modelled in figure 39. The different shadings in this

figure represent the potentially heterogeneous purpose behind each grouping,

267

Onganization Based Multiagent Architecture For Distributed Environments

in comparison to the typically more homogeneous coalitions in figure 40.
Individual agents do not necessarily have a single or fixed goal, but do have a
stable set of capabilities or requirements which motivate the need to
congregate [Brooks et al., 2000, Griffiths, 2003]. Analogous human structures
include clubs, support groups, secretarial pools, academic departments and
religious groups, from which the name is derived.

Congregating agents are expected to be individually rational, by
maximizing their local long-term utility. Group or global rewards are not used
in this formalism [Brooks et al., 2000]. It is this desire to increase local utility
which drives congregation selection, because it is the utility that can be
provided by a congregation’s (potential) members that determine how useful it

is to the agent.

Figure 40. Congregations of agents.

268

Appendixc B. Taxonomy of Organizations

Agents may come and go dynamically over the existence of the
congregation, although clearly there must be a relatively stable number of
participants for it to be useful. Agents must also take enough advantage of the
congregation so that that the time and energy invested in forming and finding
the group is outweighed by the benefits derived from it. Since congregations
are formed in large part to reduce the complexity of search and limit
interactions, communication does not occur between agents in different
congregations, although the groups are not necessarily disjoint (i.e., an agent
can be a member of multiple congregations).

The net result of the congregating behaviour is an arrangement that
can produce greater average utility per cycle spent computing or

communicating [Brooks and Durfee, 2002].

B.5.1. CHARACTERISTICS

Although congregations can theoretically share many of the same
benefits of coalitions, their function in current research has been to facilitate
the discovery of agent partners by restricting the size of the population that
must be searched. As a secondary effect these groupings can also increase
utility or reliability by creating tighter couplings between agents in the same
congregation, typically by imposing higher penalties for decommitment or
increasing information sharing among congregating peers. The downside to
this strategy is that the limited set may be overly restrictive, and not contain
the optimal agents one might interact with given infinite resources. So, in
forming the congregation, one is trading off quality and flexibility for a
reduction in time, complexity or cost. If an appropriate balance can be found,
this will result in a net gain in utility.

This hypothesis is borne out in the experiments from an information
economy domain [Brooks and Durfee, 2002]. This work varied the number of

congregations that agents were allowed to form. Since the population size was

269

Onganization Based Multiagent Architecture For Distributed Environments

static, the average congregation size decreased as the number of congregations
increased. The accumulated quality decreased proportionally because of less
flexibility in agent interactions. However, these smaller congregations also
incurred lower overhead, and thus had less cost. A median point was

discovered in the space which produced maximum value.

B.5.2. FORMATION

Like coalition formation, congregation formation involves selecting or
creating an appropriate group to join, and suffers from similar complexity
problems as the agent population grows. Because congregations are more
ideologically or capability driven, and there is usually no specific goal or task
to unite them, one must first define how these groups may be differentiated. In
[Brooks and Durfee, 2003] Brooks proposes using labels to address this
problem. A label is a suitably descriptive tag assigned to each congregation
which serves to both distinguish it from other groups and advertise the
characteristics of its (desired) members. Assuming that agents have an ordered
preference for such labels, the congregators’ action is simply to move to the
congregation for which it has the highest preference.

The problem is then to create a number of logical points where agents
may congregate and then decide upon the labels each congregation point will
have; these labels help determine the makeup of the population which gathers
there. Each agent was placed into one of several affinity groups, and a
congregation is stable if and only if it contains only members of the same
affinity group.

Different numbers of labellers were then added which could attach
labels to the congregation points. As with the congregators, the labellers were
stable if and only if the congregation they provided the label to was
homogeneous. The experimental and analytic results demonstrated that by

increasing the number of labellers the system converged more quickly.

270

Appendixc B. Taxonomy of Organizations

Brooks [Brooks and Durfee, 2002] presents a variation of this
formation technique used in an information economy which also takes into
account the costs associated with congregation size. In this scenario there are a
set of buyers and sellers. Each buyer has an information preference, and each
seller may choose what type of information to offer.

The buyer’s preference is soft — they have an optimal type, but are
also willing to purchase related information, where similarity determines how
much they are willing to pay. Instead of explicitly labelling congregation
points, agents freely move through the system seeking groups that provide
acceptable utility. The scenario is episodic, where during each episode agents
elect to stay in place or randomly move to a new congregation. At the end of
each episode an auction takes place from which buyers and sellers obtain their
utility. The utility is based on the price of the goods bought and sold,
combined with the costs incurred during the auction. This cost, divided
uniformly among the congregation members, is proportional to the complexity
of the auction, which is itself determined by the number of participants.
Satisfied agents remain, while those which do not obtain enough utility moves.
This process results in an emergent population of congregations that trades off
utility for computation time.

Griffiths” notion of a clan closely parallels the definition of a
congregation [Griffiths, 2003]. He presents a technique where clans are
formed as part of a self-interested activity to increase local utility or decrease
the probability of failure. If a motivating factor is exhibited by the agent, such
as a desire to increase information gain or decrease commitment failure, clan
formation may be initiated. Clan formation begins with the agent identifying
how large a clan it wishes to create, which is based on the competing utility (in
value added) and cost (in computational complexity) that grow in proportion
to clan size. A trust value is then used to determine what agents it could invite,

while the perceived capabilities or benefits of those individual agents are used

271

Onganization Based Multiagent Architecture For Distributed Environments

to determine the appropriately sized subset that it will invite. In lieu of a
negotiation process or explicit reward, invitation recipients determine if they
will accept the invitation based first on their trust in the sender, and second on
the perceived local gain they would receive by joining. The sender includes
information about itself in the invitation as a sort of capability advertisement
to facilitate this determination. If a sufficient number of agents agree, the clan
is formed, otherwise the attempt is abandoned.

Although it does not strictly deal with congregating agents, Sen’s
work on reciprocal behaviour [Sen, 1996] has some of the same
characteristics. In this system, agents become more inclined to cooperate or
assist another agent when it has a favourable history with that other agent.
Specifically, agents track if others have cooperated with it in the past, or if it
has cooperated with them, along with the approximate costs of those
experiences.

If an agent has a favourable balance of cooperation, it will be more
inclined to give or receive assistance. The cooperation decision process is
stochastic, enabling reciprocal relationships to be created or promoted even
when a strictly positive balance does not exist. Weak groups may form
between agents using this strategy who have complementary capabilities,
which is similar to the notion of congregations presented here.

Because agents will more likely communicate with those that will
help it, interactions can become implicitly confined within the group. These
groupings are not formalized or well-defined, however, and communication is
not necessarily restricted by the approximate boundaries that form. Sen
showed that, among a group of self-interested agents operating in a package
delivery domain, a population containing reciprocal agents outperformed a

selfish population.

272

Appendixc B. Taxonomy of Organizations

B.6. SOCIETIES

Drawing from the experiences with biological societies, a society of
agents intuitively brings to mind a long-lived, social construct. Unlike some
other organizational paradigms, agent societies are inherently open systems.
Agents of different stripes may come and go at will while the society persists,
acting as an environment through which the participants meet and interact. A
canonical example of this paradigm is the electronic marketplace, consisting
of buyers and sellers striving to maximize their individual utility [Wellman
and Wurman, 1998, Artikis, 2003]. A more ambitious example is the “agent
world”, a permanent operating environment or agents [Dellarocas and Klein,
2000a, Willmott et al., 2001]. Agents will have different goals, varied levels
of rationality, and heterogeneous capabilities; the societal construct provides a
common domain through which they can act and communicate. Societies are
also more ephemeral constructs than others paradigms explained so far. They
impose structure and order, but the specific arrangement of interactions can be
quite flexible. Within the society, agents may be sub-organized into other
organizations, or be completely unrelated.

A second distinguishing characteristic of societies is the set of
constraints they impose on the behaviour of the agents, commonly known as
social laws, norms or conventions. This arrangement is shown abstractly in
figure 41, where the agents within the society have been provided with a set of
specified norms. These are rules or guide-lines by which agents must act,
which provides a level of consistency of behaviour and interface intended to
facilitate coexistence. For example, it might constrain the type of protocol(s)
agents can use to communicate, specify a currency by which they can transfer
utility, or limit the behaviours the agent can exhibit in the environment.

Penalties or sanctions may also exist to enforce these laws.

273

Onganization Based Multiagent Architecture For Distributed Environments

il

Figure 41. An agent society.

The set of laws embedded in a society must strike a balance among
objectives [Fitoussi and Tennenholtz, 2000]. It must be sufficiently flexible
that goals are achievable, but not so much so that the beneficial constraints
provided by the laws are lost. It must also be fair, such that the goals of one
class of individuals are not incorrectly valued higher than those of another.
These issues arise naturally in any structured, multiple participant system;
Moses argues that most multi-agent systems have some form of social laws in

place, if only implicitly [Moses and Tennenholtz, 1995].
B.6.1. CHARACTERISTICS

In [Shoham and Tennenholtz, 1995], Shoham presents a grid world
where robots must move from one location to another in accordance with a set
of dynamically arriving tasks. Conflicts can arise when two or more agents
attempt to occupy the same location at the same time along their chosen paths.
They argue that a centralized solution is untenable, because of the potentially
large number of interactions that must be continuously reasoned over in the
heterogeneous population. Neither is a fully decentralized solution
appropriate, because of the number of negotiation events that would need to
take place at each time step. This motivates the need for ““traffic laws™, a type

of social law which does not eliminate such interactions, but should minimize

274

Appendixc B. Taxonomy of Organizations

the need for them. The traffic laws in this research are computed offline, and
constrain the robots’ movement patterns in such a way that collisions do not
occur and destinations are reachable within a bounded amount of time.
Vehicular traffic laws serve the same purpose in human societies. When
driving a car there is no central authority which determines when and where to
go, and neither is there a free-for-all on the roads where one must talk to every
other driver before proceeding. The challenge then is to design a set of laws
that minimizes conflicts and encourages efficient solutions.

Although social laws were used to provide efficiency benefits in the
work above, the purpose of an agent society is not always as quantitatively-
driven as other organizational constructs. Indeed, most research on agent
societies is more concerned with how the concepts they embody can be used
to facilitate the construction of large-scale, open agent systems in general. For
example, Moses [Moses and Tennenholtz, 1995] argues that social laws can
provide a formal structure upon which more complex inter-agent behaviours
can be built. By limiting and enforcing these restrictions, agents can make
simplifying assumptions about the behaviour of other agents, which can make
interaction and coordination more tractable.

In additional to formalizing normative behaviours, mechanisms may
also be established to ensure or encourage that such laws are respected. One
approach accomplishes this through explicit representations of reputation or
trust [Mui et al., 2002, Ramchurn et al., 2005, Sabater and Sierra, 2001]. An
agent’s behaviour and interactions are observed by its peers and evaluated in
the context of the norms it has agreed to. Deviation from those norms will
result in a worsening reputation. This decreased reputation can in turn affect
the utility the agent obtains, through increased decommitment penalties or
competition from more reputable peers. In a rational agent this will serve as a

deterrent to violating conventions.

275

Onganization Based Multiagent Architecture For Distributed Environments

A different, but complementary approach instantiates and enforces
social laws using social institutions provided in the environment [Dellarocas
and Klein, 2000a, Colombetti et al., 2004]. Agents are expected to formalize
their interactions using contracts, which are independently verified by these
institutions, thereby relocating some of the traditionally agent-centric
complexity into a service available to the population as a whole. This reduces
the burden placed on agent designers, and provides a mechanism where
systemic (non-localized or long-term) failures may be detected more readily.
This more rigorous enforcement of social laws also helps address the problem
of unreliable, dishonest or malicious agents operating in the open
environment.

Huhns [Huhns and Stephens, 1999] provides similar motivation for
common communication languages, shared or interoperable ontologies and
coordination and negotiation protocols, all of which may be specified as part
of the society’s structure. These beliefs can be supported by the experiences
acquired in real life. It should be clear that complex human societies are
founded upon the ability to interact with one another. Mutually understood and
respected norms simplify many aspects of day-to-day existence. These

principles can be used to the same effect in agent societies.

B.6.2. FORMATION

There are two aspects to the society formation problem. The first is to
define the roles, protocols and social laws which form the foundation of the
society. Given such a definition, the second problem is to implement the more
literal formation of the society, by determining how agents may join and leave
the defined formation.

If the society is to be an open and flexible system, its structure must be
formally encoded so that potential members may analyze it and determine

compatibility. This description can be as simple as a set of common interfaces

276

Appendixc B. Taxonomy of Organizations

that must be implemented, or a complex description of permissible roles, high-
level objectives and social laws. Dignum [Dignum, 2004, DignumMeyer et
al., 2002] presents a three-part framework, consisting of organizational, social
and interaction models. The organizational model defines the roles, norms,
interactions and communication frameworks that are available in the
environment. The social model, instantiated at run-time, defines which roles
agents have taken on. The interaction model, also created at run-time, encodes
the interactions between agents that have been agreed-upon, including the
potential reward and penalties. The latter two models are supported by
contracts between the relevant entities. This formalism is similar to that
proposed by Artikis [Artikis, 2003], which provides additional details
describing operators that can be used to encode social laws, roles and
normative relations. Because the society is intended to be open, these
structures do not involve the internal implementation of agents, but describe
only the intended or expected externally observable characteristics of the
participants and environment.

Assuming it is possible to encode the social laws in a way that makes
them intelligible to agents, one still faces the challenge of determining what
conventions should be enacted. Fitoussi [Fitoussi and Tennenholtz, 2000]
presents a notion of minimal social laws, where he argues that one should
choose the smallest and simplest set of norms that address the needs of the
society. This is consistent with the trade-off between flexibility and
complexity mentioned above. Work has also been done exploring the dynamic
emergence of norms, for when social laws cannot be specified off-line or if
there is a desire for the corpus to be responsive to changing conditions
[Axelrod, 1986, Hewitt, 1986]. Walker and Wooldridge [Walker and
Wooldridge, 1995] propose and evaluate a number of ways that a group of

agents can reach norm consensus based on locally available information.

277

Onganization Based Multiagent Architecture For Distributed Environments

Dellarocas defines the act of an agent entering a society to be the
socialization process [Dellarocas and Klein, 2000a]. In that work, they suggest
this can be accomplished through an explicit negotiation process between the
agent and a representative of the society, as shown in the left side of figure 40.
This exchange results in a social contract, or an explicit agreement made
between the agent and the society indicating the conditions under which the
agent may join that society. This allows the possibility of capable agents
dynamically learning, and potentially negotiating over, the rules it must abide
by in that society. This naturally extends to multi-society environments, where
an agent’s skills and goals define how good a fit it is with a particular society.
Some of the challenges associated with operating in multi-society
environments seem to be comparable, though larger in scale, to those
encountered during coalition or congregation formation.

Because of their inherent flexibility, a great deal of additional
complexity may be associated with social organizations. Sophisticated legal
systems, communication bridges, ontologies, exception handling services,
directories may all be part of the society model [Dellarocas and Klein, 2000a,
Dignum, 2004, Klein et al., 2003]. Some or all of these may be directly
instantiated by trusted agents taking on so-called facilitation roles
(differentiated from the operational roles taken on by worker agents). Of
course, agents acting in the society must have a certain level of sophistication
to know how and when to use such services. An interesting almost-paradox
exists in this relationship. Although the society exists in part to reduce the
complexity burden imposed on the participants, the participants must raise
their level of complexity to take advantage of these benefits. In the case where
interactions with some or all social services are mandatory (e.g. legal or
arbitration services), this additional complexity is similarly unavoidable and

can act as a barrier to entry.

278

Appendisc B. Taxonomy of Organizations

B.7. FEDERATIONS

Agent federations, or federated systems, come in many different
varieties. All share the common characteristic of a group of agents which have
ceded some amount of autonomy to a single delegate which represents the
group [Wiederhold, 1992, Genesereth, 1997]. This organizational style is
modelled on the governmental system of the same name, where regional
provinces retain some amount of local autonomy while operating under a
single central government. The delegate is a distinguished agent member of
the group, sometimes called a facilitator, mediator or broker [Sycara et al.,
1997, Hayden et al., 1999].

Figure 42. An agent federation.

279

Onganization Based Multiagent Architecture For Distributed Environments

Group members interact only with this agent, which acts as an
intermediary between the group and the outside world, as shown in figure 42.
In that figure each grouping is a federate, and the white agent situated at the
edge of each federate is the delegated intermediary. Typically, the
intermediate accepts skill and need descriptions from the local agents, which it
uses to match with requests from intermediaries representing other groups. In
this way the group is provided with a single, consistent interface. This level of
indirection is similar to that seen in holons, and provides some of the same

benefits.

B.7.1. CHARACTERISTICS

The capabilities provided by the intermediary are what differentiate a
federation from other organizational types. The intermediary functions on one
hand by receiving potentially undirected messages from its group members.
These may include skill descriptions, task requirements, status information,
application-level data and the like. These will typically be communicated
using some general, declarative communication language which the facilitator
understands [Genesereth, 1997]. Outside of the group, the intermediary sends
and receives information with the intermediaries of other groups. This could
include task requests, capability notifications and application-level data routed
as part of a previously created commitment. Implicit in this arrangement is
that, while the intermediary must be able to interact with both its local
federation members and with other intermediaries, individual normal agents
do not require a common language as they never directly interact. This makes
this arrangement particularly useful for integrating legacy or an otherwise
heterogeneous group of agents [Genesereth, 1997, Shen and Norrie, 1998].

The intermediary itself can function in many different capacities. It
may act as a translator, perform task allocation, or monitor progress, among

other things. An intermediary which accepts task requests and allocates those

280

Appendixc B. Taxonomy of Organizations

tasks among its members is known as a broker or a facilitator. As part of the
allocation, the broker may decompose the problem into more manageable
subtasks. This allows agents to take advantage of all the capabilities of the
(potentially changing) federation, without requiring knowledge of which
agents perform a task or how they go about doing it. This reduces the
complexity and messaging burden of the client, but also has the potential of
making the broker itself a bottleneck [Hayden et al., 1999] (a possibility
common to all intermediaries).

An intermediary acting as go-between among agents is known
variously as a translator, embassy or mediator depending on its specific
characteristics. Embassy agents provide a layer of security for members of
their federation, by having the ability to deny communication requests.
Mediator agents store representations of all related parties, reducing their
individual complexity by providing a layer of abstraction. This capacity can be
further exploited to arbitrate conflicts [Mailler and Lesser, 2004].
Intermediaries which provide the ability to track the state of one or more of its
participants are known as monitors. For example, result information can be
automatically propagated to interested parties. Of course, one or more of these
roles may be combined into a single intermediary which offers several types of

services.

B.7.2. FORMATION

Genesereth [Genesereth, 1997] describes how a general federated
system would work. All agents are expected to communicate using an Agent
Communication Language (or ACL, a somewhat-generic term used by many
researchers to describe their agents’ communication protocol), which in this
work is a combination of the first-order predicate calculus KIF with the
KQML agent messaging language. Knowledge and statements sent between

agents are encoded as KIF statements, which are then wrapped in KQML to

281

Onganization Based Multiagent Architecture For Distributed Environments

provide a standard mechanism for specifying the sender, receiver, intent, and
so forth. This provides a common language and set of behavioural constraints
that will allow the various agents to interact. Not all agents must implement
the entire class of concepts in the ACL, but the aspects they do use must be
correct with respect to the ACL’s specification.

In addition, although they speak the same language, not all agents
must use the same vocabulary to describe a particular situation, although to
interact there must be an intermediary capable of translating the vocabularies.
The system is initialized with a set of intermediaries called facilitators, which
serve many of the roles outlined above, notably brokering. Agents connecting
to the system start by sending their capabilities to the local facilitator. Implicit
in this communication is the notion that the agent is willing to use those
capabilities in service of requests posed by the facilitator. Needs are similarly
routed to the facilitator, which then attempts to find other facilitators that can
service that need. Each facilitator provides a “yellow pages” function which
supports this search. Khedro’s Facilitators [Khedro and Genesereth, 1995] and
the jointly developed PACT project [Cutkosky et al., 1993] have produced
very similar systems that also use a common ACL and a community of
intermediaries to produce a robust and dynamic task decomposition and
allocation scheme among a group of heterogeneous participants.

The MetaMorph | [Maturana et al., 1999] and Il [Shen and Norrie,
1998] architectures described by Maturana and Shen demonstrate a federated
agent system for use in intelligent manufacturing. In this domain, agents are
used to drive aspects of product design and manufacturing, contending with
heterogeneous resources, dynamically changing conditions, and hard and soft
constraints on behaviour. MetaMorph’s name is derived from the fact that the
system can continuously change shape, adapting to new conditions as they are
perceived. This is accomplished in part through the use of intermediaries

called mediators, which are responsible for brokering, recruiting and conflict

282

Appendixc B. Taxonomy of Organizations

resolution services. The recruiting service is similar to brokering, but is
differentiated by the fact that the intermediary can remove itself from the
relationship once the partners have been discovered. This weaker form of
federation provides efficiency gains at the cost of less flexibility, both due to
the loss of the layer of abstraction that exists in the brokered approach. The
federations themselves are dynamically created in response to new task
arrivals or requests from other groups using a contract net [Smith, 1980]
approach, or are statically created from agents in a common subsystem (e.g.

tools, workers, etc.).
B.8. MARKETS

In a market-based organization, or marketplace as shown in figure 43,
buying agents (shown in white) may request or place bids for a common set of
items, such as shared resources, tasks, services or goods. Agents may also
supply items to the market to be sold. Sellers (shown with a darker lower part),
or sometimes designated third parties called auctioneers, are responsible for
processing bids and determining the winner.

This arrangement creates a producer-consumer system that can closely
model and greatly facilitate real-world market economies [Wellman, 2004].
These latter systems fall into the more general category of agent-mediated
electronic commerce [Guttman et al., 2001]. Because of this similarity, a
wealth of research results from human economics and business can be brought
to bear on agent-based markets, creating a solid theoretical and practical
foundation for creating such organizations [Wellman, 1993, Wellman and
Wurman, 1998, Corkill and Lander, 1998].

Markets are similar to federated systems in that a distinguished
individual or group of individuals is responsible for coordinating the activities
of a number of other participants. Unlike a federation, market participants are

typically competitive. In addition, participants do not cede operational

283

Onganization Based Multiagent Architecture For Distributed Environments

authority to those distinguished individuals, although they do trust the entities
managing the market and abide by decisions they make. It is also common for
markets to operate as open systems [Wellman, 2004], allowing any agent to
take part so long as it respects the system’s specified rules and interface. As

such, they share some of the benefits and drawbacks of societies.

e b % >
//‘7—
x’ / *l, ‘\\ f// / I ‘\‘\\
/S \ ‘\\
£ \ N &
// b/ lll".ll ;’/
¥y —J ;a'

Figure 43. A multi-agent marketplace.

When using the terms “buyer” and “seller”, one may implicitly
assume that an artefact will eventually be transferred in exchange for some
form of compensation [Chavez and Maes, 1996, Tsvetovatyy et al., 1997].
Although this paradigm is common, it is not always the case, and market-
based organizations have been used in various projects to accomplish less
obvious goals. For example, Wellman [Wellman et al., 2001] proposes using a
market-based approach to perform decentralized factory scheduling. In this
work, each factory job is associated with a duration, deadline and value. The

factory itself, acting as the seller, has a reserve price associated with the time

284

Appendixc B. Taxonomy of Organizations

slots it has available. Agents bid on a set of slots that have sufficient total time
to satisfy the job duration and do not exceed the deadline, using the job value
as a maximum bid price. Market forces will cause agents to seek out the most
cost-effective time slots, while higher-valued jobs will naturally take
precedence over lower ones. This should lead to an efficient allocation of
(time) resources, while maximizing the factory’s overall usefulness.

Bussman [Bussmann and Schild, 2000] has developed an auction-
based manufacturing control system with a similar purpose, where agents are
used to represent workpieces, transportation conveyors and machines. In this
work, machines bid for the right to work on workpieces, which act as sellers,
by relating an expected time to completion. When a machine’s bid is accepted,
a series of additional negotiations between the workpiece and the conveyors
move the piece to the appropriate location. Yet another example is the
Mariposa distributed database system [Stonebraker et al., 1996], which uses
market-based techniques to optimize query processing. Individual nodes buy
and sell fragments of information. Queries inserted into the system are
associated with a biding profile, indicating how much the user is willing to
pay. A brokering process takes the query and requests bids from relevant
nodes. Who then submit bids in an effort to win the rights to process the query
More generally, Wellman proposes the notion of market-oriented
programming [Wellman, 1993], which uses the marketplace paradigm as a
general programming methodology that can efficiently address multi-
commodity flow and resource allocation problems. His WALRAS framework
that implements this concept has been used to create solutions for
transportation logistics, product design and distributed information services.
Many other marketplace frameworks have also been developed for general use
[Chavez and Maes, 1996, Rodriguez et al., 1997, Collins et al., 1998, Collis
and Lee, 1999, Cuni et al., 2004]; Kurbel and Loutchko provide a comparative

analysis of structure and function [Kurbel and Loutchko, 2003].

285

Onganization Based Multiagent Architecture For Distributed Environments

B.8.1. CHARACTERISTICS

Markets excel at the processes of allocation and pricing [Wellman and
Wurman, 1998]. If agents bid correctly (i.e. make truthful bids according to
their perceived utility gain if they win), the centralized arbitration provided by
the auctioneer can result in an effective allocation of goods. The Kashah
system [Chavez and Maes, 1996] is an example of an agent-based marketplace
that demonstrates many of the typical characteristics of this type of
organization. Agents in Kasbah are segregated into two categories: buyers and
sellers. Both types indicate the type of object they are interested in (buying or
selling) with a feature vector, along with a desired price, a threshold price
(lower or upper bound), and a negotiation strategy that controls how their
offered price changes over time. A sale occurs when a seller’s price matches
what a buyer is willing to pay. The objects being sold in this system represent
the targets of the allocation process, and the price is determined dynamically
according to supply and demand. The mechanism that is employed in Kasbah
corresponds to an intuitively fair way to allocate among competitors, at least
from a self-interested point of view: all agents gradually compromise, and the
agent willing to meet the seller’s price first wins.

The behaviours embodied in a marketplace, namely the existence of
buyers and sellers, a potential multitude of goods, and competition among
participants, make such organizations intrinsically linked with the properties
of auctions. Kasbah is an example of a two-sided auction, because both sides
compromise. If one of the two parties maintained a fixed price, it would be
one-sided auction. Many other types of auctions exist to service the different
needs of different communities, each with their own characteristics [Wurman
et al., 2001, Kurbel and Loutchko, 2003].

For example, in a combinatorial auction, participants bid on

collections of goods, rather than single objects. In a reverse auction, sellers bid

286

Appendixc B. Taxonomy of Organizations

rather than buyers. In sealed-bid auctions, the participants do not see
competing bids while the auction is in progress. In continuous auctions, a pool
of items exists, exchanges occur as soon as two compatible bids are made, and
the bidding process continues uninterrupted. The particular type of auction
which is employed dictates the manner in which the participants interact.
Much of the complexity involved in designing an effective market and
marketplace agent revolves around understanding the subtleties of the
auction’s characteristics, and crafting an appropriate strategy based on that
knowledge.

There are two drawbacks to market-based organizations. The first is
the potential complexity required to both reason about the bidding process and
determine the auction’s outcome. The former computation may require a
detailed approximation of competitors’ beliefs, a practice known as
counterspeculation, especially in single-shot or sealed bid auctions
[Tsvetovatyy et al., 1997]. The latter computation, also known as clearing the
trade, can be particularly difficult in the case of combinatorial auctions. This is
known to be a NP-complete problem [Sandholm, 2002], although solutions
have been devised that have good performance in practice [Sandholm, 2006].
The second is security; in addition to the practical network-related security
issues inherent in any open system, one must also be able to verify the validity
of the auction approach itself.

For example, the bidding strategy used in the Kasbah system is
vulnerable to a form of cheating known as collusion. If two or more bidders in
the system agree to reduce their rate of compromise, they have a chance to
artificially lower the final sale price. It is also important that the bidding
process does not reveal information about the participants. For example, if a
seller could determine the threshold prices of some of its buyers, it could
simply wait until the maximum such price is reached, thereby artificially

increasing the sale price. Some of these issues can be resolved by selecting an

287

Onganization Based Multiagent Architecture For Distributed Environments

appropriate auction type. The Vickrey auction’s structure [Vickrey, 1961],
where the highest bidder wins but pays the second highest bid price, promotes
truthful bidding and discourages counterspeculation. Enforcing anonymity and

secure communication channels can also help avoid many common pitfalls.

B.8.2. FORMATION

As is the case of many open systems, marketplaces are frequently
static, pre-existing entities that do not require a formal creation process
beyond starting the actual market process (if any) and allowing agents to
connect. The well-known Trading Agent Competition market [Wellman and
Wurman, 1999] operates in such a fashion, albeit for a limited amount of time.
They may have certain barriers to entry, such as respecting a defined
programming interface, implementing a particular transaction language, and
respecting the rules of the market’s auction type. These entry conditions are
similar to those discussed earlier in the context of societies, although there is
generally no formal negotiation or socialization process involved. Wellman
[Wellman, 2004] outlines a number of other practical characteristics that
should be exhibited for a marketplace to be successful. They must maintain
temporal integrity, meaning that the outcome of an auction depends on the
arrival sequence of bids, and is independent of any delays internal to the
market itself. Transactions performed by the market must be atomic, that is,
they have no effect if they fail or are cancelled prior to completion. As noted
above, they also require attention to security risks, so that participant
information is adequately protected and the auction process itself is kept safe
from conventional attacks, particularly if there is an actual exchange of goods,
information or currency in the market. Markets may also incorporate product
discovery services, banking services, brokering middle-agents and negotiation
support, to reduce the burden placed on the participants [Tsvetovatyy et al.,
1997, Guttman et al., 2001].

288

Appendixc B. Taxonomy of Organizations

Other works have explored dynamic formation of markets. Brooks has
used the notion of congregations to dynamically form markets within a group
of agents [Brooks and Durfee, 2002]. Recall that congregations are groups of
agents which have banded together because of some common long-term
interest or goal. In this work, that long term goal is the cost-effective exchange
of goods or services. In a large population, it can be difficult to directly find
suitable trading partners, and expensive to contact or broadcast to all possible
partners. A suitably formed congregation serves to limit the scope of this
search or broadcast, which in turn facilitates the marketplace creation.

A relatively new concept being exploited in both human
[Mowshowitz, 1997] and agent [Ahuja and Carley, 1999, Foster et al., 2004,
Cardoso and Oliveira, 2004] organization research is the virtual organization
(VO). A virtual organization is one that has a fixed purpose (e.g., to provide a
set of services) but a potentially transient shape and membership. The key
characteristics of a VO are that they are formed by the grouping and
collaboration of existing entities, and there is a separation between form and
function that precludes the need to rigidly define how behaviour will take
place. This provides flexibility in how a particular goal is satisfied, by
allowing the system to adapt the set of participants to meet resource
availability and service demand. The concept is similar to the coalition and
congregation paradigms discussed earlier, and have many of the same benefits
as a federation, although a virtual organization can generally be thought of as
an entity in and of itself more so than an empty coalition or congregation.

The CONOISE project has explored the dynamic creation of virtual
organizations within a larger marketplace environment [Norman et al., 2004].
In this context, the creation of a VO can be thought of as the creation of a new
market entity (buyer or seller) from a group of existing participants. This can
give those participants greater leverage, efficiency or reliability as they

combine their producing or consuming power. The members of a VO may

289

Onganization Based Multiagent Architecture For Distributed Environments

remain distinct when outside of the marketplace, but within the market they
act as a single unit. For example, two producers might combine to offer a new
joint product. Two consumers might combine to obtain greater buying power.
In responding to bids, a VO will then be able to offer the union of services or
goods over all its members. VOs may also split when the relationship is no
longer beneficial or if levels of trust or reputation have been sufficiently
degraded. In all cases, the shape of the market is affected as these changes are
made, and thus the market as a whole will evolve over time based on the needs
and capabilities of the participants, and the corresponding consolidation

decisions they make.
B.9. MATRIX ORGANIZATIONS

As explained before, the strict hierarchical organization method is
based on a tree-like structure of control. Agents or agent teams report to a
single manager, which provides the agents with goals, direction and feedback.
Matrix organizations relax the one-agent, one-manager restriction, by
permitting many managers or peers to influence the activities of an agent. This
forms a mixed-initiative environment, where successful agents reason about
the effects their local actions can have on multiple entities. This is in some
sense a closer approximation to how humans exist. A person may receive
guidance or pressures from their manager, co-workers, spouse, children,
colleagues, etc. Even in a purely business setting one might have to report to
an immediate supervisor, project managers, vendors, and peers at cooperating
businesses. Interrelationships can come from many directions, each with its
own objectives, relative importance and pertinent characteristics [Wagner and
Lesser, 2000].

The term matrix organization comes from a grid based view of the
participants. One can place managers (darker lower part) around a group of

“worker” agents (clearer lower part), and use a directed edge to indicate

290

Appendixc B. Taxonomy of Organizations

authority, as in figure 44. Alternately, agents are the rows and managers the
columns (these sets may overlap), and a check is used to denote where an
authority relationship exists. Like the hierarchy’s tree, the matrix provides a
graphical way to depict which managers can influence the activities of each

agent.

\ e

-

Figure 44. A multi-agent matrix organization.

B.9.1. CHARACTERISTICS

Matrix organizations provide the ability to explicitly specify how the
behaviours of an agent or agent group may be influenced by multiple lines of
authority [Decker et al., 1995]. In this way, the agent’s capabilities may be
shared, and the agent’s behaviours (hopefully) influenced so as to benefit all.
This is particularly important if the agents themselves are viewed as
functional, limited resources. For example, if a particular skill is needed by
two separate tasks, the agent can be used to address both, provided it has
sufficient computational power. In the case where the agent has multiple ways

of performing a task, it can also choose the method which best satisfies its

291

Onganization Based Multiagent Architecture For Distributed Environments

peers.

This sharing comes as a price, however, because the shared agent
becomes a potential point of contention. If its managers disagree, the agent’s
actions may become dysfunctional as it is pulled in too many directions at
once [Schwaninger et al., 2000, Romelaer, 2002]. To operate effectively, the
agent must have a commitment ranking mechanism and sufficient autonomy to
resolve local conflicts, or the ability to promote conflicts to a higher level
where they may be resolved [Mailler et al., 2003]. Wagner’s motivational
quantities framework [Wagner and Lesser, 2000] is one approach that
addresses this problem. In that work, task valuation is performed by
combining both the local intrinsic worth of the task with the perceived or
specified worth that task will have on other entities. This valuation is
quantified through the expected production and consumption of different
motivational guantities (MQs), which act as a virtual resource or medium of
exchange. The preference for particular MQs is specified with a set of utility
curves that together determine the agent’s overall usefulness. By coupling the
production of different types of MQs with the tasks associated with different
managers, the framework is able to capture the quantitative motivation behind
a particular course of action. This explicitly represents the type and states of
the relationships the agent has with those managers, which can enable it to

correctly balance its behaviour in a matrix organization.

B.9.2. FORMATION

Decker [Decker et al., 1995] describes the MACRON organizational
architecture, in which agents form a matrix organization. The domain for their
system is cooperative information gathering, where multiple agents search for
relevant data in response to a user’s query. Individual agents are separated into
predefined functional groups that contain agents able to access a particular

type of information. These groups are under the control of a functional

292

Appendixc B. Taxonomy of Organizations

manager, who assigns agents to query tasks as they arrive. User query agents
generate those query tasks, and therefore use the functional managers to
dynamically select agents to satisfy their own goals. Individual gathering
agents report to two agents: a static functional manager, and a query manager
which changes depending on the user’s actions. This has the effect of
assigning the minimal needed set of agents to the query, increasing efficiency
when compared to a system employing a set of static teams where particular
team members might go unused, depending on the query characteristics. At
the same time, this approach uses fewer resources than one lacking functional
groups, which would have to search through all available agents for each
query.

In [Horling, 2003], Horling describes a distributed sensor network
application where a matrix organization is used to address a resource
allocation problem. In this case, the sensors themselves were limited
resources, since their heterogeneous locations and orientations made each one
unigue. The tracking process for each target was controlled by a different track
manager, which was responsible for discovering and coordinating with the
sensors needed to track its target. When multiple targets came in close
proximity to the same sensor, a matrix organization is dynamically formed as
the relevant managers interact with that sensor. At the same time, that sensor
may have previously been given tasks by a regional manager responsible for
detecting new targets.

The result is an individual which may be under contention by three or
more managers, and which must then decide how best to meet those demands.
This was done using a combination of a predefined ranking scheme (tracking
has higher priority than scanning for new targets), local autonomy (round
robin scheduling) and conflict elevation (track managers negotiate directly

once aware of the conflict).

293

Onganization Based Multiagent Architecture For Distributed Environments

B.10. COMPOUND ORGANIZATIONS

Not all organizational structures fit neatly into a particular category,
and some architectures may include characteristics of several different styles.
A system may have one organization for control, another for data flow, a third
for discovery, and so on. For example, Durfee’s PGP [Durfee and Lesser,
1991] incorporates one organization for interpretation, and another separate

structuring of the same agents to manage coordination problems.

N

Figure 45. A multi-agent compound organization.

Compound organizations can be overlapped, operating as virtual peers
at the same conceptual level, or be nested, so that some subset of agents in a
group are organized in a potentially different way within the larger context. A
sample such organization is shown in figure 45, which combines a hierarchy
with a set of coalitions. As with singular organizations, they may be created or
adapted over time, or they may be instantiated as part of a transient form while
a population shifts between organizational styles. Ideally, these compound
architectures can use the most effective structure for the particular goal at

hand, without limiting options that might be used elsewhere in the system. The

294

Appendixc B. Taxonomy of Organizations

trade-off in this situation is usually one of complexity. Because an individual
agent might take on different roles in response to different organizational
demands, the agent itself must have sufficient sophistication to act efficiently
and asynchronously in all those roles.

Some of the organizational paradigms which have been discussed so
far are more amenable to coexistence than others. In much of the teamwork
research, for example, a loose hierarchy of control was created among the
agents after the team had formed [Tambe, 1997, Tidhar et al., 1996].
Hierarchical structures for interpreting and consolidating raw data are also a
popular mechanism for handling scale that can augment a pre-existing or
lower-level structure [Yadgar et al., 2003].

Societies frequently have an internal organizational structure within
the larger context defined by the social laws and norms [Dellarocas and Klein,
2000a, Dignum, 2004]. In other cases, researchers have exploited the
characteristics of one type of organization to create another. Congregations,
for example, have been used to facilitate the dynamic formation of markets
[Brooks and Durfee, 2002], while both markets [Lerman and Shehory, 2000]
and hierarchies [Abdallah and Lesser, 2004] have been used to efficiently
create coalitions. Societies can also be viewed as a common “pool” of agents,
from which a range of other organizations can be constituted. In this type of
compound organization, the society may exist in support of other, more
dynamic structures created to address particular tasks [Sichman and
Demazeau, 2001].

B.10.1. CHARACTERISTICS

The positive and negative characteristics of a compound organization
are derived primarily from its constituent parts. However, the interplay
between organizations can lead to unexpected consequences. For example, if

the distinguished intermediary in a federated system plays a key role in a

295

Onganization Based Multiagent Architecture For Distributed Environments

separate overlay organization, it may be unable to fulfil both roles adequately.
Similar to a matrix organization, agents may be faced with conditions where it
is not clear which of two competing objectives it should satisfy [Romelaer,
2002].

Conversely, its knowledge of the requirements of both organizations
may enable it to make more globally effective decisions. The possible
interactions and formation strategies among arbitrary coexisting organizations
are difficult to characterize in a general manner; so some examples of systems

employing this technique will be shown next.

B.10.2. EXAMPLE COMPOUND ORGANIZATIONS

The distributed sensor network solution described by Horling
[Horling, 2003] uses several different overlapping organizational techniques.
Agents are first partitioned into federations, called sectors, where membership
is based on their geographic proximity. A distinguished member of each group
is given the role of sector manager, who provides a form of recruiting service
to other agents in the environment. This recruiting service supports the
activities of track managers, who must discover and use the appropriate
sensors as part of their tracking task. In forming the federations, the search
time is reduced because only a subset of the population (the sector managers)
needs to be interacted with, and communication requirements are reduced
because only the necessary subset of sensors will be returned. Both the sector
and track managers provide tasks to individual sensors, forming a matrix
organization in the process. This arrangement facilitates resource sharing by
allowing the sensors to guide their local activities based on the needs of
potentially several interested parties, but can also lead to conflicts caused by
over-demand. Because the sensor is a finite resource, a cloning technique
cannot be used to address the conflict. Instead, a loose peer-to-peer

relationship between track managers allows them to negotiate directly,

296

Appendixc B. Taxonomy of Organizations

alleviating the conflict through demand relaxation or by using alternate
sensors. This resource allocation scheme employs a second, weaker form of
federation through its use of mediators [Mailler and Lesser, 2004].

The conflicts, which may be potentially multi-linked and far-reaching,
are partially centralized by a mediator agent which acts on the part of the
relevant agents to find a suitable solution. In [Horling et al., 2004] the
quantitative effects of these interactions are demonstrated through a set of
experiments that vary the shape of the organizational structure.

Yadgar [Yadgar et al., 2003] describes a different approach in a
distributed sensor environment. Groups of geographically-related sensors are
first formed into sampler groups, which are essentially federations with a
single agent called the sampler group leader acting as the intermediary. These
groups then form the lowest level of a data aggregation hierarchy that exists
above them. This arrangement is similar to the example organization shown in
figure 45. The sampler group leader collects raw data from the members of its
group, and passes the data to its parent agent in the hierarchy, known as a zone
leader. It is this zone leader’s responsibility to interpret the sensor data to the
best of its ability, by building motion equations and combining data perceived
to be from the same target. This more abstract view is then passed to the next
level of the hierarchy, where the process repeats. This will eventually
terminate at the apex agent which should be able to reconstruct a global view
from the abstract pieces it receives. The hierarchy itself is strict, and
communication is only permitted between connected agents, which reduce the
level of sophisticated needed by the agents.

The experimental results showed that this solution could scale to
thousands of sensors and targets. The trade-off they discovered was that
shorter hierarchies produced more accurate results, because the fragmentation
of the area was minimized, which in turn reduced the number of fusion

processes data must survive before it is incorporated. Conversely, taller

297

Onganization Based Multiagent Architecture For Distributed Environments

hierarchies dramatically reduced the computational load placed on any one
agent, because the area each agent was responsible for became relatively
small. By weighing these characteristics against the domain requirements one

can select an appropriate structure to use.
B.11. OTHER ORGANIZATIONAL TYPES

There are a number of other topics related to organizational design
that, although they are not so widely used, they are sufficiently important to
warrant mention. These are outlined below:

Global Organizational Representation. Implicit in the concept of an
intentional organizational design is an explicit representation of its structure.
This is of use to designers, as a means of specification and exploration, and to
the agents themselves, as a template and diagnostic tool. A number of general
modelling representations have been proposed, notably by Fox [Fox et al.,
1998], Tambe [Tambe et al., 1999], Hibner [Hubner et al., 2002], Pattison
[Pattison et al., 1987], Dighum [Dignum, 2004], Sims [Sims et al., 2004],
Horling [Horling and Lesser, 2005] and VVazquez-Salceda [Vazquez-Salceda et
al., 2005].

Local Organizational Representation. The organization’s global view
is not always the most appropriate vehicle to guide agents’ behaviours. It can
be too coarse in granularity, too qualitative or simply too large to be of
practical use. Agents require a well-defined, quantitative mechanism that can
be used to select appropriate local actions while respecting global
organizational specifications. This process was originally described as local
elaboration by March and Simon [March et al., 1958], where the activities
performed by an agent are first constrained by its position in the organization,
and then selected using local information and capabilities. The social
consciousness model suggested by Glass and Grosz [Glass and Grosz, 2003],

Decker’s TAEMS language [Decker and Lesser, 1993], Shoham’s social laws

298

Appendixc B. Taxonomy of Organizations

[Shoham and Tennenholtz, 1995], and Wagner’s MQ framework [Wagner and
Lesser, 2000] provide ways to accomplish this.

Organizational Performance. Other researchers have taken a different
approach by creating formal analytic or statistical models that focus on the
activities or behaviours of the organization, rather than representing the
organization as a whole [Malone and Smith, 1988, Decker and Lesser, 1992,
Montgomery and Durfee, 1993, So and Durfee, 1996, Lerman and Galstyan,
2001, Shen et al., 2004, Gnanasambandam et al., 2004, Horling and Lesser,
2005, Schmitt and Roedig, 2005]. These typically more quantitative
representations can provide insights into organizational performance that are
largely absent from purely descriptive or logical representations. A different
approach is to use experimental or simulation studies, which can offer a more
general-purpose approach to analyze organizational performance that may not
be amenable to modelling [Lesser and Corkill, 1983, Lin and Carley, 1995,
Sierra et al., 2004]. The drawback to using empirical analysis is the time
required to run such tests, which is usually much greater than that needed for
analytic techniques. Conversely, analytic models may require simplifying
assumptions to be tractable, or otherwise fail to take into account the
complexity real-world behaviours. Parunak [Parunak et al., 1998] provides
further discussion on the tradeoffs between these approaches. However they
are obtained, such predictions can play a critical role in the search and
evaluation process, by allowing the designer to directly compare alternative
organizational strategies before implementing a design. This can provide the
foundation for a more proscriptive organizational tool.

Generative Paradigms. Different ways in which organizations may be
formed have been described before. However, it has not been presented a
unified discussion of specific generative paradigms — a classification of the
techniques that may be used to produce organizations. These may be broadly

separated into at least three classes: scripted, controlled and emergent. The

299

Onganization Based Multiagent Architecture For Distributed Environments

first includes organizations that are produced from statically predefined
instructions, possibly from an external third party or during start-up. The
second includes those that are explicitly applied to a population by an
individual or group of individuals in response to perceived conditions. The
third captures techniques which have no central or global direction, but are
instead self-directed or grown organically through the individual actions of
agents. In practice, it may be difficult to clearly classify particular techniques.
For example, congregations emerge from individual agent decisions using the
technique described by Brooks [Brooks and Durfee, 2002]. However, the fact
that it uses heuristics intended to simulate a controlled decision, along with
agents which provide labels to guide the formation, gives the appearance of a
controlled process.

Organizational Adaptation. Although adaptation has been previously
briefly touched, an organization’s ability to adapt is a general concept that is
critical in any dynamic environment. The organization must have the ability to
detect and react to changes in a timely manner in realistic, open domains
[Carley, 1997, Horling et al., 2001]. Any organizational change which occurs
at runtime will have associated costs. These costs may be observed in direct
consumption of resources, such as bandwidth or processing power, or
indirectly because of inefficiencies or opportunities missed while in an
intermediate state. The ability to adapt an organization depends on first
recognizing potential problems, evaluating the costs and benefits of candidate
solutions, and then implementing the selected changes. Related to adaptation
is the notion of social pathologies, which occur when an organization adapts
inappropriately [Turner, 1993, Jensen and Lesser, 2002].

Coordination and Negotiation. Many of the organizational styles
covered assume some that some sort of interaction or coordination will take
place between agents. This is seen in the authority relationships of hierarchies,

the joint intentions of teams, data routing protocols in federations, and

300

Appendixc B. Taxonomy of Organizations

negotiations of society members. The characteristics provided by these
interactions are critical to the effective qualities of these paradigms. For
example, aggregating nodes and managers in hierarchies and intermediaries in
federations frequently take on responsibilities related to coordination, by
assigning tasks or routing information in such a way that interrelationships
among their subordinates can be avoided [Galbraith, 1974]. Argumentative
negotiation has been shown to be effective in resolving conflicts in team
settings [Jung et al., 2001]. The techniques that are used can heavily influence
the interactions and behaviours exhibited by the group, ultimately affecting the
performance of the organizational structure. Work by Prasad [Nagendra
Prasad and Lesser, 1999], Lesser [Lesser et al., 2004] and Toledo [Excelente-
Toledo and Jennings, 2004] have also explored the dynamic selection of
coordination strategies, which in this context can be considered a form of
organizational adaptation.

Autonomy. The manner in which an agent behaves, and in particular
how its motivations are determined, is intimately related to its position within
the organization. Agents may be externally directed, self-directed or some
combination of the two [Lesser and Corkill, 1981]. For example, agents in
hierarchies, federations and matrix organizations all generally have manager-
supervisor relationships, implying that local actions are partially or completely
decided by an external entity. Conversely, agents operating in markets are
typically more autonomous, independently deciding how and when to bid.
Like other characteristics, the level of autonomy can affect the performance of
the system as a whole. Authoritarian structures can exploit centralization to
make good decisions, while an organization of more autonomous entities
offers better balance and parallelism. Because the needs and constraints
exhibited by participants change over time, it can also be beneficial to
dynamically adapt agents’ levels of autonomy in response to changing events
[Scerri et al., 2002, Zhang et al., 2002].

301

Onganization Based Multiagent Architecture For Distributed Environments

Human Organizational Analogues. For much of the time that multi-
agent organizations have been researched, attempts have been made to draw
upon the large body of work that has been done on human organizations. The
fields of sociology, anthropology, biology, economics, business management
and formal organization theory (among others) contain a wealth of analytic
and case study information describing how human organizations are structured
and perform [Fox, 1981, Gasser, 2001]. Although on the surface much of this
work is intimately tied to the human experience, attempts to extract concepts
and abstractions have met with some success.

Diversity. Although role assignment clearly plays a critical role in an
organizational specification, the notion of agent diversity is rarely treated as or
reasoned about as a first-class characteristic. As with stock portfolios, animal
populations and security techniques, diversity can play an important role in
agent systems susceptible to failure. Enforcing agent diversity through
heterogeneous roles, agent types or division of labour, can impart semantic
and capability fault-tolerance on the system as a whole [Corkill and Lesser,
1983, Reed and Lesser, 1980, Corkill and Lander, 1998, Lybéck, 1999].
Diversity can be embedded in the organizational design to encourage such

characteristics.

302

”Each problem that I solved became a rule which served
afterwards to solve other problems.” René Descartes

APPENDiX C. CASE~
BASED R FASONiNG

In this appendix the Case-Based Reasoning methodology is
introduced. CBR is the core methodology of the
OBaMADE architecture, being responsible of the structure
of the stored information and of the quality of the results.
The CBR methodology is used to generate the solutions by
rensing past solutions given to past problems. The four
main phases of the CBR c¢ycle are explained here, paying
special attention to the CBR systems developed based on
this methodology.

ase-Based Reasoning is a methodology that has its origin in
knowledge based systems. CBR systems learn from previous
situations [Aamodt, 1991]. The main element of a CBR
system is the case base; a structure that stores problems, elements (cases),
and its solutions. So, a case base can be visualized as a database where a
collection of problems is stored keeping a relationship with the solutions to
every problem stored, which give the system the ability to generalize in order

to solve new problems.

303

Onganization Based Multiagent Architecture For Distributed Environments

The learning capabilities of the CBR systems are due to its own
structure, composed of four main phases [Aamodt and Plaza, 1994]:
retrieval, reuse, revision and retention. These four main phases are shown in
figure 46. The first phase is called retrieve, and consists in finding the most
similar cases to the proposed problem from the case base. Once a series of
cases are extracted from the case base, they must be reused by the system. In
this second phase, an adaptation of the selected cases is done to fit the current
problem is done to fit the current problem. After giving a solution to the
problem, that solution is revised to check if the proposed alternative is a
solution to the problem. If the proposal is confirmed as a solution, then it is
retained by the system and could eventually serve as a solution to future

problems.

Figure 46. Case-Based Reasoning basic structure.

304

Appendix C. Case-Based Reasoning

Case-Based reasoning is a methodology [Watson, 1999], and so it has
been applied to solve different kind of problems. It is a model that can be
easily applied to solve soft computing problems [Shiu and Pal, 2004], since
the methodology used by CBR is quite easy to assimilate by soft computing
approaches. Another interesting application is related with stock market
prediction [Chun and Park, 2005], where using different daily values, a CBR
system can create a model that may help in stock market investments.
Construction is another of the fields of application of CBR, first for the
construction of functional databases [Yu and Liu, 2006] to improve the
benefits in the usually chaotic organization of the construction projects and
also [Chow et al., 2006] to help to choose between different methods and
materials, using expert system oriented applications.

Other applications of the CBR methodology cover from health
applications [Corchado et al., 2008] to eLearning. CBR has evolved, being
transformed so that it can be used to solve new problems, becoming a
methodology to plan, or distributed version. Oceanographic problems [Fdez-
Riverola and Corchado, 2004], has also been solved with these techniques,
helping to predict the value of variable parameters.

But, in most cases, CBR has not been used alone, but combined with
various artificial intelligence techniques. Growing Cell Structures has been
used with CBR to automatically create the intern structure of the case base
from existing data and it has been combined with multi-agent applications
[Carrascosa et al., 2007] to improve its results. ART-Kohonen neural
networks [Yang et al., 2004],, artificial neural networks and fuzzy logic
[Fdez-Riverolalglesias et al., 2007a] has also been used to complement the
capabilities of the CBR methodology. Actual trends in CBR explore the
possibility of giving explanations from the very CBR systems [Sgrmo et al.,
2005]. These techniques allow the CBR systems to give the users a better

solution, adding extra information to the solution proposed by the system.

305

Onganization Based Multiagent Architecture For Distributed Environments

C.1. CASE-BASED REASONING AS A
PROBLEM SOLVING APPROACH

Reasoning can be defined as a process that draws conclusions by
sequencing generalized rules or situations. The principal knowledge source
of CBR is not generalized rules but a memory of stored cases. In CBR, new
solutions are generated not by chaining but by retrieving the most relevant
cases from case library and adapting them to fit new situations [Leake,
1996].

CBR tasks are often divided into two classes as interpretive CBR and
problem-solving CBR. Interpretative CBR uses prior cases as reference
points for classifying or characterizing new situations; and problem-solving
CBR uses prior cases to suggest solutions that might apply to new
circumstances [Kolodner, 1993].

The interpretive CBR involves four steps being performing situation
assessment [Kolodner, 1993] to determine which features of the current
situation are really relevant; retrieving a relevant prior case or prior cases
based on the results of situation assessment; compares those cases to the new
situation and finally saying the current situation and the interpretation as a
new case for future reasoning [Leake, 1996].

Legal problems and diagnosis concepts are the fields for which
interpretive CBR processes are applied. On the other hand, in problem-
solving CBR, the goal is to produce a solution to a new case based on the
adaptation of solutions to past cases. Case-based design, planning, and
explanation systems are the examples for this class since they require
retrieving and adapting solutions of similar prior problems [Leake, 1996].
Like interpretive CBR, problem-solving CBR involves situation assessment,

case retrieval, and similarity assessment steps to find solutions for new

306

Appendix C. Case-Based Reasoning

problems. Since many problems have components of both types of CBR,
most effective case-based reasoning systems use a combination of both
methods [de Mantaras and Plaza, 1997].

In short, CBR solves problems through a process that involves some
basic steps as retrieving relevant cases from the case memory, selecting a set
of best cases, deriving a solution, evaluating the solution and storing the
newly solved case in the case memory [de Mantaras and Plaza, 1997].

The goal of CBR is to use the computer to augment the analogical
reasoning and memory of the domain expert by providing the expert with
representative cases similar to the problem at hand [Kolodner, 1991]. This
statement points out the necessity of computers to apply CBR principles. In
order to meet this requirement, several commercial companies offer shells for
building CBR systems. CBR shells provide mechanisms to support case
retrieval and allow users to interactively provide additional information as
needed during retrieval besides; they provide sophisticated interfaces to

facilitate creating and editing the case base [Leake, 1996].
C.2. CASE DEFINITION AND CASE BASE
CREATION

The first phase in the design of a CBR application must consist in a
transformation of the information available into a structure, into cases. This
transformation is a crucial step in the creation of a good solution. Not all
types of information can be easily traduced into cases and so, the possible
variations can dramatically modify the correction of the solutions proposed
by the systems.

A case can be defined as a conceptualized piece of knowledge
representing an experience that teaches a lesson fundamental to achieving the

goals of the reasoner [Kolodner, 1993]. It is a set of features, attributes and

307

Onganization Based Multiagent Architecture For Distributed Environments

relations of a given situation and its associated outcomes. Case acquisition is
an important aspect in designing efficient CBR systems. Cases in the case
memory are designed to capture the knowledge and experience of domain
experts [Gupta, 1994].

Cases are collected in a database which is composed of cases with
each case including; a set of problems, characteristics that distinguish this set
from others that warrant a different response, possible actions that were
particularly helpful or harmful in such situations, indicators that suggest what
type of response to expect and connections to other cases that reflect next
steps or alternate steps depending on the responses observed [Kolodner,
1993]. Since the case base reflects the conceptual view of the cases and it
supports efficient search and retrieval methods, it should be organized in a
manageable structure, which determines the scope of intelligence of the
system and its breadth and depth of expertise [Gupta, 1994].

One of the main concerns of CBR is to ensure that the right cases can
be recalled at the right times. This is known as the indexing problem in CBR,
which has two aspects. One is the vocabulary problem that requires assigning
suitable labels or descriptors to the case so that it can be easily referenced in
the case library during retrieval [Chua et al., 2001]. Indices should address
the purposes the case will be used for; they should be abstract enough to
allow for broadening the future use of the case base and concrete enough to
be recognized in future. However, despite the success of many automated
methods, Kolodner [Kolodner, 1993] believes that people tend to do better at
choosing indices than algorithms, and therefore for practical applications
indices should be chosen by hand.

A CBR system uses a set of indices to search for and retrieve cases
similar to the current problem. There are three main approaches in indexing
cases namely nearest neighbour, inductive reasoning and knowledge guided

indexing [Gupta, 1994]. Frequently, systems use a combination of all three

308

Appendix C. Case-Based Reasoning

methods. In the nearest neighbour approach, the system selects the case
whose attributes most closely match those of the current problem. Among
current machine learning methodologies, inductive learning is the most
widely used.

An example of inductive learning systems is ID3 [Li, 1996], which the
majority of the case-based systems implement. The objective of induction
algorithm is to generalize decision rules from past examples. These methods
use an intelligent approach to retrieve cases based on the most meaningful
and discriminating features of each case.

On the other hand, in knowledge-based indexing, domain knowledge
about each case is used to determine the features in past cases that are most
relevant to the current problem. This method is generally used to enhance
and supplement the other two indexing approaches due to the difficulty to
implement this method since explanatory knowledge cannot be successfully
and profoundly captured using if-then rules [Gupta, 1994].

The easiest way to create a case is just a series of numerical values
[Tsai and Chiu, 2007] that correspond to those variables that are going to be
considered as important in order to solve the problem. When the
characteristics of a system can be expressed as numbers [Pérez et al., 2005] it
iS quite easy to generate a case structure that can be used by mathematical
techniques.

In other cases, properties of the variables that must conform the case
are selected [Song et al., 2007] to easily transform information into cases,
measuring and transforming the properties in order to clearly obtain the
information that is useful for the developed application.

In textual case bases, it is sometimes necessary to extract knowledge
from the data before creating the case base [Mustafaraj, 2007]. Once the
knowledge is obtained, it can be structured into the case base. Every new

element is part of one or more of the pieces of knowledge previously

309

Onganization Based Multiagent Architecture For Distributed Environments

identified, and then, the case is formed by the separated pieces that has inside
it.

E-mails are also textual elements [Fdez-Riverolalglesias et al.,
2007b], and the transformation from information to cases is not always
obvious. If the most relevant terms are selected, it is necessary to determine
which terms are more relevant than the others, and to justify it. A set of mails
is used and then a comparison between the frequency of appearance of a term
in a message and the frequency of the same term in the whole set of mails is
established as a measuring value.

In medical applications, the case must include values referred to the
patient, but also associated with the clinical evolution of the patient
[Montani, 2007]. It is also interesting to include a reputation value that is
increased every time a case is recovered from the case base and used, every
time the expert considers that the case is useful.

When the information to be transformed into cases contains a great
amount of words, it is necessary to parse the original data [Patterson et al.,
2005] in order to obtain the list of terms used to create the cases.

In some occasions, the information can be considered as hard to
model, but after an analysis, it can be transformed into numerical variables
[Ros et al., 2006] with what is quite easier to generate cases.

There is a clear difference between cases related with textual
information and those where the information can be numerical. In textual
systems a filtering process must be produced in order to eliminate useless
information and to traduce the data available into a series of concepts that
can categorize every item in the case base. On the other hand, numerical
information has a clear representation into cases, but, sometimes, it is not

evident and the variables must be evaluated, confronted or even transformed.

310

Appendix C. Case-Based Reasoning

C.3. RECOVERING DATA FROM THE CASE
BASE

Once the information is stored is the case base, it will be used to solve
future problems. The case base store all the cases previously used by the
system. When a new problem appears, a selection of cases are recovered
from the case based and will be used to solve that new problem.

The cases retrieved from the case base are in most cases, those more
similar to the proposed problem. Similarity is those systems the key concept
to take into account when trying to improve the retrieval phase, but it is not
the only valid concept in order to improve the retrieval.

The indexing mechanism determines the cases that should be selected
while the case retrieval process ensures that the most relevant case is selected
for further analysis. Given a description of a problem, a retrieval algorithm
retrieves the most similar cases to the current problem or situation by using
the indices in the case library. The retrieval of relevant cases depends on a
good indexing of the cases that select an appropriate set of indices. The
system retrieves the matched cases according to a predefined similarity
function, which evaluates the degree of similarity of each case in the case
base [Yau and Yang, 1998a].

CBR systems should include a strong memory-based retrieval system;
cases should be retrieved intelligently and systematically by finding the
closest match between attributes of past cases and those of the current
problem [Gupta, 1994]. When the case memory is large, a hierarchical
organization of the memory is necessary because a simple linear list is very
inefficient for retrieval. The basic idea is to organize specific cases that share
similar properties under a more general structure called a “generalized

episode” [de Méntaras and Plaza, 1997]. A general episode contains norms,

311

Onganization Based Multiagent Architecture For Distributed Environments

cases and indices where norms are features common to all cases, indexed
under a general episode and indices are features, which discriminate between
the cases of a general episode [de Mantaras and Plaza, 1997].

One of the most famous similarity measures is the k-NN (k nearest
neighbours) and also modern variations like Significant Nearest Neighbour
[Tsai and Chiu, 2007] where the value of k is calculated taking into account
the dissimilarity between the new case and the past ones stored in the case
base.

In some cases, when the amount of variables is quite big, it is
necessary to select which ones will be used to select the similar cases from
the case base [Montani, 2007]. A two steps procedure occurs so first the
interesting variables must be chosen, and then, the search in the case base of
the most similar cases according to those variables.

To determine the similarity between different elements, a great variety
of metrics has been used. Sometimes it is recommended to establish the
similarity between two elements by comparing them with the rest of the
cases [Im and Park, 2007]. Then the compared elements will be considered
as similar if their similarity with the rest of the cases is similar in all cases.

I different features are considered when defining the case base, they
must all be considered when obtaining similar cases from the case base. In
this kind of situations different metrics can be done to calculate the similarity
of the different features [Ros et al., 2006], and then create a combined
similarity metric that integrates all the metrics used.

Recover the most similar cases to one given can be an easy task if the
whole case base is indexed [Galushka and Patterson, 2006], then it is only a
guestion of searching the closest cases. But to get to that point, a previous
effort of analysis and categorization of the information must be done.

In some circumstances, a previous search of context is done [Spasic et

al., 2005], to obtain a variety of cases that are used to perform a second and

312

Appendix C. Case-Based Reasoning

more specific search.

When facing textual problems it is interesting to offer different
alternatives so that the user can personalize the retrieval depending on the
interest of the query [Patterson et al., 2005]. This way, the recovered cases
can be adapted to a specific situation defined by the user when determining
the terms of the retrieval.

When the different variables stored in the case base represent a
dissimilar importance for the final solution, it has to be expressed in the way
the cases are retrieved from the case base[Nugent and Cunningham, 2005].
The importance of the variables may also vary from one query to another,
and so the retrieval system must be adapted to correctly get back the right
collection of cases from the case base.

If the problem introduce in the system implies considering different
scenarios, multiple retrievals can be done [Aha et al., 2005]. In this kind of
situations the original problem introduced in the system defines the start
point of the search, and from that point and looking for in different
directions, different sets of cases are recovered from the case base, in order to

generate a complete perspective of the problem.
C.4. ADAPTATION OF THE RETRIEVED
CASES

The reuse phase is the solution generator. From the collection of cases
retrieved from the cases base, a new solution must be generated in order to
solve the proposed problem. Sometimes, there is no need to modify the
recovered cases to solve the problem, especially if talking about
classification problems, where only a belonging solution must be offered.

The most complex the problem is, the most necessary an adaptation is.

When the difference between the introduced problem and the stored cases is

313

Onganization Based Multiagent Architecture For Distributed Environments

big enough, then the adjustment of the recovered cases is essential in order to
obtain a correct solution, really adapted to the proposed problem.

Once a matching case is retrieved, a CBR system should adapt the
solution stored in the retrieved case to the needs of the current case. In
general, there are two kinds of adaptation in CBR as structural adaptation in
which adaptation rules are applied directly to the solution stored in cases and
derivational adaptation that reuses the algorithms, methods or rules that
generated the original solution to produce a new solution to the current
problem [Kolodner, 1993].

Most research on case adaptation has assumed that adaptation should
be done in a completely autonomous way through the rules. There are
alternatives of decreasing the need for adaptation rules suggested by Leake
[Leake, 1996], some of which are using flexible adaptation rules, using
adaptation cases, combining rules and cases for adaptation learning and
reusing subcases. Adaptation rules as proposed by Ng [Ng, 2001] are
developed to guide the adaptation process.

The next step after a case is adapted in accordance with the
requirements is the incorporation of that case into the case base so that it can
be used in the future. This feature of CBR provides the algorithm to become
stronger since the following problems will be solved more accurately with a
larger database. If the proposed solution is successful then the system
incorporates the solution and the representation of the current case into the
case memory. Sometimes, the system may not propose a solution to the
problem. In such cases, if the solution fails, then the system provides an
explanation as to why it failed and documents it in the system library [Gupta,
1994].

The reuse phase implies adapting the retrieved cases to solve the new
problem. In some cases multiple adaptations can be done [Huang et al.,

2007], depending on the amount of information given to the system. The

314

Appendix C. Case-Based Reasoning

biggest amount of information given, the most direct transformation will be
done.

When treating textual information, like e-mails, voting algorithms
[Fdez-Riverolalglesias et al., 2007b] can be used to adapt the recovered
cases, taking into account the information proposed by the treated problem.

On the other hand, numeric situations, like those used in microarray
problems, can be reused thru neural networks like Growing Cells Structures
[Diaz et al., 2006], where the aim is to cluster the retrieved information.

Another way to use neural networks to adapt the retrieved information
is to change the weight of the connection between the neurons depending on
the retrieved cases [Zhang et al., 2004]. Changing the weights allows the
system to adapt the solution to the problem, as the retrieved cases will
depend directly on the proposed problem.

When the certitude about the correction of a solution is not high
enough, multiple cases may be taken into account in order to build the new
solution. Then a fusion of cases [Song et al., 2007] is done, considering the
different benefits given by every point of view, by every case retrieved.

If the problem to be solved may belong to more than one field of
knowledge, and there may be more than one case base, a good solution can
be to adapt the retrieved cases, from the different case bases, according to the
characteristics of the problem [Policastro et al., 2006]. In this case, neural
networks were used to recover the data from the different case bases, and
machine learning algorithms combined the retrieved cases in order to adapt
those cases to the proposed problem.

When using genetic algorithms, the reuse may help to reduce
convergence time if considering previously working solutions [Pérez et al.,
2005]. This approach may be applied to different fields where evolutionary

algorithms are useful but slow.

315

Onganization Based Multiagent Architecture For Distributed Environments

C.5. REVIEW OF THE PROPOSED SOLUTION

When a solution is generated by a system, it is necessary to validate
the correction of that solution. One easy way to validate that correction is to
compare the proposed solution with those stored in the case base [Yu and
Liu, 2006]. Then a threshold value is established in order to determine if the
new solution is correct enough to be considered as a good solution and so to
be stored in the case base for future uses.

If the case base structure is integrated into a neural network, then the
revision phase consists changing the organization of the case base, depending
on the correction of the proposed result and other neural variables such as
neuron age, activation value and last use [Wu and Yu, 2005].

The best way to test the correction of a solution is to actually perform
the solution and check how good has been the evolution after applying it.
This is only possible in certain environments, such as strategy games [Aha et
al., 2005], where what is analyzed is the tool and its algorithms.

In crucial fields, such as medical applications, it is normal to trust an
expert in order to finally accept a solution [Chang, 2005]. Then, after being
accepted by the corresponding expert, next time it will be considered as a
better solution, being chosen from the case base with a higher probability.

Changing the values proposed by the system to others similar but not
equal is a technique also used to revise the correction of a solution [Li et al.,
2007]. If the solution generated by the similar values is not better than the
proposed one, then the chosen one is a good solution for the problem.

In not critical applications, like strategy games, the correction of a
solution can be added to the stored solutions, increasing its value every time
a solution is chosen [Sharma et al., 2007]. Genetic algorithms are also used
to revise the correction of the solutions [Pavon et al., 2008]. After running

those algorithms, the solutions can be accepted, and added to the case base.

316

Appendix C. Case-Based Reasoning

Finally, fuzzy algorithms are also used to automatically revise CBR
solutions [Fdez-RiverolaDiaz et al., 2007]. Using those algorithms the
memory used to store the cases can also be reducing, improving the result of

the system.
C.6. RETAIN OF THE SOLUTION AND CASE
BASE MAINTENANCE

The retention phase is a very important element in the case base
maintenance [Wilson, 2001]. It is important to readapt the way the
information is stored in order to increase the possibilities of finding good
solutions in the future. New data may affect previous relations established
between the stored elements. So it is important to arrange solid criteria to
decide whether to change the case base or not and if so, how to do it correctly
in order to represent in the case base the whole variability of the available
data.

In most cases there is a big amount of information stored in the case
base and it is not necessary to store every valid case, thus the information
could be too redundant. In those situations a conditional retention is
performed [Sharma et al., 2007], keeping the new solution only if it is
different enough to the closest existing case.

If during the solving process a big amount of new information is
generated, it may be eventually introduce in the case base. The relevance of
the new information could be such to also affect the adaptation phase [Li et
al., 2007]. In those circumstances the retention process is not very strict
because of the variety of origins that new data can have.

There are special applications where the source of new cases is not
only the solution proposed but also information exchanged between different

elements of the system [Ontafion and Plaza, 2003].. Then, the retention must

317

Onganization Based Multiagent Architecture For Distributed Environments

consider more variables, not only variability, but also the confidence or not
of the transmitted data depending on the specific context.

Even when the proposed solution is considered as an eventually good
solution to be stored in the case base, the growth of the case base can be
counterproductive. In some case, where the amount of stored information is
huge and when there must be an economy of resources in order to manage a
reasonable case base, case base editing is necessary [Delany, 2006]. In those
situations the number of cases stored in the case base is tried to keep as low
as possible, always maintaining the inherent capabilities of the information.

When the case base grows to thousands of elements, it may be
difficult to maintain it. Then dividing the case base in different parts with
certain inner similarity [Li et al.,, 2006] can help to structure the store
information and also to make future retrievals.

Another strategy used to control the growth of the case base is to
group cases into prototypes that [Montani and Anglano, 2008] include the
common characteristics of a series of cases with no plenty of variability.
Using those prototypes, the final size of the case base is reduced without

losing a significant amount of information.

C.7. CASE-BASED REASONING COMPARED
WITH OTHER TECHNIQUES

Reasoning in CBR is based on experience or remembering. CBR
approach focuses on how to exploit human experience, instead of rules, in
problem solving and thus improving the performance of decision support
systems [Chen and Burrell, 2001]. CBR does not require an explicit domain
model; main task is gathering case histories since CBR systems can learn by
acquiring new knowledge. Identifying significant features to describe a case

is much easier than creating an explicit model. By utilizing database

318

Appendix C. Case-Based Reasoning

techniques, CBR is enabled to manage large volumes of information that
increases the reliability of the solutions it proposes. Case-based systems are
preferable when the expert knowledge is hard to be modelled and large
amounts of cases are available. In this respect, case-based systems that aid
problem solving in construction are assumed to be attractive as they provide
a model to store previous construction projects in entirety as cases and reuse
them when similar new problems occur [Li, 1996].

There are several alternative approaches in the Al domain over which
CBR has various advantages. These systems include artificial neural
networks (ANNSs), rule-based expert systems and model-based systems.
Rule-based systems have well-defined structures and excellent explanation
facilities; in this respect they are more advantageous compared to ANNS,
which cannot easily generate explanations for their results. Indeed,
combination of rule-base systems or model-based systems with CBR could
give more satisfying results since the strengths of one system may
compensate the weakness of another.

CBR allows decision makers to interact with and review the reasoning
process and even perform heuristic adjustments on the derived result where
necessary [Chua et al., 2001]. CBR is applicable to solve problems and make
decisions when the knowledge needed is so vague that formatting decision
rules is infeasible but cases are available [Li, 1996]. CBR eliminates the
bottlenecks of other systems and facilitates development of expert systems. It
benefits from how humans reason and it is based on experience, which
should not be necessarily transformed to rules or models; it addresses ill-
defined problems by tolerating human interpretation, which provides
acceptable explanations on the solutions derived. Following paragraphs give
a detailed analysis of each technique and discuss their similarities with CBR

and the discriminating features between those methods.

319

Onganization Based Multiagent Architecture For Distributed Environments

C.7.1. ARTIFICIAL NEURAL NETWORK

An ANN is a computer program that imitates human decision
making at a low level in an attempt to replicate the capacity of human
reasoning to surpass the structure of rigidly defined rules and formal logic
[Li, 1996]. A more comprehensible definition is given by Caudill and
Butler (1990) who define ANN as a type of information processing system
whose architecture is inspired by the structure of biological systems
[Arditi and Tokdemir, 1999].

The development of an ANN based system consists of designing
and training the ANN. The design parameters in constructing an ANN
model can be described at three different levels: node level (type of input
accepted, transfer function and means of combination), network level
(number of layers, number and type of nodes, size of hidden layers,
number and type of output nodes and connectivity) and training level
(learning algorithm and learning parameters) [Arditi and Tokdemir, 1999].
Unfortunately, there is no structured methodology for designing an ANN
[Li, 1996]).

Training consists of presenting input and output data to the network
[Arditi and Tokdemir, 1999]. For each example presented to the network,
outputs are produced and these outputs are compared with those expected.
The error is back propagated to the hidden units and the weights of the
connections are modified using a modification rule [Li, 1996]. The
process is performed many times until the error is reduced to a preset
level.

Obviously, there are some similarities between two approaches.
Both are based on the experiential knowledge and are designed by
acquisition of inputs and outputs to the system. It should be noted that

CBR is a more advanced approach, it allows human interference in

320

Appendix C. Case-Based Reasoning

deciding indexing methods, but ANNs work like a black box [Yau and
Yang, 1998b], as the algorithm cannot be understood completely by
humans.

In addition, ANNS require to be completely trained; they perform at
lower efficiency when there are many features and do not allow updating
the system without retraining, so they can be regarded as difficult systems
to develop. Another drawback of ANNs is that they are designed to deal
with only numerical figures. On the other hand, CBR systems seem to be
more flexible since they are good at handling missing data, incorporating
new cases into the case base and coping with a vast amount of features
due to the indexing abilities. ANN is useful in identifying underlying
patterns to be used for forecasting where available data are noisy and
complex [Li, 1996] so, construction cost estimation may be an application

area.

C.7.2. RULE-BASED EXPERT SYSTEMS

Expert systems are computer programs that use heuristics and
inference techniques to solve complex problems that ordinarily require
expertise [Gupta, 1994]. A rule-based expert system consists of a
knowledge base to store the expert’s knowledge and facts as rules, an
inference engine that facilitates a reasoning process to solve a specific
problem, a context memory that contains the information about the
problem to be solved and a user interface that inputs and outputs
information [Li, 1996].

The essence of an expert system is a knowledge base represented
primarily by transparent if-then rules, so it is limited by the process of
acquiring knowledge. Moreover, in most cases, an expert system cannot
learn and has an extremely limited tolerance of incomplete input

information when the system’s default values are inadequate to solve the

321

Onganization Based Multiagent Architecture For Distributed Environments

new problem [Yau and Yang, 1998b].

Expert systems and CBR have a common goal of enhancing the
intelligence of machines and making them more human-like. One
important distinction is that expert systems solve problems by deductive
reasoning from first principles [Gupta, 1994] whereas CBR systems solve
new problems through analogical reasoning using the knowledge gained
from past experiences.

Instead of relying solely on general knowledge of a problem
domain or making associations along generalized relationships between
problem descriptors and conclusions, CBR is able to utilize the specific
knowledge of previously experienced, concrete problem situations
[Aamodt and Plaza, 1994].

As a CBR system modifies its behaviour based on past learning
experiences, it may be assumed to be a more dynamic approach than rule-
based expert systems, which are based on strict if-then rules. This is
supported by Kolodner [Kolodner, 1991] who believes that expert systems
are unsuccessful in solving problems that require creativity and common
sense but case representation sometimes overcomes such problems. CBR
systems are preferred over expert systems if rules are inadequate to

express the richness of the domain knowledge.

C.7.3. MODEL BASED SYSTEMS

In model-based systems the actual performance of a process or task
is compared with predicted behaviour or expected performance [Li, 1996].
Model-based reasoning uses structural knowledge of the domain in
problem solving; it provides causal explanations; lead to robust and
flexible problem-solving and allow transfer of some knowledge between

tasks since science strives for generally applicable theories.

322

Appendix C. Case-Based Reasoning

Besides these strengths, some disadvantages may be regarded as
lacking experiential knowledge of the domain; requiring an explicit
domain model; being highly complex and being unable to handle
exceptional situations [Luger, 2002]. Model-based systems are beneficial
for diagnosing problems for which a complete and accurate mathematical
model exists [Li, 1996]. In contrast, CBR does not require extensive
analysis of domain knowledge and it enhances problem solving through

the indexing strategies.

323

”Sélo el que ensaya lo absurdo es capaz de conquistar lo
imposible” Mignel de Unanuno

APENDiICE D.
RESVMEN DE LA
INVESTiGACIiON

Este dltimo apéndice del presente documento representa el
resumen, en castellano, de la investigaciin mostrada a lo
largo de esta tesis doctoral. Se detallardn, de manera
sucinta pero efectiva, los distintos pasos gque ha ido
siguiendo esta investigacion, asi como los elementos previos
necesarios y los resultados generados. De esta forma, se
cubrird todo el ciclo de vida de la investigacidn, desde los
primeros requisitos iniciales hasta la evaluacidn de los
resultados.

ste apéndice final, va a mostrar de forma resumida, los

distintos elementos que han conformado la investigacion

plasmada en la presente tesis doctoral. Se muestran aqui los
pasos llevados a cabo para, finalmente, desarrollar la arquitectura que se
presenta y demostrar su validez aplicAndola a dos casos de estudio
diferentes.

325

Onganization Based Multiagent Architecture For Distributed Environments

La arquitectura presentada en este documento tiene por nombre
OBaMADE (Organization Based Multiagent Architecture for Distributed
Environments: Arquitectura Multiagente Basada en Organizaciones para
Entornos Distribuidos). Se trata, como su propio nombre indica, de una
organizacion multiagente. Dentro de los distintos tipos posibles de sistemas
multiagente, se ha elegido una estructura basada en organizaciones, dandole
especial énfasis a la capacidad de los agentes para trabajar conjuntamente,
teniendo un objetivo comdn, dentro de su organizacion. Dentro de esta
arquitectura, se han creado cuatro organizaciones diferentes que cubren los
distintos aspectos del sistema: una que se encarga de la comunicacién con el
exterior, otra que estructura y determina los mecanismos de comunicacion
interna del sistema y las otras dos organizaciones internas encargadas del
razonamiento y de la generacion de las soluciones una a los distintos
problemas a los que se puede enfrentar esta arquitectura, una y, la otra,
encargada de los servicios adicionales.

OBaMADE ha sido aplicada a dos casos de estudio que se explicaran
también dentro de este Gltimo apéndice: en primer lugar se ha utilizado para
predecir la evolucién de las mareas negras y, posteriormente, se aplico a la
prediccion de la evolucion de los incendios forestales. En ambos casos los
resultados han sido satisfactorios, mostrandose eficiente a la hora de generar
predicciones sobre &reas geogréaficas concretas y basdndose siempre en datos

histéricos almacenados en el sistema.
D.1. OBJETIVOS FUNDAMENTALES

El objetivo principal de este trabajo de investigacion es desarrollar
una arquitectura que permita resolver los problemas relacionados con los
entornos distribuidos. Para lograr ese objetivo se ha creado una arquitectura
multiagente basada en organizaciones de agentes. Dichos agentes,

estructurados en organizaciones, ofrecen distintas interfaces a los usuarios

326

Apéndice D. Resumen de la Investigacion

dependiendo del tipo de dispositivo desde el que se acceda a los sistemas
creados bajo esta arquitectura. Los agentes que forman parte de las
organizaciones internas de la arquitectura, aquellas encargadas de generar las
soluciones a los problemas planteados, siguen una metodologia de
razonamiento basado en casos. La citada metodologia se basa en la
reutilizacion de informacion pasada, utilizando las soluciones dadas a
problemas pasados, para solucionar nuevos problemas similares a aquellos
gue han sido previamente solucionados y cuya solucién estd almacenada en

el sistema relacionada con el problema.

Ademas del objetivo principal anteriormente citado, este trabajo de
investigacion se plantea cubrir otra serie de objetivos relacionados directa e
indirectamente con la consecucién de dicho objetivo principal, los cuales se

enumeran a continuacion:

— Realizar un completo estudio y estado del arte de las distintas técnicas
y metodologias aplicadas a la solucién de problemas en entornos
distribuidos.

— Estudiar las distintas metodologias y sistemas tanto de agentes, como
multiagentes y de organizaciones de agentes, para poder elegir el méas
apropiado para los requisitos necesitados por la arquitectura que se
desarrolla en esta investigacion.

— Aplicar la teoria de organizaciones de agentes a la creacion de una
arquitectura para la solucion de problemas de entornos distribuidos.

— Comparar, de forma tedrica, las ventajas y desventajas de las distintas
alternativas a OBaMADE.

— Aplicar la arquitectura propuesta a distintos casos de estudio para
evaluar, empiricamente, los resultados de la aplicacion de la

arquitectura a situaciones reales.

327

Onganization Based Multiagent Architecture For Distributed Environments

D.2. ENTORNOS DISTRIBUIDOS

En este documento y en toda la investigacién aqui recogida, se

entiende por entorno distribuido aquel en el que los distintos componentes

gue interaccionan con un sistema no tienen por qué estar localizados en un

mismo lugar ni a la vez.

Las principales caracteristicas de los entornos distribuidos son:

Debe existir una separacion funcional entre los distintos componentes
que forman el sistema, permitiendo habilitar mecanismos especificos
para cada una de las distintas partes, asi como dotando de
independencia real a cada elemento individual.

Las distintas entidades que forman parte de los sistemas estan
distribuidas de forma inherente. Cada elemento debe funcionar dentro
del sistema sin tener por qué conocer la existencia de otros elementos
en el mismo.

Los sistemas deben ser confiables. Los datos deben estar seguros y, a
ser posible, replicados en varias localizaciones.

Estos sistemas deben ser también escalables, pudiendo incorporar
nuevas aplicaciones sin menoscabo de las existentes previamente.

El hecho de compartir recursos hace que el sistema global resulte mas
econdmico que disponiendo de recursos individuales para cada

elemento del sistema.

D.2.1.CARACTERISTICAS FUNDAMENTALES

Las caracteristicas mas importantes de los entornos distribuidos son

las que se explican a continuacion:

— Heterogeneidad de los componentes. La interconexion, sobre todo
cuando se usa Internet, se da sobre una gran variedad de elementos

hardware y software, por lo cual se necesitan ciertos estandares que

328

Apéndice D. Resumen de la Investigacion

permitan esta comunicacion. Los middleware, son elementos
software que permiten una abstraccion de la programacion vy el
enmascaramiento de la heterogeneidad subyacente sobre las redes.
También el middleware proporciona un modelo computacional
uniforme.
Extensibilidad. Determina si el sistema puede crecer y ser
reimplementado en diversos aspectos (afladir y quitar
componentes). La integraciébn de componentes escritos por
diferentes programadores es un auténtico reto.
Seguridad. Reviste gran importancia por el valor intrinseco para los
usuarios. Tiene tres componentes:
o Confidencialidad. Proteccion contra individuos no
autorizados.
0 Integridad. Proteccion contra la alteracion o corrupcion.
o Disponibilidad. Proteccion contra la interferencia con los
procedimientos de acceso a los recursos.
Escalabilidad. El sistema es escalable si conserva su efectividad al
ocurrir un incremento considerable en el nimero de recursos y en
el nimero de usuarios.
Tratamiento de Fallos. Consiste en la posibilidad que tiene el
sistema para seguir funcionando tras producirse fallos de algun
componente en forma independiente, pero para esto se tiene que
tener alguna alternativa de solucion. Las técnicas existentes para
tratar estos fallos son las siguientes:
0 Deteccion de fallos. Algunos fallos son detectables, con
comprobaciones rutinarias realizadas por el sistema, en las
que se comprueba el correcto funcionamiento de los distintos

elementos.

329

Onganization Based Multiagent Architecture For Distributed Environments

0 Enmascaramiento de fallos. Algunos fallos detectados
pueden ocultarse o atenuarse reduciendo, en lo posible, la
repercusion de los mismos.

0 Tolerancia de fallos. Sobre todo en Internet se dan muchos
fallos y no es muy conveniente ocultarlos, es mejor
tolerarlos y continuar. El resultado final no va a variar
sustancialmente si se empleara otra técnica. Ej.: Tiempo de
vida de una busqueda.

0 Recuperacion frente a fallos. Tras un fallo se deberé tener la
capacidad de volver a un estado anterior estable y sin fallos.

0 Redundancia. Se puede usar para tolerar ciertos fallos (DNS,
BD, etc.)

— Concurrencia. Consiste en compartir recursos por parte de varios
clientes a la vez.

— Transparencia. Es la ocultacion al usuario y al programador de
aplicaciones de la separacién de los componentes en un sistema
distribuido. Se identifican ocho formas de transparencia:

0 De Acceso. Se accede a recursos locales y remotos de forma
idéntica.

o De ubicacion. Permite acceder a los recursos sin conocer su
ubicacion.

o De concurrencia. Usar un recurso compartido sin
interferencia.

0 De replicacion. Ofrece la posibilidad utilizar varios
ejemplares de cada recurso, aumentando el rendimiento
global del sistema.

o0 Frente a fallos. Logra ocultar los fallos ante los usuarios.

o De movilidad. Permite la reubicacion de recursos y clientes

sin afectar al sistema.

330

Apéndice D. Resumen de la Investigacion

o De prestaciones. Posibilita la reconfiguracion del sistema
para mejorar las prestaciones segun su carga.

0 De escalado. Permite al sistema y a las aplicaciones crecer
sin modificar la estructura del sistema o los algoritmos de

aplicacion.
D.2.2.VENTAJAS Y DESVENTAJAS

Los entornos distribuidos tienen las siguientes ventajas comparados
con los sistemas centralizados:

— Una de las ventajas de los sistemas distribuidos es la economia, pues
es mucho mas barato afiadir servidores y clientes cuando se requiere
aumentar la potencia de procesamiento.

— El trabajo en equipo. Por ejemplo: en una fabrica de ensamblado, los
robots tienen sus CPUs diferentes y realizan acciones en conjunto,
dirigidos por un sistema distribuido.

— La mayor confiabilidad. Al estar distribuida la carga de trabajo en
muchas maquinas el fallo de una de ellas no afecta tanto a las demas,
el sistema sobrevive como un todo.

— La capacidad de crecimiento incremental. Se pueden afiadir elementos
de procesamiento al sistema incrementando su potencia en forma
gradual segun sus necesidades.

Por otro lado, este tipo de sistemas también tiene una serie de
desventajas, citadas a continuacion:

— El principal problema es el software, ya que el disefio, implantacion y
uso del software distribuido presenta numerosos inconvenientes.

— También plantea interrogantes como el tipo de S.O., programacion o
aplicaciones méas adecuados para este tipo de sistemas, la cantidad de
informacidn que debe estar disponible para los usuarios y el reparto de

tareas entre los usuarios y los sistemas.

331

Onganization Based Multiagent Architecture For Distributed Environments

— Las redes de comunicacion también pueden representar un problema
para este tipo de sistemas. Por ejemplo: pérdida de mensajes,
saturacion en el trafico, etc.

— EIl uso compartido de datos también representa un potencial problema
para estos sistemas, al tener que considerar, de forma constante, la
seguridad y estabilidad de los mismos.

En general, y especialmente al tener en cuenta la aplicabilidad de estos
sistemas, se considera que las ventajas superan a las desventajas, si estas

Gltimas se administran seriamente.

D.3. AGENTES, SISTEMAS MULTIAGENTE Y
ORGANIZACIONES

En los desarrollos iniciales de sistemas multiagente, los disefiadores se
centraron en el estudio del agente, es decir, en la estructura interna del mismo
y en su comportamiento. Las organizaciones, como mucho, emergian de las
interacciones de los agentes [Boissier et al., 2007], por ejemplo con los
protocolos de tipo ContractNet o la formacion de coaliciones de dependencia.
Sin embargo, los métodos de analisis y disefio de sistemas multiagente no
consideraban a las organizaciones como entidades propias, ni tampoco los
agentes las trataban como conceptos sobre los que razonar. En realidad, los
agentes eran vistos como entidades autébnomas y dinamicas que
evolucionaban en funcién de sus propios objetivos, sin que existieran
restricciones explicitas externas sobre sus comportamientos ni
comunicaciones [Boissier et al., 2007].

El concepto de agente tiene su principal origen en la inteligencia
artificial, evolucionando como una entidad computacional aislada gracias a la
influencia de la ingenieria de software, superando asi las limitaciones de las

metodologias orientadas a objetos. La principal diferencia entre los

332

Apéndice D. Resumen de la Investigacion

conceptos de agente y de objeto es la autonomia que poseen los primeros.
Los agentes son capaces de tomar decisiones, reaccionar ante estimulos
externos, cambiar su propio comportamiento y adaptarse a las necesidades
del entorno.

La definicion del término agente es todavia tema de discusion, ya que
se asocia a un gran namero de disciplinas, desde la psicologia, hasta las
orientadas a la computacion, tales como la inteligencia artificial, la ingenieria
de software y las bases de datos, entre otras, por lo que se hace dificil realizar
una definicion con una vision global independiente del area de influencia.
Wooldridge define un agente como un sistema computacional que se sitda en
algln entorno y es capaz de actuar de forma autébnoma en dicho entorno
para alcanzar sus objetivos de disefio [Wooldridge, 2002]. En cambio,
Russell, et al. [Russell et al., 1995] consideran que la nocién de un agente
aparece como una herramienta para analizar sistemas, no una
caracterizacion absoluta que divida el mundo en agentes y no agentes. Para
este Gltimo autor, un agente es cualquier elemento capaz de percibir su
entorno a través de sensores y responder segin su funcién en el mismo
entorno a través de actuadores, asumiendo que cada agente puede percibir
sus propias acciones y aprender de la experiencia para definir su
comportamiento.

Debido a que existen grandes diferencias y discusién a la hora de
definir lo que es un agente, se ha optado por definir una serie de
caracteristicas que éstos deben cumplir:

— Autonomia. Actuar sin la necesidad de intervenciones externas, ya
sean humanos u otros agentes, y tener alguna clase de control sobre
sus acciones y su estado interno.

— Situacion. Situarse dentro de un entorno, ya sea real o virtual.

— Reactividad. Percibir su entorno y actuar sobre éste con la

capacidad de adaptarse a sus necesidades.

333

Onganization Based Multiagent Architecture For Distributed Environments

— Pro-Actividad o Racionalidad. Tomar la iniciativa para definir
metas y planes que les permitan alcanzar sus objetivos.

— Habilidad social. Interactuar con otros agentes, incluso con
humanos.

— Inteligencia. Rodearse de conocimiento (creencias, deseos,
intenciones y metas).

— Organizacién. Capacidad de agruparse dentro de sociedades que
siguen unas estructuras similares a las definidas en sociedades
humanas o ecoldgicas.

— Aprendizaje. Habilidad de adaptarse progresivamente a cambios en
entornos dinamicos, mediante técnicas de aprendizaje.

Una vez descritos los principales requisitos que debe cumplir un
agente y las caracteristicas de los diferentes tipos de agentes que existen, es
necesario definir lo que es un sistema multiagente (MAS: Multi-Agent
System). Un sistema multiagente es basicamente una red de entidades
enfocadas a resolver problemas, y que trabajan de manera conjunta para
encontrar respuestas a los problemas que estan mas alla de las capacidades
o0 del conocimiento individuales de cada entidad [Durfee et al., 1989].

Una definicion mas general y actualizada describe un sistema
multiagente como cualquier sistema compuesto de multiples componentes
autébnomos que presentan las siguientes caracteristicas [Jennings et al.,
1998]:

— Cada agente tiene capacidades incompletas para resolver un

problema.

— No existe un sistema de control global.

— Los datos son descentralizados.

— La computacion es asincrona.

334

Apéndice D. Resumen de la Investigacion

D.3.1. SISTEMAS MULTIAGENTE

Las arquitecturas para la construccién de agentes especifican como
se descomponen los agentes en un conjunto de moédulos que interactlan
entre si para lograr la funcionalidad requerida. Entre las principales
tenemos las siguientes, diferenciadas en el modelo de razonamiento que
utilizan:

— Reactivas. Carecen de razonamiento simbdlico complejo y de
conocimiento o representacion de su entorno, por lo que sus
mecanismos de comunicacién con otros agentes son muy basicos.
Los agentes que utilizan este tipo de arquitectura reciben estimulos
de su entorno y reaccionan ante ellos modificando sus
comportamientos y el mismo entorno.

— Deliberativas. Utilizan modelos de representacion simbdlica del
conocimiento basados en la planificacién. Los agentes
deliberativos emplean mecanismos de comunicacién complejos y
contienen un modelo simbdlico del entorno. Toman decisiones
utilizando razonamiento l6gico basado en la concordancia de
patrones y en la manipulacion simbdlica, partiendo de un estado
inicial y un conjunto de planes con un objetivo a satisfacer.

— Hibridas. Son arquitecturas intermedias entre las dos anteriores.
Los agentes de este tipo incluyen comportamientos reactivos y
deliberativos, generando un ciclo percepcidn-decision-accion. El
comportamiento reactivo se utiliza para reaccionar ante eventos
gue no requieran decisiones complejas sobre ciertas acciones.

Cada tipo de agente cuenta con caracteristicas distintas para cada
escenario de aplicacion en el que se desenvuelva. Por ejemplo, en un
entorno rodeado de sensores y en el cual el tiempo de reaccion ante los

estimulos sea lo mas importante, los agentes reactivos son la opcion mas

335

Onganization Based Multiagent Architecture For Distributed Environments

recomendable. Sin embargo, en ciertos escenarios puede ser necesario que
los agentes sean capaces de tomar decisiones mas complejas y de forma
dindmica, por lo que el uso de agentes deliberativos o hibridos resulta mas
conveniente.

Como los datos se encuentran organizados de forma distribuida y
no existe un sistema de control global. Cada agente se centra en su propia
conducta, tomando la iniciativa guiado por sus objetivos y decidiendo
dindmicamente las tareas que debe realizar o asignar a otros agentes. Es
necesario que los agentes trabajen de forma coordinada, principalmente a
través de mecanismos de negociacion, para alcanzar sus objetivos
[Ossowski and Garcia-Serrano, 1998].

Las caracteristicas de los agentes deliberativos BDI (Belief, Desire,
Intention), asi como la posibilidad para modelar sus capacidades e integrar
mecanismos de razonamiento, hacen que resulten adecuados para la
resolucién de problemas en tiempo de ejecucién en entornos altamente
dindmicos. Como consecuencia, los agentes permiten a los sistemas
aprender de las experiencias pasadas y reaccionar de manera diferente de
acuerdo a las necesidades de los usuarios y las caracteristicas del contexto
en una situacién determinada, requerimientos fundamentales para
afrontar los retos que plantean los entornos distribuidos. Por su parte, la
combinacion de las herramientas para la ingenieria del software Gaia y
SysML, permiten obtener modelos de los sistemas multiagente cercanos a
la implementacion, facilitando la labor de los desarrolladores.

Sin lugar a dudas, los sistemas multiagente representan una
interesante alternativa que bien vale la pena explorar para intentar afrontar
los retos que presenta los entornos distribuidos, especialmente en el
desarrollo de sistemas dinamicos y adaptables a las necesidades de los

usuarios.

336

Apéndice D. Resumen de la Investigacion

D.3.2. METODOLOGIAS MULTIAGENTE ORIENTADAS
A LAS ORGANIZACIONES

En este tipo de metodologias el disefiador del MAS se centra desde
un principio en la organizacion del sistema. Por tanto, analiza el MAS
desde una perspectiva global, de modo que el proceso de desarrollo se

guia por los conceptos organizativos [Argente et al., 2006].

Estos métodos aparecen como consecuencia de la necesidad de
disefiar sistemas que permitan tener en consideracion aspectos como la
estructura de la organizacion, sus objetivos, sus normas, etc. desde las

etapas iniciales del desarrollo del sistema.

Los objetivos de la organizacion representan una descripcion a alto
nivel de los propositos de la sociedad. Permiten guiar las decisiones sobre
como se debe disefiar la estructura de la organizacion. Asi, los objetivos
determinan las tareas que se deben llevar a cabo, el tipo de agentes y sus
habilidades requeridas, y el reparto de los recursos entre los miembros de
la organizacion.

La estructura de la organizacién queda formalizada cuando los
principios que gobiernan su comportamiento se formulan de forma
precisa. Los roles y sus relaciones se definen de forma independiente de
los atributos y dependencias de las personas 0 agentes que ocupen una

posicion particular en la estructura de la organizacion.

Por tanto, dicha estructura viene descrita por los roles, sus
interacciones y el lenguaje de comunicacion que empleen. Los roles
representan las diferentes entidades o actividades necesarias para cumplir
con el proposito de la organizacién. Ademas, los objetivos globales de la
sociedad conforman el punto de partida para especificar los objetivos y

acciones a asignar a los roles.

337

Onganization Based Multiagent Architecture For Distributed Environments

Finalmente, las normas sociales describen el comportamiento
esperado de los miembros (desde el punto de vista del disefio de la
organizacion) y las sanciones que se deben aplicar en el caso de realizar
acciones no deseables. Las normas suelen ser establecidas y ejecutadas por
instituciones que tienen un estatus legal y, por tanto, conceden legitimidad
y seguridad a los miembros de la sociedad.

Tras el estudio de distintos trabajos que siguen esta perspectiva
metodoldgica, se observan dos tendencias bien diferenciadas. Por un lado,
algunas metodologias se centran solamente en la estructura organizativa,
sin realizar de forma explicita el analisis y disefio de las normas sociales.
Ejemplos de estas metodologias son Agent-Group-Role [Ferber et al.,
2004], Roadmap [Juan et al., 2002], la extension de Tropos [Kolp et al.,
2003], MESSAGE [Caire et al., 2002], INGENIAS [Sanz, 2002],
ANEMONA [Boggino, 2005, Giret B., 2005] o AML [Cervenka and
Trencansky, 2007].

Por otro lado, otras metodologias se centran en las normas sociales
y definen de forma explicita mecanismos de control para establecer las
normas y controlar su ejecucion. Ademas, estas metodologias consideran
ciertos mecanismos para incluir agentes externos en la sociedad y
controlar su comportamiento. Por tanto, resultan adecuadas para el disefio
de sistemas multiagente abiertos. Ejemplos de este tipo de metodologias
son OperA [Dignum, 2004], Civil Agent Societies [Dellarocas and Klein,
2000b], SODA [Omicini, 2001], MOISE [Gateau et al., 2005] y la
extension de Gaia [Zambonelli et al., 2003]. Ademas, el marco de trabajo
Electronic Institutions [Esteva et al., 2001] se centra en la perspectiva
organizativa y el control de las normas sociales. Asi mismo, el marco de
trabajo HARMONIA [Vézquez-Salceda and Dignum, 2003] permite
modelar las normas de las organizaciones electrénicas en varios niveles,

desde el méas abstracto, tomando como base los estatutos de la

338

Apéndice D. Resumen de la Investigacion

organizacion, hasta el nivel procedimental en el que se implementan los
procedimientos y protocolos finales de las normas. Posteriormente, este
marco de trabajo se unié a la metodologia OperA, definiendo asi un

nuevo método denominado OMNI [Vazquez-Salceda et al., 2005].

D4. ARQUITECTURA BASADA EN
ORGANIZACIONES PARA ENTORNOS
DISTRIBUIDOS

OBaMADE, la arquitectura presentada en este documento, representa
una combinacion de técnicas y metodologias adaptadas a entornos distribuidos

que la hacen aplicable a distintos tipos de situaciones.

D.4.1. ELEMENTOS FUNDAMENTALES

OBaMADE es una arquitectura basada en organizaciones de
agentes. Dichas estructuras potencian los elementos sociales de los
agentes, dando importancia a su colaboracion para lograr un objetivo
comun.

OBaMADE estd compuesta por cuatro organizaciones
fundamentales. Dichas organizaciones estan representadas de forma
esquematica en la figura 47. En primer lugar estd la Organizacion de
Interfaces, que se encarga de la comunicaciéon con el exterior. Esta
organizacion presenta las distintas interfaces a los usuarios dependiendo
tanto del tipo de servicio que soliciten como del dispositivo que estén
usando. Tanto lo uno como lo otro seran posteriormente transparentes para
el resto de elementos del sistema, que simplemente se encargaran de
solucionar las solicitudes que, desde esta organizacion, se vayan

generando.

339

Onrganization Based Multiagent Architecture For Distributed Environments

Organizacion de

Servicios
Interfaces

Adicionales

Organizacion de Organizacion de
Comunicacion Servicios CBR

La Organizacion de Comunicacion es la encargada de recibir
las solicitudes que se generan en la organizacion de interfaces. Esta
organizacion gestiona el tipo de solicitud que recibe el sistema y la
envia a la correspondiente organizacion de servicios que tenga que dar
solucidn a dicha solicitud. Es en esta organizacion donde se determina
qué servicios estan disponibles y qué servicios pueden solucionar los
distintos tipos de solicitudes admitidas por el sistema.

Por altimo hay dos organizaciones de servicios. Se trata de la
Organizacién de Servicios CBR y la Organizacion de Servicios
Adicionales. Dichas organizaciones agrupan a los distintos agentes

gue dan servicio a las distintas solicitudes venidas desde los usuarios.

D.4.2. RAZONAMIENTO BASADO EN CASOS

OBaMADE utiliza la metodologia de Razonamiento Basado en
Casos (conocida por CBR, Case-Based Reasoning), como base para
crear sus procesos de razonamiento interno. Basandose en ella se han

desarrollado unos servicios implementados por agentes que forman

340

Apéndice D. Resumen de la Investigacion

parte de la Organizacion de Servicios CBR que genera las distintas
soluciones de las diferentes aplicaciones de esta arquitectura. Por eso,
en esta seccion se explican los fundamentos de esta metodologia.

El Razonamiento Basado en Casos es un método cominmente
utilizado para solucionar nuevos problemas basandose en las
soluciones de problemas anteriores. Un mecanico de automoviles que
repara un motor porque recordd que otro vehiculo presentaba los
mismos sintomas estd usando razonamiento basado en casos. Un
abogado que apela a precedentes legales para defender alguna causa
estd también utilizando este tipo de razonamiento basado en casos.
Cuando un ingeniero copia elementos de la naturaleza, esta tratando a
ésta como una ““base de datos de soluciones”. El razonamiento basado
en casos es una manera de razonar haciendo analogias. Se ha
argumentado que mas que un método poderoso para el razonamiento
de computadoras, es un sistema usado por las personas para solucionar
problemas cotidianos. Mas radicalmente se ha sostenido que todo
razonamiento es basado en casos, porque esta basado en la experiencia
previa.

Podemos definir claramente el razonamiento basado en casos
partiendo de una definicion clésica de esta metodologia:

“A case is a contextualized piece of knowledge representing an
experience that teaches a lesson fundamental to achieving the goals of
the reasoner”, [Kolodner, 1993]

Este sistema de razonamiento se basa en una unidad minima
Illamada caso, como literalmente define Kolodner. Un caso se puede
definir como una representacion de una experiencia anterior, una
vivencia. Podria ser visto como una caja en la que encontramos todas
aquellas cosas que ocurrieron y de las que se saben causas Yy

consecuencias.

341

Onganization Based Multiagent Architecture For Distributed Environments

El ‘case’ del que se habla en la definicion original esta
modificado por ‘contextualizad piece of knowledge’. Es importante
hacer notar sobre todo el término contextualizado ya que, como se ha
indicado anteriormente este conocimiento representa un conjunto de
hechos que han transcurrido en la experiencia. Una parte de estos
hechos corresponden al contexto en el que transcurre la experiencia.
Este contexto en el sistema experto también tiene mucha importancia
ya que puede ser utilizado en el proceso de inferencia; esto se
explicara mas adelante.

Otro elemento importante de la definicién es: ‘representing an
experience’, que implica que el caso esta basado en un conocimiento,
es decir, no es algo creado artificialmente sobre hechos sino que esta
basado en un conocimiento existente previamente y, por lo tanto, que
podemos considerarlo cierto desde el inicio. Ademas, el hecho de que
se hable de experiencia comienza a hacer notar que este sistema estara
muy ligado a la adquisicion de conocimiento externo ya que, al estar
basado en las experiencias, serd necesario que el sistema vaya
adquiriendo nuevas experiencias para mejorar su razonamiento.

Si se continda con la definicion, lo siguiente es: ‘that theaches
a lesson fundamental’. Con esto lo que se quiere indicar es que las
experiencias que hay en el sistema no se refieren a cualquier
experiencia, sino solo a aquellas que aportan alguna informacion sobre
el tema tratado por el sistema, ademas de no repetir experiencias ya
existentes con el mismo contexto o que no aportan nueva informacion
al sistema. Finalmente la definicion acaba con ‘to achieving the goals
of the reasoner’ que indica que el uso de los casos persigue
directamente la consecucion de los objetivos del razonamiento.

El ciclo principal que conforma el razonamiento basado en

casos puede dividirse en cuatro subprocesos diferentes que se

342

Apéndice D. Resumen de la Investigacion

muestran graficamente en la figura 48:

Recuperar los casos similares al que analizamos.

— Reutilizar la informacién y el conocimiento que tenemos en este
caso para resolver el problema.

— Revisar la solucion propuesta.

— Retener las partes de esta experiencia que nos puedan ser Utiles

para la resolucién de futuros problemas.

Problema

=
~ "
RECUPERAR o |
T ' Nuevo
Casos similares cuperado |
| caso
he_._*.ﬂ'

RETENER | BASE DE

Almacenar la CASOS Adaptar los

; . Cds0s
solucion revisada Casos pasadas: recuperados
Conodmiento def p

dominic.

REVISAR

Caso .
Comprobar @
revisado | solucion resuelto

! | propuesta

-
Figura 48. Ciclo basico del Razonamiento Basado en Casos.

Cuando un nuevo problema llega a un sistema primero que hay
que hacer es dado ese determinado problema recuperar los casos
relevantes que pueden solucionarlo.

Una vez se tiene este conjunto de casos que guardan cierta
similitud con el caso para el cual hay que proponer una solucién hay

que reutilizar la solucion de todos ellos, en su globalidad o solamente

343

Onganization Based Multiagent Architecture For Distributed Environments

en alguna de sus partes que interese para transformar sus contextos en
el problema que se tiene actualmente. Con ello se tendria una primera
version de la solucién que es necesario probar en el mundo real o en
una simulacion y es preciso revisarla. Se trata de un proceso circular
en el que reutilizan diversos casos de la base de conocimiento, se
revisa la solucion y, si no es satisfactoria, se vuelve a modificar con la
eliminacion de los casos que fuesen incorrectos o la inclusion de
aquellos que faltasen para perfeccionar la solucion.

Finalmente el ultimo paso es la retencion. Después de que la
solucion haya sido adaptada satisfactoriamente para resolver el
problema dado, se almacena la experiencia resultante como un nuevo
caso en la memoria. Uno de los objetivos del razonamiento basado en
casos reside no solo en recordar los casos resultantes que hayan sido
acertados, sino también, aquellos en que se ha fallado, ya que con
estos se puede mejorar el razonamiento del sistema para que cuando se
tenga que llevar a cabo un proceso similar se sepa que no hay que

seguir esa linea de razonamiento que lleva a un resultado incorrecto.

D.4.3. CAMPOS DE APLICACION DE OBAMADE

OBaMADE se ha desarrollado de forma genérica, sin estar
directamente relacionada con un tipo de problema especifico. Sus
caracteristicas hacen que pueda ser aplicada en diferentes tipos de
situaciones. Los distintos elementos que forman parte de ella, le permiten
ofrecer servicios de comunicacion entre distintos usuarios y la estructura
interna que contiene la informacién. Dicha comunicacion permite que se
pueda adaptar a distintos tipos de problemas.

Asi, los tres principales campos de aplicacion de esta arquitectura
son: la generacion de predicciones, la clasificacion y agrupamiento y la

planificacion. Los tres seran explicados a continuacion.

344

Apéndice D. Resumen de la Investigacion

La principal y primera aplicacion en la que puede utilizarse
OBaMADE es la generacion de predicciones. Para ello, el sistema
almacena informacién con pardmetros temporales, que caracterizan una
situacion en un momento y en el momento siguiente, representando asi la
evolucion temporal de un determinado entorno. De esta manera,
analizando casos almacenados en el sistema que tuvieran un estado de
partida similar a aquel del que queremos obtener la prediccion, podremos
generar una prediccion fiable.

La informacion se inserta en el sistema desde diferentes fuentes,
bien sean usuarios que quieren ampliarlo sin necesidad de pedir una
prediccidn, satélites con informacién en tiempo real, sensores o bases de
datos accesibles por el sistema. Toda esta informacion se estructura y
organiza dentro de la base de casos para poder ser utilizada a la hora de
generar futuras predicciones.

La clasificacion consiste en estructurar la informacion en un cierto
nimero de categorias dependiendo de las caracteristicas intrinsecas de
dicha informacién. El agrupamiento (normalmente conocido por su
correspondiente anglicismo: clustering), consiste en determinar los
posibles grupos diferentes en que se distribuyen una serie de elementos
dados. Estas dos técnicas estan muy relacionadas y OBaMADE puede ser
facilmente utilizada en su resolucion y es capaz de combinarlas para
generar complejas aplicaciones de, por ejemplo, mineria de datos o
extraccion de conocimiento. Cuando se afrontan este tipo de tareas, la fase
de creacion de la base de casos es fundamental, ya que es en ella donde se
van a determinar las categorias. Bien sea para clasificar o para agrupar, es
en esta fase donde se analiza la informacion disponible y se crean y
organizan las distintas categorias. Una vez hecho este trabajo, cualquier
clasificacién o agrupamiento posterior estard basado en la informacién

almacenada en la base de casos y seguird la misma organizacion.

345

Onganization Based Multiagent Architecture For Distributed Environments

Un ultimo campo en el que puede ser aplicada esta arquitectura es
el de planificacion. En este caso, la metodologia seguida por los servicios
internos de la arquitectura no sera de razonamiento basado en casos, sino
de planificacion basada en casos. Los métodos de funcionamiento son
similares, ya que los planes almacenados en la base de casos se agrupan en
funcion de las condiciones para las que se generaron dichos planes. Los
planificadores creados bajo esta arquitectura no pueden ser de tipo
general, sino siempre aplicados a algin campo de conocimiento
determinado, que establecera las relaciones entre las causas o situaciones

iniciales y las consecuencias o soluciones a dichas situaciones.

D5. RESULTADOS

La arquitectura OBaMADE ha sido aplicada a dos casos de estudio
para validar su correccion. En primer lugar, se ha usado en la generacion de
predicciones respecto a la evolucién de los vertidos generados tras una marea
negra. En este caso, el sistema creado sobre OBaMADE predice la
probabilidad de encontrar restos del vertido en una determinada zona del

océano.

El segundo caso de estudio al que se ha aplicado OBaMADE es la
prediccién de la evolucion de incendios forestales. El sistema predice, en este
caso, la presencia o no de fuego en una determinada area geogréafica una vez

se ha declarado un incendio en las inmediaciones.

D.5.1. MAREAS NEGRAS

Cuando se produce un vertido generalizado de algun tipo de
hidrocarburo en el mar (fenémeno normalmente conocido como mareas
negras), es importante disponer de toda la informacion necesaria para

evitar o minimizar, en la medida de lo posible, el eventual dafio

346

Apéndice D. Resumen de la Investigacion

medioambiental asociado a dicho vertido.

Para analizar dichos dafios medioambientales es muy importante
saber si una zona se va a ver afectada por los vertidos. Predecir, con
suficiente antelacion, este dato, puede ser de vital importancia a la hora de
preservar determinadas zonas especialmente delicadas, bien en términos
socio-econdémicos (aquellas con importantes nucleos de poblacién o con
industrias relacionadas directamente con el mar) o medioambientales (las

de especial importancia por su diversidad y en buen estado de

conservacion).

Wi, T RAR D e VA A A7 LR T
Figura 49. Imagen de satélite de manchas originadas en el accidente del
Prestige.

OBaMADE, ha sido aplicada para generar predicciones en este caso
de estudio en concreto. Para ello, se disponia de los datos histéricos del
accidente del petrolero Prestige, ocurrido en noviembre de 2002 cerca de
las costas gallegas (en el noroeste de la Peninsula Ibérica). La figura 49,
muestra una imagen de satélite de una de las zonas afectadas, al norte de la
Peninsula Ibérica, en la que pueden apreciarse claramente las manchas de

fuel. Dicha imagen fue obtenida dias después del barco.

347

Onganization Based Multiagent Architecture For Distributed Environments

Los datos disponibles tienen distintos origenes. Por un lado estan
las imagenes de satélite en las que se pueden ver las manchas de fuel.
Dichas manchas se asocian con informacién meteoroldgica y maritima,
que es obtenida de servicios de informacion obtenidos de los satélites, que
proporcionan, en tiempo real, informacion referente a la meteorologia
(presion atmosférica, temperatura...) y al océano (oleaje, salinidad...).
Toda esa informacion se estructurd y se almacena en la base de casos de
tal forma que se establecen relaciones temporales entre las situaciones
almacenadas en la base de casos., en la base de casos, se establece una
relacion entre la situacion presente (problema) y la situacion en el
momento inmediatamente posterior (solucion).

Cuando una solicitud de prediccion entra en el sistema, lo hace a
través de la Organizacion de Interfaces que, como ya se ha explicado con
anterioridad, es la encargada de proporcionar a cada usuario el interfaz
gue necesita para interactuar con la aplicacion dependiendo del tipo de
dispositivo que esté manejando y, también, del tipo de servicio que vaya a
demandar.

Tras pasar por la Organizacion de Interfaces, la solicitud llega a la
Organizaciéon de Comunicacion, que la analiza para, a su vez, pasarsela a
la Organizacion de Servicios correspondiente, bien sea la relativa a
servicios CBR o la encargada de los servicios adicionales.

Si, como es el caso, se trata de una solicitud de prediccion, dicha
solicitud llegard a la Organizacion de Servicios CBR, que sera la
encargada de, mediante los correspondientes agentes encargados de las
distintas fases del ciclo CBR, generar la prediccion para una situacion en
concreto. Para realizar la prediccion, el usuario debe introducir el area
geografica de la que quiere conocer la prediccion y los datos de los que
disponga, especialmente su localizacion y tamarfio si visualiza, de forma

directa, alguna mancha de fuel.

348

Apéndice D. Resumen de la Investigacion

Para completar los datos necesarios para generar los casos, el
sistema accederd a datos de satélites que proporcionan las variables
meteoroldgicas y oceanicas necesarias. Asi, se completardn todos los
pardmetros que se van a tener en cuenta: longitud, latitud, fecha, oleaje,
presion atmosférica, salinidad, temperatura del mar, area de las manchas, -
direccion y fuerza del viento, direccion y fuerza de la corriente maritima.
El 4rea a analizar se divide en pequefias regiones cuadradas, que son las
que delimitan los casos. Para cada una de esas regiones se almacenan
todas las variables anteriormente citadas. EI parametro denominado area
de las manchas se refiere a la proporcién de la zona que estd ocupada por
manchas. Ese parametro es sobre el que se realiza la prediccién,
obteniendo, al final de la misma, un valor futuro de ese parametro.

Para realizar la prediccion, se extraen de la base de casos un
conjunto de casos que sean similares al problema introducido en el
sistema. La base de casos estd organizada de tal forma que, aquellos casos
gue sean parecidos se almacenaran proximos unos a los otros. De esta
forma, resulta mas sencillo y rapido recuperar de ella un grupo de casos
parecidos.

Con el grupo de casos recuperados se genera la prediccion,
utilizando una red neuronal GRBF entrenada al efecto. Dicha red
proporcionard, como salida, un valor futuro para el parametro area de las
manchas de cada una de las regiones cuadradas que se le pasen.

Para validar la aplicacion, se han comparado los resultados
obtenidos con OBaMADE con otras técnicas. La figura 50 muestra una
representacion grafica de los resultados obtenidos en la citada
comparacion. En dicha figura se pueden ver la evolucion de los resultados
a medida que el tamario de la base de casos ha ido creciendo. Cuando el
namero de casos almacenado se incrementa, los resultados van mejorando

de forma progresiva. Esto resulta logico ya que, al aumentar la

349

Onganization Based Multiagent Architecture For Distributed Environments

variabilidad de casos almacenados y su numero, la posibilidad de
encontrar casos parecidos al que se quiere resolver aumenta y los

resultados mejoraréan.

Porcentaje de predicciones correctas
Mareas negras
95%

85% =

65% / e RBF
55% //y e CBR B3sico
45% # GRBF + CBR

35% e OBaMADE
100 500 1000 2000 3000 4000 5000

Numeros de casos en la base de casos

Figura 50. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de las mareas negras.

En la figura 50 se compara la arquitectura OBaMADE con otras
técnicas. En primer lugar se comprobaron los resultados de realizar
predicciones con una red neuronal RBF sin ninguna otra técnica asociada.
En ese caso, las predicciones se obtenian tras haber entrenado la red
neuronal con los datos disponibles y, por lo tanto, los resultados no eran
suficientemente satisfactorios. En segundo lugar, se aplicd un sistema
CBR Baésico, en el que los datos se almacenan en una base de casos, se
recuperan los mas similares y no hay técnicas adiconales aplicadas. En
tercer lugar, se utiliz6 una combinacién de RBF y CBR, en el que la red
era solo entrenada con aquellos casos mas similares y, por lo tanto, los
resultados mejoraban. Por ultimo, se aplico el sistema creado sobre la
arquitectura OBaMADE, generando los mejores resultados de entre los

sistemas comparados.

350

Apéndice D. Resumen de la Investigacion

D.5.2. INCENDIOS FORESTALES

En segundo lugar, la arquitectura OBaMADE ha sido aplicada a la
prediccién de la evolucidn de incendios forestales. El funcionamiento del
sistema creado sobre la arquitectura propuesta es similar al descrito en la
aplicacion de la arquitectura al problema de las mareas negras. En este
caso, las variables almacenadas en el sistema son las siguientes: longitud,
latitud, fecha, presion atmosférica, temperatura, &rea de los fuegos y

direccion y fuerza del viento.

Figura 51. Imagen de los experimentos llevados a cabo en
Gestosa, Portugal.

En este caso los datos histdricos con los que se ha creado la base de
casos provienen de unos experimentos realizados en Portugal, dentro del
proyecto SPREAD [Spread, 2004]. Los experimentos de los que se
tomaron los datos se realizaron en la zona de Gestosa, en el centro de
Portugal, en la Serra de Lousa, a una altitud entre 800 y 950 m sobre el
nivel del mar, entre los afios 2002 y 2004 [Gestosa, 2005]. Dichos
experimentos comenzaron en 1998 y se completaron en diciembre de
2004. Se intentd recoger datos experimentales sobre el comportamiento de

los fuegos en distintas situaciones, para poder realizar un modelado de la

351

Onganization Based Multiagent Architecture For Distributed Environments

evolucion de los mismos. Para mantener la seguridad mientras se
realizaban los experimentos, se dividi6 el terreno en zonas de forma y
dimension regulares separadas por cortafuegos para limitar la expansion
de los fuegos. La figura 51 muestra una imagen de los experimentos

llevados a cabo, en la que pueden verse las zonas delimitadas y los fuegos

originados.
Porcentaje de predicciones correctas
Incendios forestales
95%
85% —

75% //
65% e R B F

= CBR Basico

55%
GRBF + CBR
45% |
e O BaMADE
35%

100 500 1000 2000 3000 4000 5000

Numero de casos en la base de casos

Figura 52. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de los incendios forestales.

Una vez se dispone de los datos en la base de casos, el
funcionamiento del sistema predictivo es el mismo que el explicado en la
aplicacion de la arquitectura a las mareas negras. Los resultados de aplicar
las distintas técnicas utilizadas para comparar el rendimiento de la
arquitectura OBaMADE pueden verse en la figura 52. Al igual que
sucedié con el caso de las mareas negras, los resultados mejoran a medida

gue aumenta la cantidad de informacién almacenada en la base de casos.

352

Apéndice D. Resumen de la Investigacion

Asi mismo, también puede verse que, de las técnicas comparadas, es el
sistema basado en la arquitectura OBaMADE el que mejores resultados
obtiene.

Tras aplicar la arquitectura presentada en este documento a dos
casos de estudio, ha podido comprobarse los positivos resultados
obtenidos, siendo esperanzador para poder aplicar esta misma arquitectura
a otro tipo de problemas y de campos de conocimiento en los que poder
desarrollar sus capacidades de generacion de soluciones a partir de datos

almacenados.
D6. CONCLUSIONES Y TRABAJO FUTURO

En este documento se ha presentado una nueva arquitectura
multiagente basada en organizaciones y disefiada para ser utilizada en
entornos distribuidos. Dicha arquitectura, llamada OBaMADE, estd formada
por una serie de organizaciones de agentes que colaboran para poder obtener
soluciones a los distintos problemas a los que puede ser aplicada.

La arquitectura OBaMADE proporciona un entorno de trabajo
suficientemente flexible como para cubrir los requerimientos de los sistemas
disefiados para solucionar problemas de entornos distribuidos. Situaciones
dindmicas en las que hay gran interaccion por parte de los usuarios de forma
asincrona son adecuadamente solucionadas por esta arquitectura. Sus
distintos elementos funcionan de forma distribuida, colaborando para obtener
un resultado comdn.

El uso de agentes ligeros en un entorno distribuido con capacidades
comunicativas permite a los sistemas creados sobre esta arquitectura obtener
una comunicacion transparente para el usuario, sin tener que notificar cada
intercambio comunicativo. Los usuarios obtendran los mismos resultados
independientemente de su localizacién de los dispositivos desde los que se

acceda a los sistemas creados.

353

Onganization Based Multiagent Architecture For Distributed Environments

El nlcleo del sistema esta formado por un conjunto de servicios que
siguen la metodologia del razonamiento basado en casos. Dichos servicios
estan implementados por una serie de agentes que cubren las fases béasicas
del ciclo del razonamiento basado en casos. Estos integran una serie de
técnicas de inteligencia artificial disefiadas para extraer el conocimiento
disponible en la informacién almacenada. Estos agentes, como parte de una
de las organizaciones de la arquitectura, pueden comunicarse entre ellos para
lograr un objetivo comun y tomar las mejores decisiones en cada momento.

El empleo de agentes ligeros permite, ademds, expandir las
posibilidades de desarrollo de aplicaciones basadas en la arquitectura
OBaMADE a dispositivos que no tienen por qué disponer de una alta
capacidad de procesamiento (teléfonos moviles, PDAS...).

La arquitectura OBaMADE puede ser aplicada a distintos tipos de
problemas, desde problemas de prediccion, hasta clasificacion y
agrupamiento, pasando por problemas de planificacion. En concreto ha sido
aplicada a dos casos de estudio en los que ha demostrado su capacidad para
la generacion de predicciones. En ambos se ha demostrado la validez y la
calidad de los resultados obtenidos por los sistemas basados en esta
arquitectura. Sera necesario aplicar OBaMADE a otro tipo de problemas que
permitan demostrar empiricamente las ventajas que, desde el punto de vista
tedrico, se vislumbran en la utilizacion de esta arquitectura.

Las técnicas de inteligencia artificial usadas para resolver los distintos
servicios ofrecidos por la arquitectura han demostrado su validez en los dos
casos de estudio analizados en este trabajo. Seria interesante poder incorporar
méas técnicas de tal forma que presente varias opciones en los distintos
servicios y permita elegir en funcion, por ejemplo, del tipo de problema que
se va a resolver.

Aunque, como se ha explicado con anterioridad, la arquitectura se ha

probado en situaciones reales, seria necesario realizar pruebas exhaustivas

354

Apéndice D. Resumen de la Investigacion

para evaluar todos los detalles de la arquitectura propuesta en términos de
tiempo, simplicidad y calidad del anélisis y del disefio. La calidad de los
resultados generados por los sistemas disefiados basdndose en esta
arquitectura también debe ser evaluada.

A lo largo de este documento se ha explicado OBaMADE, una hueva
arquitectura basada en organizaciones de agentes disefiada para ser aplicada a
entornos distribuidos. Los resultados obtenidos tras la creacion de sistemas
basados en dicha arquitectura y aplicados a ejemplos reales han sido muy
esperanzadores. Las posibilidades de aplicacion y desarrollo de la
arguitectura son muchas y, basandose en los resultados obtenidos, se puede

asegurar que podré ser utilizada en otro tipo de entornos de forma exitosa.

355

	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMEN
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. INTRODUCTION
	1.2. METHODOLOGY
	1.1. HYPOTHESIS OF WORK AND MAINOBJECTIVES
	1.3. THESIS STRUCTURE

	2. DISTRIBUTEDENVIRONMENTS
	2.1. PROBLEM DEFINITION
	2.2. CORBA
	2.3. SOA
	2.4. WEB SERVICES
	2.5. GRID COMPUTING
	2.6. AGENTS AND MULTIAGENT SYSTEMS
	2.7. SUMMARY AND CONCLUSIONS

	3. AGENTS ANDMULTIAGENTSYSTEMS
	3.1. AGENTS THEORY
	3.2. MULTIAGENT SYSTEMS
	3.3. SUMMARY AND CONCLUSIONS

	4. ORGANIZATIONSOF AGENTS
	4.1. CONCEPT OF ORGANIZATION
	4.2. ORGANIZATION FACTORS
	4.3. SUMMARY AND CONCLUSIONS

	5. THE OBAMADEARCHITECTURE
	5.1. ARCHITECTURE DESCRIPTION
	5.2. INTERFACE AGENTS ORGANIZATION
	5.3. COMMUNICATION ORGANIZATION
	5.4. CBR SERVICES ORGANIZATION
	5.5. ADDITIONAL SERVICESORGANIZATION
	5.6. APPLICATIONS
	5.7. SUMMARY AND CONCLUSIONS

	6. APPLICATION -CASE STUDIES
	6.1. OIL SPILL PREDICTION
	6.2. FIRE PROPAGATION PREDICTION
	6.3. SUMMARY AND CONCLUSIONS

	7. ARCHITECTUREEVALUATION ANDCONCLUSIONS
	7.1. THEORETICAL MODEL EVALUATION
	7.2. MODEL ANALYSIS
	7.3. CONCLUSIONS
	7.4. FUTURE WORK

	REFERENCES
	APPENDIX A. CORBA
	APPENDIX B.TAXONOMY OFORGANIZATIONS
	APPENDIX C. CASEBASEDREASONING
	APÉNDICE D.RESUMEN DE LAINVESTIGACIÓN
	D.1. OBJETIVOS FUNDAMENTALES
	D.2. ENTORNOS DISTRIBUIDOS
	D.3. AGENTES, SISTEMAS MULTIAGENTE YORGANIZACIONES
	D4. ARQUITECTURA BASADA ENORGANIZACIONES PARA ENTORNOSDISTRIBUIDOS
	D5. RESULTADOS
	D6. CONCLUSIONES Y TRABAJO FUTURO

