
University of Salamanca

DEPARTMENT OF COMPUTER SCIENCE AND AUTOMATION
SCIENCES FACULTY

PHD THESIS
ORGANIZATION BASED

MULTIAGENT ARCHITECTURE
FOR DISTRIBUTED ENVIRONMENTS

AUTHOR
Aitor Mata Conde

SUPERVISORS

Dr. Belén Pérez Lancho
Dr. Emilio S. Corchado Rodríguez

- MARCH, 2010 -
Salamanca, Spain

iii

The present PhD. thesis document entitled “Organization Based Multiagent
Architecture for Distributed Environments” submitted by Mr. Aitor Mata
Conde to the Department of Computer Science and Automation of the
University of Salamanca in partial fulfilment of the requirements for the
degree of Doctor in Computer Science and Automatics has been carried out
under the supervision of Dr. Belén Pérez Lancho, Senior Lecturer at the
Department of Computer Science and Automation of the University of
Salamanca, and Dr. Emilio S. Corchado Rodríguez, Senior Lecturer at the
Department of Computer Science and Automation of the University of
Salamanca

Salamanca, march 19th, 2010.

The Supervisors, The graduate

Signed, Dr. Belén Pérez-Lancho Signed, Mr. Aitor Mata Conde
Senior Lecturer
University of Salamanca, Spain

Signed, Dr. Emilio S. Corchado
Senior Lecturer
University of Salamanca, Spain

iv

v

”We can only see a short distance ahead,

 but we can see plenty there that needs to be done. “

A. M. Turing
“Computing machinery and in tel l igence”

vi

vii

ACKNOWLEDGEMENTS
inishing a work like this takes a lot of time and effort and I

have to thank many people. Despite any attempt to thank

everyone involved in the development of this investigation,

please forgive any unintentional omission.

 I want to begin acknowledging my two supervisors, Belén and Emilio,

who have been a great help especially at the end of this complex process, their

perspective and compatible but different point of views have made it easier. I

also want to thank Professor Juan for his invaluable help from the beginning

and all through the process of the development of this PhD. thesis.

I have to remember Deanna here, for helping me with all that English

expressions and corrections in this document.

I also have to cite here Dante and Javi, for their help and advices to

easier face all the process and Fran and Sara for being helpful partners, sharing

problems, congresses and times.

Alfonso de Maruri must also be acknowledged, for being a great help

with the internal guidelines of an investigation of this kind, and for being a

constant help with the guidelines of my own life.

My parents and brother have been a helpful hand and table for

F

viii

receiving and listening to me when tons of work accumulated over my

shoulders.

My family in law has also been there, specially my nephews that have

created a new expression: when somebody is concentrated doing anything or

fixedly regarding something, he or she is making the thesis.

Miro, my father in law, who left us during this process. His presence

has been an important companion in some difficult moments.

It is fair to remember here all the members of the Department of

Computer Science and Automation of the University of Salamanca. They gave

me, from the very beginning of my university studies, a complete spectre of

this science with its lights and shadows, but always exciting.

I also want to thank the company of a set of authors that have made

the fulfilment of this thesis easier. They have put light in the dark moments,

introducing external elements that have enriched the process. They are, in

almost chronologically order: Jaime Bayly [Bayly, 2005], Josep María

Gironella [Gironella, 1952], Frank McCourt [McCourt, 2006], Javier Reverte

[Reverte, 2006], María Luisa Prada [Prada, 2004], Ken Follett [Follett, 2007],

Muriel Barbery [Barbery, 2007], Jean Auel [Auel, 2005], Isabel Allende,

twice [Allende, 2005, , 2003], Marta Rivera de la Cruz [Rivera de la Cruz,

2009], Fernando Savater [Savater, 2008], Stieg Larsson, three times [Larsson,

2009b, , 2008, , 2009a], Mathias Malzieu, [Malzieu, 2009], Fernando Sánchez

Dragó [Sánchez Dragó, 2009] and Lao Tse[Tse, 2007]. All these authors and

books have served as a varied counterpoint to all the information, data,

experiments, and results showed through this document. It is also necessary to

cite Silvio here, to make me remind teenage rhythms and Joel Fleischman,

Chris Stevens and all their neighbours, to show me again that other type of

daily life is possible.

And last but, of course, not least I want to specially thank Yolanda, for

being always there, her help and presence have made this possible.

ix

ABSTRACT

istributed environments represent a complex field in which

applied solutions should be flexible and include significant

adaptation capabilities. These environments are related to

problems where multiple users and devices may interact, and where simple

and local solutions could possibly generate good results, but may not be

effective with regards to use and interaction.

 There are many techniques that can be employed to face this kind of

problems, from CORBA to multi-agent systems, passing by web-services and

SOA, among others. All those methodologies have their advantages and

disadvantages that are properly analyzed in this document, to finally explain

the new architecture presented as a solution for distributed environment

problems.

 The new architecture for solving complex solutions in distributed

environments presented here is called OBaMADE: Organization Based

Multiagent Architecture for Distributed Environments. It is a multiagent

architecture based on the organizations of agents paradigm, where the agents

in the architecture are structured into organizations to improve their

organizational capabilities.

D

x

 The reasoning power of the architecture is based on the Case-Based

Reasoning methodology, being implemented in an internal organization that

uses agents to create services to solve the external requests made by the users.

The OBaMADE architecture has been successfully applied to two

different case studies where its prediction capabilities have been properly

checked. Those case studies have showed optimistic results and, being

complex systems, have demonstrated the abstraction and generalizations

capabilities of the architecture.

Nevertheless OBaMADE is intended to be able to solve much other

kind of problems in distributed environments scenarios. It should be applied

to other varieties of situations and to other knowledge fields to fully develop

its potential.

xi

RESUMEN

os entornos distribuidos representan un campo de

conocimiento complejo en el que las soluciones a aplicar deben

ser flexibles y deben contar con gran capacidad de adaptación.

Este tipo de entornos está normalmente relacionado con problemas donde

varios usuarios y dispositivos entran en juego. Para solucionar dichos

problemas, pueden utilizarse sistemas locales que, aunque ofrezcan buenos

resultados en términos de calidad de los mismos, no son tan efectivos en

cuanto a la interacción y posibilidades de uso.

 Existen múltiples técnicas que pueden ser empleadas para resolver

este tipo de problemas, desde CORBA a sistemas multiagente, pasando por

servicios web y SOA, entre otros. Todas estas metodologías tienen sus

ventajas e inconvenientes, que se analizan en este documento, para explicar,

finalmente, la nueva arquitectura presentada como una solución para los

problemas generados en entornos distribuidos.

La nueva arquitectura presentada aquí se llama OBaMADE, que es el

acrónimo del inglés Organization Based Multiagent Architecture for

Distributed Environments (Arquitectura Multiagente Basada en

Organizaciones para Entornos Distribuidos). Se trata de una arquitectura

L

xii

multiagente basada en el paradigma de las organizaciones de agente, donde los

agentes que forman parte de la arquitectura se estructuran en organizaciones

para mejorar sus capacidades organizativas.

La capacidad de razonamiento de la arquitectura está basada en la

metodología de razonamiento basado en casos, que se ha implementado en una

de las organizaciones internas de la arquitectura por medio de agentes que

crean servicios que responden a las solicitudes externas de los usuarios.

La arquitectura OBaMADE se ha aplicado de forma exitosa a dos

casos de estudio diferentes, en los que se han demostrado sus capacidades

predictivas. Aplicando OBaMADE a estos casos de estudio se han obtenido

resultados esperanzadores y, al ser sistemas complejos, se han demostrado las

capacidades tanto de abstracción como de generalización de la arquitectura

presentada.

Sin embargo, esta arquitectura está diseñada para poder ser aplicada a

más tipo de problemas de entornos distribuidos. Debe ser aplicada a más

variadas situaciones y a otros campos de conocimiento para desarrollar

completamente el potencial de esta arquitectura.

xiii

TABLE OF CONTENTS
ACKNOWLEDGEMENTS ... vii

ABSTRACT ... ix

RESUMEN .. xi

TABLE OF CONTENTS .. xiii

LIST OF FIGURES .. xxi

LIST OF TABLES .. xxv

LIST OF ALGORITHMS ... xxvii

1. INTRODUCTION ... 1

1.1. HYPOTHESIS OF WORK AND MAIN OBJECTIVES 3

1.2. METHODOLOGY .. 4

1.3. THESIS STRUCTURE ... 7

2. DISTRIBUTED ENVIRONMENTS ... 11

2.1. PROBLEM DEFINITION ... 13

2.1.1. DISTRIBUTED SYSTEMS’ MAIN FEATURES ... 13

2.1.2. MAIN ISSUES HANDLED BY DISTRIBUTED SYSTEMS 14

2.1.3. DISTRIBUTED COMPUTING TECHNOLOGIES 16

2.2. CORBA ... 17

2.2.1. THE OBJECT MANAGEMENT ARCHITECTURE (OMA) 20

xiv

2.2.2. CORBA APPLICATIONS AND INTEREST FIELDS 23

2.3. SOA... 25

2.3.1. DEFINITION OF SOA ... 26

2.3.2. LOOSE COUPLING .. 31

2.3.3. STATE AND STATELESSNESS .. 32

2.3.4. SERVICE-ORIENTED ARCHITECTURE (SOA) MODEL 35

2.3.5. BUSINESS ROLES ... 36

2.4. WEB SERVICES .. 38

2.4.1. DEFINITION .. 39

2.4.2. WEB SERVICES PROBLEMS ... 43

2.4.2.1. SECURITY PROBLEMS .. 43

2.4.2.2. COMPOSITION PROBLEMS .. 45

2.4.2.3. SEMANTIC PROBLEMS .. 46

2.5. GRID COMPUTING ... 48

2.5.1. INTERFACES TO LOCAL CONTROL .. 49

2.5.2. CONNECTIVITY: COMMUNICATING EASILY AND SECURELY 51

2.5.3. RESOURCE: SHARING SINGLE RESOURCES 53

2.5.4. COLLECTIVE: COORDINATING MULTIPLE RESOURCES 54

2.5.5. APPLICATIONS ... 57

2.5.6. CURRENT DEVELOPMENTS AND LIMITATIONS 59

2.6. AGENTS AND MULTIAGENT SYSTEMS .. 61

2.6.1. MULTI-AGENT SYSTEMS .. 62

2.7. SUMMARY AND CONCLUSIONS ... 65

3. AGENTS AND MULTIAGENT SYSTEMS ... 69

3.1. AGENTS THEORY ... 70

3.1.1. AGENT ATTRIBUTES ... 75

3.1.1.1. SITUATEDNESS .. 75

3.1.1.2. AUTONOMY ... 76

3.1.1.3. FLEXIBILITY AND ADAPTABILITY ... 78

xv

3.1.1.4. SOCIABILITY .. 80

3.1.2. AGENT ARCHITECTURES .. 82

3.1.3. APPLICABILITY OF AGENTS .. 84

3.2. MULTIAGENT SYSTEMS .. 87

3.2.1. AGENT SOCIETIES.. 88

3.2.2. COORDINATION IN MULTIAGENT SYSTEMS 93

3.2.3. COMMUNICATION .. 95

3.3. SUMMARY AND CONCLUSIONS ... 98

4. ORGANIZATIONS OF AGENTS .. 101

4.1. CONCEPT OF ORGANIZATION .. 104

4.1.1. HUMAN ORGANIZATIONS ... 104

4.1.2. ORGANIZATIONS OF AGENTS .. 106

4.2. ORGANIZATION FACTORS ... 108

4.2.1. STRUCTURE ... 109

4.2.2. FUNCTIONALITY .. 111

4.2.3. COORDINATION ... 113

4.2.4. SYSTEM DYNAMICS .. 114

4.2.5. ENVIRONMENT .. 115

4.3. SUMMARY AND CONCLUSIONS ... 116

5. THE OBAMADE ARCHITECTURE .. 119

5.1. ARCHITECTURE DESCRIPTION ... 121

5.2. INTERFACE AGENTS ORGANIZATION .. 127

5.3. COMMUNICATION ORGANIZATION ... 129

5.4. CBR SERVICES ORGANIZATION .. 133

5.4.1. ORGANIZING THE CASE BASE ... 135

5.4.2. DATA ENTRANCE AGENT .. 140

5.4.3. SOLUTION REQUEST AGENT ... 141

5.4.4. REVISION AGENT ... 143

5.5. ADDITIONAL SERVICES ORGANIZATION 144

xvi

5.6. APPLICATIONS ... 145

5.6.1. PREDICTION GENERATION ... 146

5.6.2. CLASSIFICATION AND CLUSTERING .. 147

5.6.3. PLANNING ... 148

5.7. SUMMARY AND CONCLUSIONS ... 149

6. APPLICATION - CASE STUDIES .. 153

6.1. OIL SPILL PREDICTION .. 154

6.1.1. PROBLEM DESCRIPTION .. 155

6.1.1.1. DETECTION ... 158

6.1.1.2. RESPONSE ... 159

6.1.1.3. FORECASTING ... 160

6.1.2. DATA USED AND APPLICATION OF OBAMADE 160

6.1.3. RESULTS ... 163

6.2. FIRE PROPAGATION PREDICTION .. 169

6.2.1. PROBLEM DESCRIPTION .. 169

6.2.1.1. DETECTION ... 170

6.2.1.2. PREDICTION .. 171

6.2.1.3. MODELS AND SYSTEMS .. 172

6.2.2. DATA USED AND APPLICATION OF OBAMADE 173

6.2.3. RESULTS ... 174

6.3. SUMMARY AND CONCLUSIONS ... 178

7. ARCHITECTURE EVALUATION AND CONCLUSIONS 181

7.1. THEORETICAL MODEL EVALUATION .. 183

7.2. MODEL ANALYSIS ... 185

7.3. CONCLUSIONS ... 188

7.4. FUTURE WORK .. 190

REFERENCES .. 193

APPENDIX A. CORBA .. 231

A.1. ORB CORE ... 232

xvii

A.2. OMG INTERFACE DEFINITION LANGUAGE (OMG IDL) 234

A.3. LANGUAGE MAPPINGS .. 235

A.4. INTERFACE REPOSITORY ... 236

A.5. STUBS AND SKELETONS .. 238

A.6. DYNAMIC INVOCATION AND DISPATCH .. 239

A.6.1. DYNAMIC INVOCATION INTERFACE .. 239

A.6.2. DYNAMIC SKELETON INTERFACE ... 240

A.7. OBJECT ADAPTERS .. 241

A.8. INTER-ORB PROTOCOLS ... 243

APPENDIX B. TAXONOMY OF ORGANIZATIONS 245

B.1. HIERARCHIES ... 246

B.1.1. CHARACTERISTICS ... 248

B.1.2. FORMATION .. 249

B.2. HOLARCHIES ... 251

B.2.1. CHARACTERISTICS ... 254

B.2.2. FORMATION .. 254

B.3. COALITIONS ... 256

B.3.1. CHARACTERISTICS ... 257

B.3.2. FORMATION .. 258

B.4. TEAMS ... 261

B.4.1. CHARACTERISTICS ... 262

B.4.2. FORMATION .. 263

B.5. CONGREGATIONS ... 267

B.5.1. CHARACTERISTICS ... 269

B.5.2. FORMATION .. 270

B.6. SOCIETIES .. 273

B.6.1. CHARACTERISTICS ... 274

B.6.2. FORMATION .. 276

B.7. FEDERATIONS .. 279

xviii

B.7.1. CHARACTERISTICS ... 280

B.7.2. FORMATION .. 281

B.8. MARKETS ... 283

B.8.1. CHARACTERISTICS ... 286

B.8.2. FORMATION .. 288

B.9. MATRIX ORGANIZATIONS.. 290

B.9.1. CHARACTERISTICS ... 291

B.9.2. FORMATION .. 292

B.10. COMPOUND ORGANIZATIONS .. 294

B.10.1. CHARACTERISTICS ... 295

B.10.2. EXAMPLE COMPOUND ORGANIZATIONS ... 296

B.11. OTHER ORGANIZATIONAL TYPES .. 298

APPENDIX C. CASE-BASED REASONING .. 303

C.1. CASE-BASED REASONING AS A PROBLEM SOLVING APPROACH....... 306

C.2. CASE DEFINITION AND CASE BASE CREATION 307

C.3. RECOVERING DATA FROM THE CASE BASE 311

C.4. ADAPTATION OF THE RETRIEVED CASES .. 313

C.5. REVIEW OF THE PROPOSED SOLUTION .. 316

C.6. RETAIN OF THE SOLUTION AND CASE BASE MAINTENANCE 317

C.7. CASE-BASED REASONING COMPARED WITH OTHER TECHNIQUES ... 318

C.7.1. ARTIFICIAL NEURAL NETWORK ... 320

C.7.2. RULE-BASED EXPERT SYSTEMS ... 321

C.7.3. MODEL BASED SYSTEMS ... 322

APPENDIX D. RESUMEN DE LA INVESTIGACIÓN 325

D.1. OBJETIVOS FUNDAMENTALES ... 326

D.2. ENTORNOS DISTRIBUIDOS ... 328

D.2.1.CARACTERÍSTICAS FUNDAMENTALES. ... 328

D.2.2.VENTAJAS Y DESVENTAJAS ... 331

D.3. AGENTES, SISTEMAS MULTIAGENTE Y ORGANIZACIONES 332

xix

D.3.1. SISTEMAS MULTI-AGENTE .. 335

D.3.2. METODOLOGÍAS MULTI-AGENTE ORIENTADAS A LAS ORGANIZACIONES 337

D4. ARQUITECTURA BASADA EN ORGANIZACIONES PARA ENTORNOS
DISTRIBUIDOS ... 339

D.4.1. ELEMENTOS FUNDAMENTALES .. 339

D.4.2. RAZONAMIENTO BASADO EN CASOS ... 340

D.4.3. CAMPOS DE APLICACIÓN DE OBAMADE .. 344

D5. RESULTADOS .. 346

D.5.1. MAREAS NEGRAS .. 346

D.5.2. INCENDIOS FORESTALES ... 351

D6. CONCLUSIONES Y TRABAJO FUTURO ... 353

xx

xxi

LIST OF FIGURES
Figure 1. OMA Reference Model Interface Categories. 20

Figure 2. OMA Reference Model Interface Usage. .. 22

Figure 3. Basic Service-Oriented Architecture. .. 26

Figure 4.Components of basic Service-Oriented Architecture. 27

Figure 5. Service interaction in a service-oriented environment.................... 30

Figure 6. A multi-step client/service interaction... 34

Figure 7. The SOA model. ... 36

Figure 8. The layered Grid architecture and its relationship to the Internet
protocol architecture. ... 49

Figure 9. Collective and Resource layer protocolos, service, APIs and SDKs.
 .. 57

Figure 10. Software development kits (SDKs) implement specific APIs......... 58

Figure 11. Agent skeleton. .. 74

Figure 12. The BDI agent model. ... 84

xxii

Figure 13. OBaMADE framework. ... 122

Figure 14. OBaMADE basic schema. ... 125

Figure 15. OBaMADE basic information flow. .. 126

Figure 16. Interface Organization activity. .. 127

Figure 17. Communication Organization schema. 130

Figure 18. Communication Organization dataflow. 133

Figure 19. CBR Services Organization dataflow. ... 134

Figure 20. SAR image of the north west of Spain, showing oil spills near the
coastal zones. .. 156

Figure 21. Comparison of the efficiency of the results of a basic neural
network (RBF), the evolution of that basic network (GRBF). 165

Figure 22. Comparison of the recovery time of a basic CBR and that of
OBaMADE . .. 166

Figure 23. Comparison of the case base size of a basic CBR and that of
OBaMADE. ... 166

Figure 24. Comparison of the efficiency of the results of a basic neural
network (RBF), a basic CBR and OBaMADE. ... 167

Figure 25. Comparison of the efficiency of the results of a basic neural
network (RBF), a basic CBR and OBaMADE, applied to the forest fires case
study. ... 175

Figure 26. Comparison of the case base size of a basic CBR and that of
OBaMADE, applied to the forest fires case study... 175

Figure 27. Comparison of the recovery time of a basic CBR and that of
OBaMADE, applied to the forest fires case study... 176

xxiii

Figure 28. Comparison of the efficiency of the results of a basic neural
network (RBF), the evolution of that basic network (GRBF), applied to the
forest fires case study. ... 177

Figure 29. Comparison of the results obtained predicting in the two case
studies. .. 179

Figure 30. Graphical comparison between OBaMADE and other
architectural models. .. 184

Figure 31. Time needed to solve the requests by just one service or by five
services simultaneously. .. 186

Figure 32. Number of crashes produced using one and five instances of the
services and the agents. .. 187

Figure 33. OBaMADE logo. ... 189

Figure 34. Common Object Request Broker Architecture. 232

Figure 35. Role of an Object Adapter. .. 242

Figure 36. Hierarchical organization. .. 247

Figure 37. Holarchical organization. ... 252

Figure 38. Coalition-based organization. ... 256

Figure 39. Team-based organization. ... 262

Figure 40. Congregations of agents. .. 268

Figure 41. An agent society. ... 274

Figure 42. An agent federation. .. 279

Figure 43. A multi-agent marketplace. ... 284

Figure 44. A multi-agent matrix organization. ... 291

Figure 45. A multi-agent compound organization. 294

xxiv

Figure 46. Case-Based Reasoning basic structure. 304

Figura 47. Esquema básico de las organizaciones de OBaMADE............... 340

Figura 48. Ciclo básico del Razonamiento Basado en Casos. 343

Figura 49. Imagen de satélite de manchas originadas en el accidente del
Prestige. .. 347

Figura 50. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de las mareas negras. ... 350

Figura 51. Imagen de los experimentos llevados a cabo en Gestosa, Portugal.
 .. 351

Figura 52. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de los incendios forestales. ... 352

xxv

LIST OF TABLES
Table 1. Variables used in the oil spill problem. .. 161

Table 2. Percentage of good predictions obtained with different techniques –
Oil spill problem. .. 168

Table 3. Multiple comparison procedure among different techniques. 169

Table 4. Variables used in the forest fire problem. 174

Table 5. Percentage of good predictions obtained with different techniques –
Forest fires problem. ... 178

Table 6. Advantages and disadvantages of the OBaMADE architecture. 188

xxvi

xxvii

LIST OF ALGORITHMS
Algorithm 1. Weighted Voting Superposition (WeVoS). 138

Algorithm 2 . Growing Radial Basis Function pseudocode. 142

Algorithm 3. Explanations pseudocode. ... 144

xxviii

“Wisdom begins in wonder.” Socrates

1

1. INTRODUCTION
This chapt e r br i e f l y int roduce s the conc ep t s t r ea t ed in the
r emainder o f the document . The main prob l ems so lv ed and
the ways they are fa c ed are expla ined f i r s t , a l l owing fo r a
conc i s e de s c r ip t ion o f the e l ements that make r e su l t in the
f ina l so lu t ion proposed in th i s the s i s . The methodo logy
carr i ed out a l l through the deve lopment o f th i s document i s
a l so expla ined her e . Fina l l y , the s t ruc ture o f the who l e
document i s a l so pre s en t ed .

istributed environments represent complex situations where

multiple parameters are involved and where a series of

different elements may interact. Those elements can be from

the different persons implicated in the environment (that will be the users in a

computer system) to the diverse external elements that must be taken into

account when facing situations like those represented by distributed

environments.

 Artificial intelligence (AI) [Turing, 1950] have solved distributed

problems applying its abilities and capabilities in different ways [Moulin and

Chaib-Draa, 1996]. Various kinds of distributed systems operate today, each

aimed at solving different kinds of problems. The challenges faced in building

D

Organization Based Multiagent Architecture For Distributed Environments

2

a distributed system vary depending on the requirements of the system. In

general, however, most systems will need to handle the following issues

[Coulouris et al., 2005, Van Steen and Tanenbaum, 2002].

− Various entities in the system must be able to interoperate with one

another, despite differences in hardware architectures, operating

systems, communication protocols, programming languages, software

interfaces, security models, and data formats.

− The entire system should appear as a single unit and the complexity

and interactions between the components should be typically hidden

from the end user.

− Failure of one or more components should not bring down the entire

system, and should be isolated.

− Scalability. The system should work efficiently with increasing

number of users and addition of a resource should enhance the

performance of the system.

− Concurrency. Shared access to resources should be made possible.

− Openness and Extensibility. Interfaces should be cleanly separated and

publicly available to enable easy extensions to existing components

and add new components.

− It is also important to allow the movement of tasks within a system

without affecting the operation of users or applications, and distribute

load among available resources for improving performance.

− Security. Access to resources should be secured to ensure only known

users are able to perform allowed operations.

In this PhD Thesis document a new architecture to solve problems

related with distributed environments is presented. It is called OBaMADE:

Organization Based Multiagent Architecture for Distributed Environments. It

is a multiagent architecture that is based on the organizations of agents

Chapter 1. Introduction

3

paradigm and that employs the Case-Based Reasoning (CBR) methodology

[Watson and Marir, 1994] as the solution generation core.

1.1. HYPOTHESIS OF WORK AND MAIN

OBJECTIVES
The fundamental hypothesis of this study is to develop an architecture

to solve problems related with distributed environments. The architecture

should face those problems offering different interfaces to different users with

different devices in a transparent way. The architecture has to be based in

organizations of agents. The agents that make those organizations must be

designed as dynamic agents. The agents being part of the inner organizations,

which are in charge of the generation of the solutions, should incorporate

reasoning mechanisms based on the Case-Based Reasoning methodology.

That methodology is based in the reuse of past information, adapting past

solutions given to solve past problems to solve new problems arriving to the

architecture. The solutions given to past problems are stored in the system

related with the problems solved by those solutions.

To achieve the main hypothesis of this work it is necessary to analyze

the state of the art of the distributed environments and its possible solutions, as

well as agents and multi-agent systems (MAS) and organizations of agents.

The main specific objectives that underlie the development of this architecture

are:

− Make a study of the existing methodologies and technologies used to

solve problems related with the distributed environments.

− Study the different approaches related with agents, multi-agent

systems and organizations of agents and their evolutions, to properly

choose the most appropriate one to be applied to this specific

architecture.

Organization Based Multiagent Architecture For Distributed Environments

4

− Apply the organization of agents theory to solve the distributed

environment problem proposing an architecture that could be applied

to solve different kind of problems in that kind of environments.

− Theoretically compare the advantages and disadvantages of the

proposed architecture with the existing techniques and methodologies.

− Apply the presented architecture to real-life case studies, adapting the

architecture to the problems by developing a prototype that could

generate application results.

− Empirically evaluate the results obtained after applying the prototypes

created based on the architecture to real-life environments, and

comparing the results obtained with other existing techniques.

It is important to point out that the architecture generated in the

investigation presented in this PhD. thesis is not only intended to solve the

kinds of problems presented in the results section (natural distributed

environments). The presented architecture is aimed at being able to adapt itself

to different kinds of problems whose common characteristic is the existence of

an underlying distributed environment.

1.2. METHODOLOGY
The investigation process followed in this PhD thesis uses the

ActionResearch methodology. In this methodology the problem is first

identified and then a hypothesis is proposed so that any further development

will be based on that hypothesis. After the proposal, a compilation,

organization and analysis of information is carried out, continuing with the

design of a proposal focused to solve the problem. Finally, the conclusions are

generated, after evaluating the results of the investigation. Six different

activities were defined to follow this investigation model. They are necessary

in order to achieve the objectives proposed.

First, the problem to be solved and its main characteristics should be

Chapter 1. Introduction

5

defined. This activity consists of the presentation of the problem, defining its

characteristics and proposing a hypothesis to solve the problem totally or

partially. The main objectives needed to solve the problem are also identified

here. In this occasion the main objective is to design and construct an

architecture to face distributed environment situations. The creation of an

architecture of that type implies the analysis of the typical situations that will

face. That analysis has implied the understanding of the inner characteristics

of the distributed environments, which has helped to design the architecture

presented here.

There should be an actualization and complete revision of the state of

the art. The main areas, technologies and developments related with the

present investigation are analyzed and the mayor developments in each of

them are compiled. The state of the art is constantly revised, increasing the

amount of information stored and considered. A theoretical layout is obtained

that may enhance the knowledge and improve the development process.

Focusing on distributed environments, in this investigation it has been

necessary to analyze the different methodologies and technologies currently

used to solve problems occurred in distributed environments. Once the

organizations of agents theory was chosen as the one to be applied in the final

design of the architecture, all the theory and applications of the agents, multi-

agents systems and organizations of agents were analyzed.

The proposal should be gradually and iteratively designed and

developed. Taking into account the information obtained in the previous

activities, a model is designed and developed. That model integrates the

components needed to generate a useful and innovative solution to the

proposed problem. The solutions should achieve the objectives previously

indicated. The architecture presented in this document has evolved from a

simple local application, which could solve distributed problems in a quite

restricted way, to a complex architecture formed by different organizations of

Organization Based Multiagent Architecture For Distributed Environments

6

agents that collaborate to achieve a common aim, working together and

exchanging information.

Incremental prototype systems should be created to experiment and

implement the proposed solution. The functionalities, components, behaviours

and interactions are formalized. Prototypes are developed to be implemented

in specific application scenarios, within the scope of the problem,

experimenting with those prototypes to obtain result data that will help to

evaluate the proposed solution. The OBaMADE architecture has been applied

to two different case studies. First, the oil spill problem where the architecture

has been adapted to generate predictions of the situation of a specific oceanic

area after an oil spill. Once the architecture demonstrated its validity applied

to that problem, a second case study was chosen, applying the architecture to

the case of the forest fires evolution prediction. In this occasion the

architecture should forecast the situation of a forest area once a fire was

nearby started.

The results achieved with the proposed solution must be analyzed and

conclusions regarding those results must be formulated. A thorough analysis

is done of the results obtained, evaluating the evolution of the outcomes

through the development of the investigation. Conclusions are formulated,

based on the initial hypothesis and the objectives achieved. The presented

architecture has generated optimistic results after being applied to the two case

studies cited before. In both situations, using historical data, the architecture

has been able of generating precise and accurate predictions of the evolution

of the oil slicks produced after an oil spill and of the fires in a forest

environment.

The knowledge achieved, and also the results and experiences

obtained should be constantly disseminated. This activity consists on the

publication of contributions in journals, presentation of papers in conferences

and workshops, revealing the advances and partial results of the investigation,

Chapter 1. Introduction

7

as well as the experience acquired through the development process. From the

first steps of the investigation, where the designed architecture could face

problems in distributed environments being a local software, it has been

published both in journals [Mata and Corchado, 2009, Baruque et al., 2010,

Corchado et al., 2010] and in different workshops and conferences[Corchado

and Mata, 2008, Mata et al., 2009], evolving to the final state presented in this

document.

1.3. THESIS STRUCTURE
This document begins with the introduction, where the main elements

covered by this thesis are briefly initiated. In this introduction, the main

objectives and the central hypothesis of this work are briefly described. After

introducing the main elements of the investigation, it is necessary to develop

them, which is done following the structure explained next.

The architecture presented here is designed to work in distributed

environments, so the first analysis done in this document was about the

existing technologies applied to that kind of environments. This analysis is

done in the second chapter, where the description of the distributed

environments is presented, detailing the main features and the issues usually

handled to face the problems originated in such environments. Then, the most

important technologies applied to the distributed systems are explained. These

include the following: CORBA, SOA, web services, grid computing and

MAS.

To face the distributed environments, the architecture designed in this

thesis uses organizations of agents, which are an evolution of the multi-agent

systems focused on the organizational capabilities of those systems. So, prior

to present the characteristics of the organizations of agents, the multi-agent

systems where introduced in the third chapter. The explanation begins with

the description of the concept of an agent and its attributes, followed by the

Organization Based Multiagent Architecture For Distributed Environments

8

main characteristics of the multiagent systems and the agent societies, and

ending with the coordination and communication of the multiagent systems.

As cited before, organizations of agents have been chosen to structure

the architecture created through this PhD investigation. After explaining

agents and multi-agent systems in the third chapter, the organizations of agents

are exposed in the fourth chapter. Organizations of agents are a specific type

of multi-agent system, where the agents forming part of the system follow a

particular structure. The organizations of agents are based on human

organizations, which are also explained at the beginning of this chapter. The

main characteristics of the organizations are then described. Finally, the main

types of organizations and their complete characteristics are specified in one

of the appendixes: hierarchies, holarchies, coalitions, teams, congregations,

societies, federations, markets, matrices and compound organizations.

Once introduced the main technologies used to solve distributed

environments situations, and the ones used to design the architecture presented

in this document, it is time to explain it, OBaMADE, which is done in the fifth

chapter of this document. First, the main structure, composed of an interface

organization, a communication organization and two service organizations is

described. Then, the implemented reasoning services are detailed. Those

services follow a CBR methodology in order to solve the problems to be faced

with this architecture.

After explaining the main elements of the OBaMADE architecture it is

necessary to check it, what is done in the sixth chapter. The OBaMADE

architecture is applied to two different case studies. The first one is the oil spill

problem, where there are different sources of information and different kinds

of users that may interact with the system. The second case study is the

application of the architecture to forest fires evolution prediction. This second

use of the architecture is also dynamic and distributed with the involvement of

different people. The forest fires problem serves as standard against which the

Chapter 1. Introduction

9

correction of the architecture is measured.

Finally, the model presented in this document is theoretically

evaluated and both the final conclusions and future work are explained in the

seventh chapter, presenting the conclusions and final analysis of the

architecture as well as the intention for future work to be done based on the

architecture developed.

Following the evolution of this document, a complete set of references

walk alongside the different explanations done through the document. Those

references are compiled after the conclusions and future work, in the

references section. An important effort was required to compile such a vast

selection of references (almost five hundred of them) related to the different

parts of this document.

Finally, the appendixes have been included. They cover some

technical explanations that could not be included in the main document. The

first appendix is dedicated to explain the main elements and features of

CORBA, one of the distributed environments techniques used for comparison

with the OBaMADE architecture. The appendix B deeply explains the

taxonomy of organizations which are the inspiration for the structure of the

OBaMADE architecture. The third appendix is in charge of a complete

explanation of the CBR methodology, which is used by OBaMADE to

implements its internal solution generation services. The final appendix is a

complete resume of the document in Spanish language.

”Nothing is particularly hard if you divide it into small jobs.” Henry Ford

11

2. DISTRIBUTED

ENVIRONMENTS
The ar ch i t e c ture pr e s en t ed in th i s the s i s main ly cove r s
s i tuat ions g enera t ed in d i s t r ibut ed dynamic env i ronments .
In th i s chapt e r , the main charac t e r i s t i c s o f thos e sy s t ems
are expla ined , as l ong as the exi s t ing so lu t ions to fa c e
d i s t r ibut ed env i ronments , in the d i f f e ren t poss ib l e s i tuat ions
that cover thos e kinds o f env i ronments . Fina l l y , the main
charac t e r i s t i c s chos en to de s i gn the arch i t e c ture pre sen t ed in
th i s the s i s are exposed .

everal definitions and different points of view exist on what

distributed systems are. Coulouris defines a distributed system

as “a system in which hardware or software components

located at networked computers communicate and coordinate their actions

only by message passing” [Coulouris et al., 2005]; and Tanenbaum defines it

as “A collection of independent computers that appear to the users of the

system as a single computer” [Van Steen and Tanenbaum, 2002]. Leslie

Lamport – a famous researcher on timing, message ordering, and clock

synchronization in distributed systems – once said that “a distributed system is

S

Organization Based Multiagent Architecture For Distributed Environments

12

one on which I cannot get any work done because some machine I have never

heard of has crashed“ reflecting on the huge number of challenges faced by

distributed system designers. Despite these challenges, the benefits of

distributed systems and applications are many, making it worthwhile to

pursue.

Various types of distributed systems and applications have been

developed and are being used extensively in the real world. Here, the main

characteristics of distributed systems are presented and look at some of the

challenges that are faced by designers and implementers of such systems, and

also introduce an example af a distributed system.

A common misconception among people when discussing distributed

systems is that it is just another name for a network of computers. However,

this overlooks an important distinction. A distributed system is built on top of

a network and tries to hide the existence of multiple autonomous computers. It

appears as a single entity providing the user with whatever services are

required. A network is a medium for interconnecting entities (such as

computers and devices) enabling the exchange of messages based on well-

known protocols between these entities, which are explicitly addressable

(using an IP address, for example).

In this chapter, first the distributed environment problem will be

described defining the main characteristics of those environments. Then, after

introducing the kind of problems to be solved, different existing approaches to

solve them will be explained, including some of the techniques and

methodologies most commonly used. The solutions to the distributed

environment problems explained in this chapter are: CORBA, SOA, web

services, grid computing and multiagent systems. Then, a brief introduction to

the technologies employed in this investigation to design the proposed

architecture is done.

Chapter 2. Distributed Environments

13

2.1. PROBLEM DEFINITION
There are various types of distributed systems, such as Clusters

[Buyya, 2002], Grids [Foster and Kesselman, 1999], P2P (Peer-to-Peer)

networks [Subramanian and Goodman, 2005], distributed storage systems and

so on. A cluster is a dedicated group of interconnected computers that appears

as a single super-computer, generally used in high performance scientific

engineering and business applications. A grid is a type of distributed system

that enables coordinated sharing and aggregation of distributed, autonomous,

heterogeneous resources based on users’ QoS (Quality of Service)

requirements. Grids are commonly used to support applications emerging in

the areas of e-Science and e-Business, which commonly involve

geographically distributed communities of people who engage in collaborative

activities to solve large scale problems and require sharing of various

resources such as computers, data, applications and scientific instruments. P2P

networks are decentralized distributed systems, which enable applications

such as file-sharing, instant messaging, online multi-user gaming and content

distribution over public networks. Distributed storage systems such as NFS

(Network File System) provide users with a unified view of data stored on

different file systems and computers which may be on the same or different

networks.

2.1.1. DISTRIBUTED SYSTEMS’ MAIN FEATURES

There are many different types of distributed computing systems

and many challenges to overcome in successfully designing one. The main

goal of a distributed computing system is to connect users and resources in

a transparent, open and scalable way. Ideally this arrangement is

drastically more fault tolerant and more powerful than many combinations

of stand-alone computer systems.

Organization Based Multiagent Architecture For Distributed Environments

14

The main features of a distributed system include [Coulouris et al.,

2005, Van Steen and Tanenbaum, 2002]:

− Functional Separation: based on the functionality/services

provided, capability and purpose of each entity in the system.

− Inherent distribution: entities such as information, people, and

systems are inherently distributed. For example, different

information is created and maintained by different people. This

information could be generated, stored, analysed and used by

different systems or applications which may or may not be aware

of the existence of the other entities in the system.

− Reliability: long term data preservation and backup (replication) at

different locations.

− Scalability: addition of more resources to increase performance or

availability.

− Economy: sharing of resources by many entities to help reduce the

cost of ownership.

As a consequence of these features, the various entities in a

distributed system can operate concurrently and possibly autonomously.

Tasks are carried out independently and actions are co-ordinated at well-

defined stages by exchanging messages. Also, entities are heterogeneous,

and failures are independent. Generally, there is no single process, or

entity, that has the knowledge of the entire state of the system.

2.1.2. MAIN ISSUES HANDLED BY DISTRIBUTED
SYSTEMS

Various kinds of distributed systems operate today, each aimed at

solving different kinds of problems. The challenges faced in building a

distributed system vary depending on the requirements of the system. In

Chapter 2. Distributed Environments

15

general, however, most systems will need to handle the following issues

[Coulouris et al., 2005, Van Steen and Tanenbaum, 2002]:

− Heterogeneity: various entities in the system must be able to

interoperate with one another, despite differences in hardware

architectures, operating systems, communication protocols,

programming languages, software interfaces, security models, and

data formats.

− Transparency: the entire system should appear as a single unit and

the complexity and interactions between the components should be

typically hidden from the end user.

− Fault tolerance and failure management: Failure of one or more

components should not bring down the entire system, and should

be isolated.

− Scalability: the system should work efficiently with increasing

number of users and addition of a resource should enhance the

performance of the system.

− Concurrency: shared access to resources should be made possible

at the same time by different elements.

− Openness and Extensibility: interfaces should be clearly separated

and publicly available to enable easy extensions to existing

components and add new components by evolving the systems to a

more complete state.

− Migration and load balancing: allow the movement of tasks within

a system without affecting the operation of users or applications,

and distribute load among available resources for improving

performance.

− Security: access to resources should be secured to ensure only

known users are able to perform allowed operations.

Organization Based Multiagent Architecture For Distributed Environments

16

Several software companies and research institutions have

developed distributed computing technologies that support some or all of

the features described above.

2.1.3. DISTRIBUTED COMPUTING TECHNOLOGIES

Over the years, technologies such as CORBA and DCOM have

provided the means to build distributed component-based systems. Such

technologies allow systems to interoperate at the component level, by

providing a software layer and protocols that offer the interoperability

needed for components developed in different programming languages to

exchange messages. However, such technologies present scalability issues

when applied to, for instance, the Internet and some restrict the developer

to a specific programming language. Hence, approaches based on Web

protocols and XML (eXtensible Markup Language) have been proposed to

allow interoperable distributed systems irrespective the programming

language in which they are developed.

Web Services are based on XML and provide a means to develop

distributed systems that follow a Service Oriented Architecture (SOA).

Services are described in an XML-based dialect (WSDL). In a similar

fashion, the request and reply messages exchanged in such systems are

formatted according to the Simple Object Access Protocol (SOAP). SOAP

messages can be encoded and transmitted by using Web protocols such as

the Hypertext Transfer Protocol (HTTP). Various industrial technologies

and application platforms such as .NET from Microsoft, J2EE from Sun,

and WebSphere from IBM are targeted at supporting the development of

applications based on Web Services.

Along with Web Services, Grid computing is another emerging

paradigm for creating wide-area distributed applications. Web Services are

foundation technologies that can be used in building many types of

Chapter 2. Distributed Environments

17

distributed systems and applications including Grid systems. Web

Services are in the core of the current implementations of Grid

technologies such as Globus from Argonne National Laboratory in USA

and the Gridbus from the University of Melbourne, Australia. Grid

computing scales from an enterprise/organisation to a global level. Global

Grids are established over the public Internet infrastructure, and are

characterized by a global presence, comprise of highly heterogeneous

resources, present sophisticated security mechanisms, focus on single

sign-on and are mostly batch-job oriented.

To enable global Grids, one requirement is that current enterprise

and campus Grids are able to interoperate. Enterprise and campus Grids

consist of resources spread across an enterprise and provide services to

users within that organisation and are managed by a single administrative

domain. Such Grids are more concerned with cycle stealing from unused

desktops and use virtualization of resources in order to provide better

means to manage and utilize them within an enterprise. For example,

Oracle 10g uses a virtualization approach to split data storage from the

database transaction and process layer. However, scalability and the

design of security mechanisms are not as difficult as they are for global

Grids.

Next, some of those main technologies used to face different

situations in distributed environments will be explained in detail.

2.2. CORBA
An important characteristic of large computer networks such as the

Internet, the World Wide Web (WWW), and corporate intranets is that they

are heterogeneous. For example, a corporate intranet might be made up of

mainframes, UNIX workstations and servers, PC systems running various

Organization Based Multiagent Architecture For Distributed Environments

18

flavours of Microsoft Windows, IBM OS/2, or Apple Macintosh, and perhaps

even devices such as telephone switches, robotic arms, or manufacturing test

beds. The networks and protocols underlying and connecting these systems

might be just as diverse: Ethernet, FDDI, ATM, TCP/IP, Novell Netware, and

various remote procedure call (RPC) [Birrell and Nelson, 1984] systems, for

example. Fundamentally, the rapidly-increasing extents of these networks are

due to the need to share information and resources within and across diverse

computing enterprises.

Heterogeneity in such computing systems is the result of several

factors. The first one is engineering trade-offs. There is rarely only a single

acceptable solution to a complex engineering problem. As a result, different

people across an enterprise often choose different solutions to similar

problems.

Cost effectiveness is also crucial. Vendors vary in their abilities to

provide the “best” systems at the lowest cost. Though there is some amount of

“brand name loyalty”, many consumers tend to buy the systems that best

fulfil their requirements at the most reasonable price, regardless of who makes

them.

Finally, legacy systems must be taken into account. Over time,

purchasing decisions accumulate, and already-purchased systems may be too

critical or too costly to replace. For example, a company that has been

successfully running its order fulfilment applications, which are critical to its

day-to-day operations, on its mainframe for the last fifteen years is not likely

to simply scrap their system and replace it with the latest fad technologies.

Alternatively, a company may have spent large sums of money on its current

systems, and those systems must be utilized until the investment has paid off.

Ideally, heterogeneity and open systems enable to use the best

combination of hardware and software components for each portion of an

enterprise. When the right standards for interoperability and portability

Chapter 2. Distributed Environments

19

between these components are in place, the integration of the components

yields a system that is coherent and operational.

Unfortunately, dealing with heterogeneity in distributed computing

enterprises is rarely easy. In particular, the development of software

applications and components that support and make efficient use of

heterogeneous networked systems is very challenging. Many programming

interfaces and packages currently exist to help ease the burden of developing

software for a single homogeneous platform. However, few help deal with the

integration of separately-developed systems in a distributed heterogeneous

environment.

In recognition of these problems, the Object Management Group

(OMG) was formed in 1989 to develop, adopt, and promote standards for the

development and deployment of applications in distributed heterogeneous

environments. Since that time, the OMG has grown to become the largest

software consortium in the world, with over 700 developers, vendors, and end

users on its membership roster. These members contribute technology and

ideas in response to Requests For Proposals (RFPs) issued by the OMG.

Through responses to these RFPs, the OMG adopts specifications based on

commercially-available object technology. Here the OMG’s Object

Management Architecture (OMA) [OMG, 1996] is described, focusing on one

of its key components, the Common Object Request Broker Architecture

(CORBA) specification [OMG, 1996].

In this chapter, only the main elements of CORBA are going to be

described, analyzing the interest of this methodology to solve the problems

generated in distributed environments. The rest of the technical explanation of

CORBA will be developed in Appendix A, where a complete description will

be held.

Organization Based Multiagent Architecture For Distributed Environments

20

2.2.1. THE OBJECT MANAGEMENT ARCHITECTURE
(OMA)

The OMA [OMG, 1996] is composed of an Object Model and a

Reference Model. The Object Model defines how objects distributed

across a heterogeneous environment can be described, while the Reference

Model characterizes interactions between those objects. The OMG RFP

process is used to adopt technology specifications that fit into the Object

Model and the Reference Model and work with the other previously-

adopted specifications. Through adherence to the OMA, these

specifications allow for the development and deployment of interoperable

distributed object systems in heterogeneous environments.

In the OMA Object Model, an object is an encapsulated entity with

a distinct immutable identity whose services can be accessed only through

well-defined interfaces. Clients issue requests to objects to perform

Figure 1. OMA Reference Model Interface Categories.

Chapter 2. Distributed Environments

21

services on their behalf. The implementation and location of each object

are hidden from the requesting client.

Figure 1 shows the components of the OMA Reference Model. The

Object Request Broker (ORB) component is mainly responsible for

facilitating communication between clients and objects. Utilizing the ORB

component are four object interface categories:

− Object Services (OS): these are domain-independent interfaces that

are used by many distributed object programs. For example, a

service providing for the discovery of other available services is

almost always necessary regardless of the application domain. Two

examples of Object Services that fulfil this role are:

o The Naming Service – which allows clients to find objects

based on names.

o The Trading Service – which allows clients to find objects

based on their properties.

There are also Object Service specifications for lifecycle

management, security, transactions, and event notification, as well

as many others [OMG, 1995b].

− Common Facilities (CF): like Object Service interfaces, these

interfaces are also horizontally-oriented, but unlike Object Services

they are oriented towards end-user applications. An example of

such a facility is the Distributed Document Component Facility

(DDCF) [OMG, 1995a], a compound document Common Facility

based on OpenDoc. DDCF allows for the presentation and

interchange of objects based on a document model, for example,

facilitating the linking of a spreadsheet object into a report

document.

Organization Based Multiagent Architecture For Distributed Environments

22

− Domain Interfaces (DF): these interfaces fill roles similar to Object

Services and Common Facilities but are oriented towards specific

application domains. For example, one of the first OMG RFPs

issued for Domain Interfaces is for Product Data Management

(PDM) Enablers for the manufacturing domain. Other OMG RFPs

will soon be or already have been issued in the

telecommunications, medical, and financial domains. In figure 2,

multiple boxes are shown for Domain Interfaces to indicate the

existence of many separate application domains.

− Application Interfaces (AI): these are interfaces developed

specifically for a given application. Because they are application-

specific, and because the OMG does not develop applications (only

specifications), these interfaces are not standardized. However, if

over time it appears that certain broadly useful services emerge out

of a particular application domain, they might become candidates

Figure 2. OMA Reference Model Interface Usage.

Chapter 2. Distributed Environments

23

for future OMG standardization.

Figure 2 illustrates the other part of the OMA Reference Model, the

concept of Object Frameworks. These are domain-specific groups of

objects that interact to provide a customizable solution within that

application domain. These frameworks are typically oriented towards

domains such as telecommunications [Siegel, 1998], medical systems

[Moreno et al., 2008], finance [Jian-dong and Shang-liang, 2007], and

manufacturing [Lai, 2007]. In figure 2, each circle represents a component

that uses the ORB to communicate with other components.

The interfaces supported by each component are indicated on its

outer circle. As figure 2 shows, some components support application-

specific interfaces, as well as domain interfaces, common facilities

interfaces, and object services. Other components support only a subset of

these interfaces.

Within an object framework like the one shown in figure 2, each

component communicates with others on a peer-to-peer basis. That is,

each component is both a client of other services and a server for the

services it provides. In CORBA, the terms “client” and “server” are

merely roles that are filled on a per-request basis. Very often, a client for

one request is the server for another.

Throughout most of its existence, much of the OMG’s attention

was focused on the ORB component of the OMA. This was necessary

because everything else in the OMA depends on the ORB.

2.2.2. CORBA APPLICATIONS AND INTEREST FIELDS

Areas that are currently being investigated by OMG task forces

include:

− Medical (Master Patient Indexing): patient identification can be

surprisingly difficult, due to multiple people with the same name,

Organization Based Multiagent Architecture For Distributed Environments

24

illegal use of identification numbers, etc. At the time of this

document has been written, the CORBAmed Medical Task Force

was very close to issuing a RFP for technology related to the

identification of patients.

− Telecommunications (Isochronous Streams): streams for audio and

video data have special quality of service requirements due to their

isochronous nature. The CORBAtel Telecommunications Task

Force recently issued an RFP seeking technology for the

management and manipulation of isochronous streams.

− Business (Business Objects): portions of many business processes

are very similar, and thus can be abstracted out into frameworks.

The Business Objects Task Force will soon begin evaluating

responses to its Business Objects RFP, which seeks object

frameworks to support business processes.

− Common Facilities (Systems Management Facility): the OMG has

nearly completed the adoption of the X/Open systems management

specification, which defines a set of extended services for the

monitoring and management of distributed systems. These services

complement those specified in the existing OMG Common Object

Services Lifecycle Specification [OMG, 1995b].

− ORBOS (Objects by value): CORBA currently allows object

references to be passed as arguments and return values, but it does

not allow objects to be passed by value. This makes the use of

encapsulated data types (e.g., linked lists) difficult to use from

languages such as C++. The ORBOS Task Force will soon begin

evaluating responses to its Objects by Value RFP, which will

describe technology for passing objects by value between CORBA

applications.

Chapter 2. Distributed Environments

25

2.3. SOA
Over the last four decades, software architectures have attempted to

deal with increasing levels of software complexity. As the level of complexity

continues to evolve, traditional architectures do not seem to be capable of

dealing with the current problems. While traditional needs of IT organizations

persist, the need to both respond quickly to new requirements of the business

and continually reduce the IT cost, and the ability to absorb and integrate new

business partners and new customer sets become more in demand. The

industry has gone through multiple computing architectures designed to allow

fully distributed processing, programming languages designed to run on any

platform, greatly reducing implementation schedules, and a myriad of

connectivity products designed to allow better and faster integration of

applications. Service Oriented Architecture (SOA) is being advocated in the

industry as the next evolutionary step in software architecture to help IT

organizations meet their ever more complex set of challenges

[Channabasavaiah et al., 2003].

The existence of Web services technologies has stimulated the

discussion of Services Oriented Architecture (SOA), which has been

advocated for more than a decade now, ever since CORBA extended the

promise of integrating applications on disparate heterogeneous platforms.

Problems of integrating those applications arise, often because of so many

different (and non-CORBA-compliant) object models. Architects and

engineers alike became so bogged down in solving technology problems,

constantly in search for a more robust architecture that would allow simple,

fast, and secure/seamless integration of systems and applications was lost.

Meanwhile, the distributing computing model opens the way of cross-platform

and cross-programming language interoperability. SOAP is a great distribution

computing solution because it achieves interoperability through open

Organization Based Multiagent Architecture For Distributed Environments

26

standards at the specification level as well as the implementation level.

Meanwhile, basic business needs such as lowering costs, reducing

cycle times, integration across the enterprise, B2B and B2C integration,

greater ROI, creating an adaptive and responsive business model demands

better solutions. "Point solutions" won't work as desired solutions for the lack

of a consistent architectural framework within which applications can be

rapidly developed, integrated, and reused. Thus an architectural framework

must be developed to allow the assembly of components and services for the

rapid, and even dynamic, delivery of solutions; an architectural view

unconstrained by technology.

2.3.1. DEFINITION OF SOA

A service-oriented architecture is essentially a collection of

services, among which the communication can involve either simple data

passing or it could involve two or more services coordinating some

activity, requiring means of connecting services to each other [Krafzig et

al., 2004]. The first service-oriented architecture in the past was with the

use DCOM or Object Request Brokers (ORBs) based on the CORBA

specification.

Figure 3. Basic Service-Oriented Architecture.

Chapter 2. Distributed Environments

27

To understand service-oriented architecture must begin with a clear

understanding of the term service. A service is a function that is well

defined, self-contained, and does not depend on the context or state of

other services. The technology of Web services is the most likely

connection technology of service-oriented architectures. Web services

essentially use XML to create a robust connection.

Figure 3 illustrates a basic service-oriented architecture. It shows a

service consumer at the right sending a service request message to a

service provider at the left. The service provider returns a response

message to the service consumer. The request and subsequent response

connections are defined in some way that is understandable to both the

service consumer and service provider. How those connections are defined

is explained in Web Services explanation [Erickson and Siau, 2008]. A

service provider can also be a service consumer.

Figure 4.Components of basic Service-Oriented Architecture.

Organization Based Multiagent Architecture For Distributed Environments

28

As a distributed software model, a SOA is usually comprised of

three primary parts: provider (of services), consumer (of services) and

directory (of services), as shown in figure 4. Web Services are considered

an example of Service Oriented Architecture. Service Networks take on

the properties of a SOA.

Considering the term service-oriented architecture, it is useful to

review the key terms, as it is done in the following paragraphs.

An architecture is a formal description of a system, defining its

purpose, functions, externally visible properties and interfaces. It also

includes the description of the system’s internal components and their

relationships, along with the principles governing its design, operation,

and evolution.

A service is a software component that can be accessed via a

network to provide functionality to a service requester.

The term service-oriented architecture refers to a style of building

reliable distributed systems that deliver functionality as services, with the

additional emphasis on loose coupling between interacting services.

Technically, then, the term SOA refers to the design of a system,

not to its implementation. It is common place for the term to be used in

referring to an implementation. For example, in phrases such as “building

a SOA” and using the adjective service-oriented in contexts such as

“service-oriented environment” or “service-oriented grid”.

SOA is considered as an architectural style that emphasizes

implementation of components as modular services that can be discovered

and used by clients [Mahmoud, 2005].

Services may be individually useful, or they can be integrated

(composed) to provide higher-level services. Among other benefits, this

promotes reuse of existing functionality. Services communicate with their

Chapter 2. Distributed Environments

29

clients by exchanging messages. They are defined by the messages they

can accept and the responses they can give. Services can participate in a

workflow, where the order in which messages are sent and received affects

the outcome of the operations performed by a service. This notion is

defined as “service choreography”.

Services may be completely self-contained, or they may depend on

the availability of other services, or on the existence of a resource such as

a database. In the simplest case, a service might perform a calculation

such as computing the cube root of a supplied number without needing to

refer to any external resource, or it may have pre-loaded all the data that it

needs for its lifetime.

Conversely, a service that performs currency conversion would

need real-time access to exchange-rate information in order to yield

correct values. Services advertise details such as their capabilities,

interfaces, policies, and supported communications protocols.

Implementation details such as programming language and hosting

platform are of no concern to clients, and are not revealed.

Figure 5 illustrates a simple service interaction cycle, which begins

with a service advertising itself through a well-known registry service (1).

A potential client, who may or may not be another service, queries the

registry (2) to search for a service that meets its needs. The registry

returns a (possibly empty) list of suitable services, and the client selects

one and passes a request message to it, using any mutually recognized

protocol (3). In this example, the service responds (4) either with the

result of the requested operation or with a fault message.

The illustration shows the simplest case, but in a real-world setting

such as a commercial application the process may be significantly more

complex. For example, a given service may support only the HTTPS

protocol, be restricted to authorized users, require Kerberos authentication,

Organization Based Multiagent Architecture For Distributed Environments

30

offer different levels of performance to different users, or require payment

for use.

Services can provide such details in a variety of ways, and the

client can use this information to make its selection. Some attributes, such

as payment terms and guaranteed levels of service, may need to be

established by a process of negotiation before the client can make use of

the service it has selected.

And, while this illustration shows a simple synchronous, bi-

directional message exchange pattern, a variety of patterns are possible.

For example, an interaction may be one-way, or the response may come

not from the service to which the client sent the request, but from some

other service that completed the transaction.

Figure 5. Service interaction in a service-oriented environment.

Chapter 2. Distributed Environments

31

2.3.2. LOOSE COUPLING

When talking about and defining SOA, the term loose coupling is

included [Natis and Schulte, 2003]. This term implies that the interacting

software components minimize their in-built knowledge of each other:

they discover the information they need at the time they need it. For

example, having learned about a service’s existence, a client can discover

its capabilities, its policies, its location, its interfaces and its supported

protocols. Once it has this knowledge, the client can access the service

using any mutually acceptable protocol. The word “frictionless” has been

used to describe the ultimate goal of loose coupling, and the word aptly

conjures up a vision of components that communicate almost without

contact. The benefits of loose coupling include:

− Flexibility: a service can be located on any server, and relocated as

necessary. As long as it maintains its registry entry, prospective

clients will be able to find it.

− Scalability: services can be added and removed as demand varies.

− Replaceability: Provided that the original interfaces are preserved,

a new or updated implementation of a service can be introduced,

and outdated implementations can be retired, without disruption to

users.

− Fault tolerance: if a server, a software component, or a network

segment fails, or the service becomes unavailable for any other

reason, clients can query the registry for alternate services that

offer the required functionality, and continue to operate without

interruption.

Clearly, all these benefits have great value in a dynamic distributed

environment. However, while the vision of loose coupling is appealing, it

is some way from broad-based realization. For example, common Web

Organization Based Multiagent Architecture For Distributed Environments

32

service integrated development environments (IDEs) provide for rapid and

easy development of service clients by reading the description of a service

and generating a client-side “proxy” or “stub” class with methods that

correspond to the service’s interfaces. If the interfaces change, the proxy

must be regenerated and the client code may need to be altered to invoke

the changed methods. While development in this type of environment may

be fast and easy, the result is far from frictionless.

Does this mean that services and clients built using such an IDE are

not loosely coupled? Well, the word “loose” is presumably chosen

because it is a relative term. It might be said that a truly frictionless

relationship is zero-coupled, and adding some friction simply moves it

further toward the other end of the scale. The point at which it becomes

tightly coupled is a subjective decision.

2.3.3. STATE AND STATELESSNESS

A key notion of loose coupling is statelessness, which is a topic that

has been much-discussed and is often mentioned as a critical requirement,

sometimes without a clear understanding of its significance [Stal et al.,

2006].

Simply, the benefits of loose coupling, as listed above, are derived

from the fact that a client can choose to go to any service that is capable of

fulfilling its need. If its choice is restricted to a single service then a tight

coupling exists between the client and the server, and the benefits of loose

coupling are diminished.

In the simple case of a calculator or a stock-price service it is easy

to see that once a client has requested and received information, the

transaction is completed, and the client has no particular need to revisit the

same service for its future needs. From this perspective, the client and

service are loosely coupled.

Chapter 2. Distributed Environments

33

For a more complex transaction that requires several steps,

however, the design of the service might be such that the service retains in

its local memory some information (“state”) about the first step,

expecting to make use of it when the client contacts it for the next step. In

this case, the service is “stateful”, and the client must return to the same

service for the next step. This might result in a delay if many clients are

using the same service or in a transaction failure if the node hosting the

service fails between steps.

A better approach to the design of the service not to retain the state

about the transaction, to be “stateless”. This implies that in a multi-step

transaction, at the end of each intermediate step, the service must hand

back to the client sufficient state information to enable any qualified

service to identify and continue the transaction. The client must hand the

state information to whichever service it selects to process the next step of

the transaction.

The selected service must be able to accept and handle the state

information supplied by the client, regardless of whether it processed the

earlier steps itself.

Figure 6 shows a client engaged in a three-step transaction with

several services, each of which might be capable of handling any part or

all of the transaction. The service that handles Step 1 stores the details of

the in-progress transaction in the database, and returns requested

information to the client, along with a transaction identifier. The client

might request confirmation from the user before passing the transaction

identifier to another service, which uses it to retrieve the state information

from the database and initiates Step 2. This service then updates the

database and returns additional information to the client. Finally, the client

passes the transaction identifier back to a third service with a request to

complete the transaction.

Organization Based Multiagent Architecture For Distributed Environments

34

Most non-trivial applications require access to some amount of state

information, and the debate is not so much about whether state should

exist as about where it should be stored. The approach outlined above

enhances loose coupling by separating the transaction’s state from the

services that operate on it. In the example, both the account data and the

details of the transaction can be considered to be state information, but the

account data is permanent, while the transaction details only need to exist

while the transaction is in progress. To minimize the amount of state that

needs to be passed between the clients and the services, the critical

account data and the details of the transaction are held in the database: the

common requirement for all participating services is that they must be able

to access the database, given a simple token such as a customer’s account

number, which can easily be passed between the client and the services.

Figure 6. A multi-step client/service interaction.

Chapter 2. Distributed Environments

35

2.3.4. SERVICE-ORIENTED ARCHITECTURE (SOA)
MODEL

The potential concept of SOA was found to have merit by

companies like IBM and Microsoft who recognized that for SOA to

succeed where other distributed computing concepts had failed, it must be

implemented on open standards. Thus, the recent cooperation between

these companies on recommended standards like UDDI and WSDL

[Schroth and Christ, 2007]. According to IBM, SOA is comprised of three

participants and three fundamental operations, regardless of its

implementation, (see Figure 7).

A service provider is a network node that provides a service

interface for a software asset that manages a specific set of tasks. A

service provider node can represent the services of a business entity or it

can simply represent the service interface for a reusable subsystem.

A service requestor is a network node that discovers and invokes

other software services to provide a business solution. Service requestor

nodes will often represent a business application component that performs

remote procedure calls to a distributed object, the service provider. In

some cases, the provider node may reside locally within an intranet or in

other cases it could reside remotely over the Internet. The conceptual

nature of SOA leaves the networking, transport protocol, and security

details to the specific implementation.

The service broker is a network node that acts as a repository,

yellow pages, or clearing house for software interfaces that are published

by service providers. A business entity or an independent operator can

represent a service broker.

Organization Based Multiagent Architecture For Distributed Environments

36

These three SOA participants interact through three basic

operations: publish, find, and bind. Service providers publish services to a

service broker. Service requesters find required services using a service

broker and bind to them. The interactive process among these three agents

calls/centres on the service components (rather than objects which

characterizes object paradigm).

2.3.5. BUSINESS ROLES

Because of the role-based nature, SOA strives to meet services and

business needs much more effectively. In the service-oriented architecture

(SOA) of Web services, three distinct actors the provider, the requestor,

and the broker interact to help an organization make a choice among five

possible business roles [Pasley, 2005].

− Service Requestor: for a business to identify with this SOA role, it

must find some commonality between their business activity and

Figure 7. The SOA model.

Chapter 2. Distributed Environments

37

the actions of a requestor. There are two clear business activities

that would allow a business to benefit from implementing the role

of a service requestor: Content Aggregation and Service

Aggregation. Content Aggregation is an activity where a business

entity interacts with a variety of content providers to process or

reproduce such content in the desired presentation format of its

customers (such as Internet portal or information service provider).

Service Aggregation is an activity where a business entity interacts

with a variety of service providers to re-brand, host, or offer a

composite of services to its customers (such as a mobile portal and

the alike of OnStar).

− Service Provider: for a business to identify with this SOA role, it

must view itself as performing some degree of an electronic

service. Whether that service is defined as the processing of data or

the act of carrying out a specific task, the business entity must

believe it is performing work for others as an occupation or a

business.

− Registry: if a business entity finds itself collecting and cataloguing

data about other businesses and then selling that data to others, it

may identify well with a registry, a form of SOA Broker. Usually,

a registry would collect data such as business name, description,

and contact information. In UDDI terms, this SOA role is often

referred to as the White Pages.

− Broker: building on the concept of a registry, business entities may

also be able to identify with the notion of a broker, which in UDDI

terms is often referred to as Yellow Pages. Brokers usually extend

the value proposition of a registry by offering intelligent search

capability and business classification or taxonomy data.

Organization Based Multiagent Architecture For Distributed Environments

38

− Aggregator/Gateway: any business entity that provides Broker

capabilities plus the ability to describe actual policy, business

processes and binding descriptions would be able to identify itself

as Green Pages.

2.4. WEB SERVICES
In recent years, distributed programming paradigms have emerged,

that allow generic software components to be developed and shared. Whilst

early versions were little more than shared libraries of functions with little user

documentation and unpredictable side effects, it wasn’t until the advent of

object-oriented programming and architectures such as CORBA, that self

contained components could be reliably defined, documented and shared

within a distributed environment. Although ideal for some enterprise

integration and eCommerce, it has only been with the adoption of XML as

common data syntax that the underlying principals have gained wide scale

adoption, through the definition of Web Service standards. Web services are

well defined, reusable, software components that perform specific,

encapsulated tasks via standardized Web-oriented mechanisms. They can be

discovered, invoked, and the composition of several services can be

choreographed, using well defined workflow modelling frameworks.

Whilst promising to revolutionize eCommerce and enterprise-wide

integration, current standard technologies for Web services (e.g. WSDL

[Christensen et al., 2001]) provide only syntactic-level descriptions of their

functionalities, without any formal definition to what the syntactic definitions

might mean. In many cases, Web services offer little more than a formally

defined invocation interface, with some human oriented metadata that

describes what the service does, and which organization developed it (e.g.

through UDDI descriptions). Applications may invoke Web services using a

common, extendable communication framework (e.g. SOAP). However, the

Chapter 2. Distributed Environments

39

lack of machine readable semantics necessitates human intervention for

automated service discovery and composition within open systems, thus

hampering their usage in complex business contexts.

Semantic Web Services (SWS) relax this restriction by augmenting

Web services with rich formal descriptions of their capabilities, thus

facilitating automated composition, discovery, dynamic binding and

invocation of services within an open environment. A prerequisite to this,

however, is the emergence and evolution of the Semantic Web, which

provides the infrastructure for the semantic interoperability of Web Services.

Web Services will be augmented with rich formal descriptions of their

capabilities, such that they can be utilized by applications or other services

without human assistance or highly constrained agreements on interfaces or

protocols. Thus, Semantic Web Services have the potential to change the way

knowledge and business services are consumed and provided on the Web.

Current efforts in developing Semantic Web Service infrastructures

can be characterized along three orthogonal dimensions: usage activities,

architecture and service ontology. Usage activities define the functional

requirements, which a framework for Semantic Web Services ought to

support. The architecture of SWS describes the components needed for

accomplishing the activities defined for SWS, whereas the service ontology

aggregates all concept models related to the description of a Semantic Web

Service.

2.4.1. DEFINITION

Web Services are changing the way applications communicate with

each other on the Web. They promise to integrate business operations,

reduce the time and cost of Web application development and

maintenance as well as promote reuse of code over the World Wide Web.

By allowing functionality to be encapsulated and defined in a reusable

Organization Based Multiagent Architecture For Distributed Environments

40

standardized format, Web services have enabled businesses to share (or

trade) functionality with arbitrary numbers of partners, without having to

prenegotiate communication mechanisms or syntax representations. The

advent of discovery has enabled vendors to search for Web services,

which can then be invoked as necessary. For example, a book-selling

company may look for shipping services, which they may later invoke to

ensure that books are delivered to the customers. This flexibility is

achieved through a set of well-defined standards that define syntax,

communication protocol, and invocation signatures, which allow programs

implemented on diverse, heterogeneous platforms to interoperate over the

internet.

A Web Service is a software program identified by an URI

(Uniform Resource Identifier), which can be accessed via the internet

through its exposed interface. The interface description declares the

operations which can be performed by the service, the types of messages

being exchanged during the interaction with the service, and the physical

location of ports, where information should be exchanged. For example, a

Web service for calculating the exchange rate between two money

currencies can declare the operation “getEx changeRate” with two inputs

of type string (for source and target currencies) and an output of type float

(for the resulting rate). A binding then defines the machine and ports

where messages should be sent. Although there can be many ways of

implementing Web services, it is basically assumed that they are deployed

in Web servers such that they can be invoked by any Web application or

Web agent independently of their implementations. In addition Web

services can invoke other Web services.

The common usage scenario for Web services can be defined by

three phases: Publish, Find and Bind, and three entities: the service

requester, which invokes services, the service provider which responds to

Chapter 2. Distributed Environments

41

XM
L

requests, and the registry where services can be published or advertised. A

service provider publishes a description of a service it provides to a

service registry. This description (or advertisement) includes a profile on

the provider of the service (e.g. company name and address); a profile

about the service itself (e.g. name, category), and the URL of its service

interface definition (e.g. WSDL description).

When a developer realizes a need for a new service, he finds the

desired service either by constructing a query, or browsing the registry.

The developer then interprets the meaning of the interface description

(typically through the use of meaningful label or variable names,

comments, or additional documentation) and binds to (i.e. includes a call

to invoke) the discovered service within the application they are

developing. This application is known as the service requester. At this

point, the service requester can automatically invoke the discovered

service (provided by the service provider) using Web service

communication protocols (e.g. SOAP).

Key to the interoperation of Web services is an adoption of a set of

enabling standard protocols. Several XML-based standards have been

proposed to support the usage scenario previously described.

XML schema (XML-S) [Biron and Malhotra, 2001] provides the

underlying framework for both defining the Web Services Standards, and

variables, objects and data types etc that are exchanged between services.

SOAP [Mitra, 2003] is W3C’s recommended XML-data transport

protocol, used for data exchange over Web-based communications

protocols (http). SOAP messages can carry an XML payload defined using

XML-S, thus ensuring a consistent interpretation of data items between

different services.

WSDL [Christensen et al., 2001] is the W3C recommended

language for describing the service interface. Two levels of abstraction are

Organization Based Multiagent Architecture For Distributed Environments

42

used to describe Web services. The first level defines atomic method calls,

or operations, in terms of input and output messages (each of which

contain one or more parameters defined in XML-S). Operations define the

way in which messages are handled e.g. whether an operation is a one-way

operation, request-response, solicit-response or notification. The second

abstraction maps operations and associated messages to physical

endpoints, in terms of ports and bindings. Ports declare the operations

available with corresponding inputs and outputs. The bindings declare the

transport mechanism (usually SOAP) being used by each operation.

WSDL also specifies one or more network locations or endpoints at which

the service can be invoked.

As services become available, they may be registered with a UDDI

registry [Dialani, 2002] which can subsequently be browsed and queried

by other users, services and applications. UDDI Web service discovery is

typically human oriented, based upon yellow or white-page queries (i.e.

metadata descriptions of service types, or information about the service

providers). UDDI service registrations may also include references to

WSDL descriptions, which may facilitate limited automation of discovery

and invocation. However, as no explicit semantic information is normally

defined, automated comprehension of the WSDL description is limited to

cases where the provider and requester assume pre-agreed ontologies,

protocols and shared knowledge about operations.

A service might be defined as a workflow describing the

choreography of several operations. Such a workflow may determine: the

order of operation execution, what operations may be executed

concurrently and alternative execution pathways (if conditional operators

are included in the workflow modelling language). Conversely, workflows

are required to orchestrate the execution of several simple services that

may be composed together to form a more complex service. Various

Chapter 2. Distributed Environments

43

choreography and orchestration languages have been proposed such as

BPEL4WS [Andrews et al., 2003], and are currently being evaluated by

various industry standardization bodies.

2.4.2. WEB SERVICES PROBLEMS

SOAP, WSDL, and UDDI are important technologies to enable

Web services. However, to fully satisfy the requirements of business

applications, the current technologies have shortcomings. Here, the three

major problems and research directions to upgrade the existing

technologies will be discussed.

2.4.2.1. SECURITY PROBLEMS

Now, a simple travel scenario will be used to illustrate the

security problem of Web services. More than three pieces of the Web

services framework are required to interact properly to complete the

travel scenario.

At the very least, it is necessary to ensure that transactions like

the electronic check-ins were conducted in a secure environment and

that messages were reliably delivered to the destinations. The main

reason to built additional security when there are technologies such as

Secure Multipurpose Internet Mail Extensions (S-MIME), HTTP

Secure (HTTPS), and Kerberos available is the difference between

end-to-end and single-hop usage.

Business messages typically originate from one application and

then are transferred to another one. Mechanisms such as Secure

Sockets Layer are great for securing (for confidentiality) a direct

connection from one machine to another, but they are of no help if the

message has to travel over more than one connection.

Organization Based Multiagent Architecture For Distributed Environments

44

It is well known in the penetration testing community that

attacks to modern systems are usually not at the network level but

within the application protocols (e.g., HTTP in the case of Web

systems). This means that the firewall will simply pass the attack

traffic along with any legitimate HTTP requests as it looks for port 80

traffic only, and does not concern the malformed HTTP traffic or

application specific attacks (such as SQL injection). In many cases

where SSL is used, the firewall cannot see into the traffic stream. In

some respects, Web services have adopted the HTTP’s tunnelling

idea, by allowing all systems, both internal and external, to

communicate on HTTP ports so flexibility is obtained. What is

removed is the control the firewall may have, and ultimately the

application servers are opened up to “application level” attacks in

exactly the same way as insecure and vulnerable Web servers today.

Basically, the security problems that are likely to affect Web

services are the same as those that have affected the conventional

Web-based systems. Security is critical to the adoption of Web

services by enterprises, but, as it stands today, the Web services

framework does not meet basic security requirements.

The fact that Web services involve exchange of messages

means that securing the message exchange is an important issue to

consider when building and using Web services. In the Web services

context, security means that the recipient of a message should be able

to verify the integrity of the message and to make sure that it has not

been modified. The recipient should have received a message

confidentially so that unauthorized users could not read it, know the

identity of the sender and determine whether or not the centre is

authorized to carry out the operation requested in the message. These

are usually met through encrypting messages.

Chapter 2. Distributed Environments

45

On the other hand, because Web services allow all systems,

both internal and external, to communicate on HTTP ports, the

application servers are inevitably opened up to “application level”

attacks.

A few standards have come out to alleviate the message

security problem, including WS Security and various other initiatives

(mostly from the major vendors and PKI suppliers) towards enabling

digital signatures on XML messages and transactions. But the

“application level” attacks were hardly concerned.

2.4.2.2. COMPOSITION PROBLEMS

Complex business interactions require support for higher levels

of business functionality. Business interactions are typically long

execution processes and involve multiple interactions between

partners. To deploy and effectively use these types of services, it is

necessary to represent business processes and states of services and to

create service compositions (complex aggregations) in a standardized

and systematic fashion. Several proposals for accomplishing this task

exist; see, for example, Web Services Flow Language, XLANG

[Thatte, 2001] and BPEL4WS.

The industry has used a number of terms to describe how

components can be connected together to build complex business

processes. Workflow and document management systems have existed

as a means to handle the routing of work between various resources in

an IT organization. These resources might include people, systems or

applications and typically involve some human intervention. Business

process management systems (BPMS) have also been used to enable a

business to build a top-down process design model, consisting of

various integration activities (e.g., integration to a legacy system).

Organization Based Multiagent Architecture For Distributed Environments

46

BPMS systems [Lee et al., 2002] would typically cover the full

lifecycle of a business process, including modelling, executing,

monitoring, management and optimization tasks. With the

introduction of Web services, terms such as “Web services

composition” and “Web services flow” were used to describe the

composition of Web services in a process flow. More recently, the

terms orchestration and choreography have been used to describe this

too. Orchestration describes how Web services can interact with each

other at the message level, including business logic and execution

order of the interactions. These interactions may span applications

and/or organizations, and result in a long-lived, transactional, multi-

step process model.

2.4.2.3. SEMANTIC PROBLEMS

The current Web services technology basically provides a

syntactical solution and still lacks the semantic part. A Web service is

described in WSDL, outlining what input the service expects and what

output it returns. To exploit their potentials (beyond the enterprise

application integration), Web services must be able to orchestrate

themselves into more complex services. Thus, methods to combine

individual Web services into a distributed, higher-level service are

needed. The Web Service Flow Language (WSFL), which can express

the sequencing of individual services, is taking the first steps. WSFL

lets the user decide which Web services to combine and in what order.

However, a framework that semantically describes services so that

software agents can locate, identify and combine these services is still

needed.

Many researchers believe that the Semantic Web vision of the

next-generation Web, that enables computers unambiguously

Chapter 2. Distributed Environments

47

interpreting the Web content, addresses precisely this problem

[Gibbins et al., 2004, Hendler, 2001, McIlraith and Zeng, 2001]. The

Semantic Web project is Tim Berners-Lee's brainchild, seeking to

create a machine processable Web. Semantic Web has advocates

predominantly from the more research-oriented members of the Web

community. Due to commercial interests, industrial player, including

Microsoft, IBM and BEA, on the other hand, have largely driven the

development of Web Services.

In his opening lecture at the Twelfth International World Wide

Web conference, the Director of the World Wide Web Consortium

explained how to make the two main thrusts of the development of the

Web not compete, but work together. Berners-Lee claimed that Web

Services meet immediate technology needs, while the Semantic Web

has the potential for future exponential growth. There are many ways

in which the two areas could interact in the future, and the W3C does

not intend to limit their work to one area or the other.

Current Web services standards, such as SOAP, WSDL,

XLANG, WSFL, BPEL4WS, WSCI and BPML describe Web service

content in terms of XML syntax. Unfortunately, XML alone lacks

both a well-defined semantics and sufficient expressive power to

realize the vision of diverse Web services having wide-scale

interoperability. Seamless interoperability between services that have

not been pre-designed to work together requires programs to describe

their own capabilities and understand other services’ capabilities. To

realize this vision, Web content, particularly Web service content and

capabilities, may need to be described in a language that goes beyond

XML. This problem is well addressed in the Semantic Web vision of

the next-generation Web.

Organization Based Multiagent Architecture For Distributed Environments

48

2.5. GRID COMPUTING
The main goal in describing the Grid architecture is not to provide a

complete enumeration of all required protocols (and services, APIs, and

SDKs) but rather to identify requirements for general classes of component.

The result is an extensible, open architectural structure within which can be

placed solutions to key VO (Virtual Organization) requirements. The

architecture described here and the subsequent discussion organizes

components into layers, as shown in figure 8. Components within each layer

share common characteristics but can build on capabilities and behaviours

provided by any lower layer.

In specifying the various layers of the Grid architecture, the principles

of the “hourglass model” [Kleinrock, 1994] are followed. The neck of the

hourglass defines a fundamental set of core abstractions and protocols, onto

which many different high-level behaviours can be mapped (the top of the

hourglass), and which themselves can be mapped onto many different

underlying technologies (the base of the hourglass).

By definition, the number of protocols defined at the neck must be

small. In this architecture, the neck of the hourglass consists of Resource and

Connectivity protocols, which facilitate the sharing of individual resources.

Protocols at these layers are designed so that they can be implemented on top

of a diverse range of resource types, defined at the Fabric layer, and can in

turn be used to construct a wide range of global services and application-

specific behaviours at the Collective layer. Figure 8 shows that, because the

Internet protocol architecture extends from network to application, there is a

mapping from Grid layers into Internet layers. The architectural description is

high level and places few constraints on design and implementation.

Chapter 2. Distributed Environments

49

2.5.1. INTERFACES TO LOCAL CONTROL

The Grid Fabric layer provides the resources to which shared

access is mediated by Grid protocols: for example, computational

resources, storage systems, catalogues, network resources, and sensors. A

“resource” may be a logical entity, such as a distributed file system,

computer cluster, or distributed computer pool; in such cases, a resource

implementation may involve internal protocols (e.g., the NFS storage

access protocol or a cluster resource management system’s process

management protocol), but these are not the concern of Grid architecture.

Fabric components implement the local, resource-specific

operations that occur on specific resources (whether physical or logical) as

a result of sharing operations at higher levels. There is thus a tight and

subtle interdependence between the functions implemented at the Fabric

level, on the one hand, and the sharing operations supported, on the other.

Richer Fabric functionality enables more sophisticated sharing operations;

Figure 8. The layered Grid architecture and its relationship to the Internet
protocol architecture.

Organization Based Multiagent Architecture For Distributed Environments

50

at the same time, placing few demands on Fabric elements, then

deployment of Grid infrastructure is simplified. For example, if resources

support advance reservations, then it is straightforward to implement

higher-level services that co-schedule multiple resources. However, as in

practice few resources support advance reservation “out of the box”, a

requirement for advance reservation increases the cost of incorporating

new resources into a Grid.

Experience suggests that at a minimum, resources should

implement enquiry mechanisms that permit discovery of their structure

and state, on the one hand, and resource management mechanisms that

provide some control of delivered quality of service, on the other. The

following brief and partial list provides a resource-specific

characterization of capabilities.

− Computational resources: mechanisms are required for starting

programs and for monitoring and controlling the execution of the

resulting processes. Management mechanisms that allow control

over the resources allocated to processes are useful, as are advance

reservation mechanisms. Enquiry functions are needed for

determining hardware and software characteristics as well as

relevant load information such as current load and queue state in

the case of scheduler-managed resources.

− Storage resources: mechanisms are also required for putting and

getting files. Third-party and high-performance (e.g., striped)

transfers are useful [Thompson et al., 1999]. So are mechanisms

for reading and writing subsets of a file and/or executing remote

data selection or reduction functions [Beynon et al., 2000].

Management mechanisms that allow control over the resources

allocated to data transfers (space, disk bandwidth, network

bandwidth, CPU) are useful, as are advance reservation

Chapter 2. Distributed Environments

51

mechanisms. Enquiry functions are needed for determining

hardware and software characteristics as well as relevant load

information such as available space and bandwidth utilization.

− Network resources: management mechanisms that provide control

over the resources allocated to network transfers (e.g.,

prioritization, reservation) can be useful. Enquiry functions should

be provided to determine network characteristics and load.

− Code repositories: this specialized form of storage resource

requires mechanisms for managing versioned source and object

code: for example, a control system such as CVS.

− Catalogues: this specialized form of storage resource requires

mechanisms for implementing catalogue query and update

operations: for example, a relational database [Baru et al., 1998].

2.5.2. CONNECTIVITY: COMMUNICATING EASILY AND
SECURELY

The Connectivity layer defines core communication and

authentication protocols required for Grid-specific network transactions.

Communication protocols enable the exchange of data between Fabric

layer resources. Authentication protocols build on communication services

to provide cryptographically secure mechanisms for verifying the identity

of users and resources.

Communication requirements include transport, routing and

naming. While alternatives certainly exist, in almost all practical situations

these protocols will be drawn from the TCP/IP protocol stack: specifically,

the Internet (IP and ICMP), transport (TCP, UDP), and application (DNS,

OSPF, RSVP, etc.) layers of the Internet layered protocol architecture

[Baker, 1995].

Organization Based Multiagent Architecture For Distributed Environments

52

With respect to security aspects of the Connectivity layer, it can be

observed that the complexity of the security problem makes it important

that any solutions be based on existing standards whenever possible. As

with communication, many of the security standards developed within the

context of the Internet protocol suite are applicable.

Authentication solutions for Virtual Organizations (VO)

environments should have the following characteristics [Butler et al.,

2000]:

− Single sign on: users must be able to “log on” (authenticate) just

once and then have access to multiple Grid resources defined in the

Fabric layer, without further user intervention.

− Delegation [Foster et al., 1998, Gamma et al., 1995, Howell et al.,

2000]: a user must be able to endow a program with the ability to

run on that user’s behalf, so that the program is able to access the

resources on which the user is authorized. The program should

(optionally) also be able to conditionally delegate a subset of its

rights to another program (sometimes referred to as restricted

delegation).

− Integration with various local security solutions: each site or

resource provider may employ any of a variety of local security

solutions, including Kerberos and UNIX security. Grid security

solutions must be able to interoperate with these various local

solutions. They cannot, realistically, require wholesale replacement

of local security solutions but rather must allow mapping into the

local environment.

− User-based trust relationships: in order for a user to use resources

from multiple providers together, the security system must not

require each of the resource providers to cooperate or interact with

Chapter 2. Distributed Environments

53

each other in configuring the security environment. For example, if

a user has the right to use sites A and B, the user should be able to

use sites A and B together without requiring that A’s and B’s

security administrators interact.

Grid security solutions should also provide flexible support for

communication protection (e.g., control over the degree of protection,

independent data unit protection for unreliable protocols, and support for

reliable transport protocols other than TCP) and enable stakeholder control

over authorization decisions, including the ability to restrict the delegation

of rights in various ways.

2.5.3. RESOURCE: SHARING SINGLE RESOURCES

The Resource layer builds on Connectivity layer communication

and authentication protocols to define protocols (and APIs and SDKs) for

the secure initiation, monitoring, and control of sharing operations on

individual resources. Resource layer implementations of these protocols

call Fabric layer functions to access and control local resources. Resource

layer protocols are concerned entirely with individual resources and hence

ignore issues of global state and atomic actions across distributed

collections; such issues are the concern of the Collective layer discussed

next.

Two primary classes of Resource layer protocols can be

distinguished:

− Information protocols are used to obtain information about the

structure and state of a resource, for example, its configuration,

current load, and usage policy.

− Management protocols are used to negotiate access to a shared

resource, specifying, for example, resource requirements (including

advanced reservation and quality of service) and the operation(s) to

Organization Based Multiagent Architecture For Distributed Environments

54

be performed, such as process creation, or data access. Since

management protocols are responsible for instantiating sharing

relationships, they must serve as a “policy application point”,

ensuring that the requested protocol operations are consistent with

the policy under which the resource is to be shared. Issues that

must be considered include accounting and payment. A protocol

may also support monitoring the status of an operation and

controlling (for example, terminating) the operation.

While many such protocols can be imagined, the Resource (and

Connectivity) protocol layers form the neck of the hourglass model, and as

such, it is required a small and standard set. These protocols must be

chosen so as to capture the fundamental mechanisms of sharing across

many different resource types (for example, different local resource

management systems), while not overly constraining the types or

performance of higher-level protocols that may be developed.

2.5.4. COLLECTIVE: COORDINATING MULTIPLE
RESOURCES

While the Resource layer is focused on interactions with a single

resource, the next layer in the architecture contains protocols and services

(and APIs and SDKs) that are not associated with any one specific

resource but rather are global in nature and capture interactions across

collections of resources. For this reason, the next layer of the architecture

is named as the Collective layer. Because Collective components build on

the narrow Resource and Connectivity layer “neck” in the protocol

hourglass, they can implement a wide variety of sharing behaviours

without placing new requirements on the resources being shared.

Directory services allow VO participants to discover the existence

and/or properties of VO resources. A directory service may allow its users

Chapter 2. Distributed Environments

55

to query for resources by name and/or by attributes such as type,

availability, or load.

Co-allocation, scheduling, and brokering services allow VO

participants to request the allocation of one or more resources for a

specific purpose and the scheduling of tasks on the appropriate resources.

Examples include AppLeS [Berman, 1999, Berman et al., 1996], Condor-

G, Nimrod-G [Abramson et al., 1995], and the DRM broker [Beiriger et

al., 2000].

Monitoring and diagnostics services support the monitoring of

VO resources for failure, adversarial attack (“intrusion detection”),

overload, and so forth.

Data replication services support the management of VO storage

(and perhaps also network and computing) resources to maximize data

access performance with respect to metrics such as response time,

reliability, and cost [Allcock et al., 2001, Hoschek et al., 2000].

Grid-enabled programming systems enable familiar programming

models to be used in Grid environments, using various Grid services to

address resource discovery, security, resource allocation, and other

concerns. Examples include Grid-enabled implementations of the Message

Passing Interface [Foster and Karonis, 1998, Gabriel et al., 1998] and

manager-worker frameworks [Casanova et al., 2000, Goux et al., 2000].

Software discovery services discover and select the best software

implementation and execution platform based on the parameters of the

problem being solved [Casanova et al., 1998]. Examples include NetSolve

[Casanova and Dongarra, 1997] and Ninf [Nakada et al., 1999].

Community authorization servers enforce community policies

governing resource access, generating capabilities that community

members can use to access community resources. These servers provide a

global policy enforcement service by building on resource information,

Organization Based Multiagent Architecture For Distributed Environments

56

and resource management protocols (in the Resource layer) and security

protocols in the Connectivity layer. Akenti [Thompson et al., 1999]

addresses some of these issues.

Collaboratory services support the coordinated exchange of

information within potentially large user communities, whether

synchronously or asynchronously. Examples are CAVERNsoft [DeFanti

and Stevens, 1999, Leigh et al., 1997], Access Grid [Childers et al., 2000],

and commodity groupware systems.

These examples illustrate the wide variety of Collective layer

protocols and services that are encountered in practice. Notice that while

Resource layer protocols must be general in nature and are widely

deployed, Collective layer protocols span the spectrum from general

purpose to highly application or domain specific, with the latter existing

perhaps only within specific VOs.

Collective functions can be implemented as persistent services,

with associated protocols, or as SDKs (with associated APIs) designed to

be linked with applications. In both cases, their implementation can build

on Resource layer (or other Collective layer) protocols and APIs. For

example, figure 9 shows a Collective co-allocation API and SDK (the

middle tier) that uses a Resource layer management protocol to

manipulate underlying resources. Above this, a co-reservation service

protocol is defined and implements a co-reservation service that speaks

this protocol, calling the co-allocation API to implement co-allocation

operations and perhaps providing additional functionality, such as

authorization, fault tolerance, and logging. An application might then use

the co-allocation service protocol to request end-to-end network

reservations.

Collective components may be tailored to the requirements of a

specific user community, VO, or application domain, for example, an

Chapter 2. Distributed Environments

57

SDK that implements an application-specific coherency protocol, or a

co-reservation service for a specific set of network resources. Other

Collective components can be more general-purpose, for example, a

replication service that manages an international collection of storage

systems for multiple communities, or a directory service designed to

enable the discovery of VOs. In general, the larger the target user

community, the more important it is that a Collective component’s

protocol(s) and API(s) be standards based.

2.5.5. APPLICATIONS

The final layer in the Grid architecture comprises the user

applications that operate within a VO environment. Figure 9 illustrates an

application programmer’s view of Grid architecture. Applications are

Figure 9. Collective and Resource layer protocolos, service, APIs
and SDKs.

Organization Based Multiagent Architecture For Distributed Environments

58

constructed in terms of, and by calling upon, services defined at any layer.

At each layer, there are well-defined protocols that provide access to some

useful service: resource management, data access, resource discovery, and

so forth. At each layer, APIs may also be defined whose implementation

(ideally provided by third-party SDKs) exchange protocol messages with

the appropriate service(s) to perform desired actions.

Figure 10 shows the implemented specific APIs use Grid

protocols to interact with network services that provide capabilities to the

end user. Higher level SDKs can provide functionality that is not directly

mapped to a specific protocol, but may combine protocol operations with

calls to additional APIs as well as implement local functionality. Notice

the additional “Languages and Frameworks” component introduced in

Figure 10. Software development kits (SDKs) implement specific APIs.

Chapter 2. Distributed Environments

59

figure 10. While the preceding discussion has focused on protocols as a

means of achieving interoperability and APIs as a way of promoting code

sharing and portability, effective application development can often

benefit from the use of higher-level languages and frameworks (e.g., the

Common Component Architecture [Armstrong et al., 1999], SciRun

[Casanova et al., 1998], CORBA [Gannon and Grimshaw, 1998], [López

et al., 2000], Legion [Grinshaw and Wm, 1996], Cactus [Benger et al.,

1999]). These higher-level systems can build on protocols, services and

APIs provided within the Grid architecture.

2.5.6. CURRENT DEVELOPMENTS AND LIMITATIONS

The infrastructure that focuses on management of distributed

application data is commonly labelled a Data Grid [Chervenak et al.,

2000]. An increasing number of scientific disciplines manage large data

collections generated by measurements and derivation of measurement

data. As a result, many Data Grids are currently being deployed [Avery

and Foster, 2000], [Avery et al., 2001]. Infrastructure targeting resource

information is often referred to as a Grid Information Service [Czajkowski

et al., 2001]. A number of research groups have designed and prototyped

components for collecting, indexing and publishing Grid information. The

problems of indexing, discovering, and accessing such “Grid information

services” is in some respects quite similar to those encountered when

indexing, discovery and accessing other data sources.

For both infrastructures, appropriate data schemas must be

defined so that information can be encoded, stored and searched in an

efficient manner. A number of recent developments have made

contributions in that area. In the Data Grid context, the Chimera system

[Foster et al., 2002] targets a data schema that can be used to establish a

Organization Based Multiagent Architecture For Distributed Environments

60

virtual data catalogue that describes all ways in which data in the

catalogue has been derived. This is a generic solution that should be

applicable to many different VOs and has been demonstrated for high-

energy physics and astronomy applications. In the context of Grid

Information Services, schemas are being developed for various Grid

resource types as part of the GGF activities in the Grid Information

Services working group. Commonalities with Common Information

Model (CIM) are also being explored.

The definition of schemas is an important, but in some sense

mundane, issue. More challenging is the design and implementation of a

distributed system that implements mechanisms to publish information,

disseminate information, notify participant of information changes, locate

information, and retrieve information. Initial Grid infrastructure efforts

have engineered software solutions for those mechanisms (e.g. [Fitzgerald

et al., 1997]). Those mechanisms have made it possible to take the first

steps in Grid computing and have been crucial to making the Grid a

plausible platform. However, a large part of those efforts were focused on

“getting it to work”, without directly addressing issues of scalability,

reliability and information quality.

Now, to face VOs that contain thousands of individuals in

hundreds of institutions world-wide, issues such as scalability and

usability are becoming a near-term concern. These issues are being

increasingly recognized by the Grid computing community and recent

work explores avenues of research that are strongly connected to

distributed systems and distributed computing research questions. In that

sense, Grid computing presents a key opportunity for distributed systems

and distributed computing researchers. Grid developers are implementing

large scale infrastructures such as GriPhyn, and those infrastructures

provide a great “playground” to explore research issues in a concrete

Chapter 2. Distributed Environments

61

setting that will have a major impact on disciplinary science. Furthermore,

information dissemination techniques developed in the distributed systems

community (e.g. wide-area group communications) have shortcomings

that must be addressed for Grid computing.

2.6. AGENTS AND MULTIAGENT SYSTEMS
It is necessary to begin by defining an agent. What actually constitutes

an agent, and how it differs from a normal program, has been heavily debated

for several years now. While this debate is by no means over, there are a lot of

agents loosely defined as programs that assist people and act on their behalf.

This is what it is better to call the “end-user perspective” of software agents.

Considering an end-user perspective, an agent can be defined as a

program that assists people and acts on their behalf. Agents function by

allowing people to delegate work to them.

While this definition is basically correct, it does not really get under

the hood. Agents come in myriad different types and in many settings. They

can be found in computer operating systems, networks, databases, and so on.

What properties do these agents share that constitute the essence of being an

agent?

This is not the place to examine the characteristics of the numerous

agent systems made available to the public by many research labs. But if you

looked at all these systems, you would find that a property shared by all agents

is that fact that they live in some environment. They have the ability to interact

with their execution environment, and to act asynchronously and

autonomously upon it. No one is required either to deliver information to the

agent or to consume any of its output. The agent simply acts continuously in

pursuit of its own goals.

In contrast to software objects of object-oriented programming, agents

Organization Based Multiagent Architecture For Distributed Environments

62

are active entities that work according to the so-called Hollywood Principle:

"Don't call us, we'll call you!"

Considering a system’s perspective, an agent can be defines

as: a software object that

 is situated within an execution environment;

 possesses the following mandatory properties:

 Reactive: senses changes in the environment and acts

accordingly to those changes;

 Autonomous: has control over its own actions;

 Goal driven: is pro-active;

 Temporally continuous: is continuously executing;

 and may possess any of the following orthogonal properties:

 Communicative: able to communicate with other

agents;

 Mobile: can travel from one host to another;

 Learning: adapts in accordance with previous

experience;

 Believable: appears believable to the end-user.

2.6.1.MULTI-AGENT SYSTEMS

A multi-agent system (MAS) [Wooldridge, 2002] is a system

composed of multiple interacting intelligent agents. Multi-agent systems

can be used to solve problems which are difficult or impossible for an

individual agent or monolithic system to solve. Examples of problems

which are appropriate to multi-agent systems research include online

trading, disaster response, and modelling social structures.

MAS systems tend to find the best solution for their problems

"without intervention". There is high similarity here to physical

phenomena, such as energy minimizing, where physical objects tend to

Chapter 2. Distributed Environments

63

reach the lowest energy possible, within the physical constrained world.

For example: many of the cars entering a metropolis in the morning will

be available for leaving that same metropolis in the evening.

It would be foolish to claim that MAS should be used when

designing all complex systems. Like any useful approach, there are some

situations for which it is particularly appropriate, and others for which it is

not.

The most important reason to use MAS when designing a system

is that some domains require it. In particular, if there are different people

or organizations with different (possibly conflicting) goals and proprietary

information, then a multiagent system is needed to handle their

interactions. Even if each organization wants to model its internal affairs

with a single system, the organizations will not give authority to any

single person to build a system that represents them all: the different

organizations will need their own systems that reflect their capabilities and

priorities.

For example, consider a manufacturing scenario in which

company X produces tires, but subcontracts the production of lug-nuts to

company Y. In order to build a single system to automate (certain aspects

of) the production process, the internals of both companies X and Y must

be modelled. However, neither company is likely to want to relinquish

information and/or control to a system designer representing the other

company. Perhaps with just two companies involved, an agreement could

be reached, but with several companies involved, MAS is necessary. The

only feasible solution is to allow the various companies to create their own

agents that accurately represent their goals and interests. They must then

be combined into a multiagent system with the aid of some of the

techniques described here.

Organization Based Multiagent Architecture For Distributed Environments

64

Another example of a domain that requires MAS is an hospital

scheduling as presented in Decker’s and Li’s system [Decker and Li,

1998]. This domain from an actual case study requires different agents to

represent the interests of different people within the hospital. Hospital

employees have different interests, from nurses who want to minimize the

patient's time in the hospital, to x-ray operators who want to maximize the

throughput on their machines. Since different people evaluate candidate

schedules with different criteria, they must be represented by separate

agents if their interests are to be justly considered.

Even in domains that could conceivably use systems that are not

distributed, there are several possible reasons to use MAS. Having

multiple agents could speed up a system's operation by providing a

method for parallel computation. For instance, a domain that is easily

broken into components--several independent tasks that can be handled by

separate agents--could benefit from MAS. Furthermore, the parallelism of

MAS can help deal with limitations imposed by time-bounded reasoning

requirements.

While parallelism is achieved by assigning different tasks or

abilities to different agents, robustness is a benefit of MAS that have

redundant agents. If control and responsibilities are sufficiently shared

among different agents, the system can tolerate failures by one or more of

the agents. Domains that must degrade gracefully are in particular need of

this feature of MAS: if a single entity--processor or agent--controls

everything, then the entire system could crash if there is a single failure.

Although a MAS does not need to be implemented on multiple processors,

to provide full robustness against failure, its agents should be distributed

across several machines.

Another benefit of MAS is their scalability. Since they are

inherently modular, it should be easier to add new agents to a multiagent

Chapter 2. Distributed Environments

65

system than it is to add new capabilities to a monolithic system. Systems

whose capabilities and parameters are likely to need to change over time

or across agents can also benefit from this advantage of MAS.

From a programmer's perspective the modularity of multiagent

systems can lead to simpler programming. Rather than tackling the whole

task with a centralized agent, programmers can identify subtasks and

assign control of those subtasks to different agents. The difficult problem

of splitting a single agent's time among different parts of a task solves

itself. Thus, when the choice is between using a multiagent system or a

single-agent system, MAS is often the simpler option. Of course there are

some domains that are more naturally approached from an omniscient

perspective--because a global view is given--or with centralized control--

because no parallel actions are possible and there is no action uncertainty.

Single-agent systems should be used in such cases.

 Agent and multi-agent systems will be deeply explained in next

chapter, beginning with the main characteristics of a single agent, and

passing to the organizational characteristics that share the agents within a

multi-agent system.

2.7. SUMMARY AND CONCLUSIONS
After explaining the main methodologies used to face the problems

generated by the distributed models, now, the structure of the model explained

in this document are going to be detailed. The methodologies explained

before, show that there are a great variety of different approaches to cope with

the different circumstances which source is the intrinsic characteristics of the

distributed environments.

As it was explained before, agents represent the most flexible way to

solve problems originated by distributed environments. Specially, when

Organization Based Multiagent Architecture For Distributed Environments

66

treating different sources of information, simultaneous request and when it is

necessary to be adaptable to different kind of problems. In this occasion, an

organization of agents has been chosen to create this new architecture. The

main reason to choose an organization of agents as the structure of this

architecture is that it is a very open way of organizing heterogeneous elements

as those that make part of this architecture (interfaces, communication agents

and services).

The organization of agents represents the internal structure of the

presented architecture. On the other hand there are a series of services that

implement the different services that cover the phases of a Case-Based

Reasoning cycle, used to treat the information introduced in the system, and to

generate the solutions to the different proposed problems. Those services are

requested from the interface agents through the internal communication

structure.

Both elements (the organization of agents and the CBR services) will

be explained in the fifth chapter, where the OBaMADE architecture is fully

explicated.

In this second chapter, different approximations to the distributed

environments have been explained. First, the main characteristics of the

distributed environments have been explained, taking special attention in the

problematic aspects of those environments, and the difficulties that those

aspects generate in order to face those situations.

After describing the issues handled by distributed systems, the

different methodologies used to cope with that kind of systems have been

explained. The methodologies chosen to be explained have been the

following: CORBA, SOA, Web services, Grid computing and Multiagent

systems.

These techniques represent current approaches to solve the distributed

environment problems. As explained in the previous subsection, the

Chapter 2. Distributed Environments

67

architecture proposes here uses some of them introducing the organizations of

agents and the case-based reasoning methodology as novelties. The

combination of those methodologies with some artificial intelligence (AI)

techniques [Gale, 2009, Haupt et al., 2008] produces a powerful architecture

that may be applied to different scenarios.

After having explained those technologies, the methodologies used in

the architecture presented in this document will be explained in detail. First,

multiagent systems will be specified, including the main characteristics of the

agents themselves, and the composition of multiagent systems. Then, the

organizations of agents will be described, starting with the concept of

organization and finishing with a complete classification of organizations.

”There are no great limits to growth because there are no
limits of human intelligence, imagination, and wonder.”

Ronald Reagan

69

3. AGENTS AND

MULTIAGENT

SYSTEMS
Within th i s chapt e r , the g enera l conc ep t o f agency wi l l be
e laborat ed upon. Fir s t o f a l l , the ques t i on o f what makes
an agent to be an agent i s d i s cuss ed . Having ident i f i ed the
c ruc ia l r equir ements f o r agenthood , s ev e ra l d i f f e r en t
a t t r ibut e s as so c iat ed wi th the s c i en t i f i c cons idera t ions o f
agent s wi l l be d i s cuss ed in th i s chapt e r . This bas i c
in format ion wi l l suppor t the unders tanding o f the par t i cu lar
f ea ture s o f in t e rac t ing , in t e l l i g en t agent s .

he major issues confronting users of increasingly complex

knowledge and information systems include access and

availability of information and knowledge resources,

confidence in the veracity and applicability of information provided, and

assessment of the trustworthiness of the provider [Klusch, 1999]. Intelligent

agents are a new paradigm for developing software applications and are

T

Organization Based Multiagent Architecture For Distributed Environments

70

currently the focus of intense interest on the part of several fields of computer

science and artificial intelligence [Jennings et al., 1998]. Agents have made it

possible to support the representation, coordination, and cooperation between

heterogeneous processes and their users. A growing number of researchers and

organizations are using agents in an increasingly wide variety of applications.

Current ‘real world’ agent applications cover several domains in industry,

commerce, health care and entertainment, and range from comparatively small

systems such as e-mail filters to large, open, complex, mission critical systems

such as air traffic control.

 Agents represent an intuitive way to solve distributed problems such

the ones solved through the investigation reflected in this document. As

explained in the previous chapter, distributed environments generate quite

complex problems that must be solved with appropriated methodologies and

technologies. Agents are one of the approaches commonly used to solve

distributed environment problems. Agents are the basic element that structures

the architecture presented in this document. As it will be explained in next

chapters, agents can arrange themselves into organizations that help to achieve

the objectives they were designed to accomplish. But first it is necessary to

introduce the main concepts regarding agents, their attributes and how they

can interact with each other. That is what will be explained in this chapter,

paying special attention to the benefits of the agents to face distributed

situations. The associative capabilities of the agents are also considered in this

chapter, as an advance to the organizations of agents, which will be deeply

explained in next chapter and in an appendix.

3.1. AGENTS THEORY
As already introduced in the previous chapter, software agents are

commonly defined as [Wooldridge and Jennings, 1995]: An agent is an

encapsulated computer system that is situated in some environment and that is

Chapter 3. Agents and MultiAgent Systems

71

capable of flexible, autonomous action in that environment in order to meet its

design objectives.

A few of the notions introduced in this definition are worth further

explanation. By ‘encapsulated computer system’ is meant that there is a clear

distinction between the agent and its environment. Moreover, the definition

implies that there is a well-defined boundary and concrete interface between

the agent and its environment. The key aspect of the definition is autonomy,

which refers to the principle that agents can operate on their own without the

need for human guidance. An autonomous agent has the control over its own

actions and internal state, that is, an agent can decide whether to perform a

requested action. The definition situates an agent in a particular environment,

which the agent can sense and effect. This indicates responsive behaviour.

Furthermore, the definition implies that agents are problem solving entities,

with well-defined boundaries and interfaces, designed to fulfil a specific

purpose, which is, having particular goals to achieve, and exhibiting flexible

and pro-active behaviour.

Agents are often regarded as socio-cognitive entities capable of

individual social behaviour [Weber, 1978]. For an agent to be termed

cognitive it must be endowed with mental attitudes representing the world and

motivating action [Panzarasa et al., 2002], [Wooldridge, 2000]. Further, for a

cognitive agent to be deemed socio-cognitive it must not only have an

intentional stance towards the environment, but also assume other agents to be

cognitive entities similarly endowed with mental attitudes for representational

and motivational purposes [Dennet, 1987]. Social behaviour is characterized

by the ability to communicate and cooperate with others and with users.

Lastly, for agents to be truly intelligent, they must be able to learn as they

react and interact with their external environment [Nwana et al., 1999].

Considering these characteristics of agents, and their applications, agents can

be classified in different categories, [Franklin and Graesser, 1997]. Agent

Organization Based Multiagent Architecture For Distributed Environments

72

taxonomies classify different agent types including software agents, life-like

agent (like humans and artificial life types) and robots.

The concept of describing problem solving in terms of agents is

becoming more and more popular in a variety of different research disciplines

within AI, mainstream computer science and neighbouring disciplines, such as

psychology, sociology, economics, etc. [Jennings, 1999, Weiss, 1999].

Already the wide and diverse use of the term agent within common life (e.g. in

the sense of travel agent, secret agent, or softening agent), makes it difficult to

provide an exact definition of this notion. The common dictionaries provide,

in general, several distinctive definitions. For example, Webster’s New

Encyclopaedic Dictionary [Harkavy, 1996] distinguishes:

− 1a: something that produces or is capable of producing an effect (a

cleansing agent);

− 1b: a chemically, physically, or biologically active principle;

− 2: one that acts or exerts power;

− 3: one who acts for or in place of another and by the other’s

authority (government agents, a real estate agent).

In general, 1a and 2 are strongly related because they express the same

basic property of an agent from two perspectives. Of course, ‘one that acts’ is

likely to ‘produce an effect’ and normally, the purpose of acting is to produce

an effect. Thus, 1a can be considered as a goal-directed description of

definition 2 and both definitions could even be combined, for example, as

‘one/something that acts (or exerts power) with the purpose/goal of producing

an effect (and possibly the capability of producing this effect)’. Thus, the basic

property of an agent, that can be determined from 1a and 2, is ‘to act in order

to produce an effect’. In regard to 1b, from the perspective of computer

science, an agent could also be considered as a computational active principle,

although, without reference to a definition of what an active principle is

Chapter 3. Agents and MultiAgent Systems

73

considered to be, such a definition would not be sufficient. 3 is often used in

order to describe agents in the contexts of personal assistants [Maes, 1994],

[Decker et al., 1997]. Such agents, for example, act as email filterers [Lashkari

et al., 1997], [Maes, 1997], meeting schedulers [Kautz et al., 1994], [Garrido

and Sycara, 1995], [Jennings, 1995] or mobile agents (or softbots), which

search through the Internet [Etzioni and Weld, 1994], [Wayner, 1995a],

[Wayner, 1995b]. They are supposed to act on behalf of and by the user’s

authority. However, such personal assistants are only one of the many

different kinds of agents used within the scientific community. Therefore, 3

does not add any commonly agreed property of an agent besides the basic

property of acting.

Due to the multi-disciplinary interest in the agent concept, it is also

difficult to provide a sound scientific definition [Bond and Gasser, 1988],

[Franklin and Graesser, 1997] and until now researchers were not able to agree

upon a universal consensus [Jennings and Wooldridge, 1999]. However,

recently Russell and Norvig’s definition:

“An agent is anything that can be viewed as perceiving its

environment through sensors and acting upon that environment through

effectors.” [Russell et al., 1995] establishes itself as general but widely

accepted and used definition because it concentrates on the most basic features

of an agent (namely, the representation as an encapsulated entity situated in an

environment which perceives and acts upon this environment). This definition

provides the basic agent skeleton with the minimum necessary conditions for

agenthood (see figure 11).

Additionally, it supplies two black boxes representing the internal

structure of the agent and the environment that the agent is situated in. Any

controversially discussed features and properties of particular agents (such as

autonomy, intelligence and rationality) and particular demands on the

environment (such as being of physical nature) are explicitly excluded from

Organization Based Multiagent Architecture For Distributed Environments

74

the general definition of agency/agenthood. They can be additionally

introduced, explained and added (or explicitly excluded) as appropriate. For

example, autonomy is an attribute often quoted to be a necessary requirement

for agents [Wooldridge and Jennings, 1995], [Nwana and Ndumu, 1998],

[Huhns and Singh, 1998], [Sycara, 1998a], whereas mobility is a property

needed only for very specific domains, for example, to search through the

Internet [Wayner, 1995b], [Wayner, 1995a].

Concentrating on the presented essentials allows the consideration of

human agents, as well as artificial agents (both software agents and robotic

agents) and, therefore, enables a broad scope of agent research within a variety

of research disciplines to be covered. Russell and Norvig’s definition also by-

passes the formidable question and lengthy discussion on what an agent is and

what makes it distinct, for example, from any software program (for a

discussion without a sufficient answer, the interested reader is referred to

[Franklin and Graesser, 1997]). This definition provides the basics for the

pragmatic answer, adopted from Shoham, that what makes any entity an agent

is precisely the fact that one has chosen to analyse it with this concept

Figure 11. Agent skeleton.

Chapter 3. Agents and MultiAgent Systems

75

[Shoham et al., 1997]. Thus, if something can and is represented as an agent in

the sense of Russell and Norvig, then it is an agent.

3.1.1. AGENT ATTRIBUTES

As mentioned previously, Russell and Norvig’s definition does not

include any properties or attributes associated with the agent metaphor

which are not universally agreed. However, for any branch of research that

is working with the agent concept, this definition can be considered as at

least a necessary, if not as a sufficient, description of agenthood.

Depending on the main purpose for which the agents are constructed,

particular attributes need to be added for a useful agent definition. For the

demands of this thesis, the key attributes that will be focused upon are

those associated with intelligent agents in terms of DAI research. For DAI

research, in general, an intelligent agent is a software computer system

with the following attributes [Wooldridge and Jennings, 1995, Jennings

and Wooldridge, 1999, Sycara, 1998a], that will be explained next:

situatedness, autonomy, adaptability and for the case of the intelligent

agent being situated within a multi-agent system sociability.

3.1.1.1. SITUATEDNESS

Considering Russell and Norvig’s definition, roughly speaking,

anything that can be viewed as obtaining an input and producing an

output, can be viewed as an agent. To this extent, any function or any

kind of software can be considered an agent.

However, this consideration neglects to emphasise an important

characteristic that constitutes agenthood, and that is included in

Russell and Norvig’s definition, namely, the situatedness of the agent

within an environment [Jennings et al., 1998, Sycara, 1998a]. The

emphasis that an agent can be viewed as an encapsulated entity

Organization Based Multiagent Architecture For Distributed Environments

76

situated in an environment that interacts with the environment only via

its sensors and effectors is the reason for the widespread acceptance of

Russell and Norvig’s definition as description of a standard agent

[Wooldridge, 1999].

3.1.1.2. AUTONOMY

Besides situatedness, autonomy is the second crucial property

which provides the underlying power of the agent paradigm. There

exist many slightly different definitions of what constitutes an

autonomous agent [Castelfranchi, 1990, Russell et al., 1995,

Wooldridge and Jennings, 1995].

For example, Huhns and Singh identify five different varieties

of autonomy, which serve different purposes in the study and design

of agents [Huhns and Singh, 1998]. However, for the remainder of this

thesis, the following description is sufficient: autonomy means “that

agents are able to act without the intervention of humans or other

systems: they have control both over their own internal state and over

their behaviour”. [Wooldridge, 1999].

Therefore, an agent is autonomous to the extent that its

behaviour depends on its own situational experience at run-time (i.e.

its own perceptions of the environment), rather than on built-in

knowledge of the environment initially provided by the agent’s

designer at design-time. So, the agent lacks autonomy if it does not

need to pay attention to its possible perceptions because its action

choices are determined solely by the designer’s built-in knowledge

[Russell et al., 1995].

To illustrate that autonomy is a crucial characteristic of

intelligent agents, consider the example of an agent that would

permanently act blindly (i.e. regardless of the possible perceptions

Chapter 3. Agents and MultiAgent Systems

77

from the environment) and still always perform successful actions.

Besides the fact that such an agent would not be very successful as

soon as the environment changes in an unexpected manner, the

intelligence behind its apparently intelligent behaviour must be

credited solely to the agent’s designer who would have been able to

predict the best possible actions for all possible situations in advance.

Therefore, an intelligent agent needs at least a small degree of

autonomy to justify that the intelligence is credited to the agent.

However, an autonomous agent does not need to be intelligent.

For example, any monitoring process control system (ranking from

simple thermostats to complex nuclear reactor control systems) and

any software daemon (such as the UNIX xbiff email-program)

performs actions on the basis of the perception of its environment

without direct human intervention, and therefore, can be considered as

an autonomous agent [Wooldridge and Jennings, 1995, Jennings and

Wooldridge, 1999].

Nevertheless, these autonomous agents are typically not

considered intelligent agents because they are designed to perform

clearly-specified actions within a specific problem domain, whereas

“an intelligent agent is a computer system that is capable of flexible

autonomous action in order to meet its design objectives” [Jennings

and Wooldridge, 1999] and moreover “a truly autonomous intelligent

agent should be able to operate successfully in a wide variety of

environments, given sufficient time to adapt”. [Russell et al., 1995].

Thus, autonomy is a necessary prerequisite of intelligent agenthood,

but for a sufficient characteristic of intelligent agenthood, additional

attributes such as flexibility and, more generally, adaptability need to

be addressed.

Organization Based Multiagent Architecture For Distributed Environments

78

3.1.1.3. FLEXIBILITY AND ADAPTABILITY

From an AI standpoint of intelligent agents, flexibility requires

two, to some extent opposing, properties: responsiveness and

pro-activeness [Wooldridge and Jennings, 1995, Jennings and

Wooldridge, 1996, Jennings and Wooldridge, 1999]. In this context,

responsiveness is defined as the property that “agents should perceive

their environment (which may be the physical world, a user, a

collection of agents, the Internet, etc.) and respond in a timely fashion

to changes that occur in it” [Jennings and Wooldridge, 1996].

Whereas pro-activness means that “agents should not simply act in

response to their environment, they are able to exhibit opportunistic,

goal-directed behaviour and take the initiative where appropriate”

[Jennings and Wooldridge, 1996].

Then, flexibility is obtained by an effective balance between

reactive and goal-directed behaviour. However, a good balance is hard

to obtain (even for humans) and provides the essence of intelligent

behaviour [Wooldridge, 1999].

In general, if possible, an intelligent agent should try to achieve

its goals in a systematic long-term manner, which may involve

complex procedure-like patterns of actions. However, if necessary,

such an agent should be able to react within an appropriate time-scale

to present changes in its environment which necessitate changing,

postponing, or dropping the currently envisaged goal-achievement. So,

the difficulty is to decide when it is best to keep focussed on a goal

long enough to eventually achieve it, and when it is better to react

differently because the current circumstances make it necessary to

adapt immediately to the new situation.

Chapter 3. Agents and MultiAgent Systems

79

For a truly autonomous intelligent agent, the knowledge about

how to balance reactive and goal-directed behaviour should not be

entirely specified as initial built-in knowledge at design-time but at

run-time obtained from the environment and the agent’s own

experience [Russell et al., 1995, Nwana and Ndumu, 1998, Sycara,

1998a].

Therefore, some scientists do not only assume flexibility to be

an essential requirement of intelligent agents but additionally, the

ability to learn from its own experience and its environment [Nwana

and Ndumu, 1998, Sycara, 1998a]. Following this view, Sycara

extended Jennings and Wooldridge’s widely used list of key

characteristics for intelligent agents [Wooldridge and Jennings, 1995,

Jennings and Wooldridge, 1999]. She determined situatedness,

autonomy, and adaptability as the main characteristics of intelligent

agents and identified three basic requirements for adaptability

[Sycara, 1998a]: responsiveness, pro-activeness, and the ability to

learn.

It is assumed that these attributes uniquely characterise an

intelligent agent. So, when a single software entity possesses these

attributes, it can be considered an intelligent agent. However, these

properties are not independent of each other.

For example, to be able to adapt to the environment, an agent

needs to be able to behave in a flexible manner. However, a lack of

autonomy implies a lack of flexibility, because no possibility exists to

react to unexpected changes in the environment [Russell et al., 1995],

and, therefore, a lack of autonomy also implies a lack of adaptability

[Sycara, 1998a, b].

Organization Based Multiagent Architecture For Distributed Environments

80

3.1.1.4. SOCIABILITY

The aforementioned attributes are sufficient to characterise an

intelligent agent within an agent-based system [Wooldridge and

Jennings, 1995]. However, for interacting agents situated within a

multiple agent environment, a further property is essential, namely:

sociability. In this context, sociability means “that an agent is capable

of interacting in a peer-to-peer manner with other agents or humans.”

[Sycara, 1998a].

Therefore, “agents should be able to interact, when they deem

appropriate, with other software agents and humans in order to

complete their own problem solving and to help others with their

activities where appropriate” [Jennings and Wooldridge, 1996]. Such

agents can, for example, interact by coexistence, cooperation,

negotiation, or competition [Moulin and Chaib-Draa, 1996, Jennings

et al., 1998]. In the case of pure coexistence, interactions take place

indirectly through the environment, for example, by performing

actions that change the environment so that other agents may become

affected, or by observing one another [Weiss, 1999]. However, for

most high-level forms of interaction, such as cooperation and

negotiation, interaction can also take place directly, for example, by

communication through a shared agent-communication language

[Genesereth and Ketchpel, 1994, Jennings and Wooldridge, 1995]. To

engage in an intelligent manner in sophisticated patterns of interaction,

the agents must not only be able to follow simple communication

strategies such as information exchanges and requests for particular

actions to be performed, but the agents must be able to participate and

follow complex communication, negotiation and other interaction

protocols [Huhns and Singh, 1998].

Chapter 3. Agents and MultiAgent Systems

81

Therefore, the sociability attribute implies that intelligent agents

situated within a multi-agent system need at least the following

requirements to interact in an intelligent manner: the ability to become

aware of the possible co-existence of other agents, a possibility to

represent and reason about each other (for example, in terms of the

other agents’ knowledge, goals, plans, and possible actions), and

facilities to communicate with one another in an appropriate manner

[Bond and Gasser, 1988, Huhns and Singh, 1998].

As it is the case with some of the others, the sociability attribute

is not independent of the other key properties of intelligent agents. In

principle, from a technical standpoint, sociability does not even need

to be added as an extra property of the character of an intelligent

agent, but it can be incorporated in the other properties. Firstly, the

other agents are part of the overall environment of an agent, and

therefore, any interactions with the other agents can only happen by

performing actions (which is already addressed by the situatedness

aspect). For example, to communicate with other agents in the

environment, the agent needs to perform some form of communicative

actions, such as speech acts [Austin, 1962, Searle, 1969, Genesereth

and Ketchpel, 1994]. Secondly, by assuming that the other agents

might be acting autonomously, the environment may be changed in a

flexibly way by actions caused by the other agents, and therefore, an

agent should be able to react flexible to environmental changes caused

by the other agents and, ultimately, an intelligent agent should be able

to adapt to (and influence) the behaviour of the others [Jennings et al.,

1998, Sycara, 1998a, Castelfranchi, 1998].

Because the sociability attribute only becomes important in the

context of multiple agent environments, it is legitimate to address it as

an additional key property of intelligent agents, although it can be

Organization Based Multiagent Architecture For Distributed Environments

82

entirely incorporated into the other key aspects of intelligent

agenthood. However, sociability is the central focus of research in

intelligent agents from the DAI perspective.

3.1.2. AGENT ARCHITECTURES

Concerning the implementation of agents, several architectures

have been proposed that can be roughly classified into the following types

[Wooldridge, 1999], increasingly less abstract:

− Logic-based agents: reasoning and decision making are realized

through logical deduction [Genesereth and Nilsson, 1987,

Lesperance et al., 1996, Fisher, 1994].

− Reactive agents: in which decision making is implemented as some

direct mapping from situation to action [Brooks, 1986, Maes,

1990].

− Belief-desire-intention (BDI) agents: decision making depends on

the manipulation of some representation of the beliefs, desires and

intentions of the agent [Bratman et al., 1988, Rao and Georgeff,

1992].

− Layered agents: decision making is realized via several software

layers, each explicitly reasoning about the environment at different

levels of abstraction [Müller et al., 1995, Ferguson, 1995].

Of the above architectures, special attention will be paid to the BDI

architecture. On the one hand, this architecture has become a de facto

standard for agent models and is at the basis of namely the FIPA standard,

and, on the other hand, it is generic enough to enable the modelling of

both natural as artificial agents. Being a generic architecture, BDI provides

the best approach to this requirement.

The BDI model has its roots in the philosophical tradition of

understanding practical reasoning in humans (e.g. [Bratman et al., 1988,

Chapter 3. Agents and MultiAgent Systems

83

Cohen and Levesque, 1990]). Practical reasoning involves two important

processes: deciding what goals to achieve (deliberation), and how to

achieve those goals (means-ends analysis). The process starts by analyzing

the options available, which depend on the agent’s beliefs and desires, and

deciding which ones to choose.

These chosen options became the agent’s intentions, which then

determine its actions. Intentions play a crucial role in the practical

reasoning process, as they lead to action. Important aspects of intentions

are [Bratman, 1987, Wooldridge, 2000]:

− Lead the means-ends reasoning process: once an intention is

formed, the attempt to achieve it involves deciding how.

− Constrain future deliberation: a rational agent will not entertain

options that are inconsistent with its intentions.

− Persistency: agents will not give up their intentions without a good

reason. Intentions persist until they are achieved or found

impossible to achieve.

− Influence beliefs: Plans for the future will be based in the belief

that the intentions will be achieved.
In summary, agents have a set of beliefs, which are based on their

perception of the environment. Beliefs and intentions are used to

determine the current options (desires) available to the agent. A

deliberation process determines the agent’s intentions based on its beliefs,

desires and intentions. Intentions are the current focus of the agent: the

states it is committed to bring about, and for which the agent will specify a

plan on how to reach them.

Finally, an action selection function, determines which action to

perform based on the current intentions. This process of practical

reasoning in a BDI agent is described in figure 12.

Organization Based Multiagent Architecture For Distributed Environments

84

BDI models have been applied to a number of practical problems

including air traffic control, spacecraft handling and telecommunications

management and a great deal of effort has been devoted to their

formalization [Rao and Georgeff, 1992]. The best known implementation

of the BDI model is the PRS system [Georgeff and Lansky, 1987]. Finally,

BDI models have been extended by many researchers, for example to

include communication between agents [Haddadi, 1996, Dignum et al.,

2000], or normative behaviour [Broersen et al., 2001].

3.1.3. APPLICABILITY OF AGENTS

Having briefly introduced agents and their characteristics, it is

important now to describe in which cases the agent paradigm can or

should be used. That is, what do agents have to offer? According to

[Jennings and Wooldridge, 1998] the usefulness of any technology should

be judged in two directions: first, its ability of solving new types of

problems, and second its ability to improve the efficiency of current

solutions.

Figure 12. The BDI agent model.

Chapter 3. Agents and MultiAgent Systems

85

The agent paradigm provides a natural way to view and

characterize intelligent and/or reactive systems [Weiss, 1999]. Intelligence

and interaction are deeply and inevitably coupled, and multi-agent systems

reflect this insight. Multi-agent systems can provide insights and

understanding about poorly understood interactions between natural,

intelligent beings, as they organize themselves into groups, societies and

economies in order to achieve improvement.

Systems that maintain an ongoing interaction with some

environment are inherently quite difficult to design and correctly

implement. Process control systems and network management systems are

examples of such reactive systems. Applications of the agent paradigm

can be broadly divided in three classes: open systems, complex systems

and ubiquitous systems.

Open systems are systems in which the structure of the system is

capable of dynamically changing. Their components are not known in

advance, can change overtime, and may be highly heterogeneous. An

excellent example of an open system is the Internet. Any computer system

that must operate in the Internet must be capable of dealing with many and

very different organizations and agendas, without constant guidance from

users. Such functionality is almost certain to require techniques based on

negotiation and co-operation, which lie firmly in the domain of multi-

agent systems.

Complex systems relate to particularly complex, large or

unpredictable domains. The most powerful tools to deal with complexity

in systems are modularity and abstraction. Application of the agent

paradigm entails that the overall problem can be partitioned into a number

of sub-problems of less complexity that are easier to handle. This

decomposition allows agents to employ the most appropriate paradigm to

solve a sub-problem. The notion of an autonomous agent is also a

Organization Based Multiagent Architecture For Distributed Environments

86

powerful abstraction, in just the same way as data types or objects.

Ubiquitous systems have the goal of enhancing computer use by

making many computers available throughout the physical environment,

but making them effectively invisible to the user. Ubiquitous systems are

roughly the opposite of virtual reality. Where virtual reality puts people

inside a computer-generated world, ubiquitous computing forces the

computer to live out there in the world with people [Weiser, 1993]. In

ubiquitous systems the need for an equal partnership between the system

and its user is paramount. The system has to cooperate with the user to

reach their goal. It has been predicted that in the future, delegating to,

rather than manipulating computers [Negroponte, 1996] will drive

computing. Software applications to deliver such functionality need to be

autonomous, pro-active, responsive and adaptive. In other words, such

applications need to behave as an intelligent agent. This gives rise to the

idea of ‘expert assistants’, which are agents knowledgeable about both the

application and the user.

Agent technology has been successfully applied to several of the

above types of systems. However, the fact that a system can be designed

as a (multi-)agent system does not mean that an agent-based solution is

always the most appropriate one. Other pitfalls to the development of

agent-based systems have been discussed in [Wooldridge and Jennings,

1999].

These include political (overselling agents), management (using

agents no matter what), conceptual (the risk of the silver bullet), and

development (yet another agent architecture) pitfalls. From a software

engineering perspective, there are basically four limitations to the use of

agents [Jennings and Wooldridge, 1998]:

− Agent systems have no overall system controller. An agent-based

solution may thus not be appropriate in situations where global

Chapter 3. Agents and MultiAgent Systems

87

constraints have to be maintained.

− Agents have local perspective. Agent actions are determined by its

own local state. Since in most applications, agents do not maintain

complete global knowledge, this may mean that agents make global

sub-optimal decisions. One of the aims of multi-agent systems

research is to reconcile decision making based on local knowledge

with the desire to achieve globally optimal performance [Bond and

Gasser, 1988].

− Trust and delegation limitations. Both individuals and

organizations have to be confident that agents will work on their

behalf. The process of learning to trust an agent and to learn how to

delegate tasks to an agent takes time.

− Careful personalization limitations. Profiles that an agent makes of

its user must be comprehensive, accurate, require minimal user

input, and enforce privacy issues. Furthermore an agent must know

its limitations and be trustworthy.

3.2. MULTIAGENT SYSTEMS
Multi-agent environments extend single-agent architectures with an

infrastructure for interaction and communication. Ideally, MAS exhibit the

following characteristics [Huhns and Stephens, 1999]:

− Are typically open and have no centralized designer.

− Contain autonomous, heterogeneous and distributed agents, with

different ‘personalities’ (cooperative, selfish, honest, etc.).

− Provide an infrastructure to specify communication and interaction

protocols.

Agents in a MAS are expected to coordinate by exchanging services

and information, to be able to negotiate and agree on commitments, and to

Organization Based Multiagent Architecture For Distributed Environments

88

perform other complex social operations. Coordination and communication

are therefore extremely important issues of MAS, but not really relevant in the

case of single-agent systems. In MAS agents have to be able to find each

other, announce their possibilities and pose questions or requests.

Furthermore, MAS infrastructure must provide security services, to ensure that

agents do not misbehave.

Several architectures and models for MAS have been proposed that

handle coordination in different ways. One of the initial and most widely used

architectures is based on mediators. The concept of mediator was first

introduced by Gio Wiederhold [Wiederhold, 1992] as a way to deal with the

integration of knowledge from heterogeneous sources. Mediators are

facilitation agents that can provide a number of intermediate information

services to other agents. They may suggest collaboration between users with

common interests, or provide information about tools and resources available.

An example of a MAS infrastructure based on the concept of mediators is

RETSINA [Sycara et al., 2003]. RETSINA was implemented based on the

idea that agents in the system form a community of peers that engage in peer

to peer relations. Coordination should emerge from the relations between

agents rather than be imposed by the infrastructure, and as such does not

employ centralized control but provides (mediation) services that facilitate the

relations between agents.

3.2.1. AGENT SOCIETIES

The term society is used in a similar way in agent societies research

as in human or ecological societies. The role of any society is to allow its

members to coexist in a shared environment and pursue their respective

roles in the presence and/or in cooperation with others. Main aspects in

the definition of society are purpose, structure, rules and norms. Structure

is determined by roles, interaction rules and communication language.

Chapter 3. Agents and MultiAgent Systems

89

Rules and norms describe the desirable behaviour of members and are

established and enforced by institutions that often have a legal standing

and thus lend legitimacy and security to members. A further advantage of

the organization-oriented view on designing multi agent systems is that it

allows for heterogeneity of languages, applications and architectures

during implementation.

Organizations can be seen as sets of entities regulated by

mechanisms of social order and created by more or less autonomous actors

to achieve common goals. Multi-agent systems that model and support

organizations should therefore be based on coordination frameworks that

mimic the structure of the particular organization and be able to

dynamically adapt to changes in organization structure, aims and

interactions. The structure of the organization determines important

autonomous activities that must be explicitly organized into autonomous

entities and relationships in the conceptual model of the agent society

[DignumWeigand et al., 2002].

In a business environment, the behaviour of the global system and

the collective aspects of the domain –such as stability over time,

predictability and commitment to overall aims and strategies– must be

considered. That is, the concept of desirable social behaviour is of utmost

importance when multi-agent systems are considered from an

organizational point of view. This leads to a rising awareness that multi-

agent systems and cyber-societies can best be understood and developed if

they are inspired by human social phenomena [Artikis et al., 2001,

Castelfranchi, 2000, Zambonelli et al., 2001]. This is, in many ways, a

novel concept within agent research, even if sociability has always been

considered an important characteristic of agents.

When multi-agent systems are considered from an organizational

point of view, the concept of desirable social behaviour becomes of

Organization Based Multiagent Architecture For Distributed Environments

90

utmost importance. That is, from the organizational point of view, the

behaviour of individual agents in a society should be understood and

described in relation to the social structure and overall objectives of the

society. Until recently, multi-agent systems were mainly viewed from an

individualistic perspective, that is, as aggregations of agents that interact

with each other, and how an agent can affect the environment or be

affected by it [Ferber and Gutknecht, 1998]. This view looks at the

behaviour of multi-agent systems from the perspective of the agent itself,

in terms of how an agent can affect the environment or be affected by it.

The term agent society will be used to refer to MAS considered

from a social perspective. In an individualistic view of Multi-Agent

Systems, agents are individual entities socially situated in an environment,

that is, their behaviour depends on and reacts to the environment, and to

other agents on it [Dautenhahn, 2000]. It is not possible to impose

requirements and objectives to the global aspects of the system, which is

paramount in business environments. However, organization-oriented

agent societies require a collectivist view on the relation between agent

and environment. That is, agents are considered as being socially

embedded [Edmonds, 1999]. If an agent is socially embedded it needs to

consider not only its own behaviour but also the behaviour of the system

as a whole and how agents in the system influence each other. Davidsson

has proposed a classification for artificial societies based on the following

characteristics [Davidsson, 2001]:

− Openness, describing the possibilities for any agent to join the

society.

− Flexibility, indicating the degree agent behaviour is restricted by

society rules and norms.

− Stability, defining the predictability of the consequences of actions.

Chapter 3. Agents and MultiAgent Systems

91

− Trustfulness, specifying the extent to which agent owners may trust

the society.

Depending on its purpose, a society needs to support these

characteristics in different degrees. In one extreme, there are open

societies that impose no restrictions on agents joining the society. Popper

has defined open societies as systems in a state, far from equilibrium, that

shows no tendency towards an increase in disorder [Popper, 1982]. That

is, open societies support flexibility and openness very well but lack on

stability and trustfulness. The most obvious example of an open society is

the WWW. Open agent societies assume that participating agents are

designed and developed outside the scope and design of the society itself

and therefore the society cannot rely on the embedding of organizational

and normative elements in the intentions, desires and beliefs of

participating agents but must represent these elements explicitly. These

considerations lead to the following requirements for engineering

methodologies for open agent societies [Dignum and Dignum, 2001].

Agent societies must include formalisms for the description,

construction and control of the organizational and normative elements of a

society (roles, norms and goals) instead of just the agents’ states [Artikis

et al., 2001, Zambonelli et al., 2001].

The methodology must provide mechanisms to describe the

environment of the society and the interactions between agents and the

society, and to formalize the expected outcome of roles in order to verify

the overall animation of the society.

The organizational and normative elements of a society must be

explicitly specified since an open society cannot rely on its embedding in

the intentions, desires and beliefs of each agent [Dellarocas and Klein,

2000b, Ossowski, 1999].

Organization Based Multiagent Architecture For Distributed Environments

92

Methods and tools are needed to verify whether the design of an

agent society satisfies its design requirements and objectives [Jonker et

al., 2000].

The methodology should provide building directives concerning

the communication capability and ability to conform to the expected role

behaviour of agents participating in the society.

In closed societies, on the other extreme, it is not possible for

external agents to join the society. Agents in closed societies are explicitly

designed to cooperate towards a common goal and are often implemented

together with the society [Zambonelli et al., 2001]. Closed societies

provide strong support for stability and trustfulness properties, but only

allow for very little flexibility and openness. The large majority of

existing MAS are closed.

[Davidsson, 2001] introduces two new types of agent societies,

semi-open and semi-closed, that combine the flexibility of open agent

societies with the stability of closed societies. This balance between

flexibility and stability results in systems where trust is achieved by

mechanisms that enforce ethical behaviour between agents

In semi-open societies the access of external agents is explicitly

regulated. This allows deciding on the acceptance or not of new members

and to monitor which agents are currently in the society. An example of a

semi-open society is the Napster systemT5T. Semi-open societies slightly

limit the openness and flexibility characteristics of open societies, but are

able to provide greater stability and trustfulness.

Semi-closed societies do not allow for the participation of external

agents but provide the possibility for external parties to initiate a new

agent within the society to act on their behalf. This extends the flexibility

and openness of the society, without losing on stability and trustfulness,

since participating agents are still designed following the society

Chapter 3. Agents and MultiAgent Systems

93

requirements and the owner of the society still controls the overall

architecture of the system. Semi-closed societies are as open as semi-open

society but less flexible. This is the approach taken in the ISLANDER

platform where external agents are provided with an API as interface to

the institution, which regulates and controls all interaction [Esteva et al.,

2002].

3.2.2. COORDINATION IN MULTIAGENT SYSTEMS

Multi-agent systems that are developed to model and support

organizations need coordination frameworks that mimic the coordination

structures of the particular organization. The organizational structure

determines important autonomous activities that must be explicitly

organized into autonomous entities and relationships in the conceptual

model of the agent society [DignumWeigand et al., 2002]. Furthermore,

the multi-agent system must be able to dynamically adapt to changes in

organization structure, aims and interactions.

Coordination can be defined as the process of managing

dependencies between activities [Malone and Crowston, 1994].

Organizational science and economics have since long researched

coordination and organizational structures [Williamson, 1975, Powell,

1991]. Drawing on disciplines such as sociology and psychology, research

in organization theory focuses on how people coordinate their activities in

formal organizations. On the other hand, it is also generally recognized

that coordination is an important problem inherent to the design and

implementation of multi-agent systems [Bond and Gasser, 1988].

The challenge of coordination in MAS has been recognized by

many authors and several approaches have been developed and advocated.

Such approaches take either a bottom-up (e.g. goal management in which

members of the group take control of the definition of their work [Malone

Organization Based Multiagent Architecture For Distributed Environments

94

and Crowston, 1994]) or a top-down view of coordination (e.g. shared

ontologies [Fox and Gruninger, 1998] and the hierarchical assignment of

responsibilities used in many human organizations). Coordination is one

of the cornerstones of agent societies and is considered an important

problem inherent to the design and implementation of MAS [Bond and

Gasser, 1988, Dignum and Dignum, 2001]. However, the implications of

coordination models to the architecture and design of agent societies are

not often considered. Other examples of coordination theories in MAS are

joint-intentions [Cohen and Levesque, 1990, Dunin-Keplicz and

Verbrugge, 2002], shared plans [Grosz and Kraus, 1996] and domain-

independent teamwork models [Tambe, 1997].

Behavioural approaches to the design of multi-agent systems are

gaining terrain in agent research and several research groups have

presented different kind of models. Recent developments recognize that

the modelling of interaction in MAS cannot simply rely on the agent’s

own (communicative) capabilities. Furthermore, organizational

engineering of MAS cannot assume that participating agents will act

according to the needs and expectations of the system design. Concepts as

organizational rules [Zambonelli, 2002], norms and institutions [Esteva et

al., 2001] and social structures [Parunak and Odell, 2002] all start from

the idea that the effective engineering of MAS needs high-level, agent-

independent concepts and abstractions that explicitly define the

organization in which agents live [Zambonelli et al., 2001].

Relating society models to the organizational perception of the

domain can facilitate the development of organization-oriented multi-

agent systems. This means that the development of agent society models

for organizations must be a concerted effort between MAS engineers and

domain specialists. A common ground of understanding is therefore

needed between MAS engineers and organizational practitioners.

Chapter 3. Agents and MultiAgent Systems

95

Coordination aspects are relevant both in agent research as in

organizational theory. Therefore, coordination is considered the way to

bridge both communities and create an initial common ground for

cooperation.

3.2.3. COMMUNICATION

The main challenge of coordination and collaboration among

heterogeneous and autonomous intelligent systems (taking into account

both humans and software) in an open, information-rich environment is

that of mutual understanding. Only by sharing a mutual understanding of

the domain will agents be able to exchange and combine information from

heterogeneous sources. Communication and social interaction are

therefore the core characteristics of autonomous agents. A mechanism for

communication must include both a knowledge representation language

(to specify the internal behaviour of agents) and a communication protocol

(to specify the interactions among agents). Knowledge representation

models are based on ontologies that define the domain model and

vocabulary of a particular domain of discourse, and shared using content

languages that represent the agent’s mental model of the world (e.g.

beliefs, desires, and intentions). Given a particular domain of discourse

and a particular community of agents that know and do something in this

domain, a communication language is needed that can model the flow of

knowledge and attitudes about such knowledge within the agent

community. In the following communication protocols and knowledge

representation languages are described in more detail.

An Agent Communication Language (ACL) provides language

primitives that implement the agent communication model. ACLs are

commonly thought of as wrapper languages in that they implement a

knowledge-level communication protocol that is unaware of the choice of

Organization Based Multiagent Architecture For Distributed Environments

96

content language and ontology specification mechanism. Most work done

in the area of agent communication languages is based on the Language

Action Perspective [Winograd, 1987] and Speech Act Theory [Searle,

1969], a formal model of human communication developed by

philosophers and linguists.

Speech Act Theory [Austin, 1962, Searle, 1969] sees human

natural language as actions, such as requests, suggestions, commitments

and replies. Speech Act theory states that a language is used not only for

making a statement but it also performs actions. For example, when

someone asks someone else to do something, he/she is already causing an

action. In Speech Act Theory, organizational communication is seen as the

exchange of speech acts for the purpose of coordinating organizational

activities. The theory provides the means to analyze communication in

detail at three levels: content (locution), intention (illocution) and effect

(perlocution). Locution is the information contained in an utterance.

Illocution is the purpose that an utterance has, like informing, convincing,

requesting, or demanding. Perlocution is the actual effect that a statement

has. Form (syntax) of communication is less important than ‘why’ and

‘what’ is communicated.

Speech Act Theory is relevant to agent communication in that it

serves as one (but not the only) formal basis for deciding on agent

communication language primitives. Using speech act theory eases

ambiguous semantic resolution, as compared to the natural languages.

Speech acts are useful in that one can formally represent the intent of the

speaker and the effect on the hearer. It is up to the agent theory and the

agent infrastructure to ensure that agents in the community are ethical and

trustworthy, and therefore that the perlocutionary behaviour of a speech

act on the hearing agent is predictable. All this is not the concern of ACLs,

which are merely providing the language primitives. Still, the semantics of

Chapter 3. Agents and MultiAgent Systems

97

speech acts for a particular agent completely depends on the agent’s

belief, intention, knowledge about how to carry out the operation, and the

society to whom an agent belongs. These semantics are represented using

the knowledge representation language. The Language Action Perspective

(LAP) is a practical application of the Speech Act Theory, which is used as

a linguistic tool to model communication in Cooperative Information

Systems [Flores and Ludlow, 1976]. The basic assumptions underlying the

Language Action Perspective are [Verharen, 1997].

The primary dimension of human cooperative activity is language.

Action is performed through language in a world constituted by language.

The meaning of sentences for the actors in a social setting is revealed by

the kinds of acts performed. Cooperative work is coordinated through

language acts. The speech act is the basic unit of communication. Speech

acts obey socially determined rules.

The design of IT systems has a focus on getting things done,

whenever work involves communication and coordination among people.

The act of doing something, the patterns of interaction and their

articulation are the primary concern of information systems design.

Recent developments in the area of agent communication have

resulted in the definition of two different ACLs based on the Speech Act

Theory. The first one is KQML (Knowledge Query and Manipulation

Language) developed in the context of the ARPA Knowledge Sharing

Effort [Finin et al., 1994]. KQML consists of a set of communication

primitives (called performatives, in accordance to Speech Act Theory

terminology) which aim to support cooperation among agents in

distributed applications. The KQML performatives enable agents to

exchange and request knowledge, and to cooperate during problem

solving. KQML doesn’t care about the content language used to represent

the mental. Its goal is to provide knowledge transportation protocol for

Organization Based Multiagent Architecture For Distributed Environments

98

blobs of content, in some ontology that the sending agent can point to and

the receiving agent can access.

The second language is FIPA-ACL, the Agent Communication

Language framework proposed by the Foundation for Intelligent Physical

Agents [Fipa, 2002]. FIPA ACL is associated with FIPA’s open agent

architecture. As with KQML, FIPA-ACL is based on Speech Act Theory

and is independent from the content language and is designed to work

with any content language and any ontology specification approach.

Furthermore, FIPA-ACL limits itself to primitives that are used in

communications between agent pairs. The FIPA architecture has an Agent

Management System that specifies services that manage agent

communities.

Both FIPA-ACL and KQML are languages similar to those in the

family of so-called coordination languages [Carriero and Gelernter, 1992].

These extend sequential languages with constructs to support concurrency

and coordination. In a similar way, FIPA-ACL and KQML extend

knowledge representation formalisms with knowledge communication

primitives, and focus on defining knowledge level coordination languages,

which can be used to specify a range of cooperation strategies. Knowledge

level coordination languages are situated at a higher level of abstraction

with respect ‘normal’ coordination languages of distributed computing, as

they support coordination not at the symbol-level but at the knowledge-

level [Newell, 1994].

3.3. SUMMARY AND CONCLUSIONS
In this chapter, the multi-agent systems have been described. First, a

definition of agent have been exposed, indicating the agent attributes, the

existing agent architectures and an approximation to the environments where

Chapter 3. Agents and MultiAgent Systems

99

agents may be used. The main described characteristics of the agents are:

situatedness, autonomy, flexibility and sociability.

Then, after describing the characteristics of the agents, the multiagent

systems are specified. First agent societies are presented, and then the

coordination in multiagent systems and the communication required to work

correctly, are illustrated.

Agents represent the simple element, the basic element of the structure

of the architecture presented in this document. Agents are structured into

organizations, which will be explained next. Agents work together to achieve

common objectives and allow the architecture to be flexible and fast, to

respond to different requests at the same time, without wondering what kind of

request it is necessary to respond at a time.

In this chapter, agents and multi-agent systems have showed their

capabilities and how they could represent a useful methodology to designing

an architecture as the one presented in this document.

In the next chapter, the organizations of agents will be explained.

Organizations assume the advantages of agents and multiagent systems, but

introduce and organizational point of view in the set of agents implied.

Organizations enrich the multiagent point of view, and introduce, at the same

time, a big amount of flexibility, in order to be applied to different situations,

just by changing the way the agents are organised. The organizations of agents

paradigm is the methodology that has been chosen to design the OBaMADE

architecture presented here.

”Science is nothing but trained and organized
common sense.”

Thomas H. Huxley

101

4. ORGANIZATIONS

OF AGENTS
The organizat iona l de s i gn employed by an agent sy s t em can
have a s i gn i f i cant , quant i tat i v e e f f e c t on i t s pe r fo rmance
charac t e r i s t i c s . A range o f o rganizat iona l s t ra t eg i e s have
emerged f rom th i s l ine o f r e s ear ch , each wi th d i f f e r en t
s t r eng ths and weakness e s . In th i s chapt e r the organizat ions
o f agent s are in t roduced des c r ib ing the concep t o f
o rganizat ion and the main fa c tor s o f the organizat ions .

rganizations represent a pass forward in agents’ evolution. The

agent paradigm has evolved from an individualization of the

work to the coordination of small entities produced in

multiagent systems. Those systems considered the collaboration between

agents in order to obtain a general, global, common objective, by dividing the

work to do in separated pieces that can collaborate. Organizations establish an

inner structure within the group of agents and determine different kind of

relationships, depending on the way the agents are organized or depending on

the goal they should accomplish.

O

Organization Based Multiagent Architecture For Distributed Environments

102

The organization of a multi-agent system is the collection of roles,

relationships, and authority structures which govern its behaviour. All multi-

agent systems possess some or all of these characteristics and therefore all

have some form of organization, although it may be implicit and informal.

Just as with human organizations, such agent organizations guide how the

members of the population interact with one another, not necessarily on a

moment-by-moment basis, but over the potentially long-term course of a

particular goal or set of goals. This guidance might influence authority

relationships, data flow, resource allocation, coordination patterns or any

number of other system characteristics [Hayden et al., 1999, Carley and

Gasser, 1999]. This can help groups of simple agents exhibit complex

behaviours and help sophisticated agents reduce the complexity of their

reasoning. Implicit in this concept is the assumption that the organization

serves some purpose – which the shape, size and characteristics of the

organizational structure can affect the behaviour of the system [Galbraith,

1974].

It has been repeatedly shown that the organization of a system can

have significant impact on its short and long-term performance [Carley and

Gasser, 1999, Sandholm et al., 1999, Durfee et al., 1987, Horling et al., 2004,

Matson et al., 2003, So and Durfee, 1996, Brooks and Durfee, 2003],

dependent on the characteristics of the agent population, scenario goals and

surrounding environment. Because of this, the study of organizational

characteristics, generally known as computational organization theory, has

received much attention by multi-agent researchers.

It is generally agreed that there is no single type of organization that is

suitable for all situations [Ishida et al., 1992, Corkill and Lander, 1998, Lesser,

1998, Carley and Gasser, 1999]. In some cases, no single organizational style

is appropriate for a particular situation, and a number of different,

concurrently operating organizational structures are needed [Gasser, 1991,

Chapter 4. Organizations of Agents

103

Horling et al., 2003]. Some researchers go so far as to say no perfect

organization exists for any situation, due the inevitable tradeoffs that must be

made and the uncertainty, lack of global coherence and dynamism present in

any realistic population [Romelaer, 2002].

What is clear is that all approaches have different characteristics which

may be more suitable for some problems and less suitable for others.

Organizations can be used to limit the scope of interactions, provide strength

in numbers, reduce or manage uncertainty, reduce or explicitly increase

redundancy or formalize high-level goals which no single agent may be aware

of [Lesser and Corkill, 1981, Fox, 1981].

At the same time, organizations can also adversely affect computational

or communication overhead, reduce overall flexibility or reactivity, and add an

additional layer of complexity to the system [Horling et al., 2004]. By

discovering and evaluating these characteristics, and then encoding them using

an explicit representation [Fox et al., 1998], one can facilitate the process of

organizational-self design [Corkill and Lesser, 1983] whereby a system

automates the process of selecting and adapting an appropriate organization

dynamically [Lesser, 1998, Schwaninger et al., 2000]. This approach will

ultimately enable suitably equipped agent populations to organize themselves,

eliminating at least some of the need to exhaustively determine all possible

runtime conditions a priori. Before this can occur, the space of organizational

options must be mapped, and their relative benefits and costs understood.

These benefits and costs, and the potential advantages that could be

provided by technologies able to make use of such knowledge, motivate the

need to determine the characteristics of organizations and under what

circumstances they are appropriate. While no two organizational instances are

likely to be identical, there are identifiable classes of organizations which

share common characteristics [Romelaer, 2002]. Several organizational

paradigms suitable for multi-agent systems have emerged from this line of

Organization Based Multiagent Architecture For Distributed Environments

104

research [Fox, 1981]. These cover particularly common, useful or interesting

structures that can be described in some general form. Several of these

paradigms will be described next, giving some insight into how they can be

used and generated, and comparing their strengths and weaknesses.

4.1. CONCEPT OF ORGANIZATION
In order to better know how to model organizations in multiagent

systems, it is necessary to understand the concepts related with human

organizations. Thus, in this sub-section human organizations are first

analyzed, and then organizations of agents, will be explained in following sub-

sections.

4.1.1.HUMAN ORGANIZATIONS

Human organizations represent the inspiration and clear model to

develop any other kind of ‘artificial’ organizations. This is why human

organizations are first explained here and then, and taking this

organizations as a model, organizations of agents will be developed.

An organization “is a social arrangement which pursues collective

goals, which controls its own performance, and which has a boundary

separating it from its environment”.

J.M. Peiró defines organization as a “formation or social entity with

a precise number of members and with an inner differentiation of the tasks

dealt by every member” [Peiró, 1995].

I. Guzmán, considers an organization as “the coordination of the

activities of all the individuals that make part of an enterprise with the

purpose of obtaining the best possible gain of the material, technical or

human means, to achieve the goals of the enterprise” [Valdivia, 1983].

Chapter 4. Organizations of Agents

105

Another similar definition is proposed by J. Massie, where an

organization is a “cooperative group of human beans where the tasks are

assigned among its members and where the relationships are identified

and its activities are integrated to achieve common objectives in a

structured way” [Massie, 1973].

Thus, an organization is composed by a series of individuals that

make some specific and differentiated tasks or activities. Besides, those

individuals are structured following some determined rules that allow

them to achieve the objectives of the organization.

The goals should be commonly known, guiding the efforts of the

members to be achieved [Peiró, 1995]. The organization should also

proportionate a source to legitimate the adequate actions in the

organization, establishing the minimum levels or standards to acquire.

A human organization can be characterized by the following

characteristics [Hodge et al., 1998]:

− It is formed by people.

− Follows a determined goal, which guides the activities of the

members of the organization, through the coordination and control

of the action mechanisms.

− There is a subdivision of the work among the individuals, by

specialization and division of tasks.

− Requires a formal structure, with defined roles (independent of the

person that carries that role); responsibilities associated with those

roles; and certain previously established relationships between the

members of the organization.

− All the established activities should be related with global objects

within the organization. The existence of certain role is only

justified if it is useful to achieve those goals.

Organization Based Multiagent Architecture For Distributed Environments

106

− An organization has defined limits, establishing the members of the

organization (directly naming each member or indicating the

situation where the activity takes place).

4.1.2.ORGANIZATIONS OF AGENTS

In the multiagent knowledge field, the term organization has been

mainly used to describe a set of agents that, using some kind of roles,

interact with each other coordinating themselves to achieve the global

objectives of the system.

L. Gasser assumes that organizations are structured systems with

activity, knowledge, culture, history, and ability pattern, different of any

particular agent [Gasser, 2001]. Organizations exist in a completely

different level than individual agents that make up the organizations

themselves. Individual agents are replaceable. Organizations are

established in a space; it either is geographical, temporal, symbolic, etc.

So, an organization of agents proportionates a kind of workspace for the

activity and interaction of the agents by defining roles, behavioural

expectatives and relations.

F. Zambonelli [Zambonelli et al., 2003] considers the organizations

of agents as a set of roles that keep the relationships among them, and that

generates interaction patterns with other roles in an institutionalized and

systematic way.

Ferber indicates that organizations proportionate a way to divide the

system, crating groups or units that form the interaction context of the

agents [Ferber et al., 2004]. The organization is then based in two main

aspects: structural and dynamic. The structure of the organization

represents the remaining components when the individual elements enter

or leave the organization. The organization is composed by the set of

relationships that allow seeing a number of different elements as unique.

Chapter 4. Organizations of Agents

107

The structure defines the way the agents are grouped in organizational

units and how those units are related with each other. The roles needed to

develop the activities of the organization are also defined in the structure,

as long as the relationships and restrictions.

The organizational dynamics is centred in the interaction patterns

defined for the roles, describing the way to get into or to leave the

organization, the parameters of the roles and the way the roles are

assigned to the agents.

For V. Dignum, the organizations of agents assume that there are

global objectives, different from the individual agents’ objectives

[Dignum and Dignum, 2007b]. Roles represent organizational positions

that help to achieve those global objectives. Agents may have their own

objectives and decide if they take any specific system role or not,

determining which among the available protocols is more suitable to

achieve their chosen objectives.

Finally, J. Hubner considers the organizations as a set of

behavioural restrictions adopted by a group of agents to control their own

autonomy and to help to easier accomplish their global objectives [Hubner

et al., 2005].

It is then possible to distinguish an organization of agents by the

following characteristics:

− It is composed by agents (software, physical or human),

independently of their inner characteristics and individual

objectives.

− Follows a global common objective that does not directly depend

on the individual objectives of the particular agents that make part

of the organization in every moment.

− The tasks assigned to the agents are divided in roles, which

describe the activities and functionality of the organization.

Organization Based Multiagent Architecture For Distributed Environments

108

− Organizations proportionate a disaggregation of the system in

groups or units, where the interaction between agents takes place.

− Organizations have clearly defined limits, determined by: the

organization environment, the internal and external agents and the

functionality of the organization and the services offered.

Comparing the resumed characteristics of human and agent

organizations, both have quite similar features, motivated by the fact that

the organizations of agents are normally developed from the simulation

and adaptation of the organizational human behaviours. Thus, is quite

reasonable to assume that improving the knowledge of human

organizations will help to obtain methods and design guides, as well as

new concepts, dimensions and aspects to take into account to analyze,

design and implement organizations of agents.

4.2. ORGANIZATION FACTORS
When analysing the organizations, it is important to take into account

not only the entities that form the organization, but also their relationships

and the objectives they want to achieve. Some other factors are also

important when analyzing an organization. They could be: the functionality

of the system, the environment where it is place and to which it is related and

the behavioural rules that guide the behaviour of their components. Then, the

main elements to consider when modelling an organization are the following:

− Structure: it is formed by all the elements that remain in the

organization independently of the final individual that form the

organization in every moment. It is defined by the roles, groups,

dependences and relational schemes.

− Functionality: specify the main objectives of the organization, the

functionalities offered by the organization, the smaller objectives

Chapter 4. Organizations of Agents

109

followed by the different members of the organization and what

tasks and plans should be carried out to achieve them.

− Normalization: determines the set of rules and actions defined to

control the behaviour of the members of the organization. The rules

about the way the members should act are also included here

(specifying the obligations, prohibitions and permissions of every

member, also including penalties and rewards according to their

acts).

− System dynamics: explains how the organization evolves through

the time, indicating the way the agents get into the organization or

leave it in a dynamic way. The agents may adopt different roles in

according to their capabilities and abilities. Agents make part of

those groups of the organization where they are admitted.

− Environment: it is formed by the resources to whose the

organization depends on; like the providers of those resources, the

clients or beneficiaries of the existence of the organization.

Next, all these elements that make part of the organizations will be

explained more detailed, paying special attention to the relationship between

the agents that form the organizations.

4.2.1. STRUCTURE

In human organizations, the structure of the organization defines

how the working tasks are divided, grouped and coordinated. Thus, a key

element in the composition of the organizations are the groups [Peiró,

1991], composed by a limited number of individuals that interact with

each other and that share a set of values and norms (conduct standards).

The main elements that characterize the structure of an organization

are: the specialization, the division into departments, the hierarchy, the

control, the centralization and decentralization and the formalization of the

Organization Based Multiagent Architecture For Distributed Environments

110

tasks [Hodge et al., 2003].

The specialization or work division indicates the degree of

division of the tasks of the organization into separated jobs. The

bigger the specialization is, the more repetitive the tasks are in the

organization.

The division into departments groups different jobs that may

coordinate their common tasks. That grouping can be done in

different ways:

− By functions, where all the specialists are grouped in the same

departments.

− By product, grouping tasks in departments by the product or

service generated by the organization, increasing the responsibility

by the achievement of the service.

− By geography, organising the departments by regions or territories.

− By processes; every department is specialized in one of the

production phases.

− By the type of client, better satisfying the problems and needs of the

clients.

The centralization is also an important element in the structure of

the organizations, indicating where the decisions are taken. Centralized

organizations take the decisions in only one place. In decentralised

organizations the decisions are delegated to managers, located closer to

the action.

The analysis of the structure determines the way the members of the

organization are grouped, where the decisions are taken, and the

relationships between the members of the organization.

In organizations of agents, the structure of the organization is

normally defined in terms of roles and groups. Roles represent the

Chapter 4. Organizations of Agents

111

functionalities or activities of the agents. Groups specify the context for

the activities of the agents. The communication is carried on within the

groups [Dignum and Dignum, 2007a]. Thus, different dependencies are

normally specified among the roles: heritage, compatibility,

communication and coordination, authority, control, etc. These

dependencies determine the relationships between the roles, which

coordinate the actions of the agents.

The modelling language MOISE-Inst [Gateau et al., 2005], offers

one of the most complete specifications of the structure of an organization

of agents. The structure of the MAS is defined by terms of roles, groups

and relationships.

A role consists in a series of restrictions that an agent should follow

to accept to be part of a group carrying that role. Those restrictions affect

its relationships with other roles and its objectives and plans to follow.

A group is a set of relationships and roles, determining the

cardinality restrictions (minimum and maximum number of agents playing

a certain role in a group). The relationships of heritance and compatibility

are also defined. Subgroups are also allowed.

Finally, social relationships determine the knowledge connections

(what agents can obtain information from other agents), communication

links (who is allowed to communicate with other agents) and authority

relationships (who has control over others).

4.2.2. FUNCTIONALITY

In human organizations, the mission describes the reason for the

existence of the organization, specifying the results (products or services)

that proportionate. The groups of interest to whose it is dedicated and the

global benefits expected to achieve are also specified. It determines the

global objectives of the system; the services offered or required, as long as

Organization Based Multiagent Architecture For Distributed Environments

112

the products associated to those services and the clients, users, etc.

affected by the system.

Once the general purpose of an organization is known, it is possible

to identify the basic functions needed to its achievement. The complexity

of the design of the organization consists in reducing the general activity

categories to specific subcategories. The final objective is to obtain

individual tasks, that should be grouped to obtain the maximum

productivity and efficiency with the minimum cost [Peiró, 1995].

In a similar way, in organizations of agents global objectives are

also defined. Those objectives specify the general desired behaviour of the

system. There are also particular objectives for roles and groups that

establish a set of tasks and actions to achieve them.

In MOISE-Inst [Gateau et al., 2005], the global objectives of the

system are decomposed, through the use of plans, in specific objectives

distributed among the agents. The plans describe the sequences of the

objectives. Roles are assigned with a series of coherent objectives. The

agent that plays that role must undertake to achieve those objectives.

Another important aspect in organizations is the concept of service.

It is defined by a coherent block of functionality that is carried on by

serving to other entity. Detailing the services offered by an organization

will allow the agents of the system to discover, invoke, monitor or even

compose them.

The specification of services has not been deeply considered by

methodologies of agents, which are mainly centred in interaction protocols

and in the tasks of roles and agents. Only AML [Cervenka and

Trencansky, 2007], allows to specify what services are offered or required

by the different entities of the system (roles, agents or organizing units).

This Language uses its own models, based in UML.

Chapter 4. Organizations of Agents

113

4.2.3. COORDINATION

In human organizations, the coordination of tasks is obtained by

three different mechanisms [Wagner, 2004]:

− Mutual adaptation: the members share the information related with

their job and decide how to perform a tasks and who should

perform it.

− Direct supervision: a person assumes the responsibility of the work

of a group, acquiring the authority to decide what tasks must be

done, who should perform them and how to relate the tasks to

obtain the final result.

− Normalization: proportionate the standards and procedures to help

the members of the organization to determine how to perform the

tasks.

In organizations of agents, the coordination is generated by the use

of social regulations. They must describe the expected behaviour of its

members; the allowed, required and needed actions and those to be

avoided. The sanctions to apply if not desirable actions are carried on

should also be specified as well as the rewards to offer to the actions

carried out by the procedure established in the regulations. Rules are

normally defined and controlled by institutions with a legal status. Rules

are essential to solve coordination problems in big and heterogeneous

systems, where the social and direct control cannot be carried out [López

et al., 2006].

In MOISE-Inst [Gateau et al., 2005], regulations define the

permissions, obligations and prohibitions of the agents while playing a

determined role or while being part of a group. Rules are related with the

execution of certain objectives satisfying their mission, within a particular

context and during an established period of time. The performance of the

Organization Based Multiagent Architecture For Distributed Environments

114

rules is supervised by a specific role that may sanction a role affected by a

rule.

In Electronic Institutions [Esteva et al., 2001], there is a social layer

formed by internal agents that know the interaction rules and grant that the

interactions will be carried out according to those rules.

OperA [Dignum, 2004] proposes the establishment of interaction

contracts to control the behaviour of the agents when they interact with

each other. Those contracts describe the conditions and rules to apply

while that interaction is produced.

4.2.4. SYSTEM DYNAMICS

In human organizations, every organization must allow its member

to enter and leave the organization in a dynamic way. The organization

incorporates members depending on their abilities, knowledge or aptitudes

to obtain their purposes [Peiró, 1995].

In organizations of agents, control mechanisms should be

established. Those mechanisms should control when the agents can enter

the organization and their position within the organization (their roles and

the groups in which they will enter). Expulsion processes must also be

considered, when an agent carries out some anomalous behaviour within

the organization. The dynamic aspect of the organization also implies the

process of creation and elimination of the groups and units contained in

the organization.

In Electronic Institutions [Esteva et al., 2001], the agent institution

manager controls the arrival of external agents. It creates an internal

representative agent, called governor, for every external agent authorized

to participate in the institution.

In OperA [Dignum, 2004], the agents are associated to the roles by

establishing social contracts. Every contract describes the conditions and

Chapter 4. Organizations of Agents

115

rules that acquires an agent to play a role.

4.2.5. ENVIRONMENT

In human organizations, the environment covers all the elements

outside the organization: suppliers, clients, rivals, government organisms,

financial institutions and investors and the job market that provides the

employees. Economic, geographical and political conditions are also part

of the environment [Wagner, 2004].

 The environment is, then, the source of needed resources to survive

[Hodge et al., 1998], providing the materials, technology and the members

required to develop the products and services, as long as the enough

number of clients to consume those products offering benefits to the

organization.

In multiagent systems, the environment is mainly associated with

the resources and applications that use the agents. In Gaia [Wooldridge et

al., 2000], the access modes to the resources are established (to read,

interact, extract information, etc.).

AML [Cervenka and Trencansky, 2007] considers the sensors and

actuators of the agents with their environment. Sensors should model the

ability of the agents to observe, perceive states or receive signals; while

actuators model their ability to produce certain effect over other objects or

entities.

OMNI [Vázquez-Salceda et al., 2005] establishes who are the

stakeholders or groups of interest; those entities with certain requirements

or needs over the system. The objectives and dependencies about the

organization are also identified.

Organization Based Multiagent Architecture For Distributed Environments

116

4.3. SUMMARY AND CONCLUSIONS
This fourth chapter develops the characteristics of the organizations of

agents. First, the main features of the organizations are described, starting

from the concept of organization, related with the human organizations,

which are the origin of the organization of agents. Then the main factors of

the organizations are developed, paying special attention to the following:

structure, functionality, normalization, dynamicity, and environment.

As explained in this chapter, human organizations establish a series of

mechanisms to restrict and control the activities to perform in order to

coordinate them.

First, the specification of the objectives of the organization determines

the tasks to be carried out. Those tasks require certain roles well

differentiated, each of those has one or more activities assigned for specific

situations. Those roles generate a structure that allows the coordination of the

activities and the transmission of information.

In second place, the organization has selection systems to incorporate

new members. Those whose conducts are more appropriated are chosen.

Finally, the organization has training and socialization mechanisms,

not only related with the tasks, but also about roles, rules and values, to

create a group environment. Groups are composed by a limited number of

individuals with common interactions and certain degree of shared rules.

Organizations are a useful paradigm to analyze and design MAS [Van

Den Broek et al., 2006], limiting the range of the interactions of the agents

and providing interaction patrons previously established. Organizations also

offer mechanisms to divide the tasks and to generate a more specialized

work. Thus they allow formalizing the objectives of the system at a high

level, establishing the purpose of the organization. Units or groups contained

in the organization, generate certain visibility limits, allowing the internal

Chapter 4. Organizations of Agents

117

agents of every unit to know its internal structure, but it is not visible to

external agents [Ferber et al., 2004].

V. Dignum affirms that the organizations of agents represent a step

forward for multiagent systems, allowing the coordination and collaboration

of open systems [Dignum and Dignum, 2007a]. The organization exists

independently of the agents that participate in it. Those agents will enter or

leave the organization in a dynamic way. Thus, it is assumed the existence of

global objectives that determine the existence of the organization. As an open

system, it allows the arrival of new agents that will require a registration by

contracts, specifying their interests and abilities.

Organizations represent one crucial aspect in the architecture

presented in this document. The fact that the agents can work together and

can share objectives and a way of responding to requests it is important in

this architecture. Agents are simpler elements that could have solved the

same problem but in a more complicated and risky way. Using organizations

allow the architecture to simplify the interaction between the agents by

grouping them. As it will be explained in the next section, the main

organizations that form the OBaMADE architecture can communicate among

them by using communication mechanisms that could not have been possible

(or, at least, it would have been much harder to achieve) by using only

individual agents.

Now, after explaining the main characteristics of the distributed

environments, and the specific features both of the multiagent systems and of

the organizations of agents, the OBaMADE architecture will be explained in

the next chapter. That architecture will be applied to dynamic distributed

environments, where different people are involved at the same time with

different roles, and with different kind of interaction with the system.

”Our problems are man-made, therefore they may be
solved by man. And a man can be as big as he wants. No
problem of human destiny is beyond human beings.”

John F. Kennedy

119

5. THE OBAMADE

ARCHITECTURE
In th i s chapt e r the OBaMADE (Organizat ion Based
Mul t iAgent Arch i t e c ture f o r Dist r ibut ed Environments)
ar ch i t e c ture i s fu l l y de s c r ibed . Fir s t the main s t ruc ture o f
the ar ch i t e c ture i s deve loped . Then , the d i f f e r en t e l ements
ar e expla ined , in c lud ing a l l the component s , f rom exte rna l
in t e r fa c e agent s to the inner s e rv i c e o r i en t ed s t ruc ture ,
where a l l the r eques t s are so lv ed .

BaMADE (Organization Based Multiagent Architecture for

Distributed Environments) represents a new architecture to

face problems that involve a great variety of people, data that

can originate from different sources, and solutions that may be requested from

different locations at the same time.

The OBaMADE architecture exposed in this thesis uses the distributed

capabilities of an organization of agents combined with the generalization and

knowledge extraction power of the Case-Based Reasoning methodology.

Thus, the architecture is divided in distinctly different parts, where the

O

Organization Based Multiagent Architecture For Distributed Environments

120

external agents are in charge of the communications with the external sources

of information or requests. The internal elements of the architecture represent

the communication components and the services that treat the information and

the request, following the CBR paradigm.

The OBaMADE architecture makes use of the techniques explained in

previous chapters. Its aim is to solve problem in distributed environments,

where information may change in real time and where there are different

sources of information and of requests to the system. The main elements of the

architecture explained in this chapter are:

− The Interface Agent Organization: a set of agents that recover the

information that may be entered into the system. That information

can be either an input of new data, a request of a service or an

answer from a request done by the system.

− The CBR-Services Organization: a set of services coordinated by

communication and control agents. This organization uses an

internal CBR methodology to extract all the possible knowledge

from the available data.

− The Additional Services Organization: the services covering the

CBR basic methodology may involve some other services that may

be needed by the systems developed with this architecture. These

specific services, which can be modelled for any application, are

coordinated and communicated by agents that share part of the

information with the CBR services.

− The Communication Organization: serves as an interconnection

between the other elements of the architecture, helping to

interchange the information and solving the needs of services from

the agents.

Chapter 5. The OBaMADE Architecture

121

The current chapter begins with the description of the main structure

of the architecture, where the different components will be shown, and the

basic interaction between them will be explained. Next, the agents involved in

the organization will be fully described, giving details of the way they work in

their different tasks. Afterwards, the services that comprise the core of the

system will be explained, with special attention to the way the information is

treated in order to obtain proper solutions to the proposed problems. Finally,

the applications of the OBaMADE architecture are detailed, explaining how it

can be adapted to solve different kind of problems regarding information

treatment.

5.1. ARCHITECTURE DESCRIPTION
The OBaMADE architecture was primarily designed to develop

Distributed System applications. These applications must be dynamic,

flexible, robust, adaptable to changes in context, scalable and easy to use and

maintain. However, the architecture can be used to develop any kind of

complex systems because it is capable of integrating almost any service and

application desired, with no dependency on any specific programming

language. Because the architecture acts as an interpreter, the users can run

applications and services programmed in virtually any language, but have to

follow a communication protocol that all applications and services must

incorporate.

Another important functionality is that, because of the agents’

capabilities, the systems developed can make use of reasoning mechanisms

or learning techniques to handle services and applications according to

context characteristics, which can change dynamically over time. Agents,

applications and services can communicate in a distributed way, even from

mobile devices. This makes it possible to use resources no matter their

location. It also allows the starting or stopping of agents, applications,

Organization Based Multiagent Architecture For Distributed Environments

122

services or devices separately, without affecting the rest of resources, so the

system has an elevated adaptability and capacity for error recovery.

As can be seen on figure 13, the OBaMADE framework defines four

basic blocks: Applications, Services, Agents Platform and Communication

Protocol. These blocks provide all the functionalities of the architecture:

− Applications. These represent all the programs that can be used to

exploit the system functionalities. Applications are dynamic and

adaptable to context, reacting differently according to the particular

situations and the services invoked. They can be executed locally

or remotely, even on mobile devices with limited processing

capabilities, because computing tasks are largely delegated to the

agents and services.

− Agents Platform. This is the core of OBaMADE, integrating a set

of agents, each one with special characteristics and behaviour. An

important feature in this architecture is that the agents act as

controllers and administrators for all applications and services,

managing the adequate functioning of the system, from services,

applications, communication and performance to reasoning and

decision-making. In OBaMADE, services are managed and

Figure 13. OBaMADE framework.

Chapter 5. The OBaMADE Architecture

123

coordinated by deliberative BDI agents. The agents modify their

behaviour according to the users’ preferences, the knowledge

acquired from previous interactions, as well as the choices

available to respond to a given situation.

− Services. These represent the activities that the architecture offers.

They are the bulk of the functionalities of the system at the

processing, delivery and information acquisition levels. Services

are designed to be invoked locally or remotely. Services can be

organized as local services, web services, GRID services, or even

as individual stand alone services. Services can make use of other

services to provide the functionalities that users require.

OBaMADE has a flexible and scalable directory of services, so

they can be invoked, modified, added, or eliminated dynamically

and on demand. It is imperative that all services follow the

communication protocol to interact with the rest of the architecture

components.

− Communication Protocol. This allows applications and services to

communicate directly with the agents platform. The protocol is

completely open and independent of any programming language.

This protocol is based on SOAP specification to capture all

messages between the platform and the services and applications

[Cerami, 2002]. Services and applications communicate with the

agents platform via SOAP messages. A response is sent back to the

specific service or application that made the request. All external

communications follow the same protocol, while the

communication among agents in the platform follows the FIPA

Agent Communication Language (ACL) specification. This is

especially useful when applications run on limited processing

capable devices (e.g. cell phones or PDAs). Applications can make

Organization Based Multiagent Architecture For Distributed Environments

124

use of agents platforms to communicate directly (using FIPA ACL

specification) with the agents in OBaMADE, so while the

communication protocol is not needed in all instances, it is

absolutely required for all services.

Users can access the system through distributed applications, which

run on different types of devices and interfaces (e.g. computers, cell phones,

PDA). Figure 14 shows the basic schema of OBaMADE where all requests

and responses are handled by the agents in the platform. The agents analyze

all requests and invoke the specified services either locally or remotely.

Services process the requests and execute the specified tasks. Then, services

send back a response with the result of the specific task.

OBaMADE is a modular multi-agent architecture, where services and

applications are managed and controlled by deliberative BDI (Belief, Desire,

Intention) agents [Bratman et al., 1988, Pokahr et al., 2003]. Deliberative

BDI agents are able to cooperate, propose solutions on very dynamic

environments, and face real problems, even when they have a limited

description of the problem and few resources available.

These agents depend on beliefs, desires, intentions and plan

representations to solve problems [Bratman, 1987, Georgeff and Rao, 1998].

Deliberative BDI agents are the core of OBaMADE. There are different

kinds of agents in the architecture, each one with specific roles, capabilities

and characteristics. This fact facilitates the flexibility of the architecture in

incorporating new agents.

The agents that form part of the agents’ platform interact with each

other to coordinate the requests received and to communicate between the

interface agents and the services provided by the architecture. The location of

those agents in the agents’ platform can be seen in figure 14.

Chapter 5. The OBaMADE Architecture

125

Figure 14. OBaMADE basic schema.

Organization Based Multiagent Architecture For Distributed Environments

126

The information flow is started by the users, which introduce in the

system, through the Interface Organization, their requests. Once the request

is processed by the Interface Organization, it is send to the Communication

Organization, that decides which service is in charge of the tasks required by

the user. Then, the request is sent to one of the Services Organizations,

depending on the request generated by the user.

When the request is accomplished, it is returned back to the user

through both the Communication Organization and the Interface

Organization. A basic schema of this information flow is shown in figure 15.

The elements and transfers in figure 15 will be deeply explained in next sub-

sections.

Figure 15. OBaMADE basic information flow.

Chapter 5. The OBaMADE Architecture

127

5.2. INTERFACE AGENTS ORGANIZATION
Interface agents were designed to be embebbed in user applications.

Interface agents communicate directly with the agents in the communication

organization, so there is no need to employ the communication protocol, the

FIPA ACL specification is used indeed.

The requests are sent directly to the Security Agent, which analyzes

the requests and sends them to the Manager Agent. The rest of the process

follows the same guidelines for calling any service. These agents must be

simple enough to allow them to be executed on mobile devices, such as cell

phones or PDAs.

Figure 16. Interface Organization activity.

Organization Based Multiagent Architecture For Distributed Environments

128

The Interface Organization receives information from the users. When

a users starts an application, it should detect the kind of device that is

requesting a service to properly sent it the interface according to the used

device. Then, the users introduces the kind of requests that is demanding.

The Interface Organization receives the request and sends it to the

Communication Organization, that will solve it by using different services of

the available Services Organizations. When the Communication

Organization sends request answer to the Interface Organization that sends it

finally to the user. This sequence of transfers can be seen in figure 16.

OBaMADE is an open architecture that allows developers to modify

the structure of these agents, so that agents are not defined in a static manner.

Developers can add new agent types or extend the existing ones to conform

to their project needs. However, most of the agents’ functionalities should be

modelled as services, releasing them from tasks that could be performed by

services. Services represent all functionalities that the architecture offers to

users and uses itself. As previously mentioned, services can be invoked

locally or remotely. All information related to services is stored into a

directory which the platform uses in order to invoke them, i.e., the services.

This directory is flexible and adaptable, so services can be modified, added

or eliminated dynamically. Services are always on “listening mode” to

receive any request from the platform. It is necessary to establish a

permanent connection with the platform using sockets.

Every service must have a permanent listening port open in order to

receive requests from the platform. Services are requested by users through

applications, but all requests are managed by the platform, not directly by

applications. When the platform requests a service, the CommServ Agent

sends an XML message to the specific service. The message is received by

the service and creates a new thread to perform the task. The new thread has

an associated socket which maintains open communication with the platform

Chapter 5. The OBaMADE Architecture

129

until the task is finished and the result is sent back to the platform. This

method provides services capable of managing multiple and simultaneous

tasks, so services must be programmed to allow multi-threading.

However, there could be situations where multi-tasks are not being

permitted, for instance high demanding processes where multiple executions

could significantly reduce the services performance. In these cases, the

Manager Agent asks the CommServ Agent to consult the status of the service,

which informs the platform that it is busy and cannot accept other requests

until finished. The platform must then seek another service that can handle

the request, or wait for the service to be idle. To add a new service, it is

necessary to manually store its information into the directory list managed by

the Directory Agent. Then, CommServ Agent sends a ping message to the

service. The service responds to the ping message and the service is added to

the platform. A service can be virtually any program that performs a specific

task and shares its resources with the platform. These programs can provide

methods to access data bases, manage connections, analyze data, get

information from external devices (e.g. sensors, readers, screens, etc.),

publish information, or even make use of other services. Developers are free

to use any programming language. The only requirement is that they must

follow the communication protocol based on transactions of XML (SOAP)

messages.

5.3. COMMUNICATION ORGANIZATION
In the middle of the OBaMADE structure there is an organization

designed to establish correct communications between the rest of the

elements of the architecture. Figure 17 shows a schema of how the agents

that form this organization may be structured within the organization. The

interchange of information from the interface organization to the

organizations in charge of the service passes through this organization, where

Organization Based Multiagent Architecture For Distributed Environments

130

specific agents must make certain decisions, as will be explained next.

The agents that form this organization have the following descriptions

and tasks to perform:

− CommApp Agent. This agent is responsible for all communications

between applications and the platform. It manages the incoming

requests from the applications to be processed by services. It also

manages responses from services (via the platform) to applications.

CommApp Agent is always on “listening mode”. Applications send

XML messages to the agent requesting a service, after which the

agent creates a new thread to start communication by using

sockets. The agent sends all requests to the Manager Agent, which

processes the request. The socket remains open until a response to

the specific request is sent back to the application using another

XML message. All messages are sent to Security Agent for their

structure and syntax to be analyzed.

− CommServ Agent. It is responsible for all communications between

services and the platform. The functionalities are similar to

CommApp Agent but backwards. This agent is always on “listening

Figure 17. Communication Organization schema.

Chapter 5. The OBaMADE Architecture

131

mode” waiting for responses of services. Manager Agent signals to

CommServ Agent which service must be invoked. Then, CommServ

Agent creates a new thread with its respective socket and sends an

XML message to the service. The socket remains open until the

service sends back a response. All messages are sent to Security

Agent for their structure and syntax to be analyzed. This agent also

periodically checks the status of all services to know if they are

idle, busy, or crashed.

− Directory Agent. It manages the list of services that can be used by

the system. For security reasons [Snidaro and Foresti, 2007], the

list of services is static and can only be modified manually;

however, services can be added, erased or modified dynamically.

The list contains the information of all trusted available services.

The name and description of the service, parameters required, and

the IP address of the computer where the service is running are

some of the information stored in the list of services. However,

there is dynamic information that is constantly being modified: the

service performance (average time to respond to requests), the

number of executions, and the quality of the service. This last data

is very important, as it assigns a value between 0 and 1 to all

services. All new services have a quality of service (QoS) value set

to 1. This value decreases when the service fails (e.g. service

crashes, no service found, etc.) or has a subpar performance

compared to similar past executions. QoS is increased each time

the service efficiently processes the tasks assigned. Information

management is especially important in distributed environments

because the data processed is very sensitive and personal. Thus,

security must be a major concern when developing systems related

with distributed environments. For this reason OBaMADE does not

Organization Based Multiagent Architecture For Distributed Environments

132

implement a service discovery mechanism requiring systems to

employ only the specified services from a trusted list of services.

However, agents can select the most appropriate service (or group

of services) to accomplish a specific a task.

− Supervisor Agent. This agent supervises the correct functioning of

the other agents in the system. Supervisor Agent periodically

verifies the status of all agents registered in the architecture by

sending ping messages. If there is no response, the Supervisor

Agent kills the agent and creates another instance of that agent.

− Security Agent. This agent analyzes the structure and syntax of all

incoming and outgoing XML messages. If a message is not correct,

the Security Agent informs the corresponding agent (CommApp or

CommServ) that the message cannot be delivered. This agent also

directs the problem to the Directory Agent, which modifies the

QoS of the service where the message was sent.

− Manager Agent. Decides which agent must be called by taking into

account the QoS and user preferences. Users can explicitly invoke

a service, or can let the Manager Agent decide which service is

best to accomplish the requested task. If there are several services

that can resolve the task requested by an application, the agent

selects the optimal choice. An optimal choice has higher QoS and

better performance. Manager Agent has a routing list to manage

messages from all applications and services. This agent also checks

if services are working properly. It requests the CommServ Agent

to send ping messages to each service on a regular basis. If a

service does not respond, CommServ informs Manager Agent,

which tries to find an alternate service, and informs the Directory

Agent to modify the respective QoS.

Chapter 5. The OBaMADE Architecture

133

The Communication Organization receives the user’s request from the

Interface Organization. When the request arrives at the Communication

Organization it should send it to the appropriate service. That service can be

on in the CBR Services Organization or in the Additional Services

Organization. The Communication Organization should coordinate the

dataflow from the exterior of the system and to the internal services. This

dataflow can be seen in figure 18.

5.4. CBR SERVICES ORGANIZATION
The reasoning capabilities of the OBaMADE architecture are based on

the Case-Based Reasoning methodology. The main basic aspects of this

methodology are explained in Appendix C. The CBR methodology uses past

information to solve new problems. The use of past information combined

Figure 18. Communication Organization dataflow.

Organization Based Multiagent Architecture For Distributed Environments

134

with an appropriate set of artificial intelligence techniques produces a

successful knowledge extraction. It is essential to transform the information,

i.e. the data, into knowledge. When data can be used to solve problems, then

it is more than data. This transformation can be properly executed with a

methodology like CBR.
The four main phases of the basic CBR cycle should be taken into

account in order to accomplish the CBR methodology. In this case, the

phases are transformed into services that respond to requests made by the

interface agents, being redirected by the communication organization. The

data flow from the communication organization into the CBR services is

shown in figure 19. There can be seen the input of the request from the

communication organization and how it is treated by the different services of

the CBR services organization.

Figure 19. CBR Services Organization dataflow.

Chapter 5. The OBaMADE Architecture

135

Next, the adaptation of the CBR phases to the OBaMADE architecture

is explained, focusing on the artificial intelligence techniques employed to

obtain the best results from the available information. First, the organization

and creation of the case base are explained, paying special attention to the

structure of the case base and the advantages of properly organizing the

stored data. Then the introduction of information is analyzed, specifying the

process carried out to enrich the case base. The third phase described is the

generation of a solution from a request arrived at the system; the main steps

taken by the request until the arrival of the final solution are described.

Finally, the revision process, where the proposed solution is validated, is

described.

5.4.1. ORGANIZING THE CASE BASE

Case-Based Reasoning is a methodology that depends on past stored

data from which knowledge is extracted in order to solve new problems. It

is thus critical to properly organize the case base, the structure where the

information is kept [Sun et al., 2004]. Here, a new extension on the well-

known Self-Organizing Map algorithm is presented [Kohonen, 1995]. The

algorithm has a double purpose: first, it is used to sort out all the

information that is stored in the case base. Then, it is used to retrieve the

most similar cases to the problem introduced in the system that needs to be

solved.

The SOM is based on a type of unsupervised learning called

competitive learning; an adaptive process in which the neurons in a neural

network gradually become sensitive to different input categories, sets of

samples in a specific domain of the input space. The main feature of the

SOM algorithm is that the neighbours on the lattice, as well as the winning

neuron, are also allowed to learn – i.e. to adapt their characteristics to the

input. Thus, the neighbouring neurons gradually come to represent similar

Organization Based Multiagent Architecture For Distributed Environments

136

inputs, and their representations become ordered on the map lattice.

The difference between the SOM and the WeVOS hence lies in the

update of the weights of the neighbours of the winner neuron as can be

seen from Eqs. (1) and (2).

Update of neighbourhood neurons in SOM:

())()(),,()()()1(twtxtkvttwtw vkk −+=+ ηα (1)

Update of neighbourhood neurons in WeVOS:

[] [] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−+−+=+ 1)()()()(),,()()()1(

λ
ηα

vk

vk
kvvkk

d
twtwtwtxtkvttwtw

(2)

where wv is the winning neuron, α the learning rate of the

algorithm,η(v,k,t) is the neighbourhood function (usually, the Gaussian

function or a difference of Gaussians), where v represents the position of

the winning neuron in the lattice and k the positions of the neurons in the

neighbourhood of this one, x is the input to the network and λ is a

“resolution” parameter, dvk and Δvk are the distances between the neurons

in the data space and in the map space respectively.

The idea behind the WeVoS meta-algorithm is to apply the scheme

of an ensemble of classifiers working together to solve a single

classification problem [Heskes, 1997, Ayd et al., 2009] to the topology

preserving algorithms. An ensemble of maps can be trained on a dataset,

and a final map summarizing the main features detected by each one can be

calculated.

The WeVoS fusion algorithm presented in this study aims to obtain

the final map by using the information contained in the maps composing

the ensemble on a unit-by-unit basis. Usually, the final characteristics

vectors of a single map are calculated from a single training over the

Chapter 5. The OBaMADE Architecture

137

dataset.

The WeVoS algorithm tries to generate the final characteristics

vector for each unit by relying on an informed decision about the

adaptation of its homologous units from an ensemble of maps, each of

which has been trained on slightly different parts of the dataset [Breiman,

1996]. This vector is also recalculated for the neighbours of the unit.

As a result, the final map obtained not only determines the best

position for each unit based on an informed decision, but also maintains

one of the most important features of this type of algorithms: its

topological ordering. WeVoS is an improved version of the superposition

algorithm presented in several previous works [Baruque et al., 2007].

Although it has been successfully applied to the analysis of real-life data

[Baruque et al., 2008], in this study it is applied for the first time to solve

this kind of practical problem.

The first step in this meta-algorithm is to calculate the “quality” of

each of the units comprising each map, in order to rely on some kind of

informed decision for the fusion of units. This “quality” measure (or error

measure) could be any one of the many “quality of map” measures

presented in scientific literature regarding Self-Organizing Maps [Polani,

2001, Polzlbauer, 2004]; provided that it may be calculated on a unit-by-

unit basis.

The final map is obtained again on a unit-by-unit basis. Firstly, the

units of the final map are initialized by calculating the centroids of the units

in the same position of the map grid in each of the trained maps. Then, the

final position of that unit is recalculated using the information associated

with the units in that same position in each of the ensemble maps. For each

unit, a voting process is performed as shown in Eq. 3:

Organization Based Multiagent Architecture For Distributed Environments

138

∑∑
∑

==

⋅ M

i ip

mp
M

i ip

mp
mp

q

q

b

b
=V

1 ,

,

1 ,

,
,

(3)

where, Vp,m is the weight of the vote for the unit included in map m

of the ensemble, in its position p; M is the total number of maps in the

ensemble; bp,m is the binary vector used for marking the dataset entries

recognized by the unit in position p of map m; and, qp,m is the value of the

desired quality measure for the unit in position p of map m.
Algorithm 1. Weighted Voting Superposition (WeVoS).

1: train several networks by using the bagging (re‐sampling with

replacement) meta‐algorithm

2: for each map (m) in the ensemble

3: for each unit position (p) of the map

4: calculate the quality measure/error chosen for the current

unit

5: end

6: end

7: calculate an accumulated total of the quality/error for each position

Q(p) on all maps

8: calculate an accumulated total of the number of data entries

recognized by a position on all maps D(p)

9: for each unit position (p)

10: initialize the fused map (fus) by calculating the centroid (w’) of

the units of all maps in that position (p)

11: end

Chapter 5. The OBaMADE Architecture

139

The weights of each unit are fed into the final network in the same

way as the data inputs during the training phase of a SOM, considering the

‘homologous’ unit in the final map as the Best Matching Unit (BMU). The

weights of the final unit will be updated towards the weights of the

composing unit. The difference in the updating performed for each

homologous unit that forms part of the map depends on the quality measure

calculated for each unit: the higher the quality (or the lower the error) of

the unit in the composing map, the stronger the updating of the unit in the

summary map towards the weights of that particular unit. With respect to

quality determination, a single quality measure or a linear combination of

several measures may be used. The number of data inputs recognized by

each unit is also taken into account in the quantization of the ‘most

suitable’ unit among those competing for the same position in the final

map. In short, the summarization algorithm considers the most suitable

weights of a composing unit to be the weights of the unit in the final map,

according to both the number of inputs recognized and the adaptation

quality of the unit. The model, referred to as WeVoS, is described in detail

in the algorithm 1.

12: for each map (m) in the ensemble

13: for each unit position (p) of the map

14: calculate the vote weight of the (p) in the map (m) by

using Eq. 2

15: feed the weights vector of the (p) to the fused map

(fus), as if it were a network input, using the weight of the

vote calculated in step 14 as the learning rate and the

index of that same (p) as the index of the BMU.

16: end

17: end

Organization Based Multiagent Architecture For Distributed Environments

140

This new approach not only takes the characteristics of each unit

into account, but also the topographic ordering of its neighbourhood. The

approach is intended to generate more meaningful maps by representing the

inner structure of the dataset more faithfully. Those capabilities are a great

added value to a CBR system since they facilitate the creation of the

structure of the case base, where grouping similar cases together is a great

advantage. They are also important when trying to recover the most similar

cases to the problem introduced in the system, because of the increased

speed of the recovery that results when similar cases are close one to

another.

5.4.2. DATA ENTRANCE AGENT

Case-Based Reasoning systems are highly dependent on stored

information. The novel algorithm presented here, Weighted Voting

Summarization of SOM ensembles (WeVoS-SOM) [Baruque et al., 2009]

is used to organize the data that is accumulated in the case base. It is also

used to recover the most similar cases to the proposed problem.

The main objective of the WeVoS-SOM is to generate a final map

processing several other similar maps unit by unit. Instead of trying to

obtain the best position for the units of a single map trained over a single

dataset, it aims to generate several maps over different parts of the dataset.

Then, it obtains a final summarized map by calculating by consensus which

is the best set of characteristics vector for each unit position in the map. To

perform this calculation, this meta-algorithm must first obtain the

“quality” [Polzlbauer, 2004] of every unit that composes each map, so that

it can relay in some kind of informed resolution for the fusion of neurons.

The final map obtained is generated unit by unit. The units of the

final map are first initialized by determining their centroids in the same

position of the map grid in each of the trained maps. Afterwards, the final

Chapter 5. The OBaMADE Architecture

141

position of that unit is recalculated using data related to the unit in that

same position in each of the maps of the ensemble. For each unit, a sort of

voting process is carried out as shown in Eq. 3.

The final map is fed with the weights of the units, as it is done with

data inputs during the training phase of a SOM [Kohonen, 1995],

considering the “homologous” unit in the final map as the BMU. The

weights of the final unit will be updated towards the weights of the

composing unit. The difference of the updating performed for each

“homologous” unit in the composing maps depends on the quality measure

calculated for each unit. The higher the quality (or the lowest error) of the

unit of the composing map, the stronger the unit of the summary map will

be updated towards the weights of that unit. The summarization algorithm

will consider the weights of the “most suitable” composing unit to be the

weights of the unit in the final map according to both the number of inputs

recognized and the quality of adaptation of the unit (Eq. 3). The expected

result of this new approach is to obtain maps that are more true to the inner

structure of the dataset.

5.4.3. SOLUTION REQUEST AGENT

When a prediction is requested by a user, the system begins by

searching the case base to recover the most similar cases to the problem

proposed. Then, it creates a prediction using artificial neural networks.

Once the most similar cases are recovered from the case base, they are used

to generate the solution. Growing RBF networks [Ros et al., 2007] are used

to obtain the predicted future values corresponding to the proposed

problem.

 This adaptation of the RBF networks allows the system to grow

during training, gradually increasing the number of elements (prototypes)

which play the role of the centres of the radial basis functions. The creation

Organization Based Multiagent Architecture For Distributed Environments

142

of the Growing RBF must be made automatically, which implies an

adaptation of the original GRBF system. The error for every pattern is

defined by (Eq. 3).

∑ =
−=

p

k ikik ytn
le

1 (3)

where tik is the desired value of the kth output unit of the ith training pattern,

yik the actual values of the kth output unit of the ith training pattern.

The Growing RBF pseudocode is as follows in Algorithm 2:

Algorithm 2 . Growing Radial Basis Function pseudocode.

Once the GRBF network is created, it is used to generate the

solution to the proposed problem. The solution proposed is the output of

the GRBF network created with the retrieved cases. The GRBF network

receives the values stored in the case base as input. With those values, the

1: Calculate the error, ei (Eq. 3) for every new possible prototype.

a. If the new candidate is not among those selected and the error

calculated is less than a threshold error, then the new candidate is

added to the set of accepted prototypes.

b. If the new candidate already belongs to the accepted ones and the

error is less than the threshold error, then modify the weights of the

units in order to adapt them to the new situation.

2: Select the best prototypes from the candidates

 If there are valid candidates, create a new cell centred on the valid

candidate.

 Else, increase the iteration factor. If the iteration factor reaches

10% of the training population, freeze the process.

3: Calculate global error and update the weights.

 If the results are satisfactory, end the process. If not, go back to

step 1.

Chapter 5. The OBaMADE Architecture

143

network generates the proposed solution, using only the data recovered

from the case base in previous phases.

5.4.4. REVISION AGENT

After generating a prediction, the system needs to validate its

correction. OBaMADE can also query an expert user to confirm the

automatic revision previously done. The system also provides an automatic

method of revision that must be checked as well by an expert user which

confirms the automatic revision.

Explanations are a recent revision methodology used to check the

correction of the solutions proposed by CBR systems [Plaza et al., 2005].

Explanations are a kind of justification of the solution generated by the

system. To obtain a justification to the given solution, the cases selected

from the case base are used again. As explained before, a relationship

between a case and its future situation can be established.

If both the situations defined by a case and the future situation of

that case are considered as two vectors, a distance between them can be

defined, calculating the evolution of the situation in the considered

conditions. That distance is calculated for all the cases retrieved from the

case base that are similar to the problem to be solved. If the distance

between the proposed problem and the solution given is not greater than the

average distances obtained from the selected cases, then the solution is a

good one, according to the structure of the case base.

If the proposed prediction is accepted, it is considered to be a good

solution to the problem and can be stored in the case base in order to solve

new problems. It will have the same category as the historical data

previously stored in the system.

Organization Based Multiagent Architecture For Distributed Environments

144

Algorithm 3. Explanations pseudocode.

5.5. ADDITIONAL SERVICES

ORGANIZATION
The CBR services organization includes all the services related to the

CBR methodology, with the four phases of the CBR cycle. The case base is

only consulted by the services contained in that organization.

But there are more possible services that may use some other kind of

information. The knowledge repository stores all the information treated by

the architecture, including not only the cases, but also all the requests

performed, and the consults made by the experts. It is a kind of big

repository, containing an updated version of the case base and a complete log

of all the activities carried out by the architecture.

1: For every selected case in the retrieval phase, the distance between the case

and its solution is calculated.

2: The distance between the proposed problem and the proposed solution is

also calculated.

3: If the difference between the distance of the proposed solution and that of

the selected cases is below a certain threshold value, then the solution is

considered to be valid.

4: If not, the user is informed and the process goes back to the retrieval phase,

where new cases are selected from the case base.

5: If after a series of iterations the system does not produce a good enough

solution, then the user is asked to consider accepting the best of the generated

solutions.

Chapter 5. The OBaMADE Architecture

145

So, depending on the specific application of the architecture, this

organization may contain different services, most of them regarding the

knowledge repository information.

Some of the possible services contained in this organization are:

− Specific log reports: every user of the system can consult its

interactions with the system. The administrators can consult all the

information stored in the knowledge repository. It can be used to

create activity reports or to check the correct working the systems.

− Information retrieval: some historical information about a specific

problem can be retrieved from the knowledge repository without

necessarily being a request for a solution. It can be employed to

consult information about the problem, to create statistical reports

or to check the information stored and compare it with present

values...

− Consult previous actuations: experts, that are requested to validate

the solutions automatically generate by the system, can consult

their previous validations to confirm their impressions or even to

confirm the way to proceed.

− Consult previous solutions: when requesting a solution to a

problem, it can be applied to consult previous solutions given to

the similar problems.

These and other services can be created and included in the additional

services organization to adapt the OBaMADE architecture to the specific

problems it can be applied to.

5.6. APPLICATIONS
The OBaMADE architecture integrates organizational capabilities that

allow the systems created based on this architecture to structure their

components (mainly agents and services). The different elements integrated

Organization Based Multiagent Architecture For Distributed Environments

146

in the architecture ensure the capability of offering communication services

to different users and an internal structure of information that may be adapted

to different problems. The kinds of problems that this architecture can solve

are normally related to distributed environments, where the information can

be obtained from different sources at the same time. Knowledge extraction is

also one of the main fields where this architecture may be applied. The

internal CBR structure of the services and of the management of the

information allows the system to apply the capabilities of the CBR

methodology to different fields.

The main applications of this architecture are the following: prediction

generation, classification, clustering and planning.

This application fields will be explained next, developing how the

described architecture may be easily adapted in order to solve the different

kind of problems proposed.

5.6.1. PREDICTION GENERATION

The application field was tested with the two case studies that will be

explained in the next chapter. This application of OBaMADE has produced

great results, which will be explained in the next chapter.

The next section explains the adaptation of the architecture to this

application, focusing on the data stored in the case base, the entrance of

information and the generation of a solution.

The case base stores information with temporal parameters, in order

to create temporal relationships between one moment and the immediate

subsequent moment. The case base simultaneously stores the information

about the knowledge field that is treated, and parameters regarding the time

(date, hour... depending on the problem to be solved). This is how the CBR

system structures the proposed problem (present situation) and its solution

(future situation). Given a proposed problem, the system searches the case

Chapter 5. The OBaMADE Architecture

147

base for future situations associated with the introduced problem.

The information is introduced in the case base by different means. It

is possible to acquire information directly from users, who will introduce the

information through their devices. But it is also possible to obtain

information from satellites with online information services, and from

specific sensors that may measure some interesting parameters. All that

information is structured into the case base, keeping the temporal relationship

between the parameters stored.

The system generates a solution after a solution request is received.

The data introduced in the system to obtain a solution is a present situation,

with values for some of the stored parameters. Then the system tries to

recover the rest of the information, if possible, from other sources, like

sensors or satellites. Once the information is organized, then the system

recovers from the case base those situations more similar to the introduced.

The system then generates a solution, applying the artificial intelligence

techniques previously explained, by treating the recovered cases.

5.6.2. CLASSIFICATION AND CLUSTERING

Classification consists of structuring the information into one of a

certain number of possible classes depending on its characteristics.

Clustering consists of determining the possible different groups of elements

from a set of elements. Those two techniques are highly related, and the

OBaMADE architecture may serve to combine them to generate complex

data mining applications.

In the case base creation phase, the available data is structured into the

case base. If the existing data can be organized into clusters, the internal

structure of the case base will reflect it.

Case base creation: this is the phase when the system determines the

cluster in which the data is divided. While the information is incorporated

Organization Based Multiagent Architecture For Distributed Environments

148

into the case base, it is located depending on the values stored, after which

the clusters appear. Visualization algorithms may be needed to check the

existence of the clusters and to give visual evidence of their creation. A new

parameter can be stored into the case base, identifying the cluster in order to

simplify the retrieval and the categorization of the information.

The case base stores the introduced data according to its

characteristics. Similar data will be located close one to another. This will

help to identify the clusters and to perform the classification tasks.

When new data arrives to the system, it is categorized and located in

a specific cluster, if possible. New data may create a new cluster or, in case

of strange data that the system does not consider to be compatible with the

stored information, it can be rejected (the user is previously consulted to

validate the decision taken by the system). So when new information is

stored in the system, classification is automatically performed.

If a new element needs to be classified, it is compared to the

elements stored in the case base. Then, the most similar elements to the new

one will be identified with a cluster. The new element will now belong to the

same cluster as those similar cases stored in the case base. The new case will

be stored in the case base, to be used in future problems as part of the

solution.

5.6.3. PLANNING

Planning may be integrated in the OBaMADE architecture. It consists

only of changing the internal methodology from case-based reasoning, to

case-based planning. The methods are quite similar, since in the case base

plans are stored according to the conditions where these plans were carried

out.

In the case base plans are stored as a consequence of a situation

composed by a series of elements. It cannot be a general planner; it has to be

Chapter 5. The OBaMADE Architecture

149

related to a certain knowledge field. Different knowledge fields should have

different implementations of the architecture. So, the plans stored in the case

base have a series of related circumstances that determine the execution of that

plan. The case base is organized according to the parameters determining the

initial situation.

When a new situation is introduced into the system, it is included with

the plan that solves that situation. The new situation will be placed close to

similar situations stored in the case base. The cases must have a kind of metric

factor in order to determine their position into the case base, and the proximity

of the elements will be directly proportional to their similarity.

When a new situation arrives to the system, the most similar situations

stored in the case base are retrieved. The solution to the situation will be an

adaptation of the plans stored in the case base. If, there are any changes during

the execution of the plan, or the plan fails, there should be mechanisms to

modify the solution plan according to the changes produced.

5.7. SUMMARY AND CONCLUSIONS
The OBaMADE architecture represents an evolution in the concept of

multiagent systems by introducing an organizational element among the

agents and incorporating a CBR methodology as a reasoning core.

This chapter explained the OBaMADE architecture, describing the

organizations that compose the architecture and the internal elements of all

the existing organizations. Interfaces, communication and services were also

explained, indicating the way all of them work in an individual way, as well

as how they cooperate to achieve a common objective.

The external element of the architecture, the interface, was solved by

the use of light interface agents that take the information given by the users

or the systems where they are located, and send it to the system. The

interfaces showed to the users are decided by the internal interface

Organization Based Multiagent Architecture For Distributed Environments

150

organization, depending on the type of device used by the user and also

depending on the type of request done .Once in the system, the information

passes through the communication organization that processes the data, to

determine what will be done with the information received. Depending on

the type of communication established between the interface agents and the

communication organization, the agents within the communication

organization choose where to send the information and decide if a response

is required from the internal organizations of the system. The communication

organization chooses from the two services organizations, and sends to one

of them the request received by the system.

The core of the system is composed by a Case-Based Reasoning group

of services that encapsulate the CBR methodology. The implemented

services cover the four main phases of the methodology and give solutions

by reusing the stored information, extracting knowledge adapted to the

problem to be solved. Those services are included in the CBR services

organization where a set of agents solve the requests received from the

communication organization and sends the response, if needed, back to the

communication organization, which finally sends it to the user through the

interface organization.

The additional services organization cover a series of needed services

that do not necessary follow the CBR methodology and that are not directly

related with the solution generation. Those services are important but, in

terms of resource allocation, are not so crucial as the solved by the CBR

services organization, where solutions are required and where the speed and

reliability is higher than in this complementary organization.

The organizations of agents used to design the OBaMADE

architecture represent an evolution of the multi-agent systems, where the

structuring capabilities of the agents are taken to a higher extent by

improving their socialization properties. The agents being part of those

Chapter 5. The OBaMADE Architecture

151

organizations collaborate to obtain a common aim and share their objectives

in a transparent way, without interfering with the normal dataflow within the

systems.

In the next chapter, the results obtained with the OBaMADE

architecture will be shown. Two case studies were chosen to apply the

architecture. The application chosen to check the correction of the

architecture was a prediction generation, where historical data is used to

obtain new predictions to new problems.

”Advice is judged by results, not by intentions.” Cicero

153

6. APPLICATION -

CASE STUDIES
The OBaMADE arch i t e c ture has been suc c e s s fu l l y app l i ed
to two cas e s tud i e s . The f i r s t one invo lv e s the app l i ca t ion o f
the OBaMADE arch i t e c ture to the o i l sp i l l prob l em. To
pre s en t the app l i ca t ion o f the ar ch i t e c ture to the prob l em,
the prob l em i t s e l f i s f i r s t expla ined , in c lud ing the methods
fo r acquir ing the data , the t rans format ion , and the methods
used to app ly the t e chno logy to so lv e the prob l em. The
s e cond case s tudy , whi ch was app l i ed to f o r e s t f i r es , s e rv ed
to more ext ens iv e l y check the OBaMADE arch i t e c tur e .

hen a new architecture is created, it is necessary to

apply it to solve the problems it is intended to solve.

In this chapter, the application of the OBaMADE

architecture to two different case studies is explained. While showing the

application of the architecture, its prediction capabilities are shown. Those

case studies are, both of them, located in natural environments, where different

real-time parameters are involved and where different type of users interact

with the systems at the same time, but playing different roles, interacting

W

Organization Based Multiagent Architecture For Distributed Environments

154

among themselves and with the system in a concurrent way.

The first case study where the OBaMADE architecture was applied is

the oil spill problem. When an oil spill occurs, the natural risks are evident

and complicated decisions must be made in order to keep the risk from

becoming a great natural disaster. The ability to predict if an area is going to

be affected by the slicks generated after an oil spill will be highly useful in

making those decisions.

The second case study to which the OBaMADE architecture was

applied is the forest fire propagation prediction. This problem is similar to

the first one analyzed, the oil spill. This second case study served as a

validation procedure to check the correction of the architecture. The

OBaMADE architecture was successfully applied to this second case study,

generating a prediction consisting on the probability of finding fires in

certain geographic area.

In both cases, the application of the OBaMADE architecture has

generated quite optimistic results, predicting the future situation in a high

degree of success.

6.1. OIL SPILL PREDICTION
The ocean is a highly variable environment where accurate predictions

are difficult to achieve. The complexity of the modelling system is increased

if external elements are introduced into the analysis. In this case, oil spill data

is added to the inherent complexity of the ocean, generating a rough set of

elements. To model an environment similar to what is obtained after adding

oceanic variables, weather conditions and oil spills, it is necessary to measure

different parameters such as wind, current, pressure, etc. To predict the

presence or absence of oil spills in a certain area their previous positions

must be known. That knowledge is provided by the analysis of satellite

Chapter 6. Application: Two Case Studies

155

images, from which the position and size of the slicks are obtained.

6.1.1. PROBLEM DESCRIPTION

After an oil spill, it is necessary to determine if an area is going to be

contaminated or not. To determine the presence or absence of

contamination in an area, it is necessary to understand the behaviour of the

slicks generated by the spill.

First of all, the position, shape and size of the oil slicks must be

identified. The most precise way to acquire that information is by using

satellite images. SAR images are the most commonly used to automatically

detect this kind of slick [Solberg et al., 1999]. SAR images have been

interpreted using CBR systems both for monitoring [Li and Yeh, 2004] or

classification [Chen et al., 2007] purposes. The satellite images show

certain areas where there seems to be nothing, such as zones with no

waves, that are in fact oil slicks. Figure 20 shows a SAR image of a

portion of the western Galician coast, as along with some black areas

corresponding to the oil slicks. With SAR images it is possible to

distinguish between normal sea variability and slicks.

It is also important to make a distinction between oil slicks and look-

alikes. Oil slicks are quite similar to quiet sea areas, so it is not always easy

to discriminate between them. If there is not enough wind, the difference

between the calm sea and the surface of a slick is less evident, which may

lead to and more mistakes when trying to differentiate between an oil slick

and something that it is not a slick. This is a crucial aspect in this problem

that can also be automatically performed by a series of computational

tools.

Once the slicks are identified, it is also crucial to know the

atmospheric and maritime situation that is affecting the slick at the moment

that it is being analysed. Information collected from satellites is used to

Organization Based Multiagent Architecture For Distributed Environments

156

obtain the atmospheric data needed. That is how different variables such as

temperature, sea height and salinity are measured in order to obtain a

global model [Stammer et al., 2003] that explains how slicks evolve.

There have been different ways to analyze, evaluate and predict

situations after an oil spill. One approach is by simulation [Brovchenko et

al., 2002], where a model of a certain area is created, introducing specific

parameters (weather, currents and wind) and working with a forecasting

system. Using this methodology, it is easy to obtain a good solution for a

certain area [Elhakeem et al., 2007], but it is quite difficult to generalize in

order to solve the same problem in new zones. It is also possible to create a

model for a specific and problematic area[Periáñez and Pascual-Granged,

2008], which is a great help, albeit limited, because it is not possible to

Figure 20. SAR image of the north west of Spain, showing oil spills near
the coastal zones.

Chapter 6. Application: Two Case Studies

157

apply that same solution to different geographical areas. Current data must

be considered in order to create contingency plans that could help to

minimize environmental risks [Copeland and Thiam-Yew, 2006].

Another way to obtain a trajectory model is to replace the oil spill by

drifters [Price et al., 2003] comparing the trajectory followed by the

drifters with the already known oil slick trajectories. If the drifters follow a

trajectory similar to the one that followed the slicks, then a model can be

created and there will be a possibility of creating more models in different

areas. Another way of predicting oil slicks trajectories is to study previous

cases to obtain a trajectory model for a certain area with different weather

conditions [Vethamony et al., 2007]. Another trajectory model is created to

accomplish the NOAA standards [Beegle-Krause, 1999], where both the

‘best guess’ and the ‘minimum regret’ solutions are generated.

One step beyond the solutions previously explained are the systems

that combine a major set of elements in order to generate response models

to solve the oil spill problem.

A different view is given by complex systems [Douligeris et al., 1995]

that analyze large data bases (environmental, ecological, geographical and

engineering) using expert systems. This way, an implicit relationship

between problem and solution is obtained, but with no direct connection

between past examples and current decisions. Nevertheless arriving at

these kinds of solutions requires a great deal of data mining effort.

Monitoring the spills [Benmecheta and Lansari, 2007] also gives a good

quantity and quality of information, using the variety of techniques

available [Qingling and Ying, 2007].

Once the oil spill is produced there should be contingency models that

make a fast solution possible [Reed et al., 1999]. Expert systems have also

been used, whereby the stored information from past cases is used as a

repository where future applications can find structured information. Other

Organization Based Multiagent Architecture For Distributed Environments

158

complete models have been created, with the aim of integrating the

different variables affecting the spills [Belore, 2005], always trying to get

better benefits than the sum of the possible costs generated by all the

infrastructure needed to respond to a generated problematic situation.

The final objective of all these systems is to become decision support

systems that can help to take all the decisions that need to be taken in an

organized manner. To achieve such a great objective, different techniques

have been used, from fuzzy logic [Liu and Wirtz, 2007] to negotiation with

multi-agent systems [Liu and Wirtz, 2005].

6.1.1.1. DETECTION

The first step in the solution of this kind of problems is to detect

the oil spills in the ocean. There are different methods and techniques

that can be applied to detect the slicks in the ocean. Most of them use

information obtained from different satellites.

It is possible to detect oil spills by analyzing images generated

by radiometers [Cai et al., 2007], where the sea surface temperature is

analyzed to determine where the oil slicks are. There are different kind

of sensors used to remotely detect the presence of an oil spill, from

visible sensors to satellite remote sensing (also using infrared,

ultraviolet, radar, microwave and laser) [Jha et al., 2008].

However, the most common images used to determine the

presence of oil spills are SAR images SAR [Solberg et al., 2007],

where different techniques have been applied to distinguish the oil

slicks. The main objective is to create systems that may detect the

slicks in an automatic way [Keramitsoglou et al., 2006, Tello et al.,

2006]. Other investigations use supervised methods or partially

supervised methods to create systems that may detect oil spills

[Montali et al., 2006, Mercier and Girard-Ardhuin, 2006].

Chapter 6. Application: Two Case Studies

159

It is very important to discriminate between oil spills and look-

alikes, so as to not generate unnecessary alarms [Topouzelis et al.,

2007]. Finally, it is also possible to monitor the ocean and the

evolution of the oil spills by using satellite data [Cotton, 2007, Nelson

et al., 2006].

6.1.1.2. RESPONSE

Once the spill has been produced, it is crucial to generate quick

and accurate responses to minimize the environmental damages

created by the spill.

Data about the ocean currents must also be considered in order

to create contingency plans that could help to minimize environmental

risks [Copeland and Thiam-Yew, 2006]. Specific models can be

created for special geographical zones, where the oceanic behaviour is

quite unusual [Periáñez, 2007]. If an oil spill is produced, it is

important to analyze the response given to a specific situation [Tuler

et al., 2006] in order to improve possible future accidents by

discovering faults and avoiding mistakes.

Monitoring the dangerous geographical areas can be a great

help to create models that can evaluate the various possibilities in

which the situations can evolve. This monitoring process can be

carried out by using different techniques [Benmecheta and Lansari,

2007, Qingling and Ying, 2007].

If by chance there are no accidents to monitor or to use,

simulations can generate useful information that can be used for future

situations [Wirtz et al., 2007]. When performing a simulation, natural

conditions are reproduced and the accident is substituted by artificial

elements that attempt to model the real evolution of the slicks.

Organization Based Multiagent Architecture For Distributed Environments

160

6.1.1.3. FORECASTING

Perhaps the most difficult task when treating natural

information related with dynamic environments is to forecast their

evolution. The ocean is a complex environment and predicting the

evolution of oil spills (an artificial agent added to the water) is a

complicated task.

Hybrid models can forecast trajectories and evaluate possible

risks after an oil spill [Jordi et al., 2006]. Those models integrate

different techniques to try to reduce the damage caused by the spills.

Combining wind driven drifts and climactic variables can produce a

robust forecasting model [Carracedo et al., 2006]. Drifts simulate the

actual evolution of the oil slicks in the ocean, as their movements are

mostly driven by wind, at least in open ocean. To predict the evolution

in specially complicated areas, a specific model can be created for that

geographical area, to simplify the generation of results [Periáñez and

Pascual-Granged, 2008].

Finally, it is important to know what happens when an error is

produced in systems such as those that have been previously explained

[Jorda et al., 2007]. It is important to know the effects that an error

will introduce into both the system and the predictions in order to help

solve future problems in real situations.

6.1.2. DATA USED AND APPLICATION OF OBAMADE

To evaluate the correction of the application of the OBaMADE

architecture to the oil spill problem, a series of historical data taken from

the Prestige accident were used. The solution proposed in this study

generates the probability (between 0 and 1) for different geographical areas

of finding oil slicks after an oil spill. The proposed system was constructed

Chapter 6. Application: Two Case Studies

161

using historical data and checked by using the data acquired during the

Prestige oil spill between November 2002 and April 2003. Most of the data

used to develop the proposed system was acquired from the ECCO

(Estimating the Circulation and Climate of the Ocean) consortium

[Menemenlis et al., 2005]. The position and size of the slicks was

obtained by using SAR (Synthetic Aperture Radar) satellite images

[Palenzuela et al., 2006].

Table 1. Variables used in the oil spill problem.

VARIABLES DEFINITION UNIT

Longitude Geographical longitude Degree

Latitude Geographical latitude Degree

Date
Day, month and year of the
analysis

dd/mm/yyyy

Sea Height Height of the waves in open sea m

Bottom pressure
Atmospheric pressure in the
open sea

Newton/m2

Salinity Sea salinity
ppt (parts per
thousand)

Temperature Celsius temperature in the area ºC

Area of the slicks
Surface covered by the slicks
present in the analyzed area

Km2

Meridional Wind
Meridional direction of the
wind

Degree

Zonal Wind Zonal direction of the wind Degree

Wind Strenght Wind strength m/s

Meridional
Current

Meridional component of the
ocean current

m/s

Zonal Current
Zonal component of the ocean
current

m/s

Current Strenght Ocean current strength m/s

Organization Based Multiagent Architecture For Distributed Environments

162

Table 1 shows the parameters used to create the case base that will

provide the data used to solve new problems. Past solutions are stored in

the system, in the case base. In the system created, the cases contain

information about the oil slicks (size and number) as well as atmospheric

data (wind, current, salinity, temperature, ocean height and pressure). The

system generated combines the efficiency of the CBR systems with

artificial intelligence techniques in order to improve the results and to

better generalize from past data.

The system developed determines the probability of finding oil

slicks in a certain area. To generate the predictions, the system divides the

area to be analyzed into squares of approximately half a degree per side.

The system then determines the number of slicks present in a given square.

The squares where the slicks are located are coloured with different

gradation depending on the quantity of the squared area covered by oil

slicks.

The squared zone determines the area that is going to be analyzed

independently. The values of the different variables in a square area at a

certain moment as well as the value of the possibility of finding oil slicks

on the following day is called a case, which defines the problem and

proposes the solution.

The parameters used in this case studied will now be explained in

detail:

− Longitude and Latitude: it is crucial to know the position where an

oil slick is located. But it is also important to decide in which

direction the slicks are going to move. The position itself it is not

as critical in determining the final result, at least in open ocean,

where there do not are any specific models determined by the

variations of the coast.

Chapter 6. Application: Two Case Studies

163

− Date: this is an important element as it establishes the temporal

relationship between past situations (problems) and future

situations (solutions) for the same location.

− Sea Height, temperature bottom pressure and salinity: atmospheric

and weather parameters that may help the neural networks used in

the reuse phase to enrich the solution proposed.

− Area of the slicks: represents the proportion of the square area

affected by the oil slicks. It is an important parameter because it

represents the evolution of the slick in the area. If this parameter

increases its value, it indicates that new slicks are coming from

neighbouring areas. If its value decreases, then the slicks in this

area are moving to other neighbouring areas.

− Wind: an important element, as it is the most responsible for the

movement of the slicks. The wind is divided into three

components, meridional (the component of the wind parallel to one

meridian), zonal (the component of the wind parallel to one parallel

of latitude) and strength (representing how strong is the wind).

− Current: like the wind, it is also important for determining the

movement of the slicks. It is also divided into three components,

following the same structure of the wind components.

6.1.3. RESULTS

The data used to train the system were obtained from different

satellites. Temperature, salinity, bottom pressure, sea height, number and

area of the slicks, along with the location of the squared area and the date

were all used to create a case. All these data define the problem case and

also the solution case. The solution to a problem defined by an area and its

variables is the same area, but with the values of the variables changed

according to the prediction obtained from the CBR system.

Organization Based Multiagent Architecture For Distributed Environments

164

The WeVoS algorithm has proved to be more efficient than other

existing algorithms used to organize, classify and visualize information

[Baruque and Corchado, 2007]; it has obtained better results than simple

ensembles of SOMs, fusion Euclidean Distance, Voronoi Polygon

Similarity and Ordered Similarity. The main feature of this novel algorithm

is the reliable visual representation of the dataset, which is measured by the

distortion, rather than the classification accuracy or the reduction of the

quantization error; thus maintaining the topology preservation feature,

which is one of the most important for the original model that it is intended

to improve.

When the developed system was used with a subset of the data that

had not been previously used to train the system, it produced quite

optimistic results. The predicted situation was contrasted with the actual

future situation. The future situation was known, as past data was used to

train the system and also to test the correction of its results. In most of the

variables, the proposed solution had an accuracy rate of nearly 90%. When

using the system created with the OBaMADE architecture, the efficiency

of the results was better than what was obtained by using previous and

simpler applications; those improvements can be seen in the figures shown

in this section.

In figure 21, the system results are compared with those obtained

with two other systems. The first one, “RBF”, is a simple RBF network,

where data is introduced by training the network, and the results are

obtained by a generalized application of the information internally stored in

the network. The “ Basic CBR” system represents a CBR system applied to

forecast oceanographic methods [Corchado and Aiken, 2002]. This system

uses neural networks, specifically the Radial Basis Function network,

during the adaptation process of the recovered cases. The neural network

has a process for recovering elements from a network knowledge base,

from

netwo

As ca

system

archit

time

show

CBR

“OBa

Figur

phase

this n

progr

P
er

ce
nt

ag
e

of
go

od
pr

ed
ic

tio
ns

F

where the

ork. This CB

an be seen i

ms.

Figure 22

tecture with

required to

wn, the new sy

In figure

” where no

aMADE” wh

re 24 provid

e by a “RBF

network, and

ressive and a

60

65

70

75

80

85

90

P
er

ce
nt

ag
e

of
 g

oo
d

pr
ed

ic
tio

ns

Figure 21. Com
network (

neural netw

BR system h

in figure 21

compares t

the “Basic

recover the

ystem is bett

23 there is a

analysis of

here data is

es a compari

F” neural net

d the “GRBF

adapted to the

RBF

mparison of th
(RBF), the evo

Chapte

ork retrieves

has been app

the propose

the system d

CBR” prev

e most simil

ter than the b

a compariso

f the store i

structured a

ison between

twork, which

F”, where the

e data.

CBR

Techniques

Efficiency o

he efficiency o
olution of that

er 6. Applicat

s the param

plied to ocea

ed system is

developed u

iously expla

ar cases fro

basic one.

n between th

nformation

and analyzed

n the results

h represents

e growth of

OBaMA

of results

of the results o
t basic networ

tion: Two Cas

meters to cali

anographic p

better than

under the OB

ained, in term

om the case

he size of th

is done, and

d before bein

obtained in

the classic v

the neural ne

ADE

of a basic neu
rk (GRBF).

se Studies

165

ibrate the

problems.

the other

BaMADE

ms of the

base. As

he “Basic

d that of

ng stored.

the reuse

version of

etwork is

ral

Organiza

166

ation Based M

0

0,1

0,2

0,3

0,4

0,5

Ti
m

e
em

pl
oy

ed
 (i

n
se

co
nd

s)

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f s
to

re
d

ca
se

s

Figure 22.

Figure 23

Multiagent Archi

Basic C

Basic

. Comparison

3. Comparison

itecture For Di

CBR

Techniqu

Recovery

CBR

Techniq

Case bas

of the recove
OBaMA

n of the case b
OBaMA

istributed Envir

OBaMAD

ues

y time

OBaMAD

ques

e size

ry time of a ba
DE .

ase size of a b
ADE.

ronments

DE

DE

asic CBR and

basic CBR and

d that of

d that of

F

offers

eight

obser

coast

The

proba

behav

T

techn

along

result

numb

simpl

P
er

ce
nt

ag
e

of
 g

oo
d

pr
ed

ic
tio

ns

For each pro

s nine soluti

closest neig

rve the direc

tal areas that

proposed so

abilities in d

viour of the o

Table 2 show

niques are c

g with the inc

ts for each

ber of cases

le Radial Ba

75

77

79

81

83

85

87

Figure 24. C

oblem defin

ions: the sam

ghbours. This

tion of the s

t will be affe

olution does

different are

oil slicks.

ws a summa

ompared. Th

crease in the

of the tech

stored was

asis Function

RBF

Neur

Comparison of
network (RBF

Chapte

ned by an ar

me area, with

s type of pre

licks, which

ected by the

s not genera

eas, which

ary of the re

he table sho

e number of c

hniques bein

increased. T

n Network th

Techniques

ral network r

of the efficienc
F), a basic CB

er 6. Applicat

rea and its v

h its propos

ediction is us

h can be usef

slicks genera

ate a traject

is far more

esults obtaine

ows the evo

cases stored

ng analyzed

The “RBF”

at is trained

GRBF

results

cy of the result
BR and OBaM

tion: Two Cas

variables, th

ed variables

sed in order t

ful in determ

ated after an

tory, but a

e similar to

ed in which

olution of th

in the case b

improved w

column rep

with all the

ts of a basic n
MADE.

se Studies

167

he system

, and the

to clearly

mining the

n oil spill.

series of

the real

different

he results

base. The

when the

presents a

available

neural

Organization Based Multiagent Architecture For Distributed Environments

168

data. The network gives an output that is considered a solution to the

problem. The “Basic CBR” column represents a pure CBR system, with no

additional techniques included. It is the “Basic CBR” described before.

The “GRBF + CBR” column corresponds to the possibility of using a

GRBF network combined with a simple CBR system. The recovery from

the CBR is achieved by using the Manhattan distance to determine the

closest cases to the introduced problem. The RBF network works in the

reuse phase, adapting the selected cases to obtain the new solution. The

results of the “GRBF+CBR” column are normally better than those of the

“CBR”, mainly because useless data are eliminated prior to generating the

solution. Finally, the “OBaMADE” column shows the results obtained by

the proposed system, which are better still than the three previous solutions

analyzed.
Table 2. Percentage of good predictions obtained with different techniques – Oil
spill problem.

NUMBER OF

CASES
RBF BASIC CBR GRBF + CBR OBaMADE

100 45 % 39 % 42 % 43 %

500 48 % 43 % 46 % 46 %

1000 51 % 47 % 58 % 64 %

2000 56 % 55 % 65 % 72 %

3000 59 % 58 % 68 % 81 %

4000 60 % 63 % 69 % 84 %

5000 63 % 64 % 72 % 87 %

Table 3 shows a multiple comparison procedure (Mann-Whitney

test) used to determine which models are significantly different from the

others. The asterisk indicates that these pairs show statistically significant

differences at the 99.0% confidence level. Table 3 shows that the

Chapter 6. Application: Two Case Studies

169

OBaMADE system presents statistically significant differences compared

to the other models.
Table 3. Multiple comparison procedure among different techniques.

 RBF CBR GRBF + CBR OBaMADE

RBF

CBR

GRBF+CBR = =

OBaMADE

6.2. FIRE PROPAGATION PREDICTION
The second case study is presented here. The OBaMADE was also

applied to predict the evolution of forest fires, considering the areas that

could be eventually affected by the fires.

The structure of this subsection is similar to the previous one. First the

problem will be introduced, describing the main characteristics of this kind

of problem and also a brief revision of the different techniques and systems

used to solve this problem. Then, the data used to check the OBaMADE

architecture is described, and finally the application of the architecture and

the results obtained are shown.

6.2.1. PROBLEM DESCRIPTION

Forest fires are a very serious hazard that, every year, cause

significant damage around the world from an ecological, social,

economical and human point of view [Long, 2001]. These hazards are

particularly dangerous when meteorological conditions are extreme with

dry and hot seasons or strong wind. For example, fire is a recurrent factor

in Mediterranean areas.

Organization Based Multiagent Architecture For Distributed Environments

170

Fires represent a complex environment, where multiple parameters are

involved. In this sub-section, a series of applications and possible solutions

are explained. They are different approaches to the forest fire problems,

including all the main phases existing in the evolution of this kind of

problem.

The causes that produce forest fires are many, and the great majority

are related with one or another form of human factors (more than 90% of

forest fires are provoked by human action); in addition, fires in degraded

forests are worse than those that occur in more intact forests [Cochrane,

2002].

6.2.1.1. DETECTION

Detection is the first step, it is necessary to detect where a fire

has started, in order to act as quickly as possible. So, detection

systems and techniques are crucial to quickly determine where the fire

is and to fight against it. There have been multiple ways and systems

of detecting forest fires. Some of these will now be described.

Some techniques, previously applied to the monitoring of major

natural and environmental risks, have been transformed to forest fire

detection [Mazzeo et al., 2007]; in this case it is a multi-temporal

robust satellite technique (RST). This system uses AVHRR MIR

images, to detect the fires.

MODIS (Moderate Resolution Imaging Spectro-radiometer)

offers high quality images that have been used to which a detection

algorithm is applied [Giglio et al., 2003]. It allows the detection of

small fires and the reduction of false alarms. False alarm reduction can

also be done by infrared forest fire detection [Arrue et al., 2000]. In

this case artificial vision, neural networks and expert fuzzy rules are

combined to reduce the number of false alarms in that kind of image

Chapter 6. Application: Two Case Studies

171

analysis. Satellite images can also be used to detect forest fires

analyzing those images (NOAA/16-AVHRR) with a perceptron neural

network [Muñoz et al., 2007].

Black and white cameras can also be used to obtain an

autonomous fire detection [Den Breejen et al., 1998]. In this case,

images are compared, and if something new appears, it is analyzed to

check if it is a smoke plume. If it is, an alarm is sent and the process to

fight the fire begins.

It is also important to check the correction of simulations,

which is possible to do when there is a large enough quantity of data

available [Damoah et al., 2004]. In this case the simulation models

have been compared with a real smoke transport situation, where the

smoke plumes circumnavigated the globe in seventeen days.

Finally, animals were also used to carry specific sensors

(thermo and radiation sensors with GPS features) so that they can

serve as Mobile Biological Sensors to detect forest fires [Sahin, 2007].

6.2.1.2. PREDICTION

Forest fires can be estimated, as a kind of prediction, by using a

fuzzy system to create decision support systems for a forest [Iliadis,

2005]. Parallel computing has also been applied to the prediction

problem in this knowledge field. In this occasion an adaptive system

could help to generate predictions by changing at the same time that

the environment changes [Rodríguez et al., 2008].

The spread of the fire highly depends on whether parameters

[Martins Fernandes, 2001]. Simulating variations on the parameters, it

is possible to determine the evolution of the fire in different

conditions.

Organization Based Multiagent Architecture For Distributed Environments

172

One easy way to analyze the great amount of data generated in

such environmental related problems is to divide the data into smaller

pieces [Brillinger et al., 2003]. The results obtained with the smaller

elements may be generalized to obtain future predictions.

Graphical models and interfaces help to create realistic models

and simulations [Serón et al., 2005]. The existence of a graphical

representation makes it easier for experts to introduce their knowledge

into the systems.

Statistics are a great help in predicting problems. If more than

one solution is considered, the probabilities of being in the right path

increase. [Bianchini, 2006]. If no possibility is rejected, then the scope

is bigger, but also the potential amount of data available for further

analysis.

6.2.1.3. MODELS AND SYSTEMS

As stated in the description of the existing applications for

solving the oil spill problem, models and systems represent the most

evolved situations, offering the most complex solutions and involving

the highest number of elements.

Simple models can be generated by using automata

[Karafyllidis and Thanailakis, 1997], representing the spread of the

fires according to the states of the automata, and adapting their

evolution to external parameters. Mathematical models can also be

applied but with a more complicated introduction of the external

parameters (such as weather conditions) into the models created

[Montenegro et al., 1997]. Decision support systems are one of the

first high level approaches to this kind of problems [Wybo et al.,

1998]. They normally use different sources of information to generate

decisions based on the variety of data available.

Chapter 6. Application: Two Case Studies

173

6.2.2. DATA USED AND APPLICATION OF
OBAMADE

The data used to check the validity of the OBaMADE architecture

was applied to the forest fire problem. The data used is part of the

SPREAD project [Spread, 2004], in particular the Gestosa field

experiments that took place in 2002 and 2004 [Gestosa, 2005]. The

experiments of the Gestosa field began in 1998 and were completed in

December 2004. They aimed to collect experimental data to support the

development of new concepts and models, and to validate existing methods

or models in various fields of fire management. The study area is located

in Central Portugal (Gestosa, 40º 15`N, 8º 10’ O) in a hillside of the Serra

de Lousa, whose altitude is between 800 and 950m above sea level.

To safeguard the safety of the burns and to carry out different sorts of

tests and measurements, the terrain was divided into dedicated plots with

regular shapes and dimensions separated by firewalls to limit the spread of

the fire and to keep it inside the desired boundaries during each burn.

Those experimental burning plots were established in forest service lands,

in the Gestosa forestry perimeter. In general, these experimental plots are

located together in the same vegetation mosaic, which contains shrubs and

some isolated Pinus pinaster trees. Three arboreal species are dominant in

the area: Erica umbellate, Erica australis and Chamaespartium

tridentatum.

The application of OBaMADE to this new problem followed the same

process as the application to the oil spill problem. First, the areas analyzed

were divided into squares, where meteorological parameters were

measured and registered. All of the data obtained are used to create the

case base and train the neural networks. On this occasion the data used are

shown in table 4.

Organization Based Multiagent Architecture For Distributed Environments

174

Table 4. Variables used in the forest fire problem.

VARIABLE DEFINITION UNIT

Longitude Geographical longitude Degree

Latitude Geographical latitude Degree

Date Day, month and year of the analysis dd/mm/yyyy

Bottom pressure Atmospheric pressure in the open sea Newton/m2

Temperature Celsius temperature in the area ºC

Area of the fires
Surface covered by the fires present in
the analyzed area Km2

Meridional Wind Meridional component of the wind m/s

Zonal Wind Zonal component of the wind m/s

Wind Strenght Wind strength m/s

 As shown in table 4, most of the data used in this problem are the

same as in the oil spill problem. In fact there are some parameters that are

not present here, as the problem is located on land and not in open sea.

Nevertheless, the variability and complexity of the problem is high; the

wind conditions can change faster in forest lands than in open ocean and

the variability of the temperature is also higher, which implies a smaller

reaction time limit in order to adapt to the changes. The combination of

natural parameters and predictions needs make it more complicated to be

accurate.

6.2.3. RESULTS

The experiments and comparisons performed with the forest fire

problem are equivalent to those performed with the oil spill problem. A

summary of the results of those experiments will be presented, focusing on

the size of the case base and on the efficiency of results, the response time,

and the results of the neural network.

F

the O

befor

quite

and a

P
er

ce
nt

ag
e

of
go

od
pr

ed
ic

tio
ns

Figur
(RB

Figure 25 sh

OBaMADE a

re, when dev

better with

an effective c

50
55
60
65
70
75
80
85
90

P
er

ce
nt

ag
e

of
 g

oo
d

pr
ed

ic
tio

ns

0

2000

4000

6000

N
um

be
r o

f s
to

re
d

ca
se

s

Figure 26. C
O

re 25. Compa
BF), a basic C

hows the imp

architecture,

eloping the r

the new app

communicati

RBF

Eff

Basic

Comparison of
OBaMADE, ap

rison of the eff
CBR and OBa

Chapte

provement ob

compared w

results of the

plication; the

ion improves

CBR

Technique

ficiency of re

CBR

Techniq

Case base

f the case base
pplied to the fo

fficiency of the
aMADE, appli

er 6. Applicat

btained with

with the “Ba

e oil spill pro

e use of spec

s the overall r

OB

es

esults

OBaMAD

ques

e size

e size of a bas
orest fires cas

e results of a b
ied to the fores

tion: Two Cas

h the system

asic CBR” e

oblem. The re

cific neural

results of the

BaMADE

DE

sic CBR and th
e study.

basic neural n
st fires case st

se Studies

175

based on

explained

esults are

networks

e system.

hat of

network
tudy.

Organiza

176

F

organ

the n

gener

for th

is see

time

is mu

F

GRB

new

struc

resul

neura

the fi

ation Based M

Figure 26

nizing the ca

number of pa

rate a great r

he results sho

en. If the cas

and effort ne

uch quicker.

Finally, figu

BF network

adaptation

cture of the

lts. If both

al network

final result c

Figure 27. C
OB

0

0,2

0,4

0,6

0,8

Ti
m

e
em

pl
oy

ed
 (i

n
se

co
nd

s)

Multiagent Archi

shows the

ase base with

arameters to

reduction in t

own in figure

se base is sm

eeded to retri

ure 28 show

to the reus

of the RB

e case base

the data u

itself share

can be better

Comparison of
BaMADE, app

Basic CBR

itecture For Di

reduction o

h a specific n

 store and o

the size of th

e 27, where a

maller and be

ieve the mos

ws the imp

se phase ins

BF standard

e, which im

used to train

e a common

r than witho

f the recovery
plied to the fo

Techniques

Recovery ti

istributed Envir

of the case

neural netwo

organizing th

he case base,

a comparison

etter organiz

st similar cas

provement o

stead of the

is better s

mplies an im

n the neura

n inner philo

out avoiding

time of a basi
orest fires case

OBaMADE

me

ronments

e base prod

ork system. R

he stored inf

, which is als

n of the recov

ed, then the

ses from the c

obtained by

e classic RB

suited for th

mprovemen

al network

osophy of g

g that equiv

ic CBR and th
e study.

duced by

Reducing

formation

so crucial

very time

recovery

case base

y using a

BF. This

he inner

nt of the

and the

growing,

valence.

hat of

T

for co

the p

inform

cases

better

result

archit

is qu

OBaM

and t

OBaM

succe

comp

P
er

ce
nt

ag
e

of
go

od
pr

ed
ic

tio
ns

n

Table 5 show

omparison a

previous cas

mation store

s stored imp

r cases from

ts are better

tecture than

uite hopeful

MADE archi

to other kind

MADE sho

essfully able

plex environm

65

70

75

80

85

P
er

ce
nt

ag
e

of
 g

oo
d

pr
ed

ic
tio

ns

Figure 28. C
network (RBF

ws the comp

are the same

se study, th

d in the case

proves the r

the case bas

when apply

using other s

and create

itecture to o

d of problem

ows here,

to generate a

ments.

RBF

Neura

Comparison of
F), the evolutio

fo

Chapte

parative resul

as in the oil

he results ar

e base is high

results, havin

se to use them

ying a system

simpler techn

s quite opti

other case st

ms related w

again, its

accurate pred

Techniques

al network r

f the efficiency
on of that basi
orest fires cas

er 6. Applicat

lts obtained.

l spill case s

re better w

her. The incre

ng the poss

m to generate

m created u

niques. That

imistic spec

tudies, to oth

with the distr

prediction

dictions to a

GRBF

results

cy of the result
ic network (GR
se study.

tion: Two Cas

The techniq

study. As oc

when the qu

ease in the n

sibility of re

e the predicti

under the OB

t quality of th

tations to a

her knowled

ributed envir

capabilities

real-life prob

ts of a basic n
RBF), applied

se Studies

177

ques used

ccurred in

uantity of

number of

ecovering

ions. The

BaMADE

he results

apply the

dge fields

ronments.

s, being

blem in a

eural
d to the

Organization Based Multiagent Architecture For Distributed Environments

178

Table 5. Percentage of good predictions obtained with different techniques –
Forest fires problem.

NUMBER OF

CASES
RBF BASIC CBR GRBF + CBR OBaMADE

100 43% 37% 43% 45%

500 46% 42% 48% 50%

1000 52% 44% 56% 66%

2000 57% 53% 66% 75%

3000 59% 56% 69% 82%

4000 62% 60% 71% 86%

5000 64% 62% 72% 90%

6.3. SUMMARY AND CONCLUSIONS
It has been demonstrated that the presented architecture represents an

evolution of previous existing techniques. It could be applied to different kinds

of problems, offering great adaptation and generalization capabilities. It is a

flexible architecture, capable of generating solutions to different kinds of

problems in a great variety of situations.

The two case studies presented in this chapter prove the theoretical

improvements predicted in the previous evaluation. The evolution of the

situation of the oil spills in some geographical areas can be predicted by

reusing historical data stored in the inner case base. Past information is used to

solve new problems. Previous evolution data related with the oil spills is

reused to generate new solutions. Different neural networks are used both to

organize the case base and to generate the solution. The organization of the

case base through a neural network improves the recovery time and makes it

possible to employ a smaller number of cases that are more useful. The use of

neural networks in the reuse phase generates great results by adapting the

retrieved

Fig

35%

55%

75%

95%

35

55

75%

95%

d cases to gen

gure 29. Comp

%

%

%

100 5

Ac

RBF

5%

%

%

%

100

Case b

Ac

RBF

nerate the ne

mparison of the

500 1000

Case base s

ccurate pr

F Basic CB

500 1000

ase size

ccurate pr
F

F Basic CB

Chapte

ew solution t

e results obtai
studies.

2000 300
size

edictions
Oil spills

BR RBF + C

2000 30

edictions
Forest fires

BR RBF + C

er 6. Applicat

o the new pr

ined predictin

00 4000

percentag

CBR OBaM

000 4000

percentag
s

CBR OBaM

tion: Two Cas

roblem.

g in the two c

5000

ge

MADE

5000

ge

MADE

se Studies

179

case

Organization Based Multiagent Architecture For Distributed Environments

180

The same process is carried out with the forest fire case study.

Historical data is stored, changing the parameters and adapting the architecture

to the new problem. The system is requested to make predictions in which the

cases are also structured in the case base, and retrieved to generate the proper

solutions. The positive results obtained with the forest fire problem confirm

the correction of the results obtained with the oil spills.

Figure 29 graphically shows the evolution of the results in the two

case studies analyzed in this chapter. It can be clearly seen how the accuracy

of the results improved while the case base size grow. At the same time, it is

important to pay attention to the results obtained applying the OBaMADE

architecture, that are always better than with the rest of the techniques

analyzed for comparison.

In the next chapter, the model proposed will be analyzed from a more

abstract point of view. Some conclusions to the work presented in this

document will also be presented, while evaluating the process of the creation

of this architecture. Some future possibilities of the OBaMADE architecture

will also be presented, including new possible investigations that can be

performed by applying this architecture without requiring a great amount of

changes.

”The best way to predict the future is to invent it.” Alan Kay

181

7. ARCHITECTURE

EVALUATION AND

CONCLUSIONS
The OBaMADE arch i t e c ture pre s en t ed in th i s do cument i s
eva luat ed her e , and the mode l r epre s ent ed by th i s
ar ch i t e c ture i s ana lyzed , compar ing i t t o o ther pos s ib l e
approaches to the d i s t r ibut ed env i ronments prob l em. Aft e r
cons ider ing the s tudy in i t s en t i r e t y , some conc lus ions and
fu ture r e s ear ch are expla ined , ind i ca t ing the expec t ed
evo lu t ion o f the ar ch i t e c ture , and i t s pos s ib l e fu ture
appl i ca t ions .

rior to this chapter, the OBaMADE architecture was presented

and explained. A complete state of the art of the technologies

and methodologies used in this architecture were performed,

both in previous chapters of this document and in the appendices. The results

obtained applying the OBaMADE architecture were also shown in the

previous chapter, analyzing the results obtained after applying the OBaMADE

P

Organization Based Multiagent Architecture For Distributed Environments

182

architecture to two case studies.

 The architecture proposed in this document achieves the main

objectives that were initially proposed and improves previous approaches to

solve this kind of problems. OBaMADE also uses case-based reasoning as the

methodology for generating solutions to the different problems to which it

may be applied. The CBR methodology makes great use of the information

available. Past information is used to solve new problems, as with the two case

studies presented in this chapter. Past solutions to past problems are used and

adapted to solve new problems.

The OBaMADE architecture integrates the advantages of the

multiagent systems, allowing it to solve similar problems. Structuring the

agents of the architecture into organizations adds organizational capabilities to

the architecture and makes it easier for the different parts of OBaMADE to

communicate. Organizations allow the architecture to divide the different

groups of agents according to their respective functionality and objectives.

Being divided into groups (organizations) with the same common objectives,

the communication between the organizations is easier, as only one agent in

each organization is in charge of the communications tasks, reducing the

complexity of the remaining agents.

This chapter will analyze and compare the OBaMADE architecture

with other techniques usually employed to solve distributed environment

problems. The advantages and disadvantages of the different techniques

compared are also explained. It will also present the final conclusions of the

investigation, showing the achievement of the initial objectives explained in

the introduction of this document. Finally, some future lines of work and

possible evolutions of the architecture are presented, introducing some

possible new applications of the architecture to new knowledge fields, based

on the main characteristics of the architecture.

Chapter 7. Architecture Evaluation and Conclusions

183

7.1. THEORETICAL MODEL EVALUATION
OBaMADE represents an evolution of the existing models and

architectures that have been solving the problems generated in distributed

environments in recent years. Nevertheless, there are some important

differences between the OBaMADE architecture and other models of

distributed architectures. For the development of OBaMADE a balance

between decentralization and intelligence was achieved. Decentralization is

defined as the result of distributing the functionalities. A reuse feature can be

obtained with this distribution and the independence that exists in the

programming languages.

Intelligence is defined here as the result of the reasoning capabilities

and the ability to adapt the behaviour in an autonomous way, and the ability to

perceive stimulus from the context and react to them in a personalized way.

While OBaMADE tries to achieve a balance between intelligence and

decentralization, alternatives like SOA or Web Services present important

limitations regarding the level of negotiation between services and context

sensibility. CORBA is not sufficiently independent from programming

languages, and the developed applications are not always compatible.

Finally, although multiagent platforms can provide quite useful tools

to obtain intelligent systems, they do not facilitate the compatibility between

platforms, nor do they offer the needed tools to obtain a more efficient

decentralization of functionalities. Figure 30 graphically shows the differences

between the models explained here, showing the benefits of the OBaMADE

architecture, compared with the other techniques explained here. The balance

offered by OBaMADE between intelligence and decentralization is what

makes it effective and able to be applied to different scenarios.

Organization Based Multiagent Architecture For Distributed Environments

184

CORBA has some well known problems, as the complexity of being,

at the same time, language-independent, platform-independent, suitable for

distributed-systems development and maintaining backward compatibility.

There are some interface problems between versions. Error handling is not

extensible. The synchronization between client and server is crucial and not

always well solved. Most of these problems are solved by open multi-agent

based systems, such as organization based systems.

Optimal utilization of SOA requires additional development and

design attempts as well as infrastructure which translate into costs escalation.

When it comes to applications, Web Services and Service Oriented

Architecture is not recommended for applications in which one way

asynchronous communication is necessary, and where loose coupling is

Figure 30. Graphical comparison between OBaMADE and other
architectural models.

Chapter 7. Architecture Evaluation and Conclusions

185

considered undesirable and unnecessary. It is also not a good solution for

homogenous application environments, like, for instance, an environment

wherein all applications were built utilizing J2EE components. In these

instances, it is not a good idea to introduce XML over HTTP for inter-

component communications rather than utilizing Java remote method

invocation. And, finally, for applications that need GUI based functionality it

is not a proper solution. Like, for instance, a map manipulation application

that has lots of geographical data manipulation. Such an application is not

suited for heavy data exchange that is service based.

7.2. MODEL ANALYSIS
As explained in the previous chapter, the OBaMADE architecture

improves both the theoretical and practical results of the existing architectures

dedicated to distributed environments. Now it is time to compare the

architecture with previous versions of the systems, analyzing the advantages

acquired by transforming applications from local to distributed, and by

integrating the organizations of agents and their services.

The performance of the OBaMADE architecture was compared with a

previous local version of the system, with the same artificial intelligence

techniques implemented, but without the use of agents and services. The tests

performed consisted of the execution of the same series of predictions in both

systems. There were 50 different problems to be solved. The executions were

divided by introducing 1, 5, 10, 20, 30 or 50 requests at the same time. These

executions were done 50 times and in the OBaMADE version, there were 5

different agents for each the type of problem.

Figure 31 shows the average time needed by the two systems to

execute a series of requests. OBaMADE was able to improve the results

obtained with the local version of the system. For small workloads in a local

system, having no agents and communication involved can even be a little

Organiza

186

faster tha

workload

quicker.

O

with dist

robustne

during th

provides

I

or even

occur, an

results. N

2

Ti
m

e
ne

ed
ed

 (s
ec

on
ds

)

5

1

Figur

ation Based M

an a distribu

ds, the dist

One of the m

tributed envi

ess of the sys

he simulation

s a bigger rec

It is importan

eliminate th

nd it is then

Nevertheless

0
20
40
60
80

100
120
140
160
180
200

1

Prediction Serv

Prediction Serv

re 31. Time ne

Multiagent Archi

uted system w

tributed app

main contribu

ironments is

stem. Figure

ns. OBaMAD

covery capac

nt to indicate

he crashes fro

important to

s, the results

5

Time n

vices

vice

eeded to solve
services

itecture For Di

with agents i

proach show

utions of OB

the improve

e 32 shows t

DE generates

city from cras

e that even a

om the OBa

o continue w

obtained up

10
20

needed to so

e the requests b
s simultaneou

istributed Envir

involved. Bu

ws its capab

BaMADE to

ement of the

the number o

s a smaller n

shes.

fter the great

aMADE arch

working to ob

to now are q

30

Number of req

olve the req

by just one se
sly.

ronments

ut when facin

bilities and

o the problem

e performanc

of agents tha

number of cra

t work done

hitecture, the

btain the best

quite hopeful

50

quests

quests

rvice or by fiv

ng higher

is much

ms related

ce and the

at crashed

ashes and

to reduce

ey do still

t possible

l.

ve

A

necessar

6 presen

table, the

elements

architect

T

results s

before as

where O

N
um

be
r o

f c
ra

se
s

Fig

Any new d

ry to analyze

nts the main

e elements th

s that may

ture better.

The OBaMA

show that it

s case studie

OBaMADE ca

0
1
2
3
4
5
6
7
8
9

1

5 Prediction S

5 Prediction S

1 Prediction S

1 Prediction S

gure 32. Numb

Cha

development

e them and im

n advantages

hat make OB

be improv

ADE architec

is possible

es. Those cas

an be applied

5

Numbe

Services (Agent

Services (Servic

Service (Agents

Service (Service

ber of crashes
serv

apter 7. Arch

faces adva

mprove the w

s and disadv

BaMADE po

ved in futu

cture is still

to apply it

e studies rep

d.

10
20

er of crashes

ts)

ces)

s)

es)

s produced us
vices and the a

hitecture Evalu

antages and

week aspects

vantages of

owerful are a

ure develop

being develo

to complex

present only o

0
30

Number of

s produced

sing one and fi
agents.

uation and Co

disadvantag

 of any syste

OBaMADE

analyzed, and

ments to m

oped, but pr

systems, as

one of the m

50
f requests

five instances o

onclusions

187

ges. It is

em. Table

E. In that

d also the

make the

reliminary

the used

main fields

of the

Organization Based Multiagent Architecture For Distributed Environments

188

Table 6. Advantages and disadvantages of the OBaMADE architecture.

ADVANTAGES DISADVANTAGES

 Optimization of the use and
distribution of the resources.

 Programming languages
independence.

 Services and applications support
the computational effort.

 Facilitates the reuse of the
functionalities.

 It has been successfully applied to
two different case studies.

 Defines a set of technologies and
methodologies that can be used in
future similar developments.

 It is still under development
and it is not fully debugged or
formalized.

 It depends on agents
platforms.

 It has only been applied to
two different case studies. It
is necessary to implement to
different scenarios.

 There have not been applied
standardized evaluations.

7.3. CONCLUSIONS
In this section the achievement of the objectives defined for this

investigation is described, and it evaluates the initial hypothesis of the study:

“develop an architecture to solve problems related with distributed

environments. The architecture should face those problems offering different

interfaces to different users with different devices in a transparent way. The

architecture has to be based in organizations of agents. The agents that make

those organizations must be designed as dynamic agents. The agents being

part of the inner organizations, which are in charge of the generation of the

solutions, should incorporate reasoning mechanisms based on the Case-Based

Reasoning methodology”. Within the framework defined by this research

project the ability of the OBaMADE architecture to solve different problems

in different scenarios has been tested, with a high scalability and reuse of

resources. Thus, the architecture has demonstrated to be able to extract and

model the functionalities of the agents as individual services, creating lighter

agents.

approach

The OBa

objective

O

requirem

Dynamic

architect

to obtain

T

with som

from th

organiza

and to m

O

architect

have a g

represen

figures a

coordina

Because it

h given to th

aMADE arch

es with regar

OBaMADE

ments of syst

c scenarios

ture. Its com

n a common r

The core of

me artificial

he informati

ations that co

make the prop

One of the

ture was its

graphical re

nt OBaMADE

all through

ation of the

Cha

is more ad

he architectur

hitecture, pre

rds to the fiel

provides a r

tems designe

with a great

mputing elem

result.

the system i

l intelligence

ion. The ag

ommunicate

per decisions

e lasts addit

logo, which

presentation

E is a dynam

the docume

e elements

Figur

apter 7. Arch

daptable on

re makes it m

esented in th

lds related w

obust framew

ed to solve d

t user intera

ments work in

is formed by

e techniques

gents within

with each ot

s.

tions in the

is shown in

n of the arch

mic one, wit

ent, with a

that are pa

re 33. OBaMA

hitecture Evalu

execution

more flexibl

is paper, ach

with this inve

work flexible

distributed en

action are pr

n a distribute

y a CBR set

s designed t

n the archi

ther to obtain

e evolution

n figure 33. I

hitecture, an

th the colour

graphical de

art of OBa

ADE logo.

uation and Co

time, the d

e and failure

hieves some i

stigation.

e enough to

nvironment p

roperly solve

ed way, coll

of services i

to extract kn

itecture are

n a common

of the OB

It is also imp

nd the one c

rs chosen to

esign inspire

aMADE and

onclusions

189

distributed

e tolerant.

important

cover the

problems.

ed by the

laborating

integrated

nowledge

part of

objective

BaMADE

portant to

chosen to

show the

ed in the

d with a

Organization Based Multiagent Architecture For Distributed Environments

190

typography adapted to that inspiration.

Lighter agents make it possible to expand the possibilities of

development of applications based on the OBaMADE architecture to devices

that do not necessarily have high computing power (PDAs, mobile phones,

independent sensors...).

The functionalities of the systems based on OBaMADE are

implemented as individual services or applications. This is how they can be

used in different applications, making small modifications to adapt them to the

different situations they could face. The functionalities can also be replicated

to obtain a better performance in high demanding scenarios.

The distributed point of view of OBaMADE allows the system to

initialize or stop services in an independent way, without affecting the rest of

the components of the system. The presented architecture represents an open

proposal that can be easily applied to different kind of problems and that can

be adapted to cover different needs and knowledge fields. The OBaMADE

architecture has successfully been applied to two different case studies,

demonstrating the theoretical advantages previously analyzed.

7.4. FUTURE WORK
The investigation presented in this PhD. thesis represents an

innovation in the distributed environment field and generates a significant

number of future possibilities where this new architecture can be applied and

improved. Next, some of the future lines of work are explained.

As outlined before, some crashes were produced in the system when a

high number of requests are made at the same time. It is important to reduce

the number of crashes, or even to completely eliminate them, to avoid user

frustration and bad results in a real life scenario.

The two case studies presented in this document are the current

applications made with this architecture. Its validity has been demonstrated,

Chapter 7. Architecture Evaluation and Conclusions

191

but it is necessary to apply the prediction model to other knowledge fields to

completely check the appropriateness of the architecture in terms of

generalization and flexibility.

OBaMADE can be applied to solve different kinds of problems.

Currently it has helped to solve prediction generation problems. But, as

explained in previous chapters, the architecture proposed in this document can

be applied to solve other kinds of problems, such as classification, clustering,

planning, etc. It is important to create new applications where the architecture

should be slightly modified to be adapted to the new conditions and problems

to be solved.

The artificial intelligence techniques applied in the OBaMADE

architecture have proved to be useful to solve the proposed problems. But it

will be interesting to have new techniques at our disposal (which are

constantly appearing) or even more than one possibility for the different steps

carried out. Increasing the number of possible solutions will enrich the final

solution and the evolution of the architecture.

It is necessary to perform more exhaustive tests to evaluate every

single detail of the proposed architecture in terms of time, simplicity and

quality of analysis and design. The quality of the results generated by the

systems created within the structure of this architecture must also be validated.

” No man is wise enough by himself.” Titus Maccius Plautus

193

REFERENCES
Aamodt, A. (1991) A Knowledge-Intensive, Integrated Approach to Problem

Solving and Sustained Learning. Knowledge Engineering and Image
Processing Group. University of Trondheim.

Aamodt, A. & Plaza, E. (1994) Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. AI
Communications, 7, 39-59.

Abdallah, S. & Lesser, V. (2004) Organization-based cooperative coalition
formation. Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Techonology, IAT.

Abramson, D., Sosic, R., Giddy, J. & Hall, B. (1995) Nimrod: a tool for
performing parametrised simulations using distributed workstations.
Proc. 4th IEEE Symp. on High Performance Distributed Computing.

Aha, D. W., Molineaux, M. & Ponsen, M. (2005) Learning to Win: Case-
Based Plan Selection in a Real-Time Strategy Game. Case-Based
Reasoning Research and Development.

Ahuja, M. K. & Carley, K. M. (1999) Network structure in virtual
organizations. Organization Science, 741-757.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Kesselman, C.,
Meder, S., Nefedova, V., Quesnel, D., Tuecke, S. & Foster, I. (2001)
Secure, efficient data transport and replica management for high-
performance data-intensive computing. Mass Storage Conference.

Allende, I. (2003) El Reino del Dragón de Oro, Barcelona, Areté.
Allende, I. (2005) La ciudad de las bestias, Barcelona, Areté.

Organization Based Multiagent Architecture For Distributed Environments

194

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F.,
Liu, K., Roller, D., Smith, D. & Thatte, S. (2003) Business process
execution language for web services, version 1.1. Standards proposal
by BEA Systems, International Business Machines Corporation, and
Microsoft Corporation.

Arditi, D. & Tokdemir, O. B. (1999) Comparison of case-based reasoning and
artificial neural networks. Journal of computing in civil engineering,
13, 162-169.

Argente, E., Julian, V. & Botti, V. (2006) Multi-agent system development
based on organizations. Electronic Notes in Theoretical Computer
Science, 150, 55-71.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., Mcinnes, L.,
Parker, S. & Smolinski, B. (1999) Toward a common component
architecture for high-performance scientific computing. Proc. 8th
IEEE Symp. on High Performance Distributed Computing.

Arrue, B. C., Ollero, A. & Matinez De Dios, J. R. (2000) An intelligent
system for false alarm reduction in infrared forest-fire detection.
Intelligent Systems and Their Applications, IEEE 15, 64-73.

Artikis, A. (2003) Executable specification of open norm-governed
computational systems. Department of Electrical & Electronic
Engineering. London, Imperial College

Artikis, A., Kamara, L. & Pitt, J. (2001) Towards an open agent society model
and animation. Proc. of the 2nd. Agent-Based Simulation Workshop.

Auel, J. M. (2005) El clan del oso cavernario, Madrid, El País.
Austin, J. L. (1962) How to Do Things with Words Harvard University.
Avery, P. & Foster, I. (2000) The griphyn project: Towards petascale virtual

data grids. The 2000 NSF Information and Technology Research
Program.

Avery, P., Foster, I., Gardner, R., Newman, H. & Szalay, A. (2001) An
International Virtual-Data Grid Laboratory for Data Intensive
Science. Technical Report GriPhyN-2001-2.

Axelrod, R. (1986) An evolutionary approach to norms. The American
Political Science Review, 1095-1111.

Ayd, N, U., Murat, S., Olcay Taner, Y., Ld & Ethem, A. (2009) Incremental
construction of classifier and discriminant ensembles. Information
Sciences, 179, 1298-1318.

Baker, F. (1995) Requirements for IP version 4 routers. RFC 1812, June 1995.
Barbery, M. (2007) La elegancia del erizo, Barcelona, Seix Barral.

References

195

Baru, C., Moore, R., Rajasekar, A. & Wan, M. (1998) The SDSC storage
resource broker. Proc. CASCON'98 Conference. IBM Press.

Baruque, B. & Corchado, E. (2007) Fusion of Visualization Induced SOM.
Innovations in Hybrid Intelligent Systems, 151.

Baruque, B., Corchado, E., Mata, A. & Corchado, J. M. (2010) A forecasting
solution to the oil spill problem based on a hybrid intelligent system.
Information Sciences, 180, 2029-2043.

Baruque, B., Corchado, E., Rovira, J. & Gonzalez, J. (2008) Application of
Topology Preserving Ensembles for Sensory Assessment in the Food
Industry. Intelligent Data Engineering and Automated Learning
(IDEAL 2008).

Baruque, B., Corchado, E. & Yin, H. (2007) ViSOM Ensembles for
Visualization and Classification. International Work Conference on
Artificial Neural Networks (IWANN’07), San Sebastián, Spain,
Springer, Heidelberg.

Baruque, B., Corchado, E. S., Mata, A. & Corchado, J. M. (2009) Ensemble
Methods for Boosting Visualization Models. 10th International Work-
Conference on Artificial Neural Networks (IWANN2009).

Bayly, J. (2005) Y de repente, un ángel, Barcelona, Planeta.
Beavers, G. & Hexmoor, H. (2001) Teams of agents. Proceedings of the IEEE

Systems, Man, and Cybernetics Conference.
Beegle-Krause, C. J. (1999) GNOME: NOAA's next-generation spill

trajectory model. OCEANS'99 MTS/IEEE. Riding the Crest into the
21st Century, 3, 1262-1266.

Beiriger, J. I., Bivens, H. P., Humphreys, S. L., Johnson, W. R. & Rhea, R. E.
(2000) Constructing the ASCI computational grid. Proc. 9th IEEE
Symposium on High Performance Distributed Computing.

Belore, R. (2005) The SL Ross oil spill fate and behavior model: SLROSM.
Spill Science and Technology Bulletin.

Benger, W., Foster, I., Novotny, J., Seidel, E., Shalf, J., Smith, W. & Walker,
P. (1999) Numerical relativity in a distributed environment. Proc. 9th
SIAM Conference on Parallel Processing for Scientific Computing.

Benmecheta, A. & Lansari, A. (2007) Monitoring of Oil Pollution by GIS and
Remote-Sensing case Of West Algeria Harbours. Signal Processing
and Information Technology, 2007 IEEE International Symposium on,
874-879.

Berman, F. (1999) High-performance schedulers. The Grid: Blueprint for a
New Computing Infrastructure, 279–309.

Organization Based Multiagent Architecture For Distributed Environments

196

Berman, F. D., Wolski, R., Figueira, S., Schopf, J. & Shao, G. (1996)
Application-level scheduling on distributed heterogeneous networks.
Conference on High Performance Networking and Computing.
Pittsburgh, Pennsylvania, IEEE Computer Society Washington, DC,
USA.

Beynon, M., Ferreira, R., Kurc, T., Sussman, A. & Saltz, J. (2000) DataCutter:
Middleware for filtering very large scientific datasets on archival
storage systems. Proc. 8th Goddard Conference on Mass Storage
Systems and Technologies/17th IEEE Symposium on Mass Storage
Systems.

Bianchini, G. (2006) Wildland Fire Prediction based on Statistical Analysis of
Multiple Solutions. Computer Architecture and Operating Systems
Department. Barcelona, Autonomous University of Barcelona.

Biron, P. V. & Malhotra, A. (2001) XML schema part 2: Datatypes. W3C
recommendation, 2, 2-20010502.

Birrell, A. D. & Nelson, B. J. (1984) Implementing remote procedure calls.
ACM Transactions on Computer Systems (TOCS), 2, 39-59.

Boggino, A. S. G. (2005) ANEMONA: una metodología multi-agente para
sistemas holónicos de fabricación. PhD Thesis. Universidad
Politécnica de Valencia.

Boissier, O., Hubner, J. F. & Sichman, J. S. (2007) Organization Oriented
Programming, from closed to open organizations. Engineering
Societies in the Agents World VI, Sixth International Workshop,
ESAW06. Dublin, Ireland, Springer.

Bond, A. H. & Gasser, L. (1988) An analysis of problems and research in
DAI. in ALAN H. BOND AND LES GASSER (Ed.) Readings in
Distributed Artificial Intelligence.

Bongaerts, L. (1998) Integration of scheduling and control in holonic
manufacturing systems. PhD Thesis. Belgium, Katholieke Universiteit
Leuven.

Bratman, M. E. (1987) Intentions, plans and practical reason, Cambridge,
MA, USA, Harvard University Press.

Bratman, M. E., Israel, D. J. & Pollack, M. E. (1988) Plans and resource-
bounded practical reasoning. Computational intelligence, 4, 349-355.

Breban, S. & Vassileva, J. (2001) Long-term coalitions for the electronic
marketplace. Proceedings of Canadian AI Workshop on Novel E-
Commerce Applications of Agents.

Breiman, L. (1996) Bagging Predictions. Machine Learning, 24, 123-140.

References

197

Brillinger, D. R., Preisler, H. K. & Benoit, J. W. (2003) Risk assessment: a
forest fire example. Statistics and Science: A Festschrift for Terry
Speed, 40, 177–196.

Broersen, J., Dastani, M., Hulstijn, J., Huang, Z. & Van Der Torre, L. (2001)
The BOID architecture: conflicts between beliefs, obligations,
intentions and desires. Proceedings of the 5th International
Conference on Autonomous Agents. ACM New York, NY, USA.

Brooks, C. H. & Durfee, E. H. (2002) Congregating and market formation.
Proceedings of the first international joint conference on Autonomous
agents and multiagent systems. ACM New York, NY, USA.

Brooks, C. H. & Durfee, E. H. (2003) Congregation formation in multiagent
systems. Autonomous agents and multi-agent systems, 7, 145-170.

Brooks, C. H., Durfee, E. H. & Armstrong, A. (2000) An introduction to
congregating in multi-agent systems. Proceedings of the Fourth
International Conference on Multiagent Systems.

Brooks, R. (1986) A robust layered control system for a mobile robot. IEEE
journal of robotics and automation, 2, 14-23.

Brovchenko, I., Kuschan, A., Maderich, V. & Zheleznyak, M. (2002) The
modeling system for simulation of the oil spills in the Black Sea. 3rd
EuroGOOS Conference: Building the European capacity in
operational oceanography., 192.

Bussmann, S. & Schild, K. (2000) Self-organizing manufacturing control: an
industrial application ofagent technology. Proceedings of the 4th
International Con- ference on Multi-Agent Systems (ICMAS 2000).

Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S., Volmer, J. &
Kesselman, C. (2000) A national-scale authentication infrastructure.
Computer, 33, 60-66.

Buyya, R. (2002) High Performance Cluster Computing: Architectures and
Systems, Volume 1. Beijing: Publishing House of People's Post and
Telecommunication.

Cai, G., Wu, J., Xue, Y., Wan, W. & Huang, X. (2007) Oil spill detection
from thermal anomaly using ASTER data in Yinggehai of Hainan,
China. Geoscience and Remote Sensing Symposium, 2007. IGARSS
2007. IEEE International, 898-900.

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P.,
Kearney, P., Stark, J. & Evans, R. (2002) Agent Oriented Analysis
using MESSAGE/UML. Lecture Notes in Computer Science, 2222,
119-135.

Organization Based Multiagent Architecture For Distributed Environments

198

Cardoso, H. L. & Oliveira, E. (2004) Virtual enterprise normative framework
within electronic institutions. Proceedings of the 5th Int. Workshop on
Engineering Societies in the Agents World (ESAW 04). Springer.

Carley, K. M. (1997) Organizational adaptation. Annals of Operations
Research, 75, 25-47.

Carley, K. M. & Gasser, L. (1999) Computational organization theory.
Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA.

Carracedo, P., Torres-López, S., Barreiro, M., Montero, P., Balseiro, C. F.,
Penabad, E., Leitao, P. C. & Pérez-Munuzuri, V. (2006) Improvement
of pollutant drift forecast system applied to the Prestige oil spills in
Galicia Coast (NW of Spain): Development of an operational system.
Marine Pollution Bulletin, 53, 350-360.

Carrascosa, C., Bajo, J., Julian, V., Corchado, J. M. & Botti, V. (2007) Hybrid
multi-agent architecture as a real-time problem-solving model. Expert
Systems With Applications, 34, 2-17.

Carriero, N. & Gelernter, D. (1992) Coordination languages and their
significance. Communications of the ACM, 35, 97-107.

Casanova, H. & Dongarra, J. (1997) NetSolve: A network-enabled server for
solving computational science problems. International Journal of
High Performance Computing Applications, 11, 212.

Casanova, H., Dongarra, J., Johnson, C. & Miller, M. (1998) Application-
specific tools. in FOSTER, I. & KESSELMAN, C. (Eds.) The Grid:
Blueprint for a New Computing Infrastructure. Morgan Kaufmann.

Casanova, H., Obertelli, G., Berman, F. & Wolski, R. (2000) The AppLeS
Parameter Sweep Template: User-level middleware for the Grid.
Scientific Programming, 8, 111-126.

Castelfranchi, C. (1990) Social power: A point missed in multi-agent, DAI
and HCI. Decentralized AI, 49–62.

Castelfranchi, C. (1998) Modeling social action for AI agents. Artificial
Intelligence, 103, 157-182.

Castelfranchi, C. (2000) Engineering social order. Lecture Notes in Artificial
Intelligence, 1972, 1-18.

Cerami, E. (2002) Web Services Essentials Distributed Applications with
XML-RPC, SOAP, UDDI & WSDL, O'Reilly & Associates, Inc.

Cervenka, R. & Trencansky, I. (2007) The Agent Modeling Language-AML: A
Comprehensive Approach to Modeling Multi-Agent Systems,
Birkhauser.

References

199

Cochrane, M. A. (2002) Se extienden como un reguero de pólvora: Incendios
en bosques tropicales en América Latina y el Caribe: Prevención,
evaluación y alerta temprana. Programa de las Naciones Unidas para
el Medio Ambiente. México D.F., United Nations.

Cohen, P. R. & Levesque, H. J. (1990) Intention is choice with commitment.
Artificial Intelligence, 42, 213-261.

Colombetti, M., Fornara, N. & Verdicchio, M. (2004) A social approach to
communication in multiagent systems. Lecture Notes in Artificial
Intelligence, 2990, 191-220.

Collins, J., Tsvetovat, M., Mobasher, B. & Gini, M. (1998) MAGNET: A
multi-agent contracting system for plan execution. Proceedings of
Workshop on Artificial Intelligence and Manufacturing: State of the
Art and State of Practice. AAAI Press.

Collis, J. C. & Lee, L. C. (1999) Building electronic marketplaces with the
ZEUS agent tool-kit. Lecture Notes in Computer Science, 1571, 1-24.

Copeland, G. & Thiam-Yew, W. (2006) Current data assimilation modelling
for oil spill contingency planning. Environmental Modelling and
Software, 21, 142-155.

Corchado, E., Mata, A., Baruque, B., Corchado, J. M. & Pérez-Lancho, B.
(2010) An Hybrid Artificial Intelligence System for Forest Fire
Forecasting. International Journal of Computer Mathemathics, In
press.

Corchado, J. M. & Aiken, J. (2002) Hybrid artificial intelligence methods in
oceanographic forecasting models. IEEE SMC Transactions, 32, 307-
313.

Corchado, J. M., Bajo, J. & Abraham, A. (2008) GERAmI: Improving the
delivery of health care. IEEE Intelligent Systems. Special Issue on
Ambient Intelligence, 3, 19-25.

Corchado, J. M. & Mata, A. (2008) Predicting the Presence of Oil Slicks After
an Oil Spill. Lecture Notes in Artificial Intelligence, 573-586.

Corkill, D. D. & Lander, S. E. (1998) Diversity in agent organizations. Object
Magazine, 8, 41-47.

Corkill, D. D. & Lesser, V. R. (1983) The use of meta-level control for
coordination in a distributed problem solving network. Proceedings of
the Eighth International Joint Conference on Artificial Intelligence.

Cotton, D. (2007) MARCOAST-Operational Marine Oil Spill and Water
Quality Monitoring Services. OCEANS 2007-Europe, 1-5.

Coulouris, G. F., Dollimore, J. & Kindberg, T. (2005) Distributed systems:
concepts and design, Addison-Wesley Longman.

Organization Based Multiagent Architecture For Distributed Environments

200

Cuni, G., Esteva, M., Garcia, P., Puertas, E., Sierra, C. & Solchaga, T. (2004)
MASFIT: Multi-agent system for fish trading. Proceedings of the
16th Eureopean Conference on Artificial Intelligence, (ECAI’2004).
IOS Press.

Cutkosky, M. R., Engelmore, R. S., Fikes, R. E., Genesereth, M. R., Gruber,
T. R., Mark, W. S., Tenenbaum, J. M. & Weber, J. C. (1993) PACT:
An experiment in integrating concurrent engineering systems.
Computer, 26, 28-37.

Czajkowski, K., Fitzgerald, S., Foster, I. & Kesselman, C. (2001) Grid
information services for distributed resource sharing. Proceedings of
the 10th IEEE International Symposium on High Performance
Distributed Computing. San Francisco.

Chandrasekaran, B. (1981) Natural and social system metaphors for
distributed problem solving: Introduction to the issue. IEEE
Transactions on Systems, Man and Cybernetics, 11, 1-5.

Chang, C. L. (2005) Using case-based reasoning to diagnostic screening of
children with developmental delay. Expert Systems With Applications,
28, 237-247.

Channabasavaiah, K., Holley, K. & Tuggle, E. (2003) Migrating to a service-
oriented architecture. IBM DeveloperWorks, 16.

Chavez, A. & Maes, P. (1996) Kasbah: An agent marketplace for buying and
selling goods. First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent Technology
(PAAM’96). London, UK.

Chen, D. & Burrell, P. (2001) Case-based reasoning system and artificial
neural networks: a review. Neural Computing & Applications, 10,
264-276.

Chen, F., Wang, C., Zhang, H., Zhang, B. & Wu, F. (2007) SAR images
classification using case-based reasoning method. Geoscience and
Remote Sensing Symposium, IGARSS 2007.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. & Tuecke, S. (2000)
The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of
Network and Computer Applications, 23, 187-200.

Childers, L., Disz, T., Olson, R., Papka, M. E., Stevens, R. & Udeshi, T.
(2000) Access grid: Immersive group-to-group collaborative
visualization. Proc. 4th International Immersive Projection
Technology Workshop.

References

201

Chow, H. K. H., Choy, K. L., Lee, W. B. & Lau, K. C. (2006) Design of a
RFID case-based resource management system for warehouse
operations. Expert Systems With Applications, 30, 561-576.

Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001) Web
services description language (WSDL) 1.1.

Chua, D. K. H., Li, D. Z. & Chan, W. T. (2001) Case-based reasoning
approach in bid decision making. Journal of construction engineering
and management, 127, 35.

Chun, S. H. & Park, Y. J. (2005) Dynamic adaptive ensemble case-based
reasoning: application to stock market prediction. Expert Systems
With Applications, 28, 435-443.

Chvatal, V. (1979) A greedy heuristic for the set-covering problem.
Mathematics of operations research, 233-235.

Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U.,
Beirle, S., Wagner, T. & Stohl, A. (2004) Around the world in 17
days–hemispheric-scale transport of forest fire smoke from Russia in
May 2003. Atmospheric Chemistry and Physics, 4, 1311–1321.

Dautenhahn, K. (2000) Reverse engineering of societies: a biological
perspective. Proc. of AISB Symposium “Starting from Society -
application of social analogies to computational systems". University
of Birmingham, England, AISB.

Davidsson, P. (2001) Categories of artificial societies. Engineering Societies
in the Agents World II, LNAI 2203, 1-9.

Davis, R. & Smith, R. G. (1980) Negotiation as a metaphor for distributed
problem solving. Communication in Multiagent Systems. Agent
Communication Languages and Conversation Policies, 51–97.

De Mántaras, R. L. & Plaza, E. (1997) Case-Based Reasoning: An Overview.
AI Communications, 10, 21-29.

Decker, K. (1996) TAEMS: A Framework for Environment Centered
Analysis & Design of Coordination Mechanisms. in JENNINGS, G.
O. H. A. N. (Ed.) Foundations of Distributed Artificial Intelligence.
Wiley Inter-Science.

Decker, K., Lesser, V., Prasad, M. V. N. & Wagner, T. (1995) MACRON: an
architecture for multi-agent cooperative information gathering.
Proccedings of the CIKM Workshop on Intelligent Information
Agents.

Decker, K. & Li, J. (1998) Coordinated hospital patient scheduling. In
Proceedings of the 3rd International Conference on Multi-Agent
Systems (ICMAS'98). IEEE Computer Society.

Organization Based Multiagent Architecture For Distributed Environments

202

Decker, K., Sycara, K. & Williamson, M. (1997) Middle-agents for the
internet, Lawrence Erlbaum Associates Ltd. .

Decker, K. S. & Lesser, V. R. (1992) Generalizing the partial global planning
algorithm. International Journal of Intelligent and Cooperative
Information Systems, 1, 319-346.

Decker, K. S. & Lesser, V. R. (1993) Quantitative modeling of complex
environments. International Journal of Intelligent Systems in
Accounting, Finance, and Management, 2, 215-234.

Defanti, T. & Stevens, R. (1999) Teleimmersion. in FOSTER, I. &
KESSELMAN, C. (Eds.) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann.

Delany, S. J. (2006) Using Case-Based Reasoning for Spam Filtering. Dublin
Institute of Technology.

Dellarocas, C. & Klein, M. (2000a) Civil agent societies: Tools for inventing
open agent-mediated electronic marketplaces. Lecture Notes in
Computer Science, 1788, 24-39.

Dellarocas, C. & Klein, M. (2000b) Contractual Agent Societies: Negotiated
shared context and social control in open multi-agent systems. Social
Order in Multi-Agent Systems, 113-133.

Den Breejen, E., Breuers, M., Cremer, F., Kemp, R., Roos, M., Schutte, K. &
De Vries, J. S. (1998) Autonomous Forest Fire Detection. III
International Conference on Forest Fire Research.

Dennet, D. C. (1987) The intentional stance, Cambridge, MA, MIT Press.
Dialani, V. (2002) UDDI-M Version 1.0 API Specification. University of

Southampton–UK, 2.
Diaz, F., Fdez-Riverola, F. & Corchado, J. M. (2006) Gene-CBR: A case-

based reasoning tool for cancer diagnosis using microarray data sets.
Computational Intelligence, 22, 254-268.

Dignum, F., Morley, D., Sonenberg, E. A. & Cavedon, L. (2000) Towards
socially sophisticated BDI agents. Proceedings of the 4th
International Conference on Multi-Agent Systems. Boston.

Dignum, V. (2004) A Model for Organizational Interaction: based on Agents,
founded in Logic. PhD thesis. Utrecht University.

Dignum, V. & Dignum, F. (2001) Modelling agent societies: coordination
frameworks and institutions. Progress in Artificial Intelligence, LNAI,
2258, 191-204.

Dignum, V. & Dignum, F. (2007a) A landscape of agent systems for the real
world. Technical Report Utrecht University.

References

203

Dignum, V. & Dignum, F. (2007b) A logic for agent organizations. FAMAS@
Agents, 3-7.

Dignum, V., Meyer, J. J., Weigand, H. & Dignum, F. (2002) An organization-
oriented model for agent societies. Proceedings of International
Workshop on Regulated Agent-Based Social Systems: Theories and
Applications

Dignum, V., Weigand, H. & Xu, L. (2002) Agent Societies: Towards
framework-based design in WOOLDRIDGE, M., WEISS, G. & P., C.
(Eds.) Agent-Oriented Software Engineering II. LNCS, Springer-
Verlag.

Douligeris, C., Collins, J., Iakovou, E., Sun, P., Riggs, R. & Mooers, C. N. K.
(1995) Development of OSIMS: An oil spill information management
system. Spill Science & Technology Bulletin, 2, 255-263.

Dunin-Keplicz, B. & Verbrugge, R. (2002) Collective intentions. Fundamenta
Informaticae, 51, 271-295.

Durfee, E. H. & Lesser, V. R. (1991) Partial global planning: a coordination
framework for distributedhypothesis formation. IEEE Transactions on
Systems, Man and Cybernetics, 21, 1167-1183.

Durfee, E. H., Lesser, V. R. & Corkill, D. D. (1987) Coherent cooperation
among communicating problem solvers. IEEE Transactions on
computers, 36, 1275-1291.

Durfee, E. H., Lesser, V. R. & Corkill, D. D. (1989) Trends in Cooperative
Distributed Problem Solving. IEEE Transactions on Knowledge and
Data Engineering, 1, 63-83.

Edmonds, B. (1999) Capturing Social Embeddedness: a constructivist
approach. Adaptive Behavior, 7, 323-348.

Elhakeem, A. A., Elshorbagy, W. & Chebbi, R. (2007) Oil Spill Simulation
and Validation in the Arabian (Persian) Gulf with Special Reference
to the UAE Coast. Water, Air, & Soil Pollution, 184, 243-254.

Erickson, J. & Siau, K. (2008) Web Services, Service-Oriented Computing,
and Service-Oriented Architecture: Separating Hype from Reality.
Journal of Database Management, 19, 42-54.

Esteva, M., De La Cruz, D. & Sierra, C. (2002) ISLANDER: an electronic
institutions editor. Proceedings of the First International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2002). ACM New York, NY, USA.

Esteva, M., Rodríguez-Aguilar, J. A., Sierra, C., Garcia, P. & Arcos, J. L.
(2001) On the formal specifications of electronic institutions. Lecture
Notes in Computer Science, 126-147.

Organization Based Multiagent Architecture For Distributed Environments

204

Etzioni, O. & Weld, D. (1994) A softbot-based interface to the internet.
Communications of the ACM, 37, 72-76.

Excelente-Toledo, C. B. & Jennings, N. R. (2004) The dynamic selection of
coordination mechanisms. Autonomous agents and multi-agent
systems, 9, 55-85.

Fatima, S. S. & Wooldridge, M. (2001) Adaptive task resources allocation in
multi-agent systems. Proceedings of the Fifth International
Conference on Autonomous Agents. Montreal, Canada, ACM New
York, NY, USA.

Fdez-Riverola, F. & Corchado, J. M. (2004) FSfRT: Forecasting System for
Red Tides. Applied Intelligence, 21, 251-264.

Fdez-Riverola, F., Díaz, F. & Corchado, J. M. (2007) Reducing the Memory
Size of a Fuzzy Case-Based Reasoning System Applying Rough Set
Techniques. Systems, Man and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 37, 138-146.

Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R. & Corchado, J. M.
(2007a) Applying lazy learning algorithms to tackle concept drift in
spam filtering. Expert Systems With Applications, 33, 36-48.

Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R. & Corchado, J. M.
(2007b) SpamHunting: An instance-based reasoning system for spam
labelling and filtering. Decision Support Systems, 43, 722-736.

Ferber, J. & Gutknecht, O. (1998) A meta-model for the analysis and design
of organizations in multi-agent systems. Proc. of the 3rd.
International Conference on Multi-Agent Systems. IEEE Computer
Society.

Ferber, J., Gutknecht, O. & Michel, F. (2004) From agents to organizations:
an organizational view of multi-agent systems. Lecture Notes in
Computer Science, 214-230.

Ferguson, I. A. (1995) Integrated control and coordinated behaviour: A case
for agent models. Lecture Notes in Artificial Intelligence, 890, 203-
203.

Finin, T., Fritzson, R., Mckay, D. & Mcentire, R. (1994) KQML as an agent
communication language. Proceedings of the third international
conference on Information and knowledge management.
Gaithersburg, Maryland, United States, ACM New York, NY, USA.

Fipa, T. C. (2002) Communication, FIPA Communicative Act Library
Specification, SC00037J.

Fischer, K. (1999) Agent-based design of holonic manufacturing systems.
Robotics and autonomous Systems, 27, 3-13.

References

205

Fisher, M. (1994) A Survey of Concurrent METATEM-the Language and its
Applications. Lecture Notes in Computer Science, 827, 480-480.

Fitoussi, D. & Tennenholtz, M. (2000) Choosing social laws for multi-agent
systems: Minimality and simplicity. Artificial Intelligence, 119, 61-
102.

Fitzgerald, S., Foster, I., Kesselman, C., Von Laszewski, G., Smith, W. &
Tuecke, S. (1997) A directory service for configuring high-
performance distributed computations. Proceedings of the 6th IEEE
International Symposium on High Performance Distributed
Computing.

Flores, F. & Ludlow, J. J. (1976) Doing and Speaking in the Office. Decision
Support Systems: Issues and Challenges, 95-118.

Follett, K. (2007) Un mundo sin fin, Barcelona, Plaza y Janés.
Foster, I., Jennings, N. R. & Kesselman, C. (2004) Brain meets brawn: Why

grid and agents need each other. Proceedings of the 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004). IEEE Computer Society.

Foster, I. & Karonis, N. T. (1998) A grid-enabled MPI: Message passing in
heterogeneous distributed computing systems. Proc. SC'98. IEEE
Computer Society Washington, DC, USA.

Foster, I. & Kesselman, C. (1999) The grid: blueprint for a future computing
infrastructure, Morgan Kaufmann Publishers USA.

Foster, I., Kesselman, C., Tsudik, G. & Tuecke, S. (1998) A security
architecture for computational grids. ACM Conference on Computers
and Security. ACM New York, NY, USA.

Foster, I., Vockler, J., Wilde, M. & Zhao, Y. (2002) Chimera: A virtual data
system for representing, querying, and automating data derivation.
Proceedings of the 14th International Conference on Scientific and
Statistical Database Management. Edinburgh.

Fox, M. S. (1979) Organization structuring: Designing large complex
software, Carnegie-Mellon University, Dept. of Computer Science.

Fox, M. S. (1981) An organizational view of distributed systems. IEEE
Transactions on Systems, Man and Cybernetics, 11, 70-80.

Fox, M. S., Barbuceanu, M., Gruninger, M. & Lin, J. (1998) An organization
ontology for enterprise modelling. Simulating organizations:
Computational models of institutions and groups, 131–152.

Fox, M. S. & Gruninger, M. (1998) Enterprise modeling. AI magazine, 19,
109-121.

Organization Based Multiagent Architecture For Distributed Environments

206

Franklin, S. & Graesser, A. (1997) Is it an Agent, or just a Program? A
Taxonomy for Autonomous Agents. Lecture Notes in Computer
Science, 1193, 21-36.

Gabriel, E., Resch, M., Beisel, T. & Keller, R. (1998) Distributed computing
in a heterogeneous computing environment. Proc. EuroPVM/MPI'98.

Galbraith, J. R. (1974) Organization design: An information processing view.
Interfaces, 28-36.

Gale, W. A. (2009) Statistical applications of artificial intelligence and
knowledge engineering. The Knowledge Engineering Review, 2, 227-
247.

Galushka, M. & Patterson, D. (2006) Intelligent index selection for case-based
reasoning. Knowledge-Based Systems, 19, 625-638.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995) Design patterns:
elements of reusable object-oriented software, Reading, MA,
Addison-Wesley.

Gannon, D. & Grimshaw, A. (1998) Object-based approaches. in FOSTER, I.
& KESSELMAN, C. (Eds.) The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann.

Garrido, L. & Sycara, K. (1995) Multi-agent meeting scheduling: Preliminary
experimental results. International Conference on Multi-Agent
Systems (ICMAS’95).

Gasser, L. (1991) Social conceptions of knowledge and action: DAI
foundations and open systems semantics. Artificial Intelligence, 47,
107-138.

Gasser, L. (2001) Perspectives on organizations in multi-agent systems. in
LUCK, M., MARIK, V., STEPANKOVA, O. & TRAPPL, R. (Eds.)
Multi-agent Systems and Applications. 9th ECCAI Advanced Course,
EASSS 2001. Springer.

Gateau, B., Boissier, O., Khadraoui, D. & Dubois, E. (2005) MOISE-Inst: An
organizational model for specifying rights and duties of autonomous
agents. 1st International Workshop on Coordination and
Organisation.

Genesereth, M. R. (1997) An agent-based framework for interoperability. in
BRADSHAW, J. (Ed.) Software agents. MIT Press.

Genesereth, M. R. & Ketchpel, S. P. (1994) Software agents. Communications
of the ACM 37, 48-53, 147.

Genesereth, M. R. & Nilsson, N. J. (1987) Logical foundations of artificial
intelligence, Morgan Kaufmann Publishers Inc. San Francisco, CA,
USA.

References

207

Georgeff, M. & Rao, A. (1998) Rational software agents: from theory to
practice. in JENNINGS, N. R. & WOOLDRIDGE, M. J. (Eds.) Agent
Technology: Foundations, Applications, and Markets. Secaucus, NJ,
Springer-Verlag New York.

Georgeff, M. P. & Lansky, A. L. (1987) Reactive reasoning and planning.
Proceedings of the 6th National Conference in AI Seattle, WA.

Gestosa (2005) http ://www.adai.pt/ceif/Gestosa/. ADAI-CEIF(Center of
Forest Fire Studies).

Gibbins, N., Harris, S. & Shadbolt, N. (2004) Agent-based semantic web
services. Web Semantics: Science, Services and Agents on the World
Wide Web, 1, 141-154.

Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. (2003) An
Enhanced Contextual Fire Detection Algorithm for MODIS. Remote
Sensing of Environment, 87, 273-282.

Giret B., A. (2005) Anemona: Una metodología multi-agente para sistema
holónicos de fabricación. Departamento de Sistemas Informáticos y,
Computación. Universidad Politécnica de Valencia.

Gironella, J. M. (1952) Los cipreses creen en Dios; novela, Barcelona,
Editorial Planeta.

Glass, A. & Grosz, B. J. (2003) Socially conscious decision-making.
Autonomous agents and multi-agent systems, 6, 317-339.

Gnanasambandam, N., Lee, S., Gautam, N., Kumara, S. R. T., Peng, W.,
Manikonda, V., Brinn, M. & Greaves, M. (2004) Reliable mas
performance prediction using queueing models. Proceedings of the
IEEE Multi-agent Security and Survivability Symposium (MASS).

Gokhale, A. & Schmidt, D. C. (1996) The performance of the CORBA
dynamic invocation interface and dynamic skeleton interface over
high-speed ATM networks. Proceedings of GLOBECOM'96. London,
England.

Goux, J. P., Kulkarni, S., Linderoth, J. & Yoder, M. (2000) An enabling
framework for master-worker applications on the Computational Grid.
Proc. 9th IEEE Symp. on High Performance Distributed Computing.
IEEE Press.

Griffiths, N. (2003) Supporting cooperation through clans. Intelligence,
Challenges and Advances – Proceedings of the 2nd IEEE Systems,
Man and Cybernetics.

Grinshaw, A. S. & Wm, A. (1996) Wulf and the whole Legion Team.
Legion—A view From 50000 Feet. Proc. 5th IEEE Symposium on
High Performance Distributed Computing,. IEEE Press.

Organization Based Multiagent Architecture For Distributed Environments

208

Grosz, B. J. & Kraus, S. (1996) Collaborative plans for complex group action.
Artificial Intelligence, 86, 269-357.

Grosz, B. J. & Sidner, C. L. (1990) Plans for discourse. Intentions in
communication, 417-444.

Gupta, U. G. (1994) How case-based reasoning solves new problems.
Interfaces, 110-119.

Guttman, R. H., Moukas, A. G. & Maes, P. (2001) Agent-mediated electronic
commerce: A survey. The Knowledge Engineering Review, 13, 147-
159.

Haddadi, A. (1996) Communication and cooperation in agent systems: a
pragmatic theory, Springer.

Harkavy, M. (1996) Webster’s new encyclopedic dictionary. Black Dog &
Leventhal publishers Inc, 151.

Haupt, S. E., Pasini, A. & Marzban, C. (2008) Artificial Intelligence Methods
in the Environmental Sciences, Springer Publishing Company,
Incorporated.

Hayden, S. C., Carrick, C. & Yang, Q. (1999) A catalog of agent coordination
patterns. AGENTS ’99: Proceedings of the third annual conference
on Autonomous Agents. ACM New York, NY, USA.

Hendler, J. (2001) Agents and the semantic web. IEEE Intelligent Systems, 16,
30-37.

Heskes, T. (1997) Balancing between bagging and bumping. Advances in
Neural Information Processing Systems, 9, 466-472.

Hewitt, C. (1986) Offices are open systems. ACM Transactions on
Information Systems (TOIS), 4, 271-287.

Hexmoor, H. & Beavers, G. (2001) Towards teams of agents. Proceedings of
the International Conference in Artificial Intelligence (IC-AI’2001).
CSREA Press.

Hodge, B. J., Anthony, W. P., Gales, L. M. & Ruiz, D. (1998) Teoría de la
organización: Un enfoque estratégico, Prentice Hall.

Horling, B. (2003) Using autonomy, organizational design and negotiation in
a distributed sensor network. Distributed Sensor Networks: A
multiagent perspective, 139-183.

Horling, B., Benyo, B. & Lesser, V. (2001) Using self-diagnosis to adapt
organizational structures. Proceedings of the 5th International
Conference on Autonomous Agents ACM New York, NY, USA.

Horling, B. & Lesser, V. (2005) Analyzing, modeling and predicting
organizational effects in a distributed sensor network. Journal of the

References

209

Brazilian Computer Society, Special Issue on Agents Organizations,
11, 9-30.

Horling, B., Mailler, R. & Lesser, V. (2004) A case study of organizational
effects in a distributed sensor network. Computer Science Technical
Report, 04-03.

Horling, B., Mailler, R., Shen, J., Vincent, R. & Lesser, V. (2003) Using
autonomy, organizational design and negotiation in a distributed
sensor network. Distributed Sensor Networks: A multiagent
perspective, 139-183.

Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H. & Stockinger, K.
(2000) Data management in an international data grid project. Proc.
1st IEEE/ACM International Workshop on Grid Computing.

Howell, J., Design, C. & Kotz, D. (2000) End-to-end authorization. Proc.
Symposium on Operating Systems Design and Implementation.
USENIX Association.

Huang, M. J., Chen, M. Y. & Lee, S. C. (2007) Integrating data mining with
case-based reasoning for chronic diseases prognosis and diagnosis.
Expert Systems With Applications, 32, 856-867.

Hubner, J. F., Sichman, J. S. & Boissier, O. (2002) A model for the structural,
functional, and deontic specification of organizations in multiagent
systems. Proceedings of the Brazilian Symposium on Artificial
Intelligence (SBIA'02).

Hubner, J. F., Sichman, J. S. & Boissier, O. (2005) S-Moise: A Middleware
for developing Organised Multi-Agent Systems. In Proc. Int.
Workshop on Organizations in Multi-Agent Systems, from
Organizations to Organization Oriented Programming in MAS,.
Springer.

Huhns, M. N. & Singh, M. P. (1998) Agents and multiagent systems: Themes,
approaches, and challenges. Readings in agents, 1-23.

Huhns, M. N. & Stephens, L. M. (1999) Multiagent Systems and Societies of
Agents. in WEISS, G. (Ed.) Multi-agent Systems: a Modern Approach
to Distributed Artificial Intelligence. MIT Press.

Iliadis, L. S. (2005) A decision support system applying an integrated fuzzy
model for long-term forest fire risk estimation. Environmental
Modelling and Software, 20, 613-621.

Im, K. H. & Park, S. C. (2007) Case-based reasoning and neural network
based expert system for personalization. Expert Systems With
Applications, 32, 77-85.

Organization Based Multiagent Architecture For Distributed Environments

210

Ishida, T., Gasser, L. & Yokoo, M. (1992) Organization self-design of
distributed production systems. IEEE Transactions on Knowledge and
Data Engineering.

Jennings, N. & Wooldridge, M. (1996) Software agents. IEEE review, 42, 17-
20.

Jennings, N. R. (1995) Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions. Artificial Intelligence, 75,
195-240.

Jennings, N. R. (1999) Agent-based computing: Promise and perils, Lawrence
Erlbaum Associates Ltd.

Jennings, N. R., Sycara, K. & Wooldridge, M. (1998) A Roadmap of Agent
Research and Development. Autonomous Agents and Multi-Agent
Systems Journal, 1, 7-38.

Jennings, N. R. & Wooldridge, M. (1995) Applying agent technology.
Applied Artificial Intelligence, 9, 351-361.

Jennings, N. R. & Wooldridge, M. (1999) Agent-oriented software
engineering. Lecture Notes in Computer Science, 4-10.

Jennings, N. R. & Wooldridge, M. J. (1998) Agent technology: foundations,
applications, and markets, Springer-Verlag New York, Inc. Secaucus,
NJ, USA.

Jensen, D. & Lesser, V. (2002) Social pathologies of adaptive agents. Safe
Learning Agents: Papers from the 2002 AAAI Spring Symposium.
AAAI Press.

Jha, M. N., Levy, J. & Gao, Y. (2008) Advances in Remote Sensing for Oil
Spill Disaster Management: State-of-the-Art Sensors Technology for
Oil Spill Surveillance. Sensors, 8, 236-255.

Jian-Dong, G. U. O. & Shang-Liang, Z. (2007) Multi threading
implementations in real-time CORBA [J]. Computer Engineering and
Design, 2.

Jonker, C. M., Klusch, M. & Treur, J. (2000) Design of collaborative
information agents. Lecture Notes in Computer Science, 262-284.

Jorda, G., Comerma, E., Bolanos, R. & Espino, M. (2007) Impact of forcing
errors in the CAMCAT oil spill forecasting system. A sensitivity
study. Journal of Marine Systems, 65, 134-157.

Jordi, A., Ferrer, M. I., Vizoso, G., Orfila, A., Basterretxea, G., Casas, B.,
Álvarez, A., Roig, D., Garau, B. & Martínez, M. (2006) Scientific
management of Mediterranean coastal zone: A hybrid ocean
forecasting system for oil spill and search and rescue operations.
Marine Pollution Bulletin, 53, 361-368.

References

211

Juan, T., Pearce, A. & Sterling, L. (2002) ROADMAP: Extending the Gaia
Methodology for Complex Open Systems. Proceedings of the 1st
ACM Joint Conference on Autonomous Agents and Multi-Agent
Systems. ACM Press.

Jung, H., Tambe, M. & Kulkarni, S. (2001) Argumentation as distributed
constraint satisfaction: Applications and results. AGENTS ’01:
Proceedings of the fifth international conference on Autonomous
agents. ACM New York, NY, USA.

Kaminka, G. A., Pynadath, D. V. & Tambe, M. (2002) Monitoring teams by
overhearing: A multi-agent plan-recognition approach. Journal of
Artificial Intelligence Research, 17, 83-135.

Karafyllidis, I. & Thanailakis, A. (1997) A model for predicting forest fire
spreading using cellular automata. Ecological Modelling, 99, 87-97.

Kautz, H., Selman, B., Coen, M., Ketchpel, S. & Ramming, C. (1994) An
experiment in the design of software agents, John Wiley & sons Ltd. .

Keramitsoglou, I., Cartalis, C. & Kiranoudis, C. T. (2006) Automatic
identification of oil spills on satellite images. Environmental
Modelling and Software, 21, 640-652.

Khedro, T. & Genesereth, M. R. (1995) Facilitators: A networked computing
infrastructure for distributed software interoperation. Working Notes
of the IJCAI-95 Workshop on Artificial Intelligence in Distributed
Information Networks.

Klein, M., Rodriguez-Aguilar, J. A. & Dellarocas, C. (2003) Using domain-
independent exception handling services to enable robust open multi-
agent systems: The case of agent death. Autonomous agents and
multi-agent systems, 7, 179-189.

Kleinrock, L. (1994) Realizing the information future: the Internet and
beyond, National Academy Press.

Klusch, M. (1999) Intelligent information agents: agent-based information
discovery and management on the Internet, Springer-Verlag New
York, Inc. Secaucus, NJ, USA.

Klusch, M. & Gerber, A. (2002) Dynamic coalition formation among rational
agents. IEEE Intelligent Systems, 17, 42-47.

Koestler, A. (1968) The ghost in the machine. Psychiatric communications,
10, 45.

Kohonen, T. (1995) Self-Organizing Maps. Springer Series in Information
Sciences. Berlin, Germany, Springer.

Kolodner, J. L. (1991) Improving human decision making through case-based
decision aiding. AI Magazine, 12, 52-68.

Organization Based Multiagent Architecture For Distributed Environments

212

Kolodner, J. L. (1993) Case-based Reasoning, Morgan Kaufmann.
Kolp, M., Giorgini, P. & Mylopoulos, J. (2003) Multi-agent architectures as

organizational structures. Autonomous Agents and Multi-Agent
Systems, 13, 3-25.

Krafzig, D., Banke, K. & Slama, D. (2004) Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series), Prentice Hall PTR
Upper Saddle River, NJ, USA.

Kurbel, K. & Loutchko, I. (2003) Towards multi-agent electronic
marketplaces: what is there and what is missing? The Knowledge
Engineering Review, 18, 33-46.

Lai, H. (2007) A Service-Oriented Architecture Based Platform to Integrate
Information System for Semiconductor Manufacturing. Extension
Education Master Program of Information & Electrical Engineering.
Fench Chia University.

Larson, K. S. & Sandholm, T. W. (2000) Anytime coalition structure
generation: An average case study. Journal of Experimental &
Theoretical Artificial Intelligence, 12, 23-42.

Larsson, S. (2008) La chica que soñaba con una cerilla y un bidón de
gasolina, Barcelona, Ediciones Destino.

Larsson, S. (2009a) La reina en el palacio de las corrrientes de aire,
Barcelona, Destino.

Larsson, S. (2009b) Los hombres que no amaban a las mujeres, Barcelona,
Ediciones Destino.

Lashkari, Y., Metral, M. & Maes, P. (1997) Collaborative interface agents.
Readings in agents, 111–116.

Leake, D. B. (1996) Case-based reasoning: Experiences, lessons and future
directions, MIT Press Cambridge, MA, USA.

Lee, J., Yang, J. & Chung, J. Y. (2002) Winslow: A Business Process
Management System with Web Services. Technical Paper. Electronic
Commerce Research Center, National Sun Yat-sen University.

Leigh, J., Johnson, A. & Defanti, T. A. (1997) CAVERN: A distributed
architecture for supporting scalable persistence and interoperability in
collaborative virtual environments. Virtual Reality: Research,
Development and Applications, 2, 217-237.

Lerman, K. & Galstyan, A. (2001) A general methodology for mathematical
analysis of multi-agent systems. USC Information Sciences Technical
Report ISI-TR-529.

References

213

Lerman, K. & Shehory, O. (2000) Coalition Formation for Large-Scale
Electronic Markets. Int. Conference on Multi-Agent Systems.

Lesperance, Y., Levesque, H. J., Lin, F., Marcu, D., Reiter, R. & Scherl, R. B.
(1996) Foundations of a logical approach to agent programming.
Intelligent Agents II Agent Theories, Architectures, and Languages.
Springer.

Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B.,
Neiman, D., Podorozhny, R., Prasad, M. N. & Raja, A. (2004)
Evolution of the GPGP/TAEMS domain-independent coordination
framework. Autonomous agents and multi-agent systems, 9, 87-143.

Lesser, V. R. (1991) A retrospective view of FA/C distributed problem
solving. IEEE Transactions on Systems Man and Cybernetics, 21,
1347-1362.

Lesser, V. R. (1998) Reflections on the nature of multi-agent coordination and
its implications for an agent architecture. Autonomous agents and
multi-agent systems, 1, 89-111.

Lesser, V. R. & Corkill, D. D. (1981) Functionally accurate, cooperative
distributed systems. IEEE Transactions on Systems, Man and
Cybernetics, 11, 81-96.

Lesser, V. R. & Corkill, D. D. (1983) The distributed vehicle monitoring
testbed. AI magazine, 4, 63-109.

Lesser, V. R. & Erman, L. D. (1980) Distributed interpretation: A model and
experiment. IEEE Transactions on computers, 100, 1144-1163.

Levesque, H. J., Cohen, P. R. & Nunes, J. H. T. (1990) On acting together.
Proceedings of the Eighth National Conference on Artificial
Intelligence. Boston, MA.

Li, H. (1996) Selecting KBES development techniques for applications in the
construction industry. Construction Management and Economics, 14,
67-74.

Li, H., Hu, D., Hao, T., Wenyin, L. & Chen, X. (2007) Adaptation Rule
Learning for Case-Based Reasoning. Third International Conference
on Semantics, Knowledge and Grid, 44-49.

Li, J. Y., Ni, Z. W., Liu, X. & Liu, H. T. (2006) Case-Base Maintenance
Based on Multi-Layer Alternative-Covering Algorithm. Machine
Learning and Cybernetics, 2006 International Conference on, 2035-
2039.

Li, X. & Yeh, A. G. (2004) Multitemporal SAR images for monitoring
cultivation systems using case-based reasoning. Remote Sensing of
Environment, 90, 524-534.

Organization Based Multiagent Architecture For Distributed Environments

214

Lin, Z. & Carley, K. M. (1995) DYCORP: A computational framework for
examining organizational performance under dynamic conditions. The
Journal of mathematical sociology, 20, 193-217.

Liu, X. & Wirtz, K. W. (2005) Sequential negotiation in multiagent systems
for oil spill response decision-making. Marine Pollution Bulletin, 50,
469-74.

Liu, X. & Wirtz, K. W. (2007) Decision making of oil spill contingency
options with fuzzy comprehensive evaluation. Water Resources
Management, 21, 663-676.

Long, D. G. (2001) Mapping fire regimes across time and space:
Understanding coarse and fine-scale fire patterns. International
Journal of Wildland Fire, 10, 329-342.

López, F. L. Y., Luck, M. & D’inverno, M. (2006) A normative framework
for agent-based systems. Computational & Mathematical
Organization Theory, 12, 227-250.

López, I., Follen, G., Gutiérrez, R., Foster, I., Ginsburg, B. & Larsson, O.
(2000) S. Martin and Tuecke, S., NPSS on NASA's IPG: Using
CORBA and Globus to Coordinate Multidisciplinary Aeroscience
Applications. NASA HPCC/CAS Workshop. NASA Ames Research
Center.

Luger, G. F. (2002) Artificial intelligence: structures and strategies for
complex problem solving, Addison Wesley Publishing Company.

Lybäck, D. (1999) Transient diversity in multi-agent systems. Department of
Computer and Systems Sciences. Stockholm University and the Royal
Institute of Technology.

Maes, P. (1990) Designing autonomous agents: theory and practice from
biology to engineering and back, MIT press.

Maes, P. (1994) Agents that reduce work and information overload.
Communications of the ACM, 37, 30-40.

Maes, P. (1997) Intelligent software. Proceedings of the 2nd international
conference on Intelligent user interfaces. Orlando, Florida, United
States, ACM New York, NY, USA.

Mahmoud, Q. H. (2005) Service-oriented architecture (SOA) and web
services: The road to Enterprise Application Integration (EAI).
Technical article, Sun Developer Network.

Mailler, R. & Lesser, V. (2004) Solving distributed constraint optimization
problems using cooperative mediation. Proceedings of Third
International Joint Conference on Autonomous Agents and
Multiagent Systems IEEE Computer Society Washington, DC, USA.

References

215

Mailler, R., Lesser, V. & Horling, B. (2003) Cooperative negotiation for soft
real-time distributed resource allocation. Proceedings of Second
International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2003). Melbourne, ACM New York,
NY, USA.

Malone, T. W. & Crowston, K. (1994) The interdisciplinary study of
coordination. ACM Computing Surveys (CSUR), 26, 87-119.

Malone, T. W. & Smith, S. A. (1988) Modeling the performance of
organizational structures. Operations Research, 421-436.

Malzieu, M. (2009) La mecánica del corazón, Barcelona, Random House
Mondadori.

March, J. G., Simon, H. A. & Guetzkow, H. S. (1958) Organizations, John
Wiley & Sons Inc.

Marsella, S., Tambe, M., Adibi, J., Al-Onaizan, Y., Kaminka, G. A. &
Muslea, I. (2001) Experiences acquired in the design of RoboCup
teams: A comparison of two fielded teams. Autonomous agents and
multi-agent systems, 4, 115-129.

Martins Fernandes, P. A. (2001) Fire spread prediction in shrub fuels in
Portugal. Forest Ecology and Management, 144, 67-74.

Massie, J. L. (1973) Bases esenciales de la Administración, México D.F.,
Edicorial Diana.

Mata, A. & Corchado, J. M. (2009) Forecasting the probability of finding oil
slicks using a CBR system. Expert Systems With Applications, 36,
8239-8246.

Mata, A., Pérez-Lancho, B., Gónzalez, A., Baruque, B. & Corchado, E. S.
(2009) MACSDE: Multi-Agent Contingency Response System for
Dynamic Environments. HAIS 2009.

Mathieu, P., Routier, J. C. & Secq, Y. (2002) Dynamic organization of multi-
agent systems. Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems. ACM
New York, NY, USA.

Matson, E., Deloach, S. & Kansas State Univ, M. (2003) Using dynamic
capability evaluation to organize a team of cooperative, autonomous
robots. Proceedings of The 2003 International Conference on
Artificial Intelligence (IC-AI’03).

Maturana, F., Shen, W. & Norrie, D. H. (1999) MetaMorph: an adaptive
agent-based architecture for intelligent manufacturing. International
Journal of Production Research, 37, 2159-2173.

Organization Based Multiagent Architecture For Distributed Environments

216

Mazzeo, G., Marchese, F., Filizzola, C., Pergola, N. & Tramutoli, V. (2007) A
Multi-temporal Robust Satellite Technique (RST) for Forest Fire
Detection. Analysis of Multi-temporal Remote Sensing Images, 2007.

Mccourt, F. (2006) El profesor, Madrid, Maeva.
Mcilraith, S. A. & Zeng, T. C. H. (2001) Semantic web services. IEEE

Intelligent Systems, 16, 46-53.
Menemenlis, D., Hill, C., Adcroft, A., Campin, J. M., Cheng, B., Ciotti, B.,

Fukumori, I., Heimbach, P., Henze, C. & Köhl, A. (2005) NASA
Supercomputer Improves Prospects for Ocean Climate Research. EOS
Transactions, 86, 89-95.

Mercier, G. & Girard-Ardhuin, F. (2006) Partially Supervised Oil-Slick
Detection by SAR Imagery Using Kernel Expansion. Geoscience and
Remote Sensing, IEEE Transactions on, 44, 2839-2846.

Mérida-Campos, C. & Willmott, S. (2004) Modelling coalition formation over
time for iterative coalition games. Proceedings of the 3rd
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2004). IEEE Computer Society
Washington, DC, USA.

Mitra, N. (2003) Soap version 1.2 part 0: Primer. W3C recommendation, 24.
Montali, A., Giacinto, G., Migliaccio, M. & Gambardella, A. (2006)

Supervised pattern classification techniques for oil spill classification
in SAR images: preliminary results. Proceedings of the SeaSAR,
2006.

Montani, S. (2007) Case-based Reasoning for managing non-compliance with
clinical guidelines. International Conference on Case-Based
Reasoning, ICCBR 2007, Proceedings.

Montani, S. & Anglano, C. (2008) Achieving self-healing in service delivery
software systems by means of case-based reasoning. Applied
Intelligence, 28, 139-152.

Montenegro, R., Plaza, A., Ferragut, L. & Asensio, M. I. (1997) Application
of a nonlinear evolution model to fire propagation. Nonlinear
Analysis, 30, 2873-2882.

Montgomery, T. A. & Durfee, E. H. (1993) Search reduction in hierarchical
distributed problem solving. Group Decision and Negotiation, 2, 301-
317.

Moreno, R. A., Do Santos, M., Bertozzo, N., De Sa Rebelo, M., Furuie, S. S.
& Gutierrez, M. A. (2008) Medical Image distribution and
visualization in a hospital using CORBA. Engineering in Medicine

References

217

and Biology Society, 2008. EMBS 2008. 30th Annual International
Conference of the IEEE Vancouver, Canada.

Moses, Y. & Tennenholtz, M. (1995) Artificial social systems. Computers and
Artificial Intelligence, 14, 533-562.

Moulin, B. & Chaib-Draa, B. (1996) An overview of distributed artificial
intelligence. Foundations of distributed artificial intelligence, 1, 3–
55.

Mowshowitz, A. (1997) On the theory of virtual organization. Systems
research and behavioral science, 14.

Müller, J. E., Pischel, M. & Thiel, M. (1995) Modelling reactive behaviour in
vertically layered agent architectures. Proceedings of the workshop on
agent theories, architectures, and languages on Intelligent agents.
Amsterdam, The Netherlands, Springer.

Mui, L., Halberstadt, A. & Mohtashemi, M. (2002) Notions of reputation in
multi-agents systems: a review. Proceedings of the First International
Conference on Autonomous Agents and MAS. Bologna, Italy.

Muñoz, C., Acevedo, P., Salvo, S., Fagalde, G. & Vargas, F. (2007) Forest
fire detection using NOAA/16-LAC satellite images in the Araucanía
Region, Chile. Bosque, 28, 119-128.

Mustafaraj, E. (2007) Knowledge Extraction and Summarization for Textual
Case-Based Reasoning. Fachbereich Mathematik und Informatik.
Philipps-Universitat Marburg.

Nagendra Prasad, M. V. & Lesser, V. R. (1999) Learning situation-specific
coordination in cooperative multi-agent systems. Autonomous agents
and multi-agent systems, 2, 173-207.

Nair, R., Tambe, M. & Marsella, S. (2003a) Role allocation and reallocation
in multiagent teams: Towards a practical analysis. Proceedings of
Second International Joint Conference on Autonomous Agents and
Multi-agent Systems (AAMAS-03). ACM New York, NY, USA.

Nair, R., Tambe, M. & Marsella, S. (2003b) The role of emotions in
multiagent teamwork: A preliminary investigation. Who needs
emotions: the brain meets the robot. Oxford University Press.

Nakada, H., Sato, M. & Sekiguchi, S. (1999) Design and implementations of
Ninf: towards a global computing infrastructure. Future Generation
Computer Systems, 15, 649-658.

Natis, Y. & Schulte, R. (2003) Introduction to service-oriented architecture.
Gartner Group.

Negroponte, N. (1996) Being digital, Random House Inc. New York, NY,
USA.

Organization Based Multiagent Architecture For Distributed Environments

218

Nelson, R. K., Kile, B. M., Plata, D. L., Sylva, S. P., Xu, L., Reddy, C. M.,
Gaines, R. B., Frysinger, G. S. & Reichenbach, S. E. (2006) Tracking
the Weathering of an Oil Spill with Comprehensive Two-Dimensional
Gas Chromatography. Environmental Forensics, 7, 33-44.

Newell, A. (1994) Reflections on the knowledge level. Artificial Intelligence
in Perspective, 59, 31-38.

Ng, S. T. (2001) EQUAL: a case-based contractor prequalifier. Automation in
construction, 10, 443-457.

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., Dang, V.
D., Nguyen, T. D., Deora, V., Shao, J. & Gray, W. A. (2004) Conoise:
Agent-based formation of virtual organisations. Knowledge-Based
Systems, 17, 103–111.

Nugent, C. & Cunningham, P. (2005) A Case-Based Explanation System for
Black-Box Systems. Artificial Intelligence Review, 24, 163-178.

Nwana, H. S. & Ndumu, D. T. (1998) A brief introduction to software agent
technology. Agent Technology: Foundations, Applications, and
Markets, 29–47.

Nwana, H. S., Ndumu, D. T., Lee, L. C. & Collis, J. C. (1999) ZEUS: a toolkit
and approach for building distributed multi-agent systems. In
Proceedings of the Third Annual Conference on Autonomous Agents
(AGENTS '99). Seattle, Washington, USA, ACM, New York, NY.

Omg (1995a) Compound Presentation and Compound Interchange Facilities,
Part I, OMG Document 95-3-31. Apple Computer, Inc. Component
Integration Laboratories, Inc., International Business Machines
Corporation, Novell Incorporated,.

Omg (1995b) CORBA Services: Common Object Services Specification,
Revised Edition. Object Management Group.

Omg (1996) Description of New OMA Reference Model, Draft 1. Object
Management Group.

Omicini, A. (2001) SODA: Societies and Infrastructures in the Analysis and
Design of Agent-based Systems. Agent-Oriented Software
Engineering, 1957, 185-193.

Ontañón, S. & Plaza, E. (2003) Collaborative Case Retention Strategies for
CBR Agents. Lecture Notes in Artificial Intelligence, 21678, 394-
405.

Ossowski, S. (1999) Coordination in artificial agent societies: social
structures and its implications for autonomous problem-solving
agents, Springer Verlag.

References

219

Ossowski, S. & García-Serrano, A. (1998) Social Co-ordination among
Autonomous Problem-Solving Agents. IN WOBCKE, W.,
PAGNUCCO, M. & ZHANG, C. (Eds.) In Proceedings of the
Workshops on Commonsense Reasoning, intelligent Agents, and
Distributed Artificial intelligence. Lecture Notes In Computer
Science, Springer-Verlag, London.

Palenzuela, J. M. T., Vilas, L. G. & Cuadrado, M. S. (2006) Use of ASAR
images to study the evolution of the Prestige oil spill off the Galician
coast. International Journal of Remote Sensing, 27, 1931-1950.

Panzarasa, P., Jennings, N. R. & Norman, T. J. (2002) Formalizing
collaborative decision-making and practical reasoning in multi-agent
systems. Journal of logic and computation, 12, 55-117.

Parker, L. E. (1993) Designing control laws for cooperative agent teams.
Proceedings of the IEEE International Conference on Robotics and
Automation.

Parunak, H. V. D. & Odell, J. (2002) Representing social structures in UML.
Agent-Oriented Software Engineering II, LNCS, 2222.

Parunak, H. V. D., Savit, R. & Riolo, R. L. (1998) Agent-Based Modeling vs
Equation-Based Modeling: A Case Study and Users' Guide. Lecture
Notes in Computer Science, 1534, 10-25.

Pasley, J. (2005) How BPEL and SOA are changing Web services
development. IEEE Internet Computing, 9, 60-67.

Patterson, D., Rooney, N., Dobrynin, V. & Galushka, M. (2005) Sophia: A
novel approach for Textual Case-based Reasoning. Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence.

Pattison, H. E., Corkill, D. D. & Lesser, V. R. (1987) Instantiating
descriptions of organizational structures. Distributed artificial
intelligence, Research Notes in Artificial Intelligence, I, 59-96.

Pavón, R., Díaz, F., Laza, R. & Luzón, V. (2008) Automatic parameter tuning
with a Bayesian case-based reasoning system. A case of study. Expert
Systems With Applications, 36, 3407-3420.

Peiró, J. M. (1995) Psicología de la Organización (I y II). Madrid: UNED.
Pérez, E. I., Coello, C. A. C. & Aguirre, A. H. (2005) Extraction and reuse of

design patterns from genetic algorithms using case-based reasoning.
Soft Computing-A Fusion of Foundations, Methodologies and
Applications, 9, 44-53.

Periáñez, R. (2007) Chemical and oil spill rapid response modelling in the
Strait of Gibraltar–Alborán Sea. Ecological Modelling, 207, 210-222.

Organization Based Multiagent Architecture For Distributed Environments

220

Periáñez, R. & Pascual-Granged, A. (2008) Modelling surface radioactive,
chemical and oil spills in the Strait of Gibraltar. Computers and
Geosciences, 34, 163-180.

Plaza, E., Armengol, E. & Ontañón, S. (2005) The Explanatory Power of
Symbolic Similarity in Case-Based Reasoning. Artificial Intelligence
Review, 24, 145-161.

Pokahr, A., Braubach, L. & Lamersdorf, W. (2003) Jadex: Implementing a
BDI-Infrastructure for JADE Agents. In EXP - in search of innovation
(Special Issue on JADE), 76-85.

Polani, D. (2001) Measures for the organization of self-organizing maps.
Springer Studies In Fuzziness And Soft Computing Series, 13-44.

Policastro, C. A., Carvalho, A. C. & Delbem, A. C. B. (2006) Automatic
knowledge learning and case adaptation with a hybrid committee
approach. Journal of Applied Logic, 4, 26-38.

Polzlbauer, G. (2004) Survey and Comparison of Quality Measures for Self-
Organizing Maps. Proceedings of the Fifth Workshop on Data
Analysis (WDA’04), 67-82.

Popper, K. R. (1982) The open universe: An argument for indeterminism,
Hutchinson, London.

Powell, W. W. (1991) Neither market nor hierarchy: Network forms of
organization. Markets, Hierarchies and Networks. The Coordination
of Social Life, 265–276.

Prada, M. L. (2004) Vivir al sol, Oviedo, KRK Ediciones.
Price, J. M., Ji, Z. G., Reed, M., Marshall, C. F., Howard, M. K., Guinasso Jr,

N. L., Johnson, W. R. & Rainey, G. B. (2003) Evaluation of an oil
spill trajectory model using satellite-tracked, oil-spill-simulating
drifters. OCEANS 2003. Proceedings, 3.

Pynadath, D. V. & Tambe, M. (2002) The communicative multiagent team
decision problem: Analyzing teamwork theories and models. Journal
of Artificial Intelligence Research, 16, 389-423.

Qingling, Z. & Ying, L. (2007) Monitoring Marine Oil-spill Using Microwave
Remote Sensing Technology. Electronic Measurement and
Instruments, 2007. ICEMI'07. 8th International Conference on, 4-69.

Ramchurn, S. D., Huynh, D. & Jennings, N. R. (2005) Trust in multi-agent
systems. The Knowledge Engineering Review, 19, 1-25.

Rao, A. & Georgeff, M. P. (1992) An abstract architecture for rational agents.
Computational Intelligence, 14, 392-429.

References

221

Reed, M., Ekrol, N., Rye, H. & Turner, L. (1999) Oil Spill Contingency and
Response (OSCAR) Analysis in Support of Environmental Impact
Assessment Offshore Namibia. Spill Science and Technology Bulletin,
5, 29-38.

Reed, S. & Lesser, V. R. (1980) Division of labor in honey bees and
distributed focus of attention. University of Massachusetts/Amherst
Computer and Information Science Department Technical Report 80,
17.

Reverte, J. (2006) El médico de Ifni, Barcelona, Areté.
Rivera De La Cruz, M. (2009) La importancia de las cosas, Barcelona,

Planeta.
Rodríguez, J. A., Noriega, P., Sierra, C. & Padget, J. (1997) FM96. 5: A Java-

based electronic auction house. Proceedings of 2nd Conference on
Practical Applications of Intelligent Agents and MultiAgent
Technology (PAAM’97),. London, UK.

Rodríguez, R., Cortés, A., Margalef, T. & Luque, E. (2008) An Adaptive
System for Forest Fire Behavior Prediction. 11th IEEE International
Conference on Computational Science and Engineering.

Romelaer, P. (2002) Organization: a diagnosis method. Cahier. University
Paris IX Dauphine, Crepa Laboratory.

Ros, F., Pintore, M. & Chrétien, J. R. (2007) Automatic design of growing
radial basis function neural networks based on neighboorhood
concepts. Chemometrics and Intelligent Laboratory Systems, 87, 231-
240.

Ros, R., Veloso, M., De Mantaras, R. L., Sierra, C. & Arcos, J. L. (2006)
Retrieving and Reusing Game Plays for Robot Soccer. Advances in
Case-Based Reasoning, 4106, 2006.

Rosenberry, W., Kenney, D. & Fisher, G. (1992) Understanding DCE,
O'Reilly & Associates, Inc. Sebastopol, CA, USA.

Russell, S. J., Norvig, P., Canny, J. F., Malik, J. & Edwards, D. D. (1995)
Artificial intelligence: a modern approach, Prentice hall Englewood
Cliffs, NJ.

Sabater, J. & Sierra, C. (2001) Social regret, a reputation model based on
social relations. ACM SIGecom Exchanges, 3, 44-56.

Sahin, Y. G. (2007) Animals as Mobile Biological Sensors for Forest Fire
Detection. Sensors, 7, 3084-3099.

Sánchez Dragó, F. (2009) Soseki : inmortal y tigre, Barcelona, Planeta.

Organization Based Multiagent Architecture For Distributed Environments

222

Sandhlom, T. W. & Lesser, V. R. T. (1997) Coalitions among
computationally bounded agents. Artificial Intelligence, 94, 99-137.

Sandholm, T. (2002) Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 1-54.

Sandholm, T. (2006) Optimal winner determination algorithms.
Combinatorial Auctions, 337–368.

Sandholm, T., Larson, K., Andersson, M., Shehory, O. & Tohmé, F. (1999)
Coalition structure generation with worst case guarantees. Artificial
Intelligence, 111, 209-238.

Sanz, G. (2002) Modelado de Sistemas Multi-Agente. Departamento de
Sistemas Informaticos y Programacion. Universidad Complutense de
Madrid.

Savater, F. (2008) La hermandad de la buena suerte, Barcelona, Planeta.
Scerri, P., Pynadath, D. & Tambe, M. (2002) Towards adjustable autonomy

for the real world. Journal of Artificial Intelligence Research, 17,
171-228.

Schmitt, J. B. & Roedig, U. (2005) Sensor Network Calculus--A Framework
for Worst Case Analysis. Lecture Notes in Computer Science, 3560,
141-154.

Schroth, C. & Christ, O. (2007) Brave new web: Emerging design principles
and technologies as enablers of a global soa. Proceedings of the 2007
IEEE International Conference on Services Computing (SCC 2007).
Salt Lake City, USA.

Schwaninger, M., Körner, M. & Institut Für, B. (2000) A theory for optimal
organization, Institute of Management, University of St. Gallen
(HSG).

Searle, J. R. (1969) Speech acts: An essay in the philosophy of language,
Cambridge University Press.

Sen, S. (1996) Reciprocity: a foundational principle for promoting cooperative
behavior among self-interested agents. Proc. of the Second
International Conference on Multiagent Systems. AAAI Press.

Serón, F. J., Gutiérrez, D., Magallón, J., Ferragut, L. & Asensio, M. I. (2005)
The Evolution of a Wildland Forest Fire Front. The Visual Computer,
21, 152-169.

Sharma, M., Holmes, M., Santamaria, J., Irani, A., Isbell, C. & Ram, A.
(2007) Transfer learning in real-time strategy games using hybrid
cbr/rl. Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence.

References

223

Shehory, O. & Kraus, S. (1998) Methods for task allocation via agent
coalition formation. Artificial Intelligence, 101, 165-200.

Shehory, O., Sycara, K., Chalasani, P. & Jha, S. (1998) Agent cloning: an
approach to agent mobility and resource allocation. IEEE
Communications Magazine, 36, 58-67.

Shen, J., Zhang, X. & Lesser, V. (2004) Degree of local cooperation and its
implication on global utility. Proceedings of Third International Joint
Conference on Autonomous Agents and MultiAgent Systems (AA-
MAS 2004). New York, IEEE Computer Society Washington, DC,
USA.

Shen, W. & Norrie, D. H. (1998) A hybrid agent-oriented infrastructure for
modeling manufacturing enterprises. Knowledge Acquisition
Workshop (KAW’98).

Shiu, S. C. K. & Pal, S. K. (2004) Case-Based Reasoning: Concepts, Features
and Soft Computing. Applied Intelligence, 21, 233-238.

Shoham, Y., Computer Science, D. & Stanford, U. (1997) Agent-oriented
programming. Knowledge Representation and Reasoning Under
Uncertainty. Springer.

Shoham, Y. & Tennenholtz, M. (1995) On social laws for artificial agent
societies: Off-line design. Artificial Intelligence, 73, 231-252.

Sichman, J. S. & Demazeau, Y. (2001) On social reasoning in multi-agent
systems. Revista Iberoamericana de Inteligencia Artificial, 13, 68-84.

Siegel, J. (1998) OMG overview: CORBA and the OMA in enterprise
computing. Communications of the ACM, 41, 37-43.

Sierra, C., Sabater, J., Augusti, J. & Garcia, P. (2004) SADDE: Social agents
design driven by equations. Methodologies and software engineering
for agent systems. Kluwer Academic Publishers.

Simon, H. A. (1969) The sciences of the artificial, MIT press.
Sims, M., Corkill, D. & Lesser, V. (2004) Separating domain and

coordination in multi-agent organizational design and instantiation.
Proceedings of the International Conference on Intelligent Agent
Technology (IAT 20004). Beijing, China.

Sims, M., Goldman, C. V. & Lesser, V. (2003) Self-organization through
bottom-up coalition formation. Proceedings of Second International
Joint Conference on Au- tonomous Agents and MultiAgent Systems
(AAMAS 2003). ACM New York, NY, USA.

Smith, R. G. (1980) The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on
computers, 29, 1104-1113.

Organization Based Multiagent Architecture For Distributed Environments

224

Snidaro, L. & Foresti, G. L. (2007) Knowledge representation for ambient
security. Expert Systems, 24, 321-333.

So, Y. & Durfee, E. H. (1996) Designing tree-structured organizations for
computational agents. Computational & Mathematical Organization
Theory, 2, 219-245.

Soh, L. K. (2003) A satisficing, negotiated, and learning coalition formation
architecture. Distributed Sensor Networks: A multiagent perspective,
109–138.

Solberg, A. H. S., Brekke, C. & Husoy, P. O. (2007) Oil Spill Detection in
Radarsat and Envisat SAR Images. Geoscience and Remote Sensing,
IEEE Transactions on, 45, 746-755.

Solberg, A. H. S., Storvik, G., Solberg, R. & Volden, E. (1999) Automatic
detection of oil spills in ERS SAR images. IEEE Transactions on
Geoscience and Remote Sensing, 37, 1916-1924.

Song, X., Petrovic, S. & Sundar, S. (2007) A Case-Based Reasoning
Approach to Dose Planning in Radiotherapy. International
Conference on Case-Based Reasoning, ICCBR 2007, Proceedings.

Sørmo, F., Cassens, J. & Aamodt, A. (2005) Explanation in Case-Based
Reasoning–Perspectives and Goals. Artificial Intelligence Review, 24,
109-143.

Spasic, I., Ananiadou, S. & Tsujii, J. (2005) MaSTerClass: a case-based
reasoning system for the classification of biomedical terms.
Bioinformatics, 21, 2748-2758.

Spread (2004) http ://www.adai.pt. Forest Fire Spread Prevention and
Mitigation.

Stal, M., Technol, S. C. & Munich, G. (2006) Using architectural patterns and
blueprints for service-oriented architecture. IEEE software, 23, 54-61.

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J.,
Adcroft, A., Hill, C. N. & Marshall, J. (2003) Volume, heat, and
freshwater transports of the global ocean circulation 1993–2000,
estimated from a general circulation model constrained by World
Ocean Circulation Experiment (WOCE) data. Journal of Geophysical
Research, 108.

Stefanoiu, D., Ulieru, M. & Norrie, D. (2000) Fuzzy Modeling of Multi-Agent
Systems Behavior. Vagueness Minimization. Proceedings of World
Multiconference on Systemics, Cybernetics and Informatics
(SCI’2000).

Stonebraker, M., Aoki, P. M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J.,
Staelin, C. & Yu, A. (1996) Mariposa: A wide-area distributed

References

225

database system. The VLDB Journal The International Journal on
Very Large Data Bases, 5, 48-63.

Subramanian, R. & Goodman, B. D. (2005) Peer-to-peer computing: the
evolution of a disruptive technology, Idea Group Pub.

Sun, Z., Finnie, G. & Weber, K. (2004) Case base building with similarity
relations. Information Sciences, 165, 21-43.

Sycara, K., Decker, K. & Williamson, M. (1997) Middle-agents for the
internet. Proceedings of the 15th International Joint Conference on
Artificial Intelligence.

Sycara, K., Paolucci, M., Van Velsen, M. & Giampapa, J. (2003) The retsina
mas infrastructure. Autonomous agents and multi-agent systems, 7,
29-48.

Sycara, K. P. (1998a) The many faces of agents. AI magazine, 19, 11-12.
Sycara, K. P. (1998b) Multiagent systems. AI magazine, 19, 79-92.
Tambe, M. (1997) Towards flexible teamwork. Journal of Artificial

Intelligence Research, 7, 83-124.
Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G. A., Marsella,

S. C. & Muslea, I. (1999) Building agent teams using an explicit
teamwork model and learning. Artificial Intelligence, 110, 215-239.

Tello, M., López-Martínez, C. & Mallorqui, J. J. (2006) A Novel Algorithm
for Automatic Ship and Oil Spill Detection Based on Time-Frequency
Methods. Advances in SAR Oceanography from Envisat and ERS
Missions, Proceedings of SEASAR Frascati, Italy, European Space
Agency.

Thatte, S. (2001) XLANG: Web services for business process design.
Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K. & Essiari,

A. (1999) Certificate-based access control for widely distributed
resources. Proc. 8th Usenix Security Symposium.

Tidhar, G., Heinze, C. & Selvestrel, M. (1998) Flying together: Modelling air
mission teams. Applied Intelligence, 8, 195-218.

Tidhar, G., Rao, A. S. & Sonenberg, E. A. (1996) Guided team selection.
Proceedings of the 2nd International Conference on Multi-agent
Systems (ICMAS-96). Kyoto, Japan.

Topouzelis, K., Karathanassi, V., Pavlakis, P. & Rokos, D. (2007) Detection
and discrimination between oil spills and look-alike phenomena
through neural networks. ISPRS Journal of Photogrammetry and
Remote Sensing, 62, 264-270.

Organization Based Multiagent Architecture For Distributed Environments

226

Tsai, C. Y. & Chiu, C. C. (2007) A case-based reasoning system for PCB
principal process parameter identification. Expert Systems With
Applications, 32, 1183-1193.

Tse, L. (2007) Tao Te Ching, Integral.
Tsvetovat, M., Sycara, K., Chen, Y. & Ying, J. (2001) Customer coalitions in

electronic markets. Proceedings of the Fourth International
Conference on Autonomous Agents. Barcelona, Spain.

Tsvetovatyy, M., Gini, M., Mobasher, B. & Ski, Z. W. (1997) MAGMA: an
agent based virtual market for electronic commerce. Applied Artificial
Intelligence, 11, 501-523.

Tuler, S., Kay, R., Seager, T. P. & Linkov, I. (2006) Objectives and
performance metrics in oil spill response: The Bouchard-120 and
Chalk Point spill responses. SERI Report.

Turing, A. M. (1950) Computer machinery and intelligence. Mind, 59, 433-
460.

Turner, R. M. (1993) The tragedy of the commons and distributed AI systems.
Dept. of Computer Science. University of New Hampshire.

Ulieru, M. (2002) Emergence of Holonic Enterprises from Multi-Agent
Systems: A Fuzzy-Evolutionary Approach. Invited Chapter in Soft
Computing Agents: A New Perspective on Dynamic Information
Systems, 187-215.

Ulieru, M., Walker, S. & Brennan, B. (2001) Holonic enterprise as a
collaborative information ecosystem. In Proc. Workshop on Holons:
Autonomous and Cooperating Agents for Industry.

Valdivia, I. G. (1983) Reflexiones en torno al orden social, Editorial Jus.
Van Den Broek, E. L., Jonker, C. M., Sharpanskykh, A., Treur, J. & Yolum,

P. (2006) Formal modeling and analysis of organizations. Lecture
Notes in Computer Science, 3913, 18.

Van Steen, M. & Tanenbaum, A. S. (2002) Distributed Systems: Principles
and Paradigms, Prentice Hall.

Vázquez-Salceda, J. & Dignum, F. (2003) Modelling Electronic
Organizations. Lecture Notes in Artificial Intelligence, 2691, 584-593.

Vázquez-Salceda, J., Dignum, V. & Dignum, F. (2005) Organizing multiagent
systems. Autonomous agents and multi-agent systems, 11, 307-360.

Verharen, E. (1997) A Language-Action Perspective on the Design of
Cooperative Information Systems. PhD Thesis. Katholieke Universieit
Brabant.

References

227

Vethamony, P., Sudheesh, K., Babu, M. T., Jayakumar, S., Manimurali, R.,
Saran, A. K., Sharma, L. H., Rajan, B. & Srivastava, M. (2007)
Trajectory of an oil spill off Goa, eastern Arabian Sea: Field
observations and simulations. Environmental Pollution, 148.

Vickrey, W. (1961) Counterspeculation, auctions, and competitive sealed
tenders. Journal of finance, 8-37.

Vinoski, S. (1993) Distributed object computing with CORBA. C++ Report,
5, 32-38.

Wagner, J. A. (2004) Comportamiento organizativo: Consiguiendo la ventaja
competitiva, Thomson Learning Ibero.

Wagner, T. & Lesser, V. (2000) Relating quantified motivations for
organizationally situated agents. Lecture Notes in Computer Science,
1757, 334-348.

Walker, A. & Wooldridge, M. (1995) Understanding the emergence of
conventions in multi-agent systems. Proceedings of the First
International Conference on Multi–Agent Systems. San Francisco,
CA.

Watson, I. (1999) Case-based reasoning is a methodology not a technology.
Knowledge-Based Systems, 12, 303-308.

Watson, I. & Marir, F. (1994) Case-Based Reasoning: A Review. The
Knowledge Engineering Review, 9, 327-354.

Wayner, P. (1995a) Agents Unleashed: A public domain look at agent
technology, Academic Press Professional, Inc. San Diego, CA, USA.

Wayner, P. (1995b) Free Agents. Byte, March, 105-114.
Weber, M. (1978) Economy and Society (Berkeley. University of California

Press, 1016, 308–338.
Weiser, M. (1993) Ubiquitous computing. IEEE Computer, 26, 71-72.
Weiss, G. (1999) Prologue: multiagent systems and distributed artificial

intelligence. Multiagent systems: a modern approach to distributed
artificial intelligence, MIT Press, Cambridge, Massachusetts, 1-23.

Wellman, M. P. (1993) A market-oriented programming environment and its
application to distributed multicommodity flow problems. Journal of
Artificial Intelligence Research, 1, 1-23.

Wellman, M. P. (2004) Online marketplaces. Practical Handbook of Internet
Computing. . Chapman Hall & CRC Press.

Wellman, M. P., Walsh, W. E., Wurman, P. R. & Mackie-Mason, J. K. (2001)
Auction protocols for decentralized scheduling. Games and Economic
Behavior, 35, 271-303.

Organization Based Multiagent Architecture For Distributed Environments

228

Wellman, M. P. & Wurman, P. R. (1998) Market-aware agents for a
multiagent world. Robotics and autonomous Systems, 24, 115-126.

Wellman, M. P. & Wurman, P. R. (1999) A trading agent competition for the
research community. Proceedings of the IJCAI-99 Workshop on
Agent-Mediated Electronic Trading.

Wiederhold, G. (1992) Mediators in the architecture of future information
systems. Computer Magazine, 25, 38-49.

Wilson, D. C. (2001) Case-base Maintenance: The Husbandry of Experience.
PhD Thesis. Indiana University.

Williamson, O. E. (1975) Markets and hierarchies, analysis and antitrust
implications: a study in the economics of internal organization, Free
Press.

Willmott, S., Dale, J., Burg, B., Charlton, P. & O'brien, P. (2001) Agentcities:
a worldwide open agent network. Agentlink News, 8, 13-15.

Winograd, T. (1987) Understanding computers and cognition: A new
foundation for design, Addison-Wesley.

Wirtz, K. W., Baumberger, N., Adam, S. & Liu, X. (2007) Oil spill impact
minimization under uncertainty: Evaluating contingency simulations
of the Prestige accident. Ecological Economics, 61, 417-428.

Wooldridge, M. (1999) Intelligent Agents. in WEISS, G. (Ed.) Multiagent
System: A Modern approach to Distributed artificial intelligence.
MIT press.

Wooldridge, M. (2002) An Introduction to MultiAgent Systems, Chichester,
England, John Wiley & Sons.

Wooldridge, M. & Jennings, N. R. (1995) Intelligent Agents: Theory and
Practice. The Knowledge Engineering Review, 10, 115-152.

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000) The Gaia methodology
for agent-oriented analysis and design. Autonomous agents and multi-
agent systems, 3, 285-312.

Wooldridge, M. J. (2000) Reasoning about rational agents, MIT press.
Wooldridge, M. J. & Jennings, N. R. (1999) Software engineering with

agents: Pitfalls and pratfalls. IEEE Internet Computing, 3, 20-27.
Wu, J. & Yu, Y. (2005) Connectionism-Based CBR Method for Distribution

Short-Term Nodal Load Forecasting. TENCON 2005. IEEE Region
10, 1-6.

Wurman, P. R., Wellman, M. P. & Walsh, W. E. (2001) A parametrization of
the auction design space. Games and Economic Behavior, 35, 304-
338.

References

229

Wybo, J. L., De Paris, E. M. & Antipolis, S. (1998) FMIS: a decision support
system for forest fire prevention and fighting. Engineering
Management, IEEE Transactions on, 45, 127-131.

Yadgar, O., Kraus, S. & Ortiz, C. (2003) Scaling up distributed sensor
networks: cooperative large-scale mobile-agent organizations. in
LESSER, V., ORTIZ, C. L. & TAMBE, M. (Eds.) Distributed Sensor
Networks: A Multiagent Perspective.

Yang, B. S., Han, T. & Kim, Y. S. (2004) Integration of ART-Kohonen neural
network and case-based reasoning for intelligent fault diagnosis.
Expert Systems With Applications, 26, 387-395.

Yau, N. J. & Yang, J. B. (1998a) Applying case-based reasoning technique to
retaining wall selection. Automation in construction, 7, 271-283.

Yau, N. J. & Yang, J. B. (1998b) Case-based reasoning in construction
management. Computer-Aided Civil and Infrastructure Engineering,
13, 143-150.

Yu, W. & Liu, Y. (2006) Hybridization of CBR and numeric soft computing
techniques for mining of scarce construction databases. Automation in
Construction, 15, 33-46.

Zambonelli, F. (2002) Abstractions and infrastructures for the design and
development of mobile agent organizations. Lecture Notes in
Computer Science, 2222, 245-262.

Zambonelli, F., Jennings, N. R. & Wooldridge, M. (2001) Organizational
abstractions for the analysis and design of multi-agent systems.
Lecture Notes in Computer Science, 235-252.

Zambonelli, F., Jennings, N. R. & Wooldridge, M. (2003) Developing
multiagent systems: The Gaia methodology. ACM Transactions on
software Engineering and Methodology, 12, 317-370.

Zhang, F., Ha, M. H., Wang, X. Z. & Li, X. H. (2004) Case adaptation using
estimators of neural network. Proceedings of 2004 International
Conference on Machine Learning and Cybernetics, 4.

Zhang, X., Lesser, V. & Wagner, T. (2002) Integrative negotiation in complex
organizational agent systems. Proceedings of the 2003 IEEE/WIC
International Conference on Intelligent Agent Technology (IAT 2003).
ACM New York, NY, USA.

Zhang, X. & Norrie, D. H. (1999) Holonic control at the production and
controller levels. Proc. 2nd Int. Workshop on Intelligent
Manufacturing Systems.

”Only strength can cooperate. Weakness can only beg.” Dwight D. Eisenhower

231

APPENDIX A. CORBA
CORBA is a mechani sm in so f tware f o r normal iz ing the
method- ca l l s emant i c s be tween app l i ca t ion ob j e c t s that
r e s ide e i ther in the same addres s space (app l i cat ion) or
r emote addre s s space (same hos t , o r r emote hos t on a
ne twork) . Vers ion 1 .0 was r e l eas ed in October 1991.
CORBA uses an in t e r fa c e de f in i t i on language (IDL) to
spe c i f y the in t e r fa c e s that ob j e c t s wi l l pr e s en t to the out s ide
wor ld . In th i s appendix, some t e chni ca l spe c i f i cat i ons are
expla ined , fur ther and deeper deve lop ing the in i t ia l
explanat ions g i v en in prev ious chapt e r about CORBA.

he Common Obje c t Reques t ing Broker Arch i t e c ture

(CORBA) is a standard def ined by the Object

Management Group(OMG) that enables software

components wri t ten in mult iple computer languages and running

on mult iple computers to work together . One of the first specifications

to be adopted by the OMG was the CORBA specification. It details the

interfaces and characteristics of the ORB component of the OMA. As of this

writing, the last major update of the CORBA specification was in mid-1995

when the OMG released CORBA 2.0 [OMG, 1996]. The main features of

CORBA 2.0 are: ORB Core, OMG Interface Definition Language (OMG IDL)

T

Organization Based Multiagent Architecture For Distributed Environments

232

Interface Repository, Language Mappings, Stubs and Skeletons, Dynamic

Invocation and Dispatch, Object Adapters and Inter-ORB Protocols.

Most of these are illustrated in figure 34, which also shows how the

components of CORBA relate to one another. Each component is

described in detail below.

A.1. ORB CORE
As mentioned above, the ORB delivers requests to objects and returns

any responses to the clients making the requests. The object that a client

wishes the ORB to direct a request to is called the target object. The key

feature of the ORB is the transparency of how it facilitates client/object

communication. Ordinarily, the ORB hides the following:

− Object location: The client does not know where the target object

resides. It could reside in a different process on another machine

across the network, on the same machine but in a different process,

Figure 34. Common Object Request Broker Architecture.

Appendix A. CORBA

233

or within the same process.

− Object implementation: The client does not know how the target

object is implemented, what programming or scripting language it

was written in, or the operating system (if any) and hardware it

executes on.

− Object execution state: When it makes a request on a target object,

the client does not need to know whether that object is currently

activated (i.e., in an executing process) and ready to accept

requests. The ORB transparently starts the object if necessary

before delivering the request to it.

− Object communication mechanisms: The client does not know

what communication mechanisms (e.g., TCP/IP, shared memory,

local method call, etc.) the ORB uses to deliver the request to the

object and return the response to the client.

These ORB features allow application developers to worry more about

their own application domain issues and less about low-level distributed

system programming issues.

To make a request, the client specifies the target object by using an

object reference. When a CORBA object is created an object reference for it is

also created. When used by a client, an object reference always refers to the

same object for which it was created, for as long as that object still exists. In

other words, an object reference only ever refers to one single object.

Object references are both immutable and opaque, so a client can’t

“reach into” the object reference and modify it. Only an ORB knows what’s

“inside” an object reference. Object references can have standardized formats,

such as those for the OMG standard Internet Inter-ORB Protocol and

Distributed Computing Environment Common Inter-ORB Protocol, or they

can have proprietary formats.

Organization Based Multiagent Architecture For Distributed Environments

234

A.2. OMG INTERFACE DEFINITION

LANGUAGE (OMG IDL)
Before a client can make requests on an object, it must know the types

of operations supported by the object. An object’s interface specifies the

operations and types that the object supports and thus defines the requests that

can be made on the object. Interfaces for objects are defined in the OMG

Interface Definition Language (OMG IDL). Interfaces are similar to classes in

C++ and interfaces in Java.

An important feature of OMG IDL is its language independence. Since

OMG IDL is a declarative language, not a programming language, it forces

interfaces to be defined separately from object implementations. This allows

objects to be constructed using different programming languages and yet still

communicate with one another. Language-independent interfaces are

important within heterogeneous systems, since not all programming languages

are supported or available on all platforms.

OMG IDL provides a set of types that are similar to those found in a

number of programming languages. It provides basic types such as long,

double, and boolean, constructed types such as struct and discriminated union,

and template types such as sequence and string. Types are used to specify the

parameter types and return types for operations. As seen in the example above,

operations are used within interfaces to specify the services provided by those

objects that support that particular interface type. To define exceptional

conditions that may arise during the course of an operation, OMG IDL

provides exception definitions. Like structs, OMG IDL exceptions may have

one or more data members of any OMG IDL type. The OMG IDL module

construct allows for scoping of definition names to prevent name clashes.

Appendix A. CORBA

235

A.3. LANGUAGE MAPPINGS
As mentioned before, OMG IDL is just a declarative language, not a

full-fledged programming language. As such, it does not provide features like

control constructs, nor is it directly used to implement distributed applications.

Instead, language mappings determine how OMG IDL features are mapped to

the facilities of a given programming language.

At the time of this writing, the OMG has standardized language

mappings for C, C++, Smalltalk, and Ada 95. Likewise, mappings for the

UNIX Bourne shell and for COBOL are nearing completion. A mapping for

the Java language is just beginning, but is slated to finish quickly keeping up

with the high demand for Java/CORBA integration. Language mappings for

other languages such as Perl, Eiffel, and Modula-3 have also been written by

various interested parties, but have not been submitted to the OMG for

approval.

To understand what a language mapping contains, consider the

mapping for the C++ language. Not surprisingly, OMG IDL interfaces map to

C++ classes, with operations mapping to member functions of those classes.

Object references map to objects that support the operator-> function (i.e.,

either a normal C++ pointer to an interface class, or an object instance with an

overloaded operator->). Modules map to C++ namespaces (or to nested classes

for C++ compilers that do not yet support namespaces).

Another important aspect of an OMG IDL language mapping is how it

maps the ORB interface and other pseudo-objects that are found in the

CORBA specification. Pseudo-objects are ORB interfaces that are not

implicitly derived from CORBA::Object, such as the ORB itself. In other

words, pseudo-objects are not real CORBA objects, but specifying such

interfaces just like normal object interfaces are specified allows applications to

manipulate the ORB much like they manipulate normal objects.

Organiza

236

A

CORBA

language

impleme

abstract

that hold

to the OM

O

specified

importan

incomple

being un

Languag

improve

well as t

applicati

A.4.
E

type sys

must kno

the appl

being us

M

type sys

into cod

translatio

this gene

ation Based M

A third impo

A objects a

es such as Ja

ented as prog

data types. F

ds the state o

MG IDL ope

OMG IDL la

d in CORBA

nce for CO

ete mapping

nable to eff

ge mapping

ment in orde

to add featur

ions.

INTERF

Every CORB

stem when it

ow the types

lication must

ed.

Many applic

tem. Typica

de for the

on rules for

erated code i

Multiagent Archi

ortant part o

are impleme

ava, Smalltal

gramming la

For instance,

of the object

erations supp

anguage map

A meet the

ORBA appli

specification

ffectively uti

specification

er to incorpo

res that fulfil

FACE R
BA-based ap

t is executin

s of values to

t know the

cations requi

ally, an OMG

application’s

that languag

s built direct

itecture For Di

f any langua

ented in th

k, and C++,

anguage obj

, a typical im

and a group

ported by the

ppings are wh

“real world”

ications can

n for a given

ilize CORB

ns are there

orate evolutio

l new require

REPOSIT

pplication re

ng. This is n

o be passed a

types of int

ire only stat

G IDL speci

s programm

ge, as defined

tly into the ap

istributed Envir

age mapping

he language

for example

ects. In C, o

mplementatio

of C functio

e object) to m

here the abst

” of implem

nnot be ove

n language re

A technolog

fore always

on of progra

ements disco

TORY
equires acce

necessary be

as request ar

terfaces supp

tic knowledg

fication is c

ming languag

d by its lang

pplication.

ronments

g specificatio

e. In object

e, CORBA o

objects are w

on consists o

ons (which co

manipulate th

tractions and

mentation. Th

erstated. A

esults in prog

gy in that

undergoing

amming lang

overed by wr

ess to the O

ecause the ap

rguments. In

ported by th

ge of the O

ompiled or t

ge by follo

guage mappin

on is how

t-oriented

bjects are

written as

of a struct

orrespond

hat state.

d concepts

hus, their

poor or

grammers

language.

g periodic

guages, as

riting new

OMG IDL

pplication

n addition,

he objects

OMG IDL

translated

wing the

ng. Then,

Appendix A. CORBA

237

With this approach, the application’s knowledge of the OMG IDL

type system is fixed when it is built.

 If the type system of the rest of the distributed system ever changes in

a way that is incompatible with the type system built into the application, the

application must be rebuilt. For example, if a client application depends on the

Factory interface, and the name of the create operation in the Factory interface

is changed to create object, the client application will have to be rebuilt before

it can make requests on any Factory objects.

There are some applications, however, for which static knowledge of

the OMG IDL type system is impractical. For example, consider a Gateway

that allows applications in a foreign object system (such as Microsoft

Component Object Model (COM) applications) to access CORBA objects.

Having to recompile and rebuild the Gateway every time someone added a

new OMG IDL interface type to the system would result in a very difficult

management and maintenance problem. Instead, it would be much better if the

Gateway could dynamically discover and utilize type information as needed.

The CORBA Interface Repository (IR) allows the OMG IDL type

system to be accessed and written programmatically at runtime. The IR is

itself a CORBA object whose operations can be invoked just like any other

CORBA object. Using the IR interface, applications can traverse an entire

hierarchy of OMG IDL information.

 For example, an application can start at the top-level scope of the IR

and iterate over the entire module definitions defined there. When the desired

module is found, it can open it and iterate in a similar manner over all the

definitions inside it. This hierarchical traversal approach can be used to

examine all the information stored within an IR.

Organization Based Multiagent Architecture For Distributed Environments

238

A.5. STUBS AND SKELETONS
In addition to generating programming language types, OMG IDL

language compilers and translators also generate client-side stubs and server-

side skeletons. A stub is a mechanism that effectively creates and issues

requests on behalf of a client, while a skeleton is a mechanism that delivers

requests to the CORBA object implementation. Since they are translated

directly from OMG IDL specifications, stubs and skeletons are normally

interface-specific.

Dispatching through stubs and skeletons is often called static

invocation. OMG IDL stubs and skeletons are built directly into the client

application and the object implementation. Therefore, they both have complete

a priori knowledge of the OMG IDL interfaces of the CORBA objects being

invoked.

Language mappings usually map operation invocation to the

equivalent of a function call in the programming language. Once the request

arrives at the target object, the server ORB and the skeleton cooperate to

unmarshal the request (convert it from its transmissible form to a

programming language form) and dispatch it to the object. Once the object

completes the request, any response is sent back the way it came: through the

skeleton, the server ORB, over the connection, and then back through the

client ORB and stub, before finally being returned to the client application.

This description shows that stubs and skeletons play important roles in

connecting the programming language world to the underlying ORB. In this

sense they are each a form of the Adapter and Proxy patterns [Gamma et al.,

1995]. The stub adapts the function call style of its language mapping to the

request invocation mechanism of the ORB. The skeleton adapts the request

dispatching mechanism of the ORB to the upcall method form expected by the

object implementation.

Appendix A. CORBA

239

A.6. DYNAMIC INVOCATION AND

DISPATCH
In addition to static invocation via stubs and skeletons, CORBA

supports two interfaces for dynamic invocation:

− Dynamic Invocation Interface (DII) – which supports dynamic

client request invocation;

− Dynamic Skeleton Interface (DSI) – which provides dynamic

dispatch to objects.

The DII and the DSI can be viewed as a generic stub and generic

skeleton, respectively. Each is an interface provided directly by the ORB, and

neither is dependent upon the OMG IDL interfaces of the objects being

invoked.

A.6.1. DYNAMIC INVOCATION INTERFACE

Using the DII, a client application can invoke requests on any object

without having compile-time knowledge of the object’s interfaces. For

example, consider the foreign object Gateway described above. When an

invocation is received from the foreign object system, the Gateway must turn

that invocation into a request dispatch to the desired CORBA object.

Recompiling the Gateway program to include new static stubs every time a

new CORBA object is created is impractical. Instead, the Gateway can simply

use the DII to invoke requests on any CORBA object. The DII is also useful

for interactive programs such as browsers that can obtain the values necessary

to supply the arguments for the object’s operations from the user.

Currently, CORBA applications that require the ability to invoke

requests using something other than a synchronous or one-way model must

use the DII. This is because the deferred synchronous request invocation

Organization Based Multiagent Architecture For Distributed Environments

240

capability is currently only provided by the DII. However, this restriction will

soon be removed. Recently, the OMG issued an RFP for an Asynchronous

Messaging Service that should result in the adoption of technology for higher-

level communications models, such as store-and-forward services for the

ORB. This RFP also requests technology for supporting deferred synchronous

request invocation via static stubs.

While the DII offers more flexibility than static stubs, users of the DII

should also be sure they are aware of its hidden costs [Vinoski, 1993, Gokhale

and Schmidt, 1996]. In particular, creating a DII request may cause the ORB

to transparently access the IR to obtain information about the types of the

arguments and return value. Since the IR is itself a CORBA object, each

transparent IR request made by the ORB could in fact be a remote invocation.

Thus, the creation and invocation of a single DII request could in fact require

several actual remote invocations, making a DII request several times more

costly than an equivalent static invocation. Static invocations do not suffer

from the overhead of accessing the IR since they rely on type information

already compiled into the application.

A.6.2. DYNAMIC SKELETON INTERFACE

Analogous to the DII is the server-side Dynamic Skeleton Interface

(DSI). Just as the DII allows clients to invoke requests without having access

to static stubs, the DSI allows servers to be written without having skeletons

for the objects being invoked compiled statically into the program.

The foreign object Gateway described above is a good example of an

application that requires DSI functionality. A bidirectional Gateway must be

able to act as both a client and a server – it must translate requests from the

foreign object system into requests on CORBA objects, and turn requests from

CORBA applications into foreign object invocations. As mentioned above, it

can use the DII when it wants to act as a client. To act as a server, however, it

Appendix A. CORBA

241

needs a server-side equivalent of the DII, allowing it to accept requests

without requiring static skeletons for each object’s interface type to be

compiled into it. Requiring the Gateway to be recompiled each time a new

OMG IDL interface was introduced into the CORBA side of the system would

not work well in practice.

Unlike most of the other CORBA subcomponents, which were part of

the initial CORBA specification, the DSI was only introduced at CORBA 2.0.

The main reason for its introduction was to support the implementation of

gateways between ORBs utilizing different communications protocols. Even

though inter-ORB protocols were also introduced at CORBA 2.0, it was

thought by some at the time that gateways would become the method of

choice for ORB interoperation. Given that most commercially-available ORB

systems already support the standard Internet Inter-ORB Protocol (IIOP), this

prediction does not appear to have come true. Still, the DSI is a useful feature

for a certain class of applications, especially for bridges between ORBs and

for applications that serve to bridge CORBA systems to non-CORBA services

and implementations.

A.7. OBJECT ADAPTERS
The final subcomponent of CORBA, the Object Adapter (OA), serves

as the glue between CORBA object implementations and the ORB itself. As

described by the Adapter pattern [Gamma et al., 1995], an object adapter is an

object that adapts the interface of another object to the interface expected by a

caller. In other words, it is an interposed object that uses delegation to allow a

caller to invoke requests on an object even though the caller does not know

that object’s true interface. Figure 35 illustrates the role of an object adapter.

Object adapters represent another aspect of the effort to keep the ORB

as simple as possible. Responsibilities of object adapters include:

Organization Based Multiagent Architecture For Distributed Environments

242

− Object registration – OAs supply operations that allow

programming language entities to be registered as implementations

for CORBA objects. Details of exactly what is registered and how

the registration is accomplished depends on the programming

language.

− Object reference generation – OAs generate object references for

CORBA objects.

− Server process activation – If necessary, OAs start up server

processes in which objects can be activated.

− Object activation – OAs activate objects if they are not already

active when requests arrive for them.

− Request demultiplexing – OAs must cooperate with the ORB to

ensure that requests can be received over multiple connections

without blocking indefinitely on any single connection.

− Object upcalls – OAs dispatch requests to registered objects.

Figure 35. Role of an Object Adapter.

Appendix A. CORBA

243

Without object adapters, the ability of CORBA to support diverse

object implementation styles would be severely compromised. The lack of an

object adapter would mean that object implementations would connect

themselves directly to the ORB to receive requests. Having a standard set of

just a few object upcall interfaces would mean that only a few styles of object

implementation could ever be supported. Alternatively, standardizing many

object upcall interfaces would add unnecessary size and complexity to the

ORB itself.

A.8. INTER-ORB PROTOCOLS
Before CORBA 2.0, one of the biggest complaints about commercial

ORB products is that they did not interoperate. Lack of interoperability was

caused by the fact that the CORBA specification did not mandate any

particular data formats or protocols for ORB communications. The main

reason that CORBA did not specify ORB protocols prior to CORBA 2.0 was

simply that interoperability was not a focus of the OMG at that time.

CORBA 2.0 introduced a general ORB interoperability architecture

that provides for direct ORB-to-ORB interoperability and for bridge-based

interoperability. Direct interoperability is possible when two ORBs reside in

the same domain – in other words, they understand the same object references,

the same OMG IDL type system, and perhaps shares the same security

information. Bridge-based interoperability is necessary when ORBs from

separate domains must communicate. The role of the bridge is to map ORB-

specific information from one ORB domain to the other.

The general ORB interoperability architecture is based on the General

Inter-ORB Protocol (GIOP), which specifies transfer syntax and a standard set

of message formats for ORB interoperation over any connection-oriented

transport. GIOP is designed to be simple and easy to implement while still

allowing for reasonable scalability and performance.

Organization Based Multiagent Architecture For Distributed Environments

244

The Internet Inter-ORB Protocol (IIOP) specifies how GIOP is built

over TCP/IP transports. In a way, the relationship between IIOP and GIOP is

somewhat like the relationship between an object’s OMG IDL interface

definition and its implementation. GIOP specifies protocol, just as an OMG

IDL interface effectively defines the protocol between an object and its clients.

IIOP, on the other hand, determines how GIOP can be implemented using

TCP/IP, just as an object implementation determines how an object’s interface

protocol is realized. For a CORBA 2.0 ORB, support for GIOP and IIOP is

mandatory.

The ORB interoperability architecture also provides for other

environment-specific inter-ORB protocols (ESIOPs). ESIOPs allow ORBs to

be built for special situations in which certain distributed computing

infrastructures are already in use. The first ESIOP, which utilizes the

Distributed Computing Environment (DCE) [Rosenberry et al., 1992], is

called the DCE Common Inter-ORB Protocol (DCE-CIOP). It can be used by

ORBs in environments where DCE is already installed. This allows the ORB

to leverage existing DCE functions, and it allows for easier integration of

CORBA and DCE applications. Support for DCE-CIOP or any other ESIOP

by a CORBA 2.0 ORB is optional.

” Science is organized knowledge. Wisdom is organized life.” Immanuel Kant

245

APPENDIX B.
TAXONOMY OF

ORGANIZATIONS
Organizat ions r epre s ent the inner s t ruc ture o f the
ar ch i t e c ture proposed in th i s document . In th i s appendix, a
compl e t e c las s i f i cat ion o f the organizat ions o f agent s i s
done . These in c lude h i e rar ch i e s , ho lar ch i e s , coa l i t i ons ,
t eams , congrega t ions , so c i e t i e s , f ederat ions , market s , and
matr ix organizat ions . A des c r ip t ion o f ea ch wi l l be
prov ided , d i s cuss ing the i r advantage s and d i sadvantage s ,
and prov id ing example s o f how they may be ins tant iat ed
and mainta ined .

n the fourth chapter of this document, organizations of agents

have been explained, as an evolution of multi-agent systems.

The organizations of agents represent a logic evolution of the

multi-agent systems, introducing an internal organizational element that gives

the organizations an upper point of view. The fact that the agents can work

I

Organization Based Multiagent Architecture For Distributed Environments

246

together, with common objectives, sharing processes and interchanging

information is quite useful when a system must connect different users or

different services that may be located far from each other. Thus, the

organizational capabilities of the agents allow the system that employ this

methodology to structure the information and the objectives of the systems

developed, improving the results and creating a kind of specialization in the

tasks performed by the agents.

In this appendix, a complete taxonomy of the organizations of agents

is done, explaining the different possibilities of organizations. For all the

organizations exposed here, their main characteristics are explained as well as

the formation techniques in order to create an organization of agents of a

specific type.

 B.1. HIERARCHIES
The hierarchy or hierarchical organization is perhaps the earliest

example of structured, organizational design applied to multi-agent system and

earlier distributed artificial intelligence architectures [Fox, 1979, Lesser and

Erman, 1980, Davis and Smith, 1980, Bond and Gasser, 1988, Malone and

Smith, 1988, Montgomery and Durfee, 1993]. Agents are conceptually

arranged in a tree-like structure, as seen in figure 36, where agents higher in

the tree have a more global view than those below them. In its strictest

interpretation, interactions do not take place across the tree, but only between

connected entities. More recent work [Mathieu et al., 2002] has explored

starting with a strict hierarchy and augmenting it with cross links to allow

more direct communication, which can reduce some of the latency that results

from repeated traversals up and down the tree.

The data produced by lower-level agents in a hierarchy typically

travels upwards to provide a broader view, while control flows downward as

the higher level agents provide direction to those below [Bond and Gasser,

Appendix B. Taxonomy of Organizations

247

1988]. The simplest instance of this structure consists of a two-level hierarchy,

where the lower level agents’ actions are completely specified by the upper,

which produces a global view from the resulting information [Chandrasekaran,

1981]. More complex instances have multiple levels, while data flow,

authority relations or other organizationally-dictated characteristics may not be

absolute.

Fox [Fox, 1979] describes several different types of organizational

hierarchies. The simple hierarchy endows a single apex member with the

decision making authority in the system. Uniform hierarchies distribute this

authority in different areas of the system to achieve efficiency gains through

locality. Decisions are made by the agents which have both the information

needed to reason about the decision, and the organizational authority to do

make the decision. Each level acts as a filter, explicitly transferring

information and implicitly transferring decisions up the hierarchy only when

Figure 36. Hierarchical organization.

Organization Based Multiagent Architecture For Distributed Environments

248

necessary. Multi-divisional hierarchies further exploit localization by dividing

the organization along “product” lines, where products might represent

different physical artefacts, services, or high-level goals. Each division has

complete control over their product, which facilitates the decision making and

resource allocation process by limiting outside influences. The divisions

themselves may still be organized under a higher-level entity which evaluates

their performance and offers guidance, but is strictly separated from the

divisional decision process.

B.1.1. CHARACTERISTICS

The applicability of hierarchical structuring comes from the natural

decomposition possible in many different task environments. Indeed, task

decomposition trees are a popular way of modelling individual agent plan

recipes [Decker, 1996]; a hierarchical organization can be thought of as an

assignment of roles and interconnections inspired by the global goal tree. The

hierarchy’s efficiency is also derived from this notion of decomposition,

because the divide-and-conquer approach it engenders allows the system to

use larger groups of agents more efficiently and address larger scale problems

[Yadgar et al., 2003]. This type of organization can constrain agents to a

number of interactions that is small relative to the total population size. This

allows control actions and behaviour decisions become more tractable,

increased parallelism can be exploited, and because there is less potentially

distracting data they can obtain a more cohesive view of the information

pertinent to those decisions [Montgomery and Durfee, 1993].

It is not sufficient to simply aggregate increasing amounts of

information to obtain higher utility or better performance. This information

must be matched with sufficient computational power and analysis techniques

to make effective use of the information [Lesser, 1991]. Without this, the

effort to transfer the data may be wasted and the excess information distracts

Appendix B. Taxonomy of Organizations

249

the agent from more important tasks. Alternatively, the information can be

summarized, approximated or otherwise processed on its way up the tree to

reduce the information load. However, in doing so, a new dimension of

uncertainty is introduced because of the potential for necessary details to be

lost. In this situation, the decision making authority should be correctly placed

within the structure to maximize the tractable amount of useful information

that is available that retains an acceptable level of uncertainty or imprecision

[Fox, 1979, Lesser and Corkill, 1981].

Using a hierarchy can also lead to an overly rigid or fragile

organization, prone to single-point failures with potentially global

consequences [Maturana et al., 1999]. For example, if the apex agent were to

fail the entire structure’s cohesion could be compromised. Of course this agent

could be replaced, but it may then prove costly to restore the concentrated

information possessed by its predecessor. It is similarly susceptible to

bottleneck effects if the scope of control decisions or data receipt is not

effectively managed – consider what would happen if that apex agent received

all the raw data produced by a large group of agents below it.

B.1.2. FORMATION

Although the algorithm itself does not enforce a strict hierarchy such

as the one described earlier, Smith’s contract net protocol [Smith, 1980, Davis

and Smith, 1980] provides a straightforward mechanism to construct a series

of connections with most of the same characteristics. In some of this early

contract net work, the protocol was to explicitly form long-term organizational

relationships, rather than the short-term contracts it has been typically used for

more recently.

 The hierarchical structure that is produced by the process is implicitly

based on the way the high-level goal can be decomposed. Upon receipt of a

new task, an agent first chooses to perform the task itself, or search for agents

Organization Based Multiagent Architecture For Distributed Environments

250

willing to help complete the task. As part of this search process, the agent may

decompose the task into subtasks or contracts. The agent, acting as a

contractor, announces these contracts along with a bid specification to a subset

of its peers who then decide if they wish to submit a bid. The bids which

return to the contractor contain relevant information about the potential

employee which allows it to discriminate among competing offers. An

employee is selected and notified. Upon receipt of the new task, the employee

now faces the same question – should it perform the task itself or contract it

out? Repeated invocations of this process produce a hierarchy of contractors

and employees.

Because agents individually choose which contracts to bid on, and

contractors choose which bids to accept, this strategy can effectively assign

tasks among a population of agents without the need for a global view. The

drawback to this approach is that it is myopic. Because the contracting agent

does not necessarily take into account the needs of other contractors, it may

bind scarce resource in suboptimal ways. For example, it may select a

particular bid when viable alternatives exist, even though that particular bidder

is critical to another agent [Sims et al., 2003].

As with most organizational structures, the shape of the hierarchy can

affect the characteristics of both global and local behaviours. A very flat

hierarchy where agents have a high degree of connectivity can lead to

overloading if agent resources are both limited and consumed as a result of

these connections. Conversely, a very tall structure may slow the system’s

performance because of the delays incurred by passing information across

multiple levels. One approach to making this trade-off is the use of agent

cloning [Ishida et al., 1992, Decker et al., 1997, Maturana et al., 1999].

An agent in such a system may opt to create a copy or clone of itself,

possessing the same capabilities as the original, in response to overloaded

conditions. If additional resources are available for this clone to use, this

Appendix B. Taxonomy of Organizations

251

process allows the agent to dynamically create an assistant that can relieve

excess burden from the original, reducing load-related errors or inefficiencies

in the process. If the new agent is subordinate to the original, then a

hierarchical organization will be formed in the process. Shehory [Shehory et

al., 1998] discusses using cloning when other task-reallocation strategies are

not viable.

In this work, an agent’s overall load is a function of its local

processing, free memory and communication. It uses a dynamic programming

technique to compute an optimal time to clone, and an appropriately idle

computational node to house the new agent. The clone receives a subset of the

original task(s). The clones themselves require resources, and the results they

produce may require an additional hop to get to their ultimate destination, so

they may also be merged or destroyed when these costs outweigh their

benefits.

B.2. HOLARCHIES
The term holon was first coined by Arthur Koestler in his book The

Ghost In The Machine [Koestler, 1968]. In this work, Koestler attempts to

present a unified, descriptive theory of physical systems based on the nested,

self-similar organization that many such systems possess. For example,

biological, astrological and social systems are all comprised of multi-levelled,

grouped hierarchies. A universe is comprised of a number of galaxies, which

are comprised of a number of solar systems, and so on, all the way down to

subatomic particles.

Each grouping in these systems has a character derived but distinct

from the entities that are members of the group. At the same time, this same

group contributes to the properties of one or more groups above it. The

structure of each of these groupings is a basic unit of organization that can be

seen throughout the system as a whole. Koestler called such units holons, from

Organization Based Multiagent Architecture For Distributed Environments

252

the Greek word holos, meaning “whole”, and on, meaning “part”. Each holon

exists simultaneously as both a distinct entity built from a collection of

subordinates and as part of a larger entity.

True to Koestler’s intent, this notion of a hierarchical, nested structure

does accurately describe the organization of many systems. This concept has

been exploited, primarily in business and manufacturing domains, to define

and build structures called holarchies or holonic organizations which have this

dual-nature characteristic. A sample such organization is shown in figure 37.

In this diagram, hierarchical relationships are represented as directed edges,

while circles represent holon boundaries.

 Enterprises, companies, divisions, working groups and individuals

can each be viewed as a holons taking part in a larger holarchy. Fischer

[Fischer, 1999], Zhang [Zhang and Norrie, 1999], and Ulieru [Ulieru et al.,

2001] have each organized agent systems by modelling explicit or implied

Figure 37. Holarchical organization.

Appendix B. Taxonomy of Organizations

253

divisions of labour in real-world systems as holons. In doing so, they create

abstractions of these divisions, imparting capabilities to individual holons

instead of individual agents. This layer of abstraction allows other entities in

the system to make more effective use of these capabilities, by reasoning and

interacting with the group as a single functional unit.

 The defining characteristic of a holarchy is the partially-autonomous

holon. Each holon is composed of one or more subordinate entities, and can be

a member of one or more superordinate holons. Holons frequently have both a

software and physical hardware component (Zhang and Norrie, 1999; Ulieru,

2002), although this does not preclude their usage in purely computational

domains. The degree of autonomy associated with an individual holon is

undefined, and could differ between levels or even between similar holons at

the same level.

There is the presumption, however, that the level of autonomy is

neither complete nor completely absent, as these extremes would lead to either

a strict hierarchy or an unorganized grouping, respectively. Within the

holarchy, the chain of command generally goes up – that is, subordinate

holons relinquish some of their autonomy to the superordinate groupings they

belong to.

 However, there is also the more admitted notion that individual

holons determine how to accomplish the tasks they are given, since they are

likely the locus of relevant expertise. Many holonic structures also support

connections between holons across the organization, which can result in more

amorphous, web-like organizational structures that can change shape over time

[Fischer, 1999, Zhang and Norrie, 1999].

It would not be incorrect to conclude that a holarchy is just a particular

type of hierarchy. Relaxing the definition of hierarchy to allow some amount

of cross-tree interactions and local autonomy, the two styles share many of the

same features and can be used almost interchangeably. These richer models

Organization Based Multiagent Architecture For Distributed Environments

254

then begin to resemble and take on the characteristics of nearly-decomposable

hierarchies [Simon, 1969], where lateral interactions are weak but still

relevant. Very flat holarchies can also begin to resemble federations, which

will be discussed next.

B.2.1. CHARACTERISTICS

As with the conventional hierarchies explained before, holarchies are

more easily applied to domains where goals can be recursively decomposed

into subtasks that can be assigned to individual holons (although this is not

essential). Given such decomposition, or a capability map of the population,

the benefits the holonic organizations provide are derived primarily from the

partially autonomous and encapsulated nature of holons. Holons are usually

endowed with sufficient autonomy to determine how best to satisfy the

requests they receive. Because the requester need not know exactly how the

request will be completed, the holon potentially has a great deal of flexibility

in its choice of behaviours, which can enable it to closely coordinate

potentially complementary or conflicting tasks.

This characteristic reduces the knowledge burden placed on the

requester and allows the holon’s behaviour to adapt dynamically to new

conditions without further coordination, so long as the original commitment’s

requirements are met. A drawback to this approach is that, lacking such

knowledge, it is difficult to make predictions about the system’s overall

performance [Bongaerts, 1998].

B.2.2. FORMATION

The challenge in creating a holonic organization revolves around

selecting the appropriate agents to reside in the individual holons. The purpose

of the holon must be useful within the broader context of the organization’s

high-level goals, and the holon’s members must be effective at satisfying that

Appendix B. Taxonomy of Organizations

255

purpose. Zhang [Zhang and Norrie, 1999] uses a model of static holons along

with so-called mediator holons to create and adapt the organization. The static

groups consist of product, product model and resource holons, each of which

corresponds to a group of physical or information objects in the environment

(e.g. manufacturing device, design plans, conveyors, etc.). The mediator holon

ties these together, by managing orders, finding product data and coordinating

resources in a manner similar to a federation, which will be discussed next.

Each new task is represented by a dynamic mediator holon (DMH), which is

created by the mediator holon. The DMH is destroyed when the task is

completed.

Another approach to holarchy construction uses fuzzy entropy

minimization to guide the formation of individual holonic clusters [Stefanoiu

et al., 2000, Ulieru, 2002]. In this work, the collection of holons is assumed to

be initially described with a set of source-plans, each of which describes a

potential assignment of holons to clusters, along with a set of probabilities that

describe the degree of occurrence of those clusters. From this initial uncertain

information, one can derive the preferences which agents have to work with

one another, and then choose the source plan which has the minimal entropy

with respect to those preferences.

The goal of this technique is to ensure that each holon has the

necessary knowledge and expertise needed to perform its task. The preference

that one agent has for another represents this knowledge or expertise

requirement, so the minimally fuzzy set will satisfy this goal by clustering

agents which have common preferences. In [Ulieru, 2002], Ulieru adds a

genetic algorithm approach to this scheme to help explore the space of

possible clustering assignments.

Organization Based Multiagent Architecture For Distributed Environments

256

B.3. COALITIONS
The notion of a coalition of individuals has been studied by the game

theory community for decades, and has proved to be a useful strategy in both

real-world economic scenarios and multi-agent systems. Viewing the

population of agents A as a set, then each subset of A is a potential coalition.

Coalitions in general are goal-directed and short-lived; they are formed with a

purpose in mind and dissolve when that need no longer exists, the coalition

ceases to suit its designed purpose, or critical mass is lost as agents depart.

Related research has extended this to longer-term agreements based on trust

[Breban and Vassileva, 2001] and to the iterative formation of multiple

coalitions in response to a dynamic task environment [Mérida-Campos and

Willmott, 2004]. They may form in populations of both cooperative and self-

interested agents.

Figure 38. Coalition-based organization.

Appendix B. Taxonomy of Organizations

257

A population of agents organized into coalitions is shown in figure 38.

Within a coalition, the organizational structure is typically flat, although there

may be a distinguished “leading agent” which acts as a representative and

intermediary for the group as a whole [Klusch and Gerber, 2002]. Once

formed, coalitions may be treated as a single, atomic entity. Therefore,

although coalitions have no explicit hierarchical characteristic, it is possible to

form such an organization by nesting one group inside another.

Overlapping coalitions are also possible [Shehory and Kraus, 1998].

The agents in this group are expected to coordinate their activities in a manner

appropriate to the coalition’s purpose. Coordination does not take place among

agents in separate coalitions, except to the degree that their individual goals

interact. For example, if one coalition’s goal depends on the results of another,

these two groups might need to agree upon a deadline by which those results

are produced. In this case, it would be the leading or representative agents

forming the commitment, not arbitrary members of the coalition.

In addition to the problem of generating coalition structures, one must

also determine how to solve the goal presented to the coalition. If the

population is self-interested, a division of value to be apportioned to

participants once that goal has been satisfied must also be generated and

agreed upon [Sandhlom and Lesser, 1997].

B.3.1. CHARACTERISTICS

The motivation behind the coalition formation is the notion that the

value of at least some of the participants may be super-additive along some

dimension. Analogously, participants’ costs may be sub-additive. This implies

that utility can be gained by working in groups – this is the same rationale

behind buying clubs, co-ops, unions, public protests and the “safety in

numbers” principle. For instance, in an economic domain, a larger group of

agents might have increased bargaining strength or other monetary reward

Organization Based Multiagent Architecture For Distributed Environments

258

[Tsvetovat et al., 2001].

In computational domains more efficient task allocation is expected,

or the ability to solve goals with requirements greater than any single agent

can offer [Shehory and Kraus, 1998]. In physically-limited systems, coalitions

have been used to trade off the scope of agent interactions with the

effectiveness of the system as a whole [Sims et al., 2003]. This last application

directly affects the coordination costs incurred by the system.

It can be argued that all agents in the environment should always join

to form the all-inclusive grand coalition. Indeed, under certain circumstances

this is appropriate, since the structure would have the resources of all available

agents at its disposal, which theoretically would provide the maximum value.

There are costs associated with forming and maintaining such a structure

however, and in real world scenarios this can be both an impractical and

unnecessarily coarse solution [Sandhlom and Lesser, 1997].

Therefore, the problem of coalition formation becomes one of

selecting the appropriate set(s) S ⊆ A which maximizes the utility (value

minus costs) that coalition vS can achieve in the environment. The value and

cost of the coalition are generic terms, which may in fact be functions of other

domain-dependent and independent characteristics of the structure.

B.3.2. FORMATION

The complexity of the coalition formation task depends on the

conditions under which the coalitions will exist, and the types of coalitions

which are permitted. As with all organizations, operating in dynamic

environments will be harder to maintain than in static ones. Additional

complexity is also incurred if the partitioning of agents is not disjoint; that is,

agents can have concurrent membership in more than one coalition. Uncertain

rewards, self-interested agents and a potential lack of trust while coordinating

add further obstacles to the process.

Appendix B. Taxonomy of Organizations

259

Sandholm [Sandholm et al., 1999] analyzes the worst case

performance of forming exhaustive, disjoint coalitions over a static agent

population from a centralized perspective. They show that by searching only

the two lowest levels of a complete coalition structure graph, an a-

approximate value solution can be found to the partitioning problem, where a

=|A| . Although the search of 2a-1 possible allocations still grows exponentially

with a, the fraction of coalition structure needing to be searched approaches

zero. They also present an anytime algorithm which can meet tighter bounds

given additional time. Later work empirically evaluates the average-case

performance of three anytime search techniques [Larson and Sandholm,

2000]. The algorithms’ performances varied by domain characteristics; and no

single technique were best in all conditions.

Shehory [Shehory and Kraus, 1998] has studied how coalitions may

be used to enable task achievement by a group of agents. In their scenario, a

set of interdependent (precedence) tasks must be accomplished, some of which

require multiple agents to perform. The agents are cooperative and potentially

heterogeneous in their capabilities. The strategy they employ draws on

techniques used by Chvatal’s greedy set covering algorithm [Chvatal, 1979],

which tries to find the minimum set of subsets that together contain each

member of a target set.

The initial values of all possible size-bounded coalitions are first

computed and then iteratively refined in a distributed manner by the agents,

taking into account task ordering and capability requirements. Once computed,

the highest valued coalitions either disjoint or overlapping depending on the

selection algorithm, are instantiated. This algorithm was also augmented to

support dynamically arriving tasks. A drawback to this addition is that, in the

worst case, the organization process needs to be redone for each task,

incurring a significant communication cost. Also limiting the potential

scalability of this approach is the need for each agent to have full knowledge

Organization Based Multiagent Architecture For Distributed Environments

260

of the available agents and tasks.

Lerman [Lerman and Shehory, 2000] presents a scalable strategy

where coalitions are formed between self-interested agents based only on local

decision making. In this work agents operate in an electronic marketplace

consisting of a number of extant purchase orders, with the objective of

forming or joining a coalition of buyers that satisfied a need at the lowest

price. Coalitions form around purchase orders, where agents form or join a

coalition by adding a purchase request to an order, and can leave that coalition

by removing their request. Agents in the system can move at will between

purchase orders, searching for the one which offers the best value (lowest

cost). An analysis based on differential equations shows that this strategy

reaches equilibrium (later work [Lerman and Galstyan, 2001] expands on

these mathematical techniques to analyze other distributed behaviours). It also

has low communication and computational requirements. However, it does not

provide guarantees on the achievable value or convergence rate, which would

be affected by scale, and does not have a notion of deadlines on the purchase

orders.

Soh [Soh, 2003] presents a technique where coalitions are dynamically

created in response to the recognition of tracking tasks in a distributed sensor

network. In this work, agents are assumed to have incomplete, uncertain

knowledge and must respond to events in real time for goal achievement to be

possible. As such, coalitions are formed in a satisfying, rather than optimal

manner. An agent initiates coalition formation by first using local knowledge

to select a subset of candidate partners that it believes will satisfy its

requirements, both in terms of capabilities and willingness to cooperate. Next,

it sequentially engages these candidates, in utility-ranked order, in

argumentative negotiation, where offers and counteroffers are exchanged. This

proceeds until satisfactory membership is decided, or the candidate list is

exhausted.

Appendix B. Taxonomy of Organizations

261

Agents are cooperative, so during this negotiation process agents

explicitly decide what coalition(s) they are willing to join based on perceived

gains in utility. This approach does not make any guarantees about coalition

value, or even that a satisfactory coalition will be found, but given the

relatively short time in which an allocation must be made it would seem to be

a reasonable strategy. In addition, reinforcement learning is used over the

course of events to estimate candidate utility more accurately and select the

most beneficial negotiation strategy, which should improve coalition value in

the long run for reasonably stable environments. By storing preferences over

multiple episodes, this learning also implicitly adds longevity to coalitions,

giving organizational structures produced by this technique an interesting mix

of dynamic and long-term characteristics.

B.4. TEAMS
An agent team consists of a number of cooperative agents which have

agreed to work together toward a common goal [Fox, 1981, Tambe, 1997,

Beavers and Hexmoor, 2001]. In comparison to coalitions, teams attempt to

maximize the utility of the team (goal) itself, rather than that of the individual

members. Agents are expected to coordinate in some fashion such that their

individual actions are consistent with and supportive of the team’s goal.

Within a team, the type and pattern of interactions can be quite

arbitrary, as seen in figure 39, but in general each agent will take on one or

more roles needed to address the subtasks required by the team goal. Those

roles may change over time in response to planned or unplanned events, while

the high-level goal itself usually remains relatively consistent (although

exception handling may promote the execution of previously dormant

subtasks).

This description of agent teams is quite general, and nearly any

cooperative agent system has characteristics that are similar to these, if only

Organization Based Multiagent Architecture For Distributed Environments

262

implicitly. However, systems that maintain an explicit representation of their

teamwork or joint mental state are differentiated in their ability to reason more

precisely about the consequences of their teamwork decisions [Jennings, 1995,

Grosz and Kraus, 1996, Tambe, 1997]. For example, they will typically have

representations of shared goals, mutual beliefs and team-level plans.

This type of representation provides flexibility and robustness by

allowing the agents to explicitly reason about team-level behaviours, where a

less explicit system may rely on a set of assumptions that ultimately make the

system brittle in the face of unexpected situations.

B.4.1. CHARACTERISTICS

The primary benefit of teamwork is that by acting in concert, the

group of agents can address larger problems than any individual is capable of

[Grosz and Sidner, 1990]. Other potential benefits, such as redundancy, the

ability to meet global constraints, and economies of scale can also be realized

Figure 39. Team-based organization.

Appendix B. Taxonomy of Organizations

263

[Hexmoor and Beavers, 2001]. However, it is the ability of the team

(members) to reason explicitly about the ramifications of inter-agent

interactions which gives the team the needed flexibility to work in uncertain

environments under unforeseen conditions.

The drawback to this tighter coupling is increased communication

[Parker, 1993], so the team and joint goal representations, domain

characteristics and task requirements are frequently used to determine what

level of cooperation (and therefore communication) is needed [Pynadath and

Tambe, 2002].

Jennings [Jennings, 1995] describes an electricity transportation

management system which employs team-work to organize the activities of

diagnostic agents. Lacking such structure, the agents were prone to incoherent

and wasteful activities, since they did not always share useful behaviour

information or propagate important environmental knowledge. By providing

agents with an explicit representation of shared tasks and the means by which

cooperation should progress, the agents were able to accurately reason about

and resolve these interactions by employing team-level knowledge. Similarly,

in [Tambe, 1997], teamwork is used to provide the structure and coordination

needed by agents to address interdependent goals in dynamic environments,

such as tactical military exercises and competitive soccer games. These works

demonstrate how pathological, but hard to predict failures can be addressed if

the plans are backed up by a general model of teamwork.

B.4.2. FORMATION

The challenges associated with team formation involve three principal

problems: determining how agents will be allocated to address the high-level

problem, maintaining consistency among those agents during execution, and

revising the team as the environment or agent population changes [Jennings,

1995, Marsella et al., 2001, Tidhar et al., 1998].

Organization Based Multiagent Architecture For Distributed Environments

264

The selection and role-assignment of agents that will work on the

high-level problem depends on the goal’s requirements, the capabilities of the

candidate agents, and the knowledge of the selecting process itself [Tidhar et

al., 1996, Beavers and Hexmoor, 2001]. Initially, the process or agent

performing the team construction must be aware of the agents which could

potentially form the team. In the case of a static, reasonably sized agent

population this can be done off-line as part of the system design or the

members can be dynamically discovered and assessed. This latter technique

can be accomplished using well-known discovery mechanisms such as the

contract net protocol [Smith, 1980] or matchmaker intermediaries [Sycara et

al., 1997]. Once a suitable pool has been found, the capabilities and pre-

existing responsibility of those agents must be evaluated relative to the needs

of the goal.

Typically, agents are each denoted to have a set of capabilities, while

the goal’s subtask(s) are of a particular type. If an agent’s capabilities include

that sub-task’s type, it can perform the task [Tidhar et al., 1996, Fatima and

Wooldridge, 2001]. The discovery mechanisms may include an implicit

ranking technique, such as the bidding process employed in contract net,

which makes the selection process relatively straightforward. Tidhar [Tidhar et

al., 1996] suggests a different technique where the agent characteristics are

derived at compile time, either through designer input or automatic analysis of

the agent’s plan library. Candidate teams comprised of a sub-set of those

agents may also be specified, which also are marked with their characteristics.

At runtime, these characteristics are matched with the goal requirements as

part of the team allocation search. By including these characteristic labels, the

number of possible team combinations can be greatly reduced.

Tambe’s STEAM [Tambe, 1997] architecture provides a flexible

method for representing and adapting team behaviours. It is based on the joint

intentions frame-work [Levesque et al., 1990], which formally defines how

Appendix B. Taxonomy of Organizations

265

agents should reason over joint commitments and shared goals, and

SharedPlans theory [Grosz and Kraus, 1996], which provides a formal way to

encode and reason about joint plans, intentions and beliefs. Together, these

help ensure a consistency of belief, or a desire to enact such a belief, across all

team members.

The commitments formed through the joint intentions process provide

the explicit structure needed to reason about and monitor performance on a

team level. Team plans are represented using a hierarchical decomposition

tree, with nodes representing tasks for both teams and individuals, with

associated preconditions, application and termination rules. Agents may

simultaneously take part in several different tasks, and corresponding roles.

The team’s cohesion is derived primarily from the joint intentions

created as part of executing the team plans. Upon selecting a team task, agents

first broadcast this intention to affected agents, and wait until a commitment to

that task has been established between all participants. The existence of this

commitment directs agents to propagate changes whenever the task is

perceived to be achieved, unachievable or irrelevant, before taking local action

itself.

This trades off the potential reaction speed of the team and the cost of

communication with group conformity. A decision theoretic approach is used

to guide communication acts, which explicitly trades off the costs of

communication with those of inconsistent beliefs. Nair [Nair et al., 2003b] has

also explored the possibility of using simulated emotions to provide the

motivation to enforce team-level behaviours.

In STEAM, monitoring and repair of the team is accomplished with

the use of role constraints [Tambe, 1997]. Team members are assigned a role,

based on the particular task they are working on. These roles are further

constrained such that some particular combination of them (e.g. and, or) are

needed to accomplish the task. One can then monitor if a task is achievable by

Organization Based Multiagent Architecture For Distributed Environments

266

monitoring the health of the individual agents, and using that information to

evaluate if the role constraints are satisfied. Such monitoring can be performed

through explicit queries, environmental observations or by eavesdropping on

communication, which can reduce the increased communication usually

associated with teams.

Kaminka [Kaminka et al., 2002] has demonstrated that the latter

technique can perform well when coupled with a plan-recognition algorithm.

Failures can thus be detected, and potentially resolved through an appropriate

role-substitution, or the task abandoned if no substitution is possible.

Alternately, one could use a diagnosis system [Jennings, 1995, Horling et al.,

2001] to more precisely identify the root cause of the failure. Interestingly, this

repair operation can itself be cast as a team task, so mutual agreement that a

repair is necessary must be achieved before potentially drastic measures are

taken.

Nair [Nair et al., 2003a] shows how an MDP incorporating team and

role-allocation knowledge can improve the system’s response in cases of

multiple role failure. In this case, a suitable locally optimal policy for the

reallocation decision problem can be found by analyzing the team’s plans, and

then used to guide on-line responses to failures. This work showed that such

policies can provide improved performance versus more heuristic and analytic

techniques. A similar technique was also shown in that work to improve initial

role allocation.

Tidhar [Tidhar et al., 1998] uses a similar hierarchical plan

representation to represent teamwork in a tactical air mission scenario. Team

membership and role assignment are performed by matching agent capabilities

to one or more role’s requirements. As in STEAM, teams can be broken down

into sub-teams, and agents may use both implicit (observation) and explicit

(messaging) forms of coordination.

Appendix B. Taxonomy of Organizations

267

The Generalized Partial Global Planning (GPGP) framework also

employs techniques that allow agents to act using team semantics [Decker and

Lesser, 1992, Lesser et al., 2004]. Where a STEAM-driven system will

typically organize in an explicit, controlled fashion in response to a perceived

goal, a GPGP-team is created in a more dynamic, emergent fashion. GPGP

agents are provided with a set of individual plans which model a range of

alternative ways that goals may be achieved. The sub-goals modelled in these

plans may affect or be affected by other agents in the environment, although

this may not be initially recognized.

By communicating with one another and exchanging plans and

schedules, these non-local interrelationships between tasks may be

recognized. For example, the results from one agent’s activity may be a strict

prerequisite for another agent’s task. They may alternately be a facilitating,

but not required input to a task. By recognizing these interrelationships, and

sharing knowledge of what goals are being pursued, agents gradually build an

internal model of how their actions may affect others. This knowledge is

similar to that created by the more formal joint intentions of STEAM, and

allows agents to influence local behaviour and communicate results as if they

were members of a common team.

B.5. CONGREGATIONS
Similar to coalitions and teams, agent congregations are groups of

individuals who have banded together into a typically flat organization in

order to derive additional benefits. Unlike these other paradigms,

congregations are assumed to be long-lived and are not formed with a single

specific goal in mind. Instead, congregations are formed among agents with

similar or complementary characteristics to facilitate the process of finding

suitable collaborators, as modelled in figure 39. The different shadings in this

figure represent the potentially heterogeneous purpose behind each grouping,

Organization Based Multiagent Architecture For Distributed Environments

268

in comparison to the typically more homogeneous coalitions in figure 40.

Individual agents do not necessarily have a single or fixed goal, but do have a

stable set of capabilities or requirements which motivate the need to

congregate [Brooks et al., 2000, Griffiths, 2003]. Analogous human structures

include clubs, support groups, secretarial pools, academic departments and

religious groups, from which the name is derived.

Congregating agents are expected to be individually rational, by

maximizing their local long-term utility. Group or global rewards are not used

in this formalism [Brooks et al., 2000]. It is this desire to increase local utility

which drives congregation selection, because it is the utility that can be

provided by a congregation’s (potential) members that determine how useful it

is to the agent.

Figure 40. Congregations of agents.

Appendix B. Taxonomy of Organizations

269

Agents may come and go dynamically over the existence of the

congregation, although clearly there must be a relatively stable number of

participants for it to be useful. Agents must also take enough advantage of the

congregation so that that the time and energy invested in forming and finding

the group is outweighed by the benefits derived from it. Since congregations

are formed in large part to reduce the complexity of search and limit

interactions, communication does not occur between agents in different

congregations, although the groups are not necessarily disjoint (i.e., an agent

can be a member of multiple congregations).

The net result of the congregating behaviour is an arrangement that

can produce greater average utility per cycle spent computing or

communicating [Brooks and Durfee, 2002].

B.5.1. CHARACTERISTICS

Although congregations can theoretically share many of the same

benefits of coalitions, their function in current research has been to facilitate

the discovery of agent partners by restricting the size of the population that

must be searched. As a secondary effect these groupings can also increase

utility or reliability by creating tighter couplings between agents in the same

congregation, typically by imposing higher penalties for decommitment or

increasing information sharing among congregating peers. The downside to

this strategy is that the limited set may be overly restrictive, and not contain

the optimal agents one might interact with given infinite resources. So, in

forming the congregation, one is trading off quality and flexibility for a

reduction in time, complexity or cost. If an appropriate balance can be found,

this will result in a net gain in utility.

This hypothesis is borne out in the experiments from an information

economy domain [Brooks and Durfee, 2002]. This work varied the number of

congregations that agents were allowed to form. Since the population size was

Organization Based Multiagent Architecture For Distributed Environments

270

static, the average congregation size decreased as the number of congregations

increased. The accumulated quality decreased proportionally because of less

flexibility in agent interactions. However, these smaller congregations also

incurred lower overhead, and thus had less cost. A median point was

discovered in the space which produced maximum value.

B.5.2. FORMATION

Like coalition formation, congregation formation involves selecting or

creating an appropriate group to join, and suffers from similar complexity

problems as the agent population grows. Because congregations are more

ideologically or capability driven, and there is usually no specific goal or task

to unite them, one must first define how these groups may be differentiated. In

[Brooks and Durfee, 2003] Brooks proposes using labels to address this

problem. A label is a suitably descriptive tag assigned to each congregation

which serves to both distinguish it from other groups and advertise the

characteristics of its (desired) members. Assuming that agents have an ordered

preference for such labels, the congregators’ action is simply to move to the

congregation for which it has the highest preference.

The problem is then to create a number of logical points where agents

may congregate and then decide upon the labels each congregation point will

have; these labels help determine the makeup of the population which gathers

there. Each agent was placed into one of several affinity groups, and a

congregation is stable if and only if it contains only members of the same

affinity group.

 Different numbers of labellers were then added which could attach

labels to the congregation points. As with the congregators, the labellers were

stable if and only if the congregation they provided the label to was

homogeneous. The experimental and analytic results demonstrated that by

increasing the number of labellers the system converged more quickly.

Appendix B. Taxonomy of Organizations

271

Brooks [Brooks and Durfee, 2002] presents a variation of this

formation technique used in an information economy which also takes into

account the costs associated with congregation size. In this scenario there are a

set of buyers and sellers. Each buyer has an information preference, and each

seller may choose what type of information to offer.

 The buyer’s preference is soft – they have an optimal type, but are

also willing to purchase related information, where similarity determines how

much they are willing to pay. Instead of explicitly labelling congregation

points, agents freely move through the system seeking groups that provide

acceptable utility. The scenario is episodic, where during each episode agents

elect to stay in place or randomly move to a new congregation. At the end of

each episode an auction takes place from which buyers and sellers obtain their

utility. The utility is based on the price of the goods bought and sold,

combined with the costs incurred during the auction. This cost, divided

uniformly among the congregation members, is proportional to the complexity

of the auction, which is itself determined by the number of participants.

Satisfied agents remain, while those which do not obtain enough utility moves.

This process results in an emergent population of congregations that trades off

utility for computation time.

Griffiths’ notion of a clan closely parallels the definition of a

congregation [Griffiths, 2003]. He presents a technique where clans are

formed as part of a self-interested activity to increase local utility or decrease

the probability of failure. If a motivating factor is exhibited by the agent, such

as a desire to increase information gain or decrease commitment failure, clan

formation may be initiated. Clan formation begins with the agent identifying

how large a clan it wishes to create, which is based on the competing utility (in

value added) and cost (in computational complexity) that grow in proportion

to clan size. A trust value is then used to determine what agents it could invite,

while the perceived capabilities or benefits of those individual agents are used

Organization Based Multiagent Architecture For Distributed Environments

272

to determine the appropriately sized subset that it will invite. In lieu of a

negotiation process or explicit reward, invitation recipients determine if they

will accept the invitation based first on their trust in the sender, and second on

the perceived local gain they would receive by joining. The sender includes

information about itself in the invitation as a sort of capability advertisement

to facilitate this determination. If a sufficient number of agents agree, the clan

is formed, otherwise the attempt is abandoned.

Although it does not strictly deal with congregating agents, Sen’s

work on reciprocal behaviour [Sen, 1996] has some of the same

characteristics. In this system, agents become more inclined to cooperate or

assist another agent when it has a favourable history with that other agent.

Specifically, agents track if others have cooperated with it in the past, or if it

has cooperated with them, along with the approximate costs of those

experiences.

If an agent has a favourable balance of cooperation, it will be more

inclined to give or receive assistance. The cooperation decision process is

stochastic, enabling reciprocal relationships to be created or promoted even

when a strictly positive balance does not exist. Weak groups may form

between agents using this strategy who have complementary capabilities,

which is similar to the notion of congregations presented here.

 Because agents will more likely communicate with those that will

help it, interactions can become implicitly confined within the group. These

groupings are not formalized or well-defined, however, and communication is

not necessarily restricted by the approximate boundaries that form. Sen

showed that, among a group of self-interested agents operating in a package

delivery domain, a population containing reciprocal agents outperformed a

selfish population.

Appendix B. Taxonomy of Organizations

273

B.6. SOCIETIES
Drawing from the experiences with biological societies, a society of

agents intuitively brings to mind a long-lived, social construct. Unlike some

other organizational paradigms, agent societies are inherently open systems.

Agents of different stripes may come and go at will while the society persists,

acting as an environment through which the participants meet and interact. A

canonical example of this paradigm is the electronic marketplace, consisting

of buyers and sellers striving to maximize their individual utility [Wellman

and Wurman, 1998, Artikis, 2003]. A more ambitious example is the “agent

world”, a permanent operating environment or agents [Dellarocas and Klein,

2000a, Willmott et al., 2001]. Agents will have different goals, varied levels

of rationality, and heterogeneous capabilities; the societal construct provides a

common domain through which they can act and communicate. Societies are

also more ephemeral constructs than others paradigms explained so far. They

impose structure and order, but the specific arrangement of interactions can be

quite flexible. Within the society, agents may be sub-organized into other

organizations, or be completely unrelated.

A second distinguishing characteristic of societies is the set of

constraints they impose on the behaviour of the agents, commonly known as

social laws, norms or conventions. This arrangement is shown abstractly in

figure 41, where the agents within the society have been provided with a set of

specified norms. These are rules or guide-lines by which agents must act,

which provides a level of consistency of behaviour and interface intended to

facilitate coexistence. For example, it might constrain the type of protocol(s)

agents can use to communicate, specify a currency by which they can transfer

utility, or limit the behaviours the agent can exhibit in the environment.

Penalties or sanctions may also exist to enforce these laws.

Organization Based Multiagent Architecture For Distributed Environments

274

The set of laws embedded in a society must strike a balance among

objectives [Fitoussi and Tennenholtz, 2000]. It must be sufficiently flexible

that goals are achievable, but not so much so that the beneficial constraints

provided by the laws are lost. It must also be fair, such that the goals of one

class of individuals are not incorrectly valued higher than those of another.

These issues arise naturally in any structured, multiple participant system;

Moses argues that most multi-agent systems have some form of social laws in

place, if only implicitly [Moses and Tennenholtz, 1995].

B.6.1. CHARACTERISTICS

In [Shoham and Tennenholtz, 1995], Shoham presents a grid world

where robots must move from one location to another in accordance with a set

of dynamically arriving tasks. Conflicts can arise when two or more agents

attempt to occupy the same location at the same time along their chosen paths.

They argue that a centralized solution is untenable, because of the potentially

large number of interactions that must be continuously reasoned over in the

heterogeneous population. Neither is a fully decentralized solution

appropriate, because of the number of negotiation events that would need to

take place at each time step. This motivates the need for “traffic laws”, a type

of social law which does not eliminate such interactions, but should minimize

Figure 41. An agent society.

Appendix B. Taxonomy of Organizations

275

the need for them. The traffic laws in this research are computed offline, and

constrain the robots’ movement patterns in such a way that collisions do not

occur and destinations are reachable within a bounded amount of time.

Vehicular traffic laws serve the same purpose in human societies. When

driving a car there is no central authority which determines when and where to

go, and neither is there a free-for-all on the roads where one must talk to every

other driver before proceeding. The challenge then is to design a set of laws

that minimizes conflicts and encourages efficient solutions.

Although social laws were used to provide efficiency benefits in the

work above, the purpose of an agent society is not always as quantitatively-

driven as other organizational constructs. Indeed, most research on agent

societies is more concerned with how the concepts they embody can be used

to facilitate the construction of large-scale, open agent systems in general. For

example, Moses [Moses and Tennenholtz, 1995] argues that social laws can

provide a formal structure upon which more complex inter-agent behaviours

can be built. By limiting and enforcing these restrictions, agents can make

simplifying assumptions about the behaviour of other agents, which can make

interaction and coordination more tractable.

In additional to formalizing normative behaviours, mechanisms may

also be established to ensure or encourage that such laws are respected. One

approach accomplishes this through explicit representations of reputation or

trust [Mui et al., 2002, Ramchurn et al., 2005, Sabater and Sierra, 2001]. An

agent’s behaviour and interactions are observed by its peers and evaluated in

the context of the norms it has agreed to. Deviation from those norms will

result in a worsening reputation. This decreased reputation can in turn affect

the utility the agent obtains, through increased decommitment penalties or

competition from more reputable peers. In a rational agent this will serve as a

deterrent to violating conventions.

Organization Based Multiagent Architecture For Distributed Environments

276

A different, but complementary approach instantiates and enforces

social laws using social institutions provided in the environment [Dellarocas

and Klein, 2000a, Colombetti et al., 2004]. Agents are expected to formalize

their interactions using contracts, which are independently verified by these

institutions, thereby relocating some of the traditionally agent-centric

complexity into a service available to the population as a whole. This reduces

the burden placed on agent designers, and provides a mechanism where

systemic (non-localized or long-term) failures may be detected more readily.

This more rigorous enforcement of social laws also helps address the problem

of unreliable, dishonest or malicious agents operating in the open

environment.

Huhns [Huhns and Stephens, 1999] provides similar motivation for

common communication languages, shared or interoperable ontologies and

coordination and negotiation protocols, all of which may be specified as part

of the society’s structure. These beliefs can be supported by the experiences

acquired in real life. It should be clear that complex human societies are

founded upon the ability to interact with one another. Mutually understood and

respected norms simplify many aspects of day-to-day existence. These

principles can be used to the same effect in agent societies.

B.6.2. FORMATION

There are two aspects to the society formation problem. The first is to

define the roles, protocols and social laws which form the foundation of the

society. Given such a definition, the second problem is to implement the more

literal formation of the society, by determining how agents may join and leave

the defined formation.

If the society is to be an open and flexible system, its structure must be

formally encoded so that potential members may analyze it and determine

compatibility. This description can be as simple as a set of common interfaces

Appendix B. Taxonomy of Organizations

277

that must be implemented, or a complex description of permissible roles, high-

level objectives and social laws. Dignum [Dignum, 2004, DignumMeyer et

al., 2002] presents a three-part framework, consisting of organizational, social

and interaction models. The organizational model defines the roles, norms,

interactions and communication frameworks that are available in the

environment. The social model, instantiated at run-time, defines which roles

agents have taken on. The interaction model, also created at run-time, encodes

the interactions between agents that have been agreed-upon, including the

potential reward and penalties. The latter two models are supported by

contracts between the relevant entities. This formalism is similar to that

proposed by Artikis [Artikis, 2003], which provides additional details

describing operators that can be used to encode social laws, roles and

normative relations. Because the society is intended to be open, these

structures do not involve the internal implementation of agents, but describe

only the intended or expected externally observable characteristics of the

participants and environment.

Assuming it is possible to encode the social laws in a way that makes

them intelligible to agents, one still faces the challenge of determining what

conventions should be enacted. Fitoussi [Fitoussi and Tennenholtz, 2000]

presents a notion of minimal social laws, where he argues that one should

choose the smallest and simplest set of norms that address the needs of the

society. This is consistent with the trade-off between flexibility and

complexity mentioned above. Work has also been done exploring the dynamic

emergence of norms, for when social laws cannot be specified off-line or if

there is a desire for the corpus to be responsive to changing conditions

[Axelrod, 1986, Hewitt, 1986]. Walker and Wooldridge [Walker and

Wooldridge, 1995] propose and evaluate a number of ways that a group of

agents can reach norm consensus based on locally available information.

Organization Based Multiagent Architecture For Distributed Environments

278

Dellarocas defines the act of an agent entering a society to be the

socialization process [Dellarocas and Klein, 2000a]. In that work, they suggest

this can be accomplished through an explicit negotiation process between the

agent and a representative of the society, as shown in the left side of figure 40.

This exchange results in a social contract, or an explicit agreement made

between the agent and the society indicating the conditions under which the

agent may join that society. This allows the possibility of capable agents

dynamically learning, and potentially negotiating over, the rules it must abide

by in that society. This naturally extends to multi-society environments, where

an agent’s skills and goals define how good a fit it is with a particular society.

Some of the challenges associated with operating in multi-society

environments seem to be comparable, though larger in scale, to those

encountered during coalition or congregation formation.

Because of their inherent flexibility, a great deal of additional

complexity may be associated with social organizations. Sophisticated legal

systems, communication bridges, ontologies, exception handling services,

directories may all be part of the society model [Dellarocas and Klein, 2000a,

Dignum, 2004, Klein et al., 2003]. Some or all of these may be directly

instantiated by trusted agents taking on so-called facilitation roles

(differentiated from the operational roles taken on by worker agents). Of

course, agents acting in the society must have a certain level of sophistication

to know how and when to use such services. An interesting almost-paradox

exists in this relationship. Although the society exists in part to reduce the

complexity burden imposed on the participants, the participants must raise

their level of complexity to take advantage of these benefits. In the case where

interactions with some or all social services are mandatory (e.g. legal or

arbitration services), this additional complexity is similarly unavoidable and

can act as a barrier to entry.

Appendix B. Taxonomy of Organizations

279

B.7. FEDERATIONS
Agent federations, or federated systems, come in many different

varieties. All share the common characteristic of a group of agents which have

ceded some amount of autonomy to a single delegate which represents the

group [Wiederhold, 1992, Genesereth, 1997]. This organizational style is

modelled on the governmental system of the same name, where regional

provinces retain some amount of local autonomy while operating under a

single central government. The delegate is a distinguished agent member of

the group, sometimes called a facilitator, mediator or broker [Sycara et al.,

1997, Hayden et al., 1999].

Figure 42. An agent federation.

Organization Based Multiagent Architecture For Distributed Environments

280

Group members interact only with this agent, which acts as an

intermediary between the group and the outside world, as shown in figure 42.

In that figure each grouping is a federate, and the white agent situated at the

edge of each federate is the delegated intermediary. Typically, the

intermediate accepts skill and need descriptions from the local agents, which it

uses to match with requests from intermediaries representing other groups. In

this way the group is provided with a single, consistent interface. This level of

indirection is similar to that seen in holons, and provides some of the same

benefits.

B.7.1. CHARACTERISTICS

The capabilities provided by the intermediary are what differentiate a

federation from other organizational types. The intermediary functions on one

hand by receiving potentially undirected messages from its group members.

These may include skill descriptions, task requirements, status information,

application-level data and the like. These will typically be communicated

using some general, declarative communication language which the facilitator

understands [Genesereth, 1997]. Outside of the group, the intermediary sends

and receives information with the intermediaries of other groups. This could

include task requests, capability notifications and application-level data routed

as part of a previously created commitment. Implicit in this arrangement is

that, while the intermediary must be able to interact with both its local

federation members and with other intermediaries, individual normal agents

do not require a common language as they never directly interact. This makes

this arrangement particularly useful for integrating legacy or an otherwise

heterogeneous group of agents [Genesereth, 1997, Shen and Norrie, 1998].

The intermediary itself can function in many different capacities. It

may act as a translator, perform task allocation, or monitor progress, among

other things. An intermediary which accepts task requests and allocates those

Appendix B. Taxonomy of Organizations

281

tasks among its members is known as a broker or a facilitator. As part of the

allocation, the broker may decompose the problem into more manageable

subtasks. This allows agents to take advantage of all the capabilities of the

(potentially changing) federation, without requiring knowledge of which

agents perform a task or how they go about doing it. This reduces the

complexity and messaging burden of the client, but also has the potential of

making the broker itself a bottleneck [Hayden et al., 1999] (a possibility

common to all intermediaries).

An intermediary acting as go-between among agents is known

variously as a translator, embassy or mediator depending on its specific

characteristics. Embassy agents provide a layer of security for members of

their federation, by having the ability to deny communication requests.

Mediator agents store representations of all related parties, reducing their

individual complexity by providing a layer of abstraction. This capacity can be

further exploited to arbitrate conflicts [Mailler and Lesser, 2004].

Intermediaries which provide the ability to track the state of one or more of its

participants are known as monitors. For example, result information can be

automatically propagated to interested parties. Of course, one or more of these

roles may be combined into a single intermediary which offers several types of

services.

B.7.2. FORMATION

Genesereth [Genesereth, 1997] describes how a general federated

system would work. All agents are expected to communicate using an Agent

Communication Language (or ACL, a somewhat-generic term used by many

researchers to describe their agents’ communication protocol), which in this

work is a combination of the first-order predicate calculus KIF with the

KQML agent messaging language. Knowledge and statements sent between

agents are encoded as KIF statements, which are then wrapped in KQML to

Organization Based Multiagent Architecture For Distributed Environments

282

provide a standard mechanism for specifying the sender, receiver, intent, and

so forth. This provides a common language and set of behavioural constraints

that will allow the various agents to interact. Not all agents must implement

the entire class of concepts in the ACL, but the aspects they do use must be

correct with respect to the ACL’s specification.

In addition, although they speak the same language, not all agents

must use the same vocabulary to describe a particular situation, although to

interact there must be an intermediary capable of translating the vocabularies.

The system is initialized with a set of intermediaries called facilitators, which

serve many of the roles outlined above, notably brokering. Agents connecting

to the system start by sending their capabilities to the local facilitator. Implicit

in this communication is the notion that the agent is willing to use those

capabilities in service of requests posed by the facilitator. Needs are similarly

routed to the facilitator, which then attempts to find other facilitators that can

service that need. Each facilitator provides a “yellow pages” function which

supports this search. Khedro’s Facilitators [Khedro and Genesereth, 1995] and

the jointly developed PACT project [Cutkosky et al., 1993] have produced

very similar systems that also use a common ACL and a community of

intermediaries to produce a robust and dynamic task decomposition and

allocation scheme among a group of heterogeneous participants.

The MetaMorph I [Maturana et al., 1999] and II [Shen and Norrie,

1998] architectures described by Maturana and Shen demonstrate a federated

agent system for use in intelligent manufacturing. In this domain, agents are

used to drive aspects of product design and manufacturing, contending with

heterogeneous resources, dynamically changing conditions, and hard and soft

constraints on behaviour. MetaMorph’s name is derived from the fact that the

system can continuously change shape, adapting to new conditions as they are

perceived. This is accomplished in part through the use of intermediaries

called mediators, which are responsible for brokering, recruiting and conflict

Appendix B. Taxonomy of Organizations

283

resolution services. The recruiting service is similar to brokering, but is

differentiated by the fact that the intermediary can remove itself from the

relationship once the partners have been discovered. This weaker form of

federation provides efficiency gains at the cost of less flexibility, both due to

the loss of the layer of abstraction that exists in the brokered approach. The

federations themselves are dynamically created in response to new task

arrivals or requests from other groups using a contract net [Smith, 1980]

approach, or are statically created from agents in a common subsystem (e.g.

tools, workers, etc.).

B.8. MARKETS
In a market-based organization, or marketplace as shown in figure 43,

buying agents (shown in white) may request or place bids for a common set of

items, such as shared resources, tasks, services or goods. Agents may also

supply items to the market to be sold. Sellers (shown with a darker lower part),

or sometimes designated third parties called auctioneers, are responsible for

processing bids and determining the winner.

This arrangement creates a producer-consumer system that can closely

model and greatly facilitate real-world market economies [Wellman, 2004].

These latter systems fall into the more general category of agent-mediated

electronic commerce [Guttman et al., 2001]. Because of this similarity, a

wealth of research results from human economics and business can be brought

to bear on agent-based markets, creating a solid theoretical and practical

foundation for creating such organizations [Wellman, 1993, Wellman and

Wurman, 1998, Corkill and Lander, 1998].

Markets are similar to federated systems in that a distinguished

individual or group of individuals is responsible for coordinating the activities

of a number of other participants. Unlike a federation, market participants are

typically competitive. In addition, participants do not cede operational

Organization Based Multiagent Architecture For Distributed Environments

284

authority to those distinguished individuals, although they do trust the entities

managing the market and abide by decisions they make. It is also common for

markets to operate as open systems [Wellman, 2004], allowing any agent to

take part so long as it respects the system’s specified rules and interface. As

such, they share some of the benefits and drawbacks of societies.

When using the terms “buyer” and “seller”, one may implicitly

assume that an artefact will eventually be transferred in exchange for some

form of compensation [Chavez and Maes, 1996, Tsvetovatyy et al., 1997].

Although this paradigm is common, it is not always the case, and market-

based organizations have been used in various projects to accomplish less

obvious goals. For example, Wellman [Wellman et al., 2001] proposes using a

market-based approach to perform decentralized factory scheduling. In this

work, each factory job is associated with a duration, deadline and value. The

factory itself, acting as the seller, has a reserve price associated with the time

Figure 43. A multi-agent marketplace.

Appendix B. Taxonomy of Organizations

285

slots it has available. Agents bid on a set of slots that have sufficient total time

to satisfy the job duration and do not exceed the deadline, using the job value

as a maximum bid price. Market forces will cause agents to seek out the most

cost-effective time slots, while higher-valued jobs will naturally take

precedence over lower ones. This should lead to an efficient allocation of

(time) resources, while maximizing the factory’s overall usefulness.

Bussman [Bussmann and Schild, 2000] has developed an auction-

based manufacturing control system with a similar purpose, where agents are

used to represent workpieces, transportation conveyors and machines. In this

work, machines bid for the right to work on workpieces, which act as sellers,

by relating an expected time to completion. When a machine’s bid is accepted,

a series of additional negotiations between the workpiece and the conveyors

move the piece to the appropriate location. Yet another example is the

Mariposa distributed database system [Stonebraker et al., 1996], which uses

market-based techniques to optimize query processing. Individual nodes buy

and sell fragments of information. Queries inserted into the system are

associated with a biding profile, indicating how much the user is willing to

pay. A brokering process takes the query and requests bids from relevant

nodes. Who then submit bids in an effort to win the rights to process the query

More generally, Wellman proposes the notion of market-oriented

programming [Wellman, 1993], which uses the marketplace paradigm as a

general programming methodology that can efficiently address multi-

commodity flow and resource allocation problems. His WALRAS framework

that implements this concept has been used to create solutions for

transportation logistics, product design and distributed information services.

Many other marketplace frameworks have also been developed for general use

[Chavez and Maes, 1996, Rodríguez et al., 1997, Collins et al., 1998, Collis

and Lee, 1999, Cuni et al., 2004]; Kurbel and Loutchko provide a comparative

analysis of structure and function [Kurbel and Loutchko, 2003].

Organization Based Multiagent Architecture For Distributed Environments

286

B.8.1. CHARACTERISTICS

Markets excel at the processes of allocation and pricing [Wellman and

Wurman, 1998]. If agents bid correctly (i.e. make truthful bids according to

their perceived utility gain if they win), the centralized arbitration provided by

the auctioneer can result in an effective allocation of goods. The Kasbah

system [Chavez and Maes, 1996] is an example of an agent-based marketplace

that demonstrates many of the typical characteristics of this type of

organization. Agents in Kasbah are segregated into two categories: buyers and

sellers. Both types indicate the type of object they are interested in (buying or

selling) with a feature vector, along with a desired price, a threshold price

(lower or upper bound), and a negotiation strategy that controls how their

offered price changes over time. A sale occurs when a seller’s price matches

what a buyer is willing to pay. The objects being sold in this system represent

the targets of the allocation process, and the price is determined dynamically

according to supply and demand. The mechanism that is employed in Kasbah

corresponds to an intuitively fair way to allocate among competitors, at least

from a self-interested point of view: all agents gradually compromise, and the

agent willing to meet the seller’s price first wins.

The behaviours embodied in a marketplace, namely the existence of

buyers and sellers, a potential multitude of goods, and competition among

participants, make such organizations intrinsically linked with the properties

of auctions. Kasbah is an example of a two-sided auction, because both sides

compromise. If one of the two parties maintained a fixed price, it would be

one-sided auction. Many other types of auctions exist to service the different

needs of different communities, each with their own characteristics [Wurman

et al., 2001, Kurbel and Loutchko, 2003].

For example, in a combinatorial auction, participants bid on

collections of goods, rather than single objects. In a reverse auction, sellers bid

Appendix B. Taxonomy of Organizations

287

rather than buyers. In sealed-bid auctions, the participants do not see

competing bids while the auction is in progress. In continuous auctions, a pool

of items exists, exchanges occur as soon as two compatible bids are made, and

the bidding process continues uninterrupted. The particular type of auction

which is employed dictates the manner in which the participants interact.

Much of the complexity involved in designing an effective market and

marketplace agent revolves around understanding the subtleties of the

auction’s characteristics, and crafting an appropriate strategy based on that

knowledge.

There are two drawbacks to market-based organizations. The first is

the potential complexity required to both reason about the bidding process and

determine the auction’s outcome. The former computation may require a

detailed approximation of competitors’ beliefs, a practice known as

counterspeculation, especially in single-shot or sealed bid auctions

[Tsvetovatyy et al., 1997]. The latter computation, also known as clearing the

trade, can be particularly difficult in the case of combinatorial auctions. This is

known to be a NP-complete problem [Sandholm, 2002], although solutions

have been devised that have good performance in practice [Sandholm, 2006].

The second is security; in addition to the practical network-related security

issues inherent in any open system, one must also be able to verify the validity

of the auction approach itself.

For example, the bidding strategy used in the Kasbah system is

vulnerable to a form of cheating known as collusion. If two or more bidders in

the system agree to reduce their rate of compromise, they have a chance to

artificially lower the final sale price. It is also important that the bidding

process does not reveal information about the participants. For example, if a

seller could determine the threshold prices of some of its buyers, it could

simply wait until the maximum such price is reached, thereby artificially

increasing the sale price. Some of these issues can be resolved by selecting an

Organization Based Multiagent Architecture For Distributed Environments

288

appropriate auction type. The Vickrey auction’s structure [Vickrey, 1961],

where the highest bidder wins but pays the second highest bid price, promotes

truthful bidding and discourages counterspeculation. Enforcing anonymity and

secure communication channels can also help avoid many common pitfalls.

B.8.2. FORMATION

As is the case of many open systems, marketplaces are frequently

static, pre-existing entities that do not require a formal creation process

beyond starting the actual market process (if any) and allowing agents to

connect. The well-known Trading Agent Competition market [Wellman and

Wurman, 1999] operates in such a fashion, albeit for a limited amount of time.

They may have certain barriers to entry, such as respecting a defined

programming interface, implementing a particular transaction language, and

respecting the rules of the market’s auction type. These entry conditions are

similar to those discussed earlier in the context of societies, although there is

generally no formal negotiation or socialization process involved. Wellman

[Wellman, 2004] outlines a number of other practical characteristics that

should be exhibited for a marketplace to be successful. They must maintain

temporal integrity, meaning that the outcome of an auction depends on the

arrival sequence of bids, and is independent of any delays internal to the

market itself. Transactions performed by the market must be atomic, that is,

they have no effect if they fail or are cancelled prior to completion. As noted

above, they also require attention to security risks, so that participant

information is adequately protected and the auction process itself is kept safe

from conventional attacks, particularly if there is an actual exchange of goods,

information or currency in the market. Markets may also incorporate product

discovery services, banking services, brokering middle-agents and negotiation

support, to reduce the burden placed on the participants [Tsvetovatyy et al.,

1997, Guttman et al., 2001].

Appendix B. Taxonomy of Organizations

289

Other works have explored dynamic formation of markets. Brooks has

used the notion of congregations to dynamically form markets within a group

of agents [Brooks and Durfee, 2002]. Recall that congregations are groups of

agents which have banded together because of some common long-term

interest or goal. In this work, that long term goal is the cost-effective exchange

of goods or services. In a large population, it can be difficult to directly find

suitable trading partners, and expensive to contact or broadcast to all possible

partners. A suitably formed congregation serves to limit the scope of this

search or broadcast, which in turn facilitates the marketplace creation.

A relatively new concept being exploited in both human

[Mowshowitz, 1997] and agent [Ahuja and Carley, 1999, Foster et al., 2004,

Cardoso and Oliveira, 2004] organization research is the virtual organization

(VO). A virtual organization is one that has a fixed purpose (e.g., to provide a

set of services) but a potentially transient shape and membership. The key

characteristics of a VO are that they are formed by the grouping and

collaboration of existing entities, and there is a separation between form and

function that precludes the need to rigidly define how behaviour will take

place. This provides flexibility in how a particular goal is satisfied, by

allowing the system to adapt the set of participants to meet resource

availability and service demand. The concept is similar to the coalition and

congregation paradigms discussed earlier, and have many of the same benefits

as a federation, although a virtual organization can generally be thought of as

an entity in and of itself more so than an empty coalition or congregation.

The CONOISE project has explored the dynamic creation of virtual

organizations within a larger marketplace environment [Norman et al., 2004].

In this context, the creation of a VO can be thought of as the creation of a new

market entity (buyer or seller) from a group of existing participants. This can

give those participants greater leverage, efficiency or reliability as they

combine their producing or consuming power. The members of a VO may

Organization Based Multiagent Architecture For Distributed Environments

290

remain distinct when outside of the marketplace, but within the market they

act as a single unit. For example, two producers might combine to offer a new

joint product. Two consumers might combine to obtain greater buying power.

In responding to bids, a VO will then be able to offer the union of services or

goods over all its members. VOs may also split when the relationship is no

longer beneficial or if levels of trust or reputation have been sufficiently

degraded. In all cases, the shape of the market is affected as these changes are

made, and thus the market as a whole will evolve over time based on the needs

and capabilities of the participants, and the corresponding consolidation

decisions they make.

B.9. MATRIX ORGANIZATIONS
As explained before, the strict hierarchical organization method is

based on a tree-like structure of control. Agents or agent teams report to a

single manager, which provides the agents with goals, direction and feedback.

Matrix organizations relax the one-agent, one-manager restriction, by

permitting many managers or peers to influence the activities of an agent. This

forms a mixed-initiative environment, where successful agents reason about

the effects their local actions can have on multiple entities. This is in some

sense a closer approximation to how humans exist. A person may receive

guidance or pressures from their manager, co-workers, spouse, children,

colleagues, etc. Even in a purely business setting one might have to report to

an immediate supervisor, project managers, vendors, and peers at cooperating

businesses. Interrelationships can come from many directions, each with its

own objectives, relative importance and pertinent characteristics [Wagner and

Lesser, 2000].

The term matrix organization comes from a grid based view of the

participants. One can place managers (darker lower part) around a group of

“worker” agents (clearer lower part), and use a directed edge to indicate

Appendix B. Taxonomy of Organizations

291

authority, as in figure 44. Alternately, agents are the rows and managers the

columns (these sets may overlap), and a check is used to denote where an

authority relationship exists. Like the hierarchy’s tree, the matrix provides a

graphical way to depict which managers can influence the activities of each

agent.

B.9.1. CHARACTERISTICS

Matrix organizations provide the ability to explicitly specify how the

behaviours of an agent or agent group may be influenced by multiple lines of

authority [Decker et al., 1995]. In this way, the agent’s capabilities may be

shared, and the agent’s behaviours (hopefully) influenced so as to benefit all.

This is particularly important if the agents themselves are viewed as

functional, limited resources. For example, if a particular skill is needed by

two separate tasks, the agent can be used to address both, provided it has

sufficient computational power. In the case where the agent has multiple ways

of performing a task, it can also choose the method which best satisfies its

Figure 44. A multi-agent matrix organization.

Organization Based Multiagent Architecture For Distributed Environments

292

peers.

This sharing comes as a price, however, because the shared agent

becomes a potential point of contention. If its managers disagree, the agent’s

actions may become dysfunctional as it is pulled in too many directions at

once [Schwaninger et al., 2000, Romelaer, 2002]. To operate effectively, the

agent must have a commitment ranking mechanism and sufficient autonomy to

resolve local conflicts, or the ability to promote conflicts to a higher level

where they may be resolved [Mailler et al., 2003]. Wagner’s motivational

quantities framework [Wagner and Lesser, 2000] is one approach that

addresses this problem. In that work, task valuation is performed by

combining both the local intrinsic worth of the task with the perceived or

specified worth that task will have on other entities. This valuation is

quantified through the expected production and consumption of different

motivational quantities (MQs), which act as a virtual resource or medium of

exchange. The preference for particular MQs is specified with a set of utility

curves that together determine the agent’s overall usefulness. By coupling the

production of different types of MQs with the tasks associated with different

managers, the framework is able to capture the quantitative motivation behind

a particular course of action. This explicitly represents the type and states of

the relationships the agent has with those managers, which can enable it to

correctly balance its behaviour in a matrix organization.

B.9.2. FORMATION

Decker [Decker et al., 1995] describes the MACRON organizational

architecture, in which agents form a matrix organization. The domain for their

system is cooperative information gathering, where multiple agents search for

relevant data in response to a user’s query. Individual agents are separated into

predefined functional groups that contain agents able to access a particular

type of information. These groups are under the control of a functional

Appendix B. Taxonomy of Organizations

293

manager, who assigns agents to query tasks as they arrive. User query agents

generate those query tasks, and therefore use the functional managers to

dynamically select agents to satisfy their own goals. Individual gathering

agents report to two agents: a static functional manager, and a query manager

which changes depending on the user’s actions. This has the effect of

assigning the minimal needed set of agents to the query, increasing efficiency

when compared to a system employing a set of static teams where particular

team members might go unused, depending on the query characteristics. At

the same time, this approach uses fewer resources than one lacking functional

groups, which would have to search through all available agents for each

query.

In [Horling, 2003], Horling describes a distributed sensor network

application where a matrix organization is used to address a resource

allocation problem. In this case, the sensors themselves were limited

resources, since their heterogeneous locations and orientations made each one

unique. The tracking process for each target was controlled by a different track

manager, which was responsible for discovering and coordinating with the

sensors needed to track its target. When multiple targets came in close

proximity to the same sensor, a matrix organization is dynamically formed as

the relevant managers interact with that sensor. At the same time, that sensor

may have previously been given tasks by a regional manager responsible for

detecting new targets.

The result is an individual which may be under contention by three or

more managers, and which must then decide how best to meet those demands.

This was done using a combination of a predefined ranking scheme (tracking

has higher priority than scanning for new targets), local autonomy (round

robin scheduling) and conflict elevation (track managers negotiate directly

once aware of the conflict).

Organization Based Multiagent Architecture For Distributed Environments

294

B.10. COMPOUND ORGANIZATIONS
Not all organizational structures fit neatly into a particular category,

and some architectures may include characteristics of several different styles.

A system may have one organization for control, another for data flow, a third

for discovery, and so on. For example, Durfee’s PGP [Durfee and Lesser,

1991] incorporates one organization for interpretation, and another separate

structuring of the same agents to manage coordination problems.

Compound organizations can be overlapped, operating as virtual peers

at the same conceptual level, or be nested, so that some subset of agents in a

group are organized in a potentially different way within the larger context. A

sample such organization is shown in figure 45, which combines a hierarchy

with a set of coalitions. As with singular organizations, they may be created or

adapted over time, or they may be instantiated as part of a transient form while

a population shifts between organizational styles. Ideally, these compound

architectures can use the most effective structure for the particular goal at

hand, without limiting options that might be used elsewhere in the system. The

Figure 45. A multi-agent compound organization.

Appendix B. Taxonomy of Organizations

295

trade-off in this situation is usually one of complexity. Because an individual

agent might take on different roles in response to different organizational

demands, the agent itself must have sufficient sophistication to act efficiently

and asynchronously in all those roles.

Some of the organizational paradigms which have been discussed so

far are more amenable to coexistence than others. In much of the teamwork

research, for example, a loose hierarchy of control was created among the

agents after the team had formed [Tambe, 1997, Tidhar et al., 1996].

Hierarchical structures for interpreting and consolidating raw data are also a

popular mechanism for handling scale that can augment a pre-existing or

lower-level structure [Yadgar et al., 2003].

Societies frequently have an internal organizational structure within

the larger context defined by the social laws and norms [Dellarocas and Klein,

2000a, Dignum, 2004]. In other cases, researchers have exploited the

characteristics of one type of organization to create another. Congregations,

for example, have been used to facilitate the dynamic formation of markets

[Brooks and Durfee, 2002], while both markets [Lerman and Shehory, 2000]

and hierarchies [Abdallah and Lesser, 2004] have been used to efficiently

create coalitions. Societies can also be viewed as a common “pool” of agents,

from which a range of other organizations can be constituted. In this type of

compound organization, the society may exist in support of other, more

dynamic structures created to address particular tasks [Sichman and

Demazeau, 2001].

B.10.1. CHARACTERISTICS

The positive and negative characteristics of a compound organization

are derived primarily from its constituent parts. However, the interplay

between organizations can lead to unexpected consequences. For example, if

the distinguished intermediary in a federated system plays a key role in a

Organization Based Multiagent Architecture For Distributed Environments

296

separate overlay organization, it may be unable to fulfil both roles adequately.

Similar to a matrix organization, agents may be faced with conditions where it

is not clear which of two competing objectives it should satisfy [Romelaer,

2002].

Conversely, its knowledge of the requirements of both organizations

may enable it to make more globally effective decisions. The possible

interactions and formation strategies among arbitrary coexisting organizations

are difficult to characterize in a general manner; so some examples of systems

employing this technique will be shown next.

B.10.2. EXAMPLE COMPOUND ORGANIZATIONS

The distributed sensor network solution described by Horling

[Horling, 2003] uses several different overlapping organizational techniques.

Agents are first partitioned into federations, called sectors, where membership

is based on their geographic proximity. A distinguished member of each group

is given the role of sector manager, who provides a form of recruiting service

to other agents in the environment. This recruiting service supports the

activities of track managers, who must discover and use the appropriate

sensors as part of their tracking task. In forming the federations, the search

time is reduced because only a subset of the population (the sector managers)

needs to be interacted with, and communication requirements are reduced

because only the necessary subset of sensors will be returned. Both the sector

and track managers provide tasks to individual sensors, forming a matrix

organization in the process. This arrangement facilitates resource sharing by

allowing the sensors to guide their local activities based on the needs of

potentially several interested parties, but can also lead to conflicts caused by

over-demand. Because the sensor is a finite resource, a cloning technique

cannot be used to address the conflict. Instead, a loose peer-to-peer

relationship between track managers allows them to negotiate directly,

Appendix B. Taxonomy of Organizations

297

alleviating the conflict through demand relaxation or by using alternate

sensors. This resource allocation scheme employs a second, weaker form of

federation through its use of mediators [Mailler and Lesser, 2004].

The conflicts, which may be potentially multi-linked and far-reaching,

are partially centralized by a mediator agent which acts on the part of the

relevant agents to find a suitable solution. In [Horling et al., 2004] the

quantitative effects of these interactions are demonstrated through a set of

experiments that vary the shape of the organizational structure.

Yadgar [Yadgar et al., 2003] describes a different approach in a

distributed sensor environment. Groups of geographically-related sensors are

first formed into sampler groups, which are essentially federations with a

single agent called the sampler group leader acting as the intermediary. These

groups then form the lowest level of a data aggregation hierarchy that exists

above them. This arrangement is similar to the example organization shown in

figure 45. The sampler group leader collects raw data from the members of its

group, and passes the data to its parent agent in the hierarchy, known as a zone

leader. It is this zone leader’s responsibility to interpret the sensor data to the

best of its ability, by building motion equations and combining data perceived

to be from the same target. This more abstract view is then passed to the next

level of the hierarchy, where the process repeats. This will eventually

terminate at the apex agent which should be able to reconstruct a global view

from the abstract pieces it receives. The hierarchy itself is strict, and

communication is only permitted between connected agents, which reduce the

level of sophisticated needed by the agents.

The experimental results showed that this solution could scale to

thousands of sensors and targets. The trade-off they discovered was that

shorter hierarchies produced more accurate results, because the fragmentation

of the area was minimized, which in turn reduced the number of fusion

processes data must survive before it is incorporated. Conversely, taller

Organization Based Multiagent Architecture For Distributed Environments

298

hierarchies dramatically reduced the computational load placed on any one

agent, because the area each agent was responsible for became relatively

small. By weighing these characteristics against the domain requirements one

can select an appropriate structure to use.

B.11. OTHER ORGANIZATIONAL TYPES
There are a number of other topics related to organizational design

that, although they are not so widely used, they are sufficiently important to

warrant mention. These are outlined below:

 Global Organizational Representation. Implicit in the concept of an

intentional organizational design is an explicit representation of its structure.

This is of use to designers, as a means of specification and exploration, and to

the agents themselves, as a template and diagnostic tool. A number of general

modelling representations have been proposed, notably by Fox [Fox et al.,

1998], Tambe [Tambe et al., 1999], Hübner [Hubner et al., 2002], Pattison

[Pattison et al., 1987], Dignum [Dignum, 2004], Sims [Sims et al., 2004],

Horling [Horling and Lesser, 2005] and Vázquez-Salceda [Vázquez-Salceda et

al., 2005].

 Local Organizational Representation. The organization’s global view

is not always the most appropriate vehicle to guide agents’ behaviours. It can

be too coarse in granularity, too qualitative or simply too large to be of

practical use. Agents require a well-defined, quantitative mechanism that can

be used to select appropriate local actions while respecting global

organizational specifications. This process was originally described as local

elaboration by March and Simon [March et al., 1958], where the activities

performed by an agent are first constrained by its position in the organization,

and then selected using local information and capabilities. The social

consciousness model suggested by Glass and Grosz [Glass and Grosz, 2003],

Decker’s TÆMS language [Decker and Lesser, 1993], Shoham’s social laws

Appendix B. Taxonomy of Organizations

299

[Shoham and Tennenholtz, 1995], and Wagner’s MQ framework [Wagner and

Lesser, 2000] provide ways to accomplish this.

 Organizational Performance. Other researchers have taken a different

approach by creating formal analytic or statistical models that focus on the

activities or behaviours of the organization, rather than representing the

organization as a whole [Malone and Smith, 1988, Decker and Lesser, 1992,

Montgomery and Durfee, 1993, So and Durfee, 1996, Lerman and Galstyan,

2001, Shen et al., 2004, Gnanasambandam et al., 2004, Horling and Lesser,

2005, Schmitt and Roedig, 2005]. These typically more quantitative

representations can provide insights into organizational performance that are

largely absent from purely descriptive or logical representations. A different

approach is to use experimental or simulation studies, which can offer a more

general-purpose approach to analyze organizational performance that may not

be amenable to modelling [Lesser and Corkill, 1983, Lin and Carley, 1995,

Sierra et al., 2004]. The drawback to using empirical analysis is the time

required to run such tests, which is usually much greater than that needed for

analytic techniques. Conversely, analytic models may require simplifying

assumptions to be tractable, or otherwise fail to take into account the

complexity real-world behaviours. Parunak [Parunak et al., 1998] provides

further discussion on the tradeoffs between these approaches. However they

are obtained, such predictions can play a critical role in the search and

evaluation process, by allowing the designer to directly compare alternative

organizational strategies before implementing a design. This can provide the

foundation for a more proscriptive organizational tool.

 Generative Paradigms. Different ways in which organizations may be

formed have been described before. However, it has not been presented a

unified discussion of specific generative paradigms – a classification of the

techniques that may be used to produce organizations. These may be broadly

separated into at least three classes: scripted, controlled and emergent. The

Organization Based Multiagent Architecture For Distributed Environments

300

first includes organizations that are produced from statically predefined

instructions, possibly from an external third party or during start-up. The

second includes those that are explicitly applied to a population by an

individual or group of individuals in response to perceived conditions. The

third captures techniques which have no central or global direction, but are

instead self-directed or grown organically through the individual actions of

agents. In practice, it may be difficult to clearly classify particular techniques.

For example, congregations emerge from individual agent decisions using the

technique described by Brooks [Brooks and Durfee, 2002]. However, the fact

that it uses heuristics intended to simulate a controlled decision, along with

agents which provide labels to guide the formation, gives the appearance of a

controlled process.

 Organizational Adaptation. Although adaptation has been previously

briefly touched, an organization’s ability to adapt is a general concept that is

critical in any dynamic environment. The organization must have the ability to

detect and react to changes in a timely manner in realistic, open domains

[Carley, 1997, Horling et al., 2001]. Any organizational change which occurs

at runtime will have associated costs. These costs may be observed in direct

consumption of resources, such as bandwidth or processing power, or

indirectly because of inefficiencies or opportunities missed while in an

intermediate state. The ability to adapt an organization depends on first

recognizing potential problems, evaluating the costs and benefits of candidate

solutions, and then implementing the selected changes. Related to adaptation

is the notion of social pathologies, which occur when an organization adapts

inappropriately [Turner, 1993, Jensen and Lesser, 2002].

 Coordination and Negotiation. Many of the organizational styles

covered assume some that some sort of interaction or coordination will take

place between agents. This is seen in the authority relationships of hierarchies,

the joint intentions of teams, data routing protocols in federations, and

Appendix B. Taxonomy of Organizations

301

negotiations of society members. The characteristics provided by these

interactions are critical to the effective qualities of these paradigms. For

example, aggregating nodes and managers in hierarchies and intermediaries in

federations frequently take on responsibilities related to coordination, by

assigning tasks or routing information in such a way that interrelationships

among their subordinates can be avoided [Galbraith, 1974]. Argumentative

negotiation has been shown to be effective in resolving conflicts in team

settings [Jung et al., 2001]. The techniques that are used can heavily influence

the interactions and behaviours exhibited by the group, ultimately affecting the

performance of the organizational structure. Work by Prasad [Nagendra

Prasad and Lesser, 1999], Lesser [Lesser et al., 2004] and Toledo [Excelente-

Toledo and Jennings, 2004] have also explored the dynamic selection of

coordination strategies, which in this context can be considered a form of

organizational adaptation.

 Autonomy. The manner in which an agent behaves, and in particular

how its motivations are determined, is intimately related to its position within

the organization. Agents may be externally directed, self-directed or some

combination of the two [Lesser and Corkill, 1981]. For example, agents in

hierarchies, federations and matrix organizations all generally have manager-

supervisor relationships, implying that local actions are partially or completely

decided by an external entity. Conversely, agents operating in markets are

typically more autonomous, independently deciding how and when to bid.

Like other characteristics, the level of autonomy can affect the performance of

the system as a whole. Authoritarian structures can exploit centralization to

make good decisions, while an organization of more autonomous entities

offers better balance and parallelism. Because the needs and constraints

exhibited by participants change over time, it can also be beneficial to

dynamically adapt agents’ levels of autonomy in response to changing events

[Scerri et al., 2002, Zhang et al., 2002].

Organization Based Multiagent Architecture For Distributed Environments

302

 Human Organizational Analogues. For much of the time that multi-

agent organizations have been researched, attempts have been made to draw

upon the large body of work that has been done on human organizations. The

fields of sociology, anthropology, biology, economics, business management

and formal organization theory (among others) contain a wealth of analytic

and case study information describing how human organizations are structured

and perform [Fox, 1981, Gasser, 2001]. Although on the surface much of this

work is intimately tied to the human experience, attempts to extract concepts

and abstractions have met with some success.

 Diversity. Although role assignment clearly plays a critical role in an

organizational specification, the notion of agent diversity is rarely treated as or

reasoned about as a first-class characteristic. As with stock portfolios, animal

populations and security techniques, diversity can play an important role in

agent systems susceptible to failure. Enforcing agent diversity through

heterogeneous roles, agent types or division of labour, can impart semantic

and capability fault-tolerance on the system as a whole [Corkill and Lesser,

1983, Reed and Lesser, 1980, Corkill and Lander, 1998, Lybäck, 1999].

Diversity can be embedded in the organizational design to encourage such

characteristics.

”Each problem that I solved became a rule which served
afterwards to solve other problems.”

 René Descartes

303

APPENDIX C. CASE-
BASED REASONING

In th i s appendix the Case -Based Reasoning methodo logy i s
in t roduc ed . CBR i s the cor e methodo logy o f the
OBaMADE arch i t e c ture , be ing r e spons ib l e o f the s t ruc ture
o f the s tor ed in format ion and o f the qual i t y o f the r e su l t s .
The CBR methodo logy i s us ed to g enera t e the so lu t ions by
r eus ing pas t so lu t ions g iv en to pas t prob l ems . The four
main phase s o f the CBR cy c l e ar e expla ined her e , pay ing
spe c ia l a t t en t ion to the CBR sys t ems deve loped based on
th i s me thodo logy .

ase-Based Reasoning is a methodology that has its origin in

knowledge based systems. CBR systems learn from previous

situations [Aamodt, 1991]. The main element of a CBR

system is the case base; a structure that stores problems, elements (cases),

and its solutions. So, a case base can be visualized as a database where a

collection of problems is stored keeping a relationship with the solutions to

every problem stored, which give the system the ability to generalize in order

to solve new problems.

C

Organization Based Multiagent Architecture For Distributed Environments

304

The learning capabilities of the CBR systems are due to its own

structure, composed of four main phases [Aamodt and Plaza, 1994]:

retrieval, reuse, revision and retention. These four main phases are shown in

figure 46. The first phase is called retrieve, and consists in finding the most

similar cases to the proposed problem from the case base. Once a series of

cases are extracted from the case base, they must be reused by the system. In

this second phase, an adaptation of the selected cases is done to fit the current

problem is done to fit the current problem. After giving a solution to the

problem, that solution is revised to check if the proposed alternative is a

solution to the problem. If the proposal is confirmed as a solution, then it is

retained by the system and could eventually serve as a solution to future

problems.

Figure 46. Case-Based Reasoning basic structure.

Appendix C. Case-Based Reasoning

305

Case-Based reasoning is a methodology [Watson, 1999], and so it has

been applied to solve different kind of problems. It is a model that can be

easily applied to solve soft computing problems [Shiu and Pal, 2004], since

the methodology used by CBR is quite easy to assimilate by soft computing

approaches. Another interesting application is related with stock market

prediction [Chun and Park, 2005], where using different daily values, a CBR

system can create a model that may help in stock market investments.

Construction is another of the fields of application of CBR, first for the

construction of functional databases [Yu and Liu, 2006] to improve the

benefits in the usually chaotic organization of the construction projects and

also [Chow et al., 2006] to help to choose between different methods and

materials, using expert system oriented applications.

Other applications of the CBR methodology cover from health

applications [Corchado et al., 2008] to eLearning. CBR has evolved, being

transformed so that it can be used to solve new problems, becoming a

methodology to plan, or distributed version. Oceanographic problems [Fdez-

Riverola and Corchado, 2004], has also been solved with these techniques,

helping to predict the value of variable parameters.

But, in most cases, CBR has not been used alone, but combined with

various artificial intelligence techniques. Growing Cell Structures has been

used with CBR to automatically create the intern structure of the case base

from existing data and it has been combined with multi-agent applications

[Carrascosa et al., 2007] to improve its results. ART-Kohonen neural

networks [Yang et al., 2004],, artificial neural networks and fuzzy logic

[Fdez-RiverolaIglesias et al., 2007a] has also been used to complement the

capabilities of the CBR methodology. Actual trends in CBR explore the

possibility of giving explanations from the very CBR systems [Sørmo et al.,

2005]. These techniques allow the CBR systems to give the users a better

solution, adding extra information to the solution proposed by the system.

Organization Based Multiagent Architecture For Distributed Environments

306

C.1. CASE-BASED REASONING AS A

PROBLEM SOLVING APPROACH
Reasoning can be defined as a process that draws conclusions by

sequencing generalized rules or situations. The principal knowledge source

of CBR is not generalized rules but a memory of stored cases. In CBR, new

solutions are generated not by chaining but by retrieving the most relevant

cases from case library and adapting them to fit new situations [Leake,

1996].

 CBR tasks are often divided into two classes as interpretive CBR and

problem-solving CBR. Interpretative CBR uses prior cases as reference

points for classifying or characterizing new situations; and problem-solving

CBR uses prior cases to suggest solutions that might apply to new

circumstances [Kolodner, 1993].

The interpretive CBR involves four steps being performing situation

assessment [Kolodner, 1993] to determine which features of the current

situation are really relevant; retrieving a relevant prior case or prior cases

based on the results of situation assessment; compares those cases to the new

situation and finally saying the current situation and the interpretation as a

new case for future reasoning [Leake, 1996].

Legal problems and diagnosis concepts are the fields for which

interpretive CBR processes are applied. On the other hand, in problem-

solving CBR, the goal is to produce a solution to a new case based on the

adaptation of solutions to past cases. Case-based design, planning, and

explanation systems are the examples for this class since they require

retrieving and adapting solutions of similar prior problems [Leake, 1996].

Like interpretive CBR, problem-solving CBR involves situation assessment,

case retrieval, and similarity assessment steps to find solutions for new

Appendix C. Case-Based Reasoning

307

problems. Since many problems have components of both types of CBR,

most effective case-based reasoning systems use a combination of both

methods [de Mántaras and Plaza, 1997].

In short, CBR solves problems through a process that involves some

basic steps as retrieving relevant cases from the case memory, selecting a set

of best cases, deriving a solution, evaluating the solution and storing the

newly solved case in the case memory [de Mántaras and Plaza, 1997].

The goal of CBR is to use the computer to augment the analogical

reasoning and memory of the domain expert by providing the expert with

representative cases similar to the problem at hand [Kolodner, 1991]. This

statement points out the necessity of computers to apply CBR principles. In

order to meet this requirement, several commercial companies offer shells for

building CBR systems. CBR shells provide mechanisms to support case

retrieval and allow users to interactively provide additional information as

needed during retrieval besides; they provide sophisticated interfaces to

facilitate creating and editing the case base [Leake, 1996].

C.2. CASE DEFINITION AND CASE BASE

CREATION
The first phase in the design of a CBR application must consist in a

transformation of the information available into a structure, into cases. This

transformation is a crucial step in the creation of a good solution. Not all

types of information can be easily traduced into cases and so, the possible

variations can dramatically modify the correction of the solutions proposed

by the systems.

A case can be defined as a conceptualized piece of knowledge

representing an experience that teaches a lesson fundamental to achieving the

goals of the reasoner [Kolodner, 1993]. It is a set of features, attributes and

Organization Based Multiagent Architecture For Distributed Environments

308

relations of a given situation and its associated outcomes. Case acquisition is

an important aspect in designing efficient CBR systems. Cases in the case

memory are designed to capture the knowledge and experience of domain

experts [Gupta, 1994].

Cases are collected in a database which is composed of cases with

each case including; a set of problems, characteristics that distinguish this set

from others that warrant a different response, possible actions that were

particularly helpful or harmful in such situations, indicators that suggest what

type of response to expect and connections to other cases that reflect next

steps or alternate steps depending on the responses observed [Kolodner,

1993]. Since the case base reflects the conceptual view of the cases and it

supports efficient search and retrieval methods, it should be organized in a

manageable structure, which determines the scope of intelligence of the

system and its breadth and depth of expertise [Gupta, 1994].

One of the main concerns of CBR is to ensure that the right cases can

be recalled at the right times. This is known as the indexing problem in CBR,

which has two aspects. One is the vocabulary problem that requires assigning

suitable labels or descriptors to the case so that it can be easily referenced in

the case library during retrieval [Chua et al., 2001]. Indices should address

the purposes the case will be used for; they should be abstract enough to

allow for broadening the future use of the case base and concrete enough to

be recognized in future. However, despite the success of many automated

methods, Kolodner [Kolodner, 1993] believes that people tend to do better at

choosing indices than algorithms, and therefore for practical applications

indices should be chosen by hand.

A CBR system uses a set of indices to search for and retrieve cases

similar to the current problem. There are three main approaches in indexing

cases namely nearest neighbour, inductive reasoning and knowledge guided

indexing [Gupta, 1994]. Frequently, systems use a combination of all three

Appendix C. Case-Based Reasoning

309

methods. In the nearest neighbour approach, the system selects the case

whose attributes most closely match those of the current problem. Among

current machine learning methodologies, inductive learning is the most

widely used.

An example of inductive learning systems is ID3 [Li, 1996], which the

majority of the case-based systems implement. The objective of induction

algorithm is to generalize decision rules from past examples. These methods

use an intelligent approach to retrieve cases based on the most meaningful

and discriminating features of each case.

On the other hand, in knowledge-based indexing, domain knowledge

about each case is used to determine the features in past cases that are most

relevant to the current problem. This method is generally used to enhance

and supplement the other two indexing approaches due to the difficulty to

implement this method since explanatory knowledge cannot be successfully

and profoundly captured using if-then rules [Gupta, 1994].

The easiest way to create a case is just a series of numerical values

[Tsai and Chiu, 2007] that correspond to those variables that are going to be

considered as important in order to solve the problem. When the

characteristics of a system can be expressed as numbers [Pérez et al., 2005] it

is quite easy to generate a case structure that can be used by mathematical

techniques.

In other cases, properties of the variables that must conform the case

are selected [Song et al., 2007] to easily transform information into cases,

measuring and transforming the properties in order to clearly obtain the

information that is useful for the developed application.

In textual case bases, it is sometimes necessary to extract knowledge

from the data before creating the case base [Mustafaraj, 2007]. Once the

knowledge is obtained, it can be structured into the case base. Every new

element is part of one or more of the pieces of knowledge previously

Organization Based Multiagent Architecture For Distributed Environments

310

identified, and then, the case is formed by the separated pieces that has inside

it.

E-mails are also textual elements [Fdez-RiverolaIglesias et al.,

2007b], and the transformation from information to cases is not always

obvious. If the most relevant terms are selected, it is necessary to determine

which terms are more relevant than the others, and to justify it. A set of mails

is used and then a comparison between the frequency of appearance of a term

in a message and the frequency of the same term in the whole set of mails is

established as a measuring value.

In medical applications, the case must include values referred to the

patient, but also associated with the clinical evolution of the patient

[Montani, 2007]. It is also interesting to include a reputation value that is

increased every time a case is recovered from the case base and used, every

time the expert considers that the case is useful.

When the information to be transformed into cases contains a great

amount of words, it is necessary to parse the original data [Patterson et al.,

2005] in order to obtain the list of terms used to create the cases.

In some occasions, the information can be considered as hard to

model, but after an analysis, it can be transformed into numerical variables

[Ros et al., 2006] with what is quite easier to generate cases.

There is a clear difference between cases related with textual

information and those where the information can be numerical. In textual

systems a filtering process must be produced in order to eliminate useless

information and to traduce the data available into a series of concepts that

can categorize every item in the case base. On the other hand, numerical

information has a clear representation into cases, but, sometimes, it is not

evident and the variables must be evaluated, confronted or even transformed.

Appendix C. Case-Based Reasoning

311

C.3. RECOVERING DATA FROM THE CASE

BASE
Once the information is stored is the case base, it will be used to solve

future problems. The case base store all the cases previously used by the

system. When a new problem appears, a selection of cases are recovered

from the case based and will be used to solve that new problem.

The cases retrieved from the case base are in most cases, those more

similar to the proposed problem. Similarity is those systems the key concept

to take into account when trying to improve the retrieval phase, but it is not

the only valid concept in order to improve the retrieval.

The indexing mechanism determines the cases that should be selected

while the case retrieval process ensures that the most relevant case is selected

for further analysis. Given a description of a problem, a retrieval algorithm

retrieves the most similar cases to the current problem or situation by using

the indices in the case library. The retrieval of relevant cases depends on a

good indexing of the cases that select an appropriate set of indices. The

system retrieves the matched cases according to a predefined similarity

function, which evaluates the degree of similarity of each case in the case

base [Yau and Yang, 1998a].

CBR systems should include a strong memory-based retrieval system;

cases should be retrieved intelligently and systematically by finding the

closest match between attributes of past cases and those of the current

problem [Gupta, 1994]. When the case memory is large, a hierarchical

organization of the memory is necessary because a simple linear list is very

inefficient for retrieval. The basic idea is to organize specific cases that share

similar properties under a more general structure called a “generalized

episode” [de Mántaras and Plaza, 1997]. A general episode contains norms,

Organization Based Multiagent Architecture For Distributed Environments

312

cases and indices where norms are features common to all cases, indexed

under a general episode and indices are features, which discriminate between

the cases of a general episode [de Mántaras and Plaza, 1997].

One of the most famous similarity measures is the k-NN (k nearest

neighbours) and also modern variations like Significant Nearest Neighbour

[Tsai and Chiu, 2007] where the value of k is calculated taking into account

the dissimilarity between the new case and the past ones stored in the case

base.

In some cases, when the amount of variables is quite big, it is

necessary to select which ones will be used to select the similar cases from

the case base [Montani, 2007]. A two steps procedure occurs so first the

interesting variables must be chosen, and then, the search in the case base of

the most similar cases according to those variables.

To determine the similarity between different elements, a great variety

of metrics has been used. Sometimes it is recommended to establish the

similarity between two elements by comparing them with the rest of the

cases [Im and Park, 2007]. Then the compared elements will be considered

as similar if their similarity with the rest of the cases is similar in all cases.

If different features are considered when defining the case base, they

must all be considered when obtaining similar cases from the case base. In

this kind of situations different metrics can be done to calculate the similarity

of the different features [Ros et al., 2006], and then create a combined

similarity metric that integrates all the metrics used.

Recover the most similar cases to one given can be an easy task if the

whole case base is indexed [Galushka and Patterson, 2006], then it is only a

question of searching the closest cases. But to get to that point, a previous

effort of analysis and categorization of the information must be done.

In some circumstances, a previous search of context is done [Spasic et

al., 2005], to obtain a variety of cases that are used to perform a second and

Appendix C. Case-Based Reasoning

313

more specific search.

When facing textual problems it is interesting to offer different

alternatives so that the user can personalize the retrieval depending on the

interest of the query [Patterson et al., 2005]. This way, the recovered cases

can be adapted to a specific situation defined by the user when determining

the terms of the retrieval.

When the different variables stored in the case base represent a

dissimilar importance for the final solution, it has to be expressed in the way

the cases are retrieved from the case base[Nugent and Cunningham, 2005].

The importance of the variables may also vary from one query to another,

and so the retrieval system must be adapted to correctly get back the right

collection of cases from the case base.

If the problem introduce in the system implies considering different

scenarios, multiple retrievals can be done [Aha et al., 2005]. In this kind of

situations the original problem introduced in the system defines the start

point of the search, and from that point and looking for in different

directions, different sets of cases are recovered from the case base, in order to

generate a complete perspective of the problem.

C.4. ADAPTATION OF THE RETRIEVED

CASES
The reuse phase is the solution generator. From the collection of cases

retrieved from the cases base, a new solution must be generated in order to

solve the proposed problem. Sometimes, there is no need to modify the

recovered cases to solve the problem, especially if talking about

classification problems, where only a belonging solution must be offered.

The most complex the problem is, the most necessary an adaptation is.

When the difference between the introduced problem and the stored cases is

Organization Based Multiagent Architecture For Distributed Environments

314

big enough, then the adjustment of the recovered cases is essential in order to

obtain a correct solution, really adapted to the proposed problem.

Once a matching case is retrieved, a CBR system should adapt the

solution stored in the retrieved case to the needs of the current case. In

general, there are two kinds of adaptation in CBR as structural adaptation in

which adaptation rules are applied directly to the solution stored in cases and

derivational adaptation that reuses the algorithms, methods or rules that

generated the original solution to produce a new solution to the current

problem [Kolodner, 1993].

Most research on case adaptation has assumed that adaptation should

be done in a completely autonomous way through the rules. There are

alternatives of decreasing the need for adaptation rules suggested by Leake

[Leake, 1996], some of which are using flexible adaptation rules, using

adaptation cases, combining rules and cases for adaptation learning and

reusing subcases. Adaptation rules as proposed by Ng [Ng, 2001] are

developed to guide the adaptation process.

The next step after a case is adapted in accordance with the

requirements is the incorporation of that case into the case base so that it can

be used in the future. This feature of CBR provides the algorithm to become

stronger since the following problems will be solved more accurately with a

larger database. If the proposed solution is successful then the system

incorporates the solution and the representation of the current case into the

case memory. Sometimes, the system may not propose a solution to the

problem. In such cases, if the solution fails, then the system provides an

explanation as to why it failed and documents it in the system library [Gupta,

1994].

The reuse phase implies adapting the retrieved cases to solve the new

problem. In some cases multiple adaptations can be done [Huang et al.,

2007], depending on the amount of information given to the system. The

Appendix C. Case-Based Reasoning

315

biggest amount of information given, the most direct transformation will be

done.

When treating textual information, like e-mails, voting algorithms

[Fdez-RiverolaIglesias et al., 2007b] can be used to adapt the recovered

cases, taking into account the information proposed by the treated problem.

On the other hand, numeric situations, like those used in microarray

problems, can be reused thru neural networks like Growing Cells Structures

[Diaz et al., 2006], where the aim is to cluster the retrieved information.

Another way to use neural networks to adapt the retrieved information

is to change the weight of the connection between the neurons depending on

the retrieved cases [Zhang et al., 2004]. Changing the weights allows the

system to adapt the solution to the problem, as the retrieved cases will

depend directly on the proposed problem.

When the certitude about the correction of a solution is not high

enough, multiple cases may be taken into account in order to build the new

solution. Then a fusion of cases [Song et al., 2007] is done, considering the

different benefits given by every point of view, by every case retrieved.

If the problem to be solved may belong to more than one field of

knowledge, and there may be more than one case base, a good solution can

be to adapt the retrieved cases, from the different case bases, according to the

characteristics of the problem [Policastro et al., 2006]. In this case, neural

networks were used to recover the data from the different case bases, and

machine learning algorithms combined the retrieved cases in order to adapt

those cases to the proposed problem.

When using genetic algorithms, the reuse may help to reduce

convergence time if considering previously working solutions [Pérez et al.,

2005]. This approach may be applied to different fields where evolutionary

algorithms are useful but slow.

Organization Based Multiagent Architecture For Distributed Environments

316

C.5. REVIEW OF THE PROPOSED SOLUTION
When a solution is generated by a system, it is necessary to validate

the correction of that solution. One easy way to validate that correction is to

compare the proposed solution with those stored in the case base [Yu and

Liu, 2006]. Then a threshold value is established in order to determine if the

new solution is correct enough to be considered as a good solution and so to

be stored in the case base for future uses.

If the case base structure is integrated into a neural network, then the

revision phase consists changing the organization of the case base, depending

on the correction of the proposed result and other neural variables such as

neuron age, activation value and last use [Wu and Yu, 2005].

The best way to test the correction of a solution is to actually perform

the solution and check how good has been the evolution after applying it.

This is only possible in certain environments, such as strategy games [Aha et

al., 2005], where what is analyzed is the tool and its algorithms.

In crucial fields, such as medical applications, it is normal to trust an

expert in order to finally accept a solution [Chang, 2005]. Then, after being

accepted by the corresponding expert, next time it will be considered as a

better solution, being chosen from the case base with a higher probability.

Changing the values proposed by the system to others similar but not

equal is a technique also used to revise the correction of a solution [Li et al.,

2007]. If the solution generated by the similar values is not better than the

proposed one, then the chosen one is a good solution for the problem.

In not critical applications, like strategy games, the correction of a

solution can be added to the stored solutions, increasing its value every time

a solution is chosen [Sharma et al., 2007]. Genetic algorithms are also used

to revise the correction of the solutions [Pavón et al., 2008]. After running

those algorithms, the solutions can be accepted, and added to the case base.

Appendix C. Case-Based Reasoning

317

Finally, fuzzy algorithms are also used to automatically revise CBR

solutions [Fdez-RiverolaDíaz et al., 2007]. Using those algorithms the

memory used to store the cases can also be reducing, improving the result of

the system.

C.6. RETAIN OF THE SOLUTION AND CASE

BASE MAINTENANCE
The retention phase is a very important element in the case base

maintenance [Wilson, 2001]. It is important to readapt the way the

information is stored in order to increase the possibilities of finding good

solutions in the future. New data may affect previous relations established

between the stored elements. So it is important to arrange solid criteria to

decide whether to change the case base or not and if so, how to do it correctly

in order to represent in the case base the whole variability of the available

data.

In most cases there is a big amount of information stored in the case

base and it is not necessary to store every valid case, thus the information

could be too redundant. In those situations a conditional retention is

performed [Sharma et al., 2007], keeping the new solution only if it is

different enough to the closest existing case.

If during the solving process a big amount of new information is

generated, it may be eventually introduce in the case base. The relevance of

the new information could be such to also affect the adaptation phase [Li et

al., 2007]. In those circumstances the retention process is not very strict

because of the variety of origins that new data can have.

There are special applications where the source of new cases is not

only the solution proposed but also information exchanged between different

elements of the system [Ontañón and Plaza, 2003].. Then, the retention must

Organization Based Multiagent Architecture For Distributed Environments

318

consider more variables, not only variability, but also the confidence or not

of the transmitted data depending on the specific context.

Even when the proposed solution is considered as an eventually good

solution to be stored in the case base, the growth of the case base can be

counterproductive. In some case, where the amount of stored information is

huge and when there must be an economy of resources in order to manage a

reasonable case base, case base editing is necessary [Delany, 2006]. In those

situations the number of cases stored in the case base is tried to keep as low

as possible, always maintaining the inherent capabilities of the information.

When the case base grows to thousands of elements, it may be

difficult to maintain it. Then dividing the case base in different parts with

certain inner similarity [Li et al., 2006] can help to structure the store

information and also to make future retrievals.

Another strategy used to control the growth of the case base is to

group cases into prototypes that [Montani and Anglano, 2008] include the

common characteristics of a series of cases with no plenty of variability.

Using those prototypes, the final size of the case base is reduced without

losing a significant amount of information.

C.7. CASE-BASED REASONING COMPARED

WITH OTHER TECHNIQUES
Reasoning in CBR is based on experience or remembering. CBR

approach focuses on how to exploit human experience, instead of rules, in

problem solving and thus improving the performance of decision support

systems [Chen and Burrell, 2001]. CBR does not require an explicit domain

model; main task is gathering case histories since CBR systems can learn by

acquiring new knowledge. Identifying significant features to describe a case

is much easier than creating an explicit model. By utilizing database

Appendix C. Case-Based Reasoning

319

techniques, CBR is enabled to manage large volumes of information that

increases the reliability of the solutions it proposes. Case-based systems are

preferable when the expert knowledge is hard to be modelled and large

amounts of cases are available. In this respect, case-based systems that aid

problem solving in construction are assumed to be attractive as they provide

a model to store previous construction projects in entirety as cases and reuse

them when similar new problems occur [Li, 1996].

There are several alternative approaches in the AI domain over which

CBR has various advantages. These systems include artificial neural

networks (ANNs), rule-based expert systems and model-based systems.

Rule-based systems have well-defined structures and excellent explanation

facilities; in this respect they are more advantageous compared to ANNs,

which cannot easily generate explanations for their results. Indeed,

combination of rule-base systems or model-based systems with CBR could

give more satisfying results since the strengths of one system may

compensate the weakness of another.

CBR allows decision makers to interact with and review the reasoning

process and even perform heuristic adjustments on the derived result where

necessary [Chua et al., 2001]. CBR is applicable to solve problems and make

decisions when the knowledge needed is so vague that formatting decision

rules is infeasible but cases are available [Li, 1996]. CBR eliminates the

bottlenecks of other systems and facilitates development of expert systems. It

benefits from how humans reason and it is based on experience, which

should not be necessarily transformed to rules or models; it addresses ill-

defined problems by tolerating human interpretation, which provides

acceptable explanations on the solutions derived. Following paragraphs give

a detailed analysis of each technique and discuss their similarities with CBR

and the discriminating features between those methods.

Organization Based Multiagent Architecture For Distributed Environments

320

C.7.1. ARTIFICIAL NEURAL NETWORK

An ANN is a computer program that imitates human decision

making at a low level in an attempt to replicate the capacity of human

reasoning to surpass the structure of rigidly defined rules and formal logic

[Li, 1996]. A more comprehensible definition is given by Caudill and

Butler (1990) who define ANN as a type of information processing system

whose architecture is inspired by the structure of biological systems

[Arditi and Tokdemir, 1999].

The development of an ANN based system consists of designing

and training the ANN. The design parameters in constructing an ANN

model can be described at three different levels: node level (type of input

accepted, transfer function and means of combination), network level

(number of layers, number and type of nodes, size of hidden layers,

number and type of output nodes and connectivity) and training level

(learning algorithm and learning parameters) [Arditi and Tokdemir, 1999].

Unfortunately, there is no structured methodology for designing an ANN

[Li, 1996]).

Training consists of presenting input and output data to the network

[Arditi and Tokdemir, 1999]. For each example presented to the network,

outputs are produced and these outputs are compared with those expected.

The error is back propagated to the hidden units and the weights of the

connections are modified using a modification rule [Li, 1996]. The

process is performed many times until the error is reduced to a preset

level.

Obviously, there are some similarities between two approaches.

Both are based on the experiential knowledge and are designed by

acquisition of inputs and outputs to the system. It should be noted that

CBR is a more advanced approach, it allows human interference in

Appendix C. Case-Based Reasoning

321

deciding indexing methods, but ANNs work like a black box [Yau and

Yang, 1998b], as the algorithm cannot be understood completely by

humans.

In addition, ANNs require to be completely trained; they perform at

lower efficiency when there are many features and do not allow updating

the system without retraining, so they can be regarded as difficult systems

to develop. Another drawback of ANNs is that they are designed to deal

with only numerical figures. On the other hand, CBR systems seem to be

more flexible since they are good at handling missing data, incorporating

new cases into the case base and coping with a vast amount of features

due to the indexing abilities. ANN is useful in identifying underlying

patterns to be used for forecasting where available data are noisy and

complex [Li, 1996] so, construction cost estimation may be an application

area.

C.7.2. RULE-BASED EXPERT SYSTEMS

Expert systems are computer programs that use heuristics and

inference techniques to solve complex problems that ordinarily require

expertise [Gupta, 1994]. A rule-based expert system consists of a

knowledge base to store the expert’s knowledge and facts as rules, an

inference engine that facilitates a reasoning process to solve a specific

problem, a context memory that contains the information about the

problem to be solved and a user interface that inputs and outputs

information [Li, 1996].

The essence of an expert system is a knowledge base represented

primarily by transparent if-then rules, so it is limited by the process of

acquiring knowledge. Moreover, in most cases, an expert system cannot

learn and has an extremely limited tolerance of incomplete input

information when the system’s default values are inadequate to solve the

Organization Based Multiagent Architecture For Distributed Environments

322

new problem [Yau and Yang, 1998b].

Expert systems and CBR have a common goal of enhancing the

intelligence of machines and making them more human-like. One

important distinction is that expert systems solve problems by deductive

reasoning from first principles [Gupta, 1994] whereas CBR systems solve

new problems through analogical reasoning using the knowledge gained

from past experiences.

Instead of relying solely on general knowledge of a problem

domain or making associations along generalized relationships between

problem descriptors and conclusions, CBR is able to utilize the specific

knowledge of previously experienced, concrete problem situations

[Aamodt and Plaza, 1994].

As a CBR system modifies its behaviour based on past learning

experiences, it may be assumed to be a more dynamic approach than rule-

based expert systems, which are based on strict if-then rules. This is

supported by Kolodner [Kolodner, 1991] who believes that expert systems

are unsuccessful in solving problems that require creativity and common

sense but case representation sometimes overcomes such problems. CBR

systems are preferred over expert systems if rules are inadequate to

express the richness of the domain knowledge.

C.7.3. MODEL BASED SYSTEMS

In model-based systems the actual performance of a process or task

is compared with predicted behaviour or expected performance [Li, 1996].

Model-based reasoning uses structural knowledge of the domain in

problem solving; it provides causal explanations; lead to robust and

flexible problem-solving and allow transfer of some knowledge between

tasks since science strives for generally applicable theories.

Appendix C. Case-Based Reasoning

323

Besides these strengths, some disadvantages may be regarded as

lacking experiential knowledge of the domain; requiring an explicit

domain model; being highly complex and being unable to handle

exceptional situations [Luger, 2002]. Model-based systems are beneficial

for diagnosing problems for which a complete and accurate mathematical

model exists [Li, 1996]. In contrast, CBR does not require extensive

analysis of domain knowledge and it enhances problem solving through

the indexing strategies.

”Sólo el que ensaya lo absurdo es capaz de conquistar lo
imposible”

 Miguel de Unamuno

325

APÉNDICE D.
RESUMEN DE LA

INVESTIGACIÓN
Este ú l t imo apéndi c e de l pr e s ent e documento r epre s enta e l
r e sumen, en cas t e l lano , de la inve s t i gac ión mos t rada a lo
largo de e s ta t e s i s doc tora l . Se de ta l larán, de manera
suc in ta pero e f e c t i va , l o s d i s t in tos pasos que ha ido
s i gu i endo e s ta inve s t i gac ión , as í como lo s e l ementos prev io s
ne c e sar io s y l o s r e su l tados g enerados . De e s ta fo rma, s e
cubr i rá todo e l c i c l o de v ida de la inve s t i gac ión , de sde l o s
pr imeros r equi s i to s in i c ia l e s has ta la eva luac ión de l o s
r e su l tados .

ste apéndice final, va a mostrar de forma resumida, los

distintos elementos que han conformado la investigación

plasmada en la presente tesis doctoral. Se muestran aquí los

pasos llevados a cabo para, finalmente, desarrollar la arquitectura que se

presenta y demostrar su validez aplicándola a dos casos de estudio

diferentes.

E

Organization Based Multiagent Architecture For Distributed Environments

326

La arquitectura presentada en este documento tiene por nombre

OBaMADE (Organization Based Multiagent Architecture for Distributed

Environments: Arquitectura Multiagente Basada en Organizaciones para

Entornos Distribuidos). Se trata, como su propio nombre indica, de una

organización multiagente. Dentro de los distintos tipos posibles de sistemas

multiagente, se ha elegido una estructura basada en organizaciones, dándole

especial énfasis a la capacidad de los agentes para trabajar conjuntamente,

teniendo un objetivo común, dentro de su organización. Dentro de esta

arquitectura, se han creado cuatro organizaciones diferentes que cubren los

distintos aspectos del sistema: una que se encarga de la comunicación con el

exterior, otra que estructura y determina los mecanismos de comunicación

interna del sistema y las otras dos organizaciones internas encargadas del

razonamiento y de la generación de las soluciones una a los distintos

problemas a los que se puede enfrentar esta arquitectura, una y, la otra,

encargada de los servicios adicionales.

OBaMADE ha sido aplicada a dos casos de estudio que se explicarán

también dentro de este último apéndice: en primer lugar se ha utilizado para

predecir la evolución de las mareas negras y, posteriormente, se aplicó a la

predicción de la evolución de los incendios forestales. En ambos casos los

resultados han sido satisfactorios, mostrándose eficiente a la hora de generar

predicciones sobre áreas geográficas concretas y basándose siempre en datos

históricos almacenados en el sistema.

D.1. OBJETIVOS FUNDAMENTALES
El objetivo principal de este trabajo de investigación es desarrollar

una arquitectura que permita resolver los problemas relacionados con los

entornos distribuidos. Para lograr ese objetivo se ha creado una arquitectura

multiagente basada en organizaciones de agentes. Dichos agentes,

estructurados en organizaciones, ofrecen distintas interfaces a los usuarios

Apéndice D. Resumen de la Investigación

327

dependiendo del tipo de dispositivo desde el que se acceda a los sistemas

creados bajo esta arquitectura. Los agentes que forman parte de las

organizaciones internas de la arquitectura, aquellas encargadas de generar las

soluciones a los problemas planteados, siguen una metodología de

razonamiento basado en casos. La citada metodología se basa en la

reutilización de información pasada, utilizando las soluciones dadas a

problemas pasados, para solucionar nuevos problemas similares a aquellos

que han sido previamente solucionados y cuya solución está almacenada en

el sistema relacionada con el problema.

Además del objetivo principal anteriormente citado, este trabajo de

investigación se plantea cubrir otra serie de objetivos relacionados directa e

indirectamente con la consecución de dicho objetivo principal, los cuales se

enumeran a continuación:

− Realizar un completo estudio y estado del arte de las distintas técnicas

y metodologías aplicadas a la solución de problemas en entornos

distribuidos.

− Estudiar las distintas metodologías y sistemas tanto de agentes, como

multiagentes y de organizaciones de agentes, para poder elegir el más

apropiado para los requisitos necesitados por la arquitectura que se

desarrolla en esta investigación.

− Aplicar la teoría de organizaciones de agentes a la creación de una

arquitectura para la solución de problemas de entornos distribuidos.

− Comparar, de forma teórica, las ventajas y desventajas de las distintas

alternativas a OBaMADE.

− Aplicar la arquitectura propuesta a distintos casos de estudio para

evaluar, empíricamente, los resultados de la aplicación de la

arquitectura a situaciones reales.

Organization Based Multiagent Architecture For Distributed Environments

328

D.2. ENTORNOS DISTRIBUIDOS
En este documento y en toda la investigación aquí recogida, se

entiende por entorno distribuido aquel en el que los distintos componentes

que interaccionan con un sistema no tienen por qué estar localizados en un

mismo lugar ni a la vez.

Las principales características de los entornos distribuidos son:

− Debe existir una separación funcional entre los distintos componentes

que forman el sistema, permitiendo habilitar mecanismos específicos

para cada una de las distintas partes, así como dotando de

independencia real a cada elemento individual.

− Las distintas entidades que forman parte de los sistemas están

distribuidas de forma inherente. Cada elemento debe funcionar dentro

del sistema sin tener por qué conocer la existencia de otros elementos

en el mismo.

− Los sistemas deben ser confiables. Los datos deben estar seguros y, a

ser posible, replicados en varias localizaciones.

− Estos sistemas deben ser también escalables, pudiendo incorporar

nuevas aplicaciones sin menoscabo de las existentes previamente.

− El hecho de compartir recursos hace que el sistema global resulte más

económico que disponiendo de recursos individuales para cada

elemento del sistema.

D.2.1.CARACTERÍSTICAS FUNDAMENTALES

Las características más importantes de los entornos distribuidos son

las que se explican a continuación:

− Heterogeneidad de los componentes. La interconexión, sobre todo

cuando se usa Internet, se da sobre una gran variedad de elementos

hardware y software, por lo cual se necesitan ciertos estándares que

Apéndice D. Resumen de la Investigación

329

permitan esta comunicación. Los middleware, son elementos

software que permiten una abstracción de la programación y el

enmascaramiento de la heterogeneidad subyacente sobre las redes.

También el middleware proporciona un modelo computacional

uniforme.

− Extensibilidad. Determina si el sistema puede crecer y ser

reimplementado en diversos aspectos (añadir y quitar

componentes). La integración de componentes escritos por

diferentes programadores es un auténtico reto.

− Seguridad. Reviste gran importancia por el valor intrínseco para los

usuarios. Tiene tres componentes:

o Confidencialidad. Protección contra individuos no

autorizados.

o Integridad. Protección contra la alteración o corrupción.

o Disponibilidad. Protección contra la interferencia con los

procedimientos de acceso a los recursos.

− Escalabilidad. El sistema es escalable si conserva su efectividad al

ocurrir un incremento considerable en el número de recursos y en

el número de usuarios.

− Tratamiento de Fallos. Consiste en la posibilidad que tiene el

sistema para seguir funcionando tras producirse fallos de algún

componente en forma independiente, pero para esto se tiene que

tener alguna alternativa de solución. Las técnicas existentes para

tratar estos fallos son las siguientes:

o Detección de fallos. Algunos fallos son detectables, con

comprobaciones rutinarias realizadas por el sistema, en las

que se comprueba el correcto funcionamiento de los distintos

elementos.

Organization Based Multiagent Architecture For Distributed Environments

330

o Enmascaramiento de fallos. Algunos fallos detectados

pueden ocultarse o atenuarse reduciendo, en lo posible, la

repercusión de los mismos.

o Tolerancia de fallos. Sobre todo en Internet se dan muchos

fallos y no es muy conveniente ocultarlos, es mejor

tolerarlos y continuar. El resultado final no va a variar

sustancialmente si se empleara otra técnica. Ej.: Tiempo de

vida de una búsqueda.

o Recuperación frente a fallos. Tras un fallo se deberá tener la

capacidad de volver a un estado anterior estable y sin fallos.

o Redundancia. Se puede usar para tolerar ciertos fallos (DNS,

BD, etc.)

− Concurrencia. Consiste en compartir recursos por parte de varios

clientes a la vez.

− Transparencia. Es la ocultación al usuario y al programador de

aplicaciones de la separación de los componentes en un sistema

distribuido. Se identifican ocho formas de transparencia:

o De Acceso. Se accede a recursos locales y remotos de forma

idéntica.

o De ubicación. Permite acceder a los recursos sin conocer su

ubicación.

o De concurrencia. Usar un recurso compartido sin

interferencia.

o De replicación. Ofrece la posibilidad utilizar varios

ejemplares de cada recurso, aumentando el rendimiento

global del sistema.

o Frente a fallos. Logra ocultar los fallos ante los usuarios.

o De movilidad. Permite la reubicación de recursos y clientes

sin afectar al sistema.

Apéndice D. Resumen de la Investigación

331

o De prestaciones. Posibilita la reconfiguración del sistema

para mejorar las prestaciones según su carga.

o De escalado. Permite al sistema y a las aplicaciones crecer

sin modificar la estructura del sistema o los algoritmos de

aplicación.

D.2.2.VENTAJAS Y DESVENTAJAS

Los entornos distribuidos tienen las siguientes ventajas comparados

con los sistemas centralizados:

− Una de las ventajas de los sistemas distribuidos es la economía, pues

es mucho más barato añadir servidores y clientes cuando se requiere

aumentar la potencia de procesamiento.

− El trabajo en equipo. Por ejemplo: en una fábrica de ensamblado, los

robots tienen sus CPUs diferentes y realizan acciones en conjunto,

dirigidos por un sistema distribuido.

− La mayor confiabilidad. Al estar distribuida la carga de trabajo en

muchas máquinas el fallo de una de ellas no afecta tanto a las demás,

el sistema sobrevive como un todo.

− La capacidad de crecimiento incremental. Se pueden añadir elementos

de procesamiento al sistema incrementando su potencia en forma

gradual según sus necesidades.

Por otro lado, este tipo de sistemas también tiene una serie de

desventajas, citadas a continuación:

− El principal problema es el software, ya que el diseño, implantación y

uso del software distribuido presenta numerosos inconvenientes.

− También plantea interrogantes como el tipo de S.O., programación o

aplicaciones más adecuados para este tipo de sistemas, la cantidad de

información que debe estar disponible para los usuarios y el reparto de

tareas entre los usuarios y los sistemas.

Organization Based Multiagent Architecture For Distributed Environments

332

− Las redes de comunicación también pueden representar un problema

para este tipo de sistemas. Por ejemplo: pérdida de mensajes,

saturación en el tráfico, etc.

− El uso compartido de datos también representa un potencial problema

para estos sistemas, al tener que considerar, de forma constante, la

seguridad y estabilidad de los mismos.

En general, y especialmente al tener en cuenta la aplicabilidad de estos

sistemas, se considera que las ventajas superan a las desventajas, si estas

últimas se administran seriamente.

D.3. AGENTES, SISTEMAS MULTIAGENTE Y

ORGANIZACIONES
En los desarrollos iniciales de sistemas multiagente, los diseñadores se

centraron en el estudio del agente, es decir, en la estructura interna del mismo

y en su comportamiento. Las organizaciones, como mucho, emergían de las

interacciones de los agentes [Boissier et al., 2007], por ejemplo con los

protocolos de tipo ContractNet o la formación de coaliciones de dependencia.

Sin embargo, los métodos de análisis y diseño de sistemas multiagente no

consideraban a las organizaciones como entidades propias, ni tampoco los

agentes las trataban como conceptos sobre los que razonar. En realidad, los

agentes eran vistos como entidades autónomas y dinámicas que

evolucionaban en función de sus propios objetivos, sin que existieran

restricciones explícitas externas sobre sus comportamientos ni

comunicaciones [Boissier et al., 2007].

El concepto de agente tiene su principal origen en la inteligencia

artificial, evolucionando como una entidad computacional aislada gracias a la

influencia de la ingeniería de software, superando así las limitaciones de las

metodologías orientadas a objetos. La principal diferencia entre los

Apéndice D. Resumen de la Investigación

333

conceptos de agente y de objeto es la autonomía que poseen los primeros.

Los agentes son capaces de tomar decisiones, reaccionar ante estímulos

externos, cambiar su propio comportamiento y adaptarse a las necesidades

del entorno.

La definición del término agente es todavía tema de discusión, ya que

se asocia a un gran número de disciplinas, desde la psicología, hasta las

orientadas a la computación, tales como la inteligencia artificial, la ingeniería

de software y las bases de datos, entre otras, por lo que se hace difícil realizar

una definición con una visión global independiente del área de influencia.

Wooldridge define un agente como un sistema computacional que se sitúa en

algún entorno y es capaz de actuar de forma autónoma en dicho entorno

para alcanzar sus objetivos de diseño [Wooldridge, 2002]. En cambio,

Russell, et al. [Russell et al., 1995] consideran que la noción de un agente

aparece como una herramienta para analizar sistemas, no una

caracterización absoluta que divida el mundo en agentes y no agentes. Para

este último autor, un agente es cualquier elemento capaz de percibir su

entorno a través de sensores y responder según su función en el mismo

entorno a través de actuadores, asumiendo que cada agente puede percibir

sus propias acciones y aprender de la experiencia para definir su

comportamiento.

Debido a que existen grandes diferencias y discusión a la hora de

definir lo que es un agente, se ha optado por definir una serie de

características que éstos deben cumplir:

− Autonomía. Actuar sin la necesidad de intervenciones externas, ya

sean humanos u otros agentes, y tener alguna clase de control sobre

sus acciones y su estado interno.

− Situación. Situarse dentro de un entorno, ya sea real o virtual.

− Reactividad. Percibir su entorno y actuar sobre éste con la

capacidad de adaptarse a sus necesidades.

Organization Based Multiagent Architecture For Distributed Environments

334

− Pro-Actividad o Racionalidad. Tomar la iniciativa para definir

metas y planes que les permitan alcanzar sus objetivos.

− Habilidad social. Interactuar con otros agentes, incluso con

humanos.

− Inteligencia. Rodearse de conocimiento (creencias, deseos,

intenciones y metas).

− Organización. Capacidad de agruparse dentro de sociedades que

siguen unas estructuras similares a las definidas en sociedades

humanas o ecológicas.

− Aprendizaje. Habilidad de adaptarse progresivamente a cambios en

entornos dinámicos, mediante técnicas de aprendizaje.

Una vez descritos los principales requisitos que debe cumplir un

agente y las características de los diferentes tipos de agentes que existen, es

necesario definir lo que es un sistema multiagente (MAS: Multi-Agent

System). Un sistema multiagente es básicamente una red de entidades

enfocadas a resolver problemas, y que trabajan de manera conjunta para

encontrar respuestas a los problemas que están más allá de las capacidades

o del conocimiento individuales de cada entidad [Durfee et al., 1989].

Una definición más general y actualizada describe un sistema

multiagente como cualquier sistema compuesto de múltiples componentes

autónomos que presentan las siguientes características [Jennings et al.,

1998]:

− Cada agente tiene capacidades incompletas para resolver un

problema.

− No existe un sistema de control global.

− Los datos son descentralizados.

− La computación es asíncrona.

Apéndice D. Resumen de la Investigación

335

D.3.1. SISTEMAS MULTIAGENTE

Las arquitecturas para la construcción de agentes especifican cómo

se descomponen los agentes en un conjunto de módulos que interactúan

entre sí para lograr la funcionalidad requerida. Entre las principales

tenemos las siguientes, diferenciadas en el modelo de razonamiento que

utilizan:

− Reactivas. Carecen de razonamiento simbólico complejo y de

conocimiento o representación de su entorno, por lo que sus

mecanismos de comunicación con otros agentes son muy básicos.

Los agentes que utilizan este tipo de arquitectura reciben estímulos

de su entorno y reaccionan ante ellos modificando sus

comportamientos y el mismo entorno.

− Deliberativas. Utilizan modelos de representación simbólica del

conocimiento basados en la planificación. Los agentes

deliberativos emplean mecanismos de comunicación complejos y

contienen un modelo simbólico del entorno. Toman decisiones

utilizando razonamiento lógico basado en la concordancia de

patrones y en la manipulación simbólica, partiendo de un estado

inicial y un conjunto de planes con un objetivo a satisfacer.

− Híbridas. Son arquitecturas intermedias entre las dos anteriores.

Los agentes de este tipo incluyen comportamientos reactivos y

deliberativos, generando un ciclo percepción-decisión-acción. El

comportamiento reactivo se utiliza para reaccionar ante eventos

que no requieran decisiones complejas sobre ciertas acciones.

Cada tipo de agente cuenta con características distintas para cada

escenario de aplicación en el que se desenvuelva. Por ejemplo, en un

entorno rodeado de sensores y en el cual el tiempo de reacción ante los

estímulos sea lo más importante, los agentes reactivos son la opción más

Organization Based Multiagent Architecture For Distributed Environments

336

recomendable. Sin embargo, en ciertos escenarios puede ser necesario que

los agentes sean capaces de tomar decisiones más complejas y de forma

dinámica, por lo que el uso de agentes deliberativos o híbridos resulta más

conveniente.

Como los datos se encuentran organizados de forma distribuida y

no existe un sistema de control global. Cada agente se centra en su propia

conducta, tomando la iniciativa guiado por sus objetivos y decidiendo

dinámicamente las tareas que debe realizar o asignar a otros agentes. Es

necesario que los agentes trabajen de forma coordinada, principalmente a

través de mecanismos de negociación, para alcanzar sus objetivos

[Ossowski and García-Serrano, 1998].

Las características de los agentes deliberativos BDI (Belief, Desire,

Intention), así como la posibilidad para modelar sus capacidades e integrar

mecanismos de razonamiento, hacen que resulten adecuados para la

resolución de problemas en tiempo de ejecución en entornos altamente

dinámicos. Como consecuencia, los agentes permiten a los sistemas

aprender de las experiencias pasadas y reaccionar de manera diferente de

acuerdo a las necesidades de los usuarios y las características del contexto

en una situación determinada, requerimientos fundamentales para

afrontar los retos que plantean los entornos distribuidos. Por su parte, la

combinación de las herramientas para la ingeniería del software Gaia y

SysML, permiten obtener modelos de los sistemas multiagente cercanos a

la implementación, facilitando la labor de los desarrolladores.

Sin lugar a dudas, los sistemas multiagente representan una

interesante alternativa que bien vale la pena explorar para intentar afrontar

los retos que presenta los entornos distribuidos, especialmente en el

desarrollo de sistemas dinámicos y adaptables a las necesidades de los

usuarios.

Apéndice D. Resumen de la Investigación

337

D.3.2. METODOLOGÍAS MULTIAGENTE ORIENTADAS
A LAS ORGANIZACIONES

En este tipo de metodologías el diseñador del MAS se centra desde

un principio en la organización del sistema. Por tanto, analiza el MAS

desde una perspectiva global, de modo que el proceso de desarrollo se

guía por los conceptos organizativos [Argente et al., 2006].

Estos métodos aparecen como consecuencia de la necesidad de

diseñar sistemas que permitan tener en consideración aspectos como la

estructura de la organización, sus objetivos, sus normas, etc. desde las

etapas iniciales del desarrollo del sistema.

Los objetivos de la organización representan una descripción a alto

nivel de los propósitos de la sociedad. Permiten guiar las decisiones sobre

cómo se debe diseñar la estructura de la organización. Así, los objetivos

determinan las tareas que se deben llevar a cabo, el tipo de agentes y sus

habilidades requeridas, y el reparto de los recursos entre los miembros de

la organización.

La estructura de la organización queda formalizada cuando los

principios que gobiernan su comportamiento se formulan de forma

precisa. Los roles y sus relaciones se definen de forma independiente de

los atributos y dependencias de las personas o agentes que ocupen una

posición particular en la estructura de la organización.

Por tanto, dicha estructura viene descrita por los roles, sus

interacciones y el lenguaje de comunicación que empleen. Los roles

representan las diferentes entidades o actividades necesarias para cumplir

con el propósito de la organización. Además, los objetivos globales de la

sociedad conforman el punto de partida para especificar los objetivos y

acciones a asignar a los roles.

Organization Based Multiagent Architecture For Distributed Environments

338

Finalmente, las normas sociales describen el comportamiento

esperado de los miembros (desde el punto de vista del diseño de la

organización) y las sanciones que se deben aplicar en el caso de realizar

acciones no deseables. Las normas suelen ser establecidas y ejecutadas por

instituciones que tienen un estatus legal y, por tanto, conceden legitimidad

y seguridad a los miembros de la sociedad.

Tras el estudio de distintos trabajos que siguen esta perspectiva

metodológica, se observan dos tendencias bien diferenciadas. Por un lado,

algunas metodologías se centran solamente en la estructura organizativa,

sin realizar de forma explícita el análisis y diseño de las normas sociales.

Ejemplos de estas metodologías son Agent-Group-Role [Ferber et al.,

2004], Roadmap [Juan et al., 2002], la extensión de Tropos [Kolp et al.,

2003], MESSAGE [Caire et al., 2002], INGENIAS [Sanz, 2002],

ANEMONA [Boggino, 2005, Giret B., 2005] o AML [Cervenka and

Trencansky, 2007].

Por otro lado, otras metodologías se centran en las normas sociales

y definen de forma explícita mecanismos de control para establecer las

normas y controlar su ejecución. Además, estas metodologías consideran

ciertos mecanismos para incluir agentes externos en la sociedad y

controlar su comportamiento. Por tanto, resultan adecuadas para el diseño

de sistemas multiagente abiertos. Ejemplos de este tipo de metodologías

son OperA [Dignum, 2004], Civil Agent Societies [Dellarocas and Klein,

2000b], SODA [Omicini, 2001], MOISE [Gateau et al., 2005] y la

extensión de Gaia [Zambonelli et al., 2003]. Además, el marco de trabajo

Electronic Institutions [Esteva et al., 2001] se centra en la perspectiva

organizativa y el control de las normas sociales. Así mismo, el marco de

trabajo HARMONIA [Vázquez-Salceda and Dignum, 2003] permite

modelar las normas de las organizaciones electrónicas en varios niveles,

desde el más abstracto, tomando como base los estatutos de la

Apéndice D. Resumen de la Investigación

339

organización, hasta el nivel procedimental en el que se implementan los

procedimientos y protocolos finales de las normas. Posteriormente, este

marco de trabajo se unió a la metodología OperA, definiendo así un

nuevo método denominado OMNI [Vázquez-Salceda et al., 2005].

D4. ARQUITECTURA BASADA EN

ORGANIZACIONES PARA ENTORNOS

DISTRIBUIDOS
OBaMADE, la arquitectura presentada en este documento, representa

una combinación de técnicas y metodologías adaptadas a entornos distribuidos

que la hacen aplicable a distintos tipos de situaciones.

D.4.1. ELEMENTOS FUNDAMENTALES

OBaMADE es una arquitectura basada en organizaciones de

agentes. Dichas estructuras potencian los elementos sociales de los

agentes, dando importancia a su colaboración para lograr un objetivo

común.

OBaMADE está compuesta por cuatro organizaciones

fundamentales. Dichas organizaciones están representadas de forma

esquemática en la figura 47. En primer lugar está la Organización de

Interfaces, que se encarga de la comunicación con el exterior. Esta

organización presenta las distintas interfaces a los usuarios dependiendo

tanto del tipo de servicio que soliciten como del dispositivo que estén

usando. Tanto lo uno como lo otro serán posteriormente transparentes para

el resto de elementos del sistema, que simplemente se encargarán de

solucionar las solicitudes que, desde esta organización, se vayan

generando.

Organiza

340

l

o

e

s

q

d

O

A

q

D.4

C

c

d

ation Based M

La Or

las solicitude

organización

envía a la co

solución a di

qué servicios

distintos tipo

Por úl

Organizació

Adicionales.

que dan serv

4.2. RAZO

OBaM

Casos (cono

crear sus pro

desarrollado

Organi
Inte

Organi
Comu

Figura 4

Multiagent Archi

rganización

es que se ge

n gestiona el

orrespondient

icha solicitud

s están dispo

os de solicitu

ltimo hay do

n de Servic

Dichas org

vicio a las dis

ONAMIEN

MADE utiliza

ocida por CB

ocesos de raz

unos servic

ización de
erfaces

ización de
unicación

47. Esquema b

itecture For Di

de Comunic

eneran en la

l tipo de sol

te organizaci

d. Es en esta

onibles y qu

udes admitida

os organizac

cios CBR y

ganizaciones

stintas solicit

NTO BASAD

a la metodol

BR, Case-Ba

zonamiento

cios implem

e

e

básico de las o

istributed Envir

cación es la

organizació

licitud que r

ión de servic

a organizació

ué servicios p

as por el siste

ciones de ser

y la Organi

agrupan a

tudes venida

DO EN CA

logía de Razo

ased Reasoni

interno. Bas

mentados por

Orga
Serv

Orga
S

Ad

organizacione

ronments

encargada d

ón de interfa

recibe el sist

cios que teng

ón donde se d

pueden soluc

ema.

rvicios. Se tr

ización de

los distinto

s desde los u

ASOS

onamiento B

ing), como b

ándose en el

r agentes qu

anización d
vicios CBR

anización d
Servicios
dicionales

es de OBaMAD

de recibir

aces. Esta

tema y la

ga que dar

determina

cionar los

rata de la

Servicios

s agentes

usuarios.

Basado en

base para

lla se han

ue forman

de
R

de

DE.

Apéndice D. Resumen de la Investigación

341

parte de la Organización de Servicios CBR que genera las distintas

soluciones de las diferentes aplicaciones de esta arquitectura. Por eso,

en esta sección se explican los fundamentos de esta metodología.

El Razonamiento Basado en Casos es un método comúnmente

utilizado para solucionar nuevos problemas basándose en las

soluciones de problemas anteriores. Un mecánico de automóviles que

repara un motor porque recordó que otro vehículo presentaba los

mismos síntomas está usando razonamiento basado en casos. Un

abogado que apela a precedentes legales para defender alguna causa

está también utilizando este tipo de razonamiento basado en casos.

Cuando un ingeniero copia elementos de la naturaleza, está tratando a

ésta como una “base de datos de soluciones”. El razonamiento basado

en casos es una manera de razonar haciendo analogías. Se ha

argumentado que más que un método poderoso para el razonamiento

de computadoras, es un sistema usado por las personas para solucionar

problemas cotidianos. Más radicalmente se ha sostenido que todo

razonamiento es basado en casos, porque está basado en la experiencia

previa.

Podemos definir claramente el razonamiento basado en casos

partiendo de una definición clásica de esta metodología:

“A case is a contextualized piece of knowledge representing an

experience that teaches a lesson fundamental to achieving the goals of

the reasoner”, [Kolodner, 1993]

Este sistema de razonamiento se basa en una unidad mínima

llamada caso, como literalmente define Kolodner. Un caso se puede

definir como una representación de una experiencia anterior, una

vivencia. Podría ser visto como una caja en la que encontramos todas

aquellas cosas que ocurrieron y de las que se saben causas y

consecuencias.

Organization Based Multiagent Architecture For Distributed Environments

342

El ‘case’ del que se habla en la definición original está

modificado por ‘contextualizad piece of knowledge’. Es importante

hacer notar sobre todo el término contextualizado ya que, como se ha

indicado anteriormente este conocimiento representa un conjunto de

hechos que han transcurrido en la experiencia. Una parte de estos

hechos corresponden al contexto en el que transcurre la experiencia.

Este contexto en el sistema experto también tiene mucha importancia

ya que puede ser utilizado en el proceso de inferencia; esto se

explicará más adelante.

Otro elemento importante de la definición es: ‘representing an

experience’, que implica que el caso está basado en un conocimiento,

es decir, no es algo creado artificialmente sobre hechos sino que está

basado en un conocimiento existente previamente y, por lo tanto, que

podemos considerarlo cierto desde el inicio. Además, el hecho de que

se hable de experiencia comienza a hacer notar que este sistema estará

muy ligado a la adquisición de conocimiento externo ya que, al estar

basado en las experiencias, será necesario que el sistema vaya

adquiriendo nuevas experiencias para mejorar su razonamiento.

Si se continúa con la definición, lo siguiente es: ‘that theaches

a lesson fundamental’. Con esto lo que se quiere indicar es que las

experiencias que hay en el sistema no se refieren a cualquier

experiencia, sino sólo a aquellas que aportan alguna información sobre

el tema tratado por el sistema, además de no repetir experiencias ya

existentes con el mismo contexto o que no aportan nueva información

al sistema. Finalmente la definición acaba con ‘to achieving the goals

of the reasoner’ que indica que el uso de los casos persigue

directamente la consecución de los objetivos del razonamiento.

El ciclo principal que conforma el razonamiento basado en

casos puede dividirse en cuatro subprocesos diferentes que se

Apéndice D. Resumen de la Investigación

343

muestran gráficamente en la figura 48:

− Recuperar los casos similares al que analizamos.

− Reutilizar la información y el conocimiento que tenemos en este

caso para resolver el problema.

− Revisar la solución propuesta.

− Retener las partes de esta experiencia que nos puedan ser útiles

para la resolución de futuros problemas.

Cuando un nuevo problema llega a un sistema primero que hay

que hacer es dado ese determinado problema recuperar los casos

relevantes que pueden solucionarlo.

Una vez se tiene este conjunto de casos que guardan cierta

similitud con el caso para el cual hay que proponer una solución hay

que reutilizar la solución de todos ellos, en su globalidad o solamente

Figura 48. Ciclo básico del Razonamiento Basado en Casos.

Organization Based Multiagent Architecture For Distributed Environments

344

en alguna de sus partes que interese para transformar sus contextos en

el problema que se tiene actualmente. Con ello se tendría una primera

versión de la solución que es necesario probar en el mundo real o en

una simulación y es preciso revisarla. Se trata de un proceso circular

en el que reutilizan diversos casos de la base de conocimiento, se

revisa la solución y, si no es satisfactoria, se vuelve a modificar con la

eliminación de los casos que fuesen incorrectos o la inclusión de

aquellos que faltasen para perfeccionar la solución.

Finalmente el último paso es la retención. Después de que la

solución haya sido adaptada satisfactoriamente para resolver el

problema dado, se almacena la experiencia resultante como un nuevo

caso en la memoria. Uno de los objetivos del razonamiento basado en

casos reside no solo en recordar los casos resultantes que hayan sido

acertados, sino también, aquellos en que se ha fallado, ya que con

estos se puede mejorar el razonamiento del sistema para que cuando se

tenga que llevar a cabo un proceso similar se sepa que no hay que

seguir esa línea de razonamiento que lleva a un resultado incorrecto.

D.4.3. CAMPOS DE APLICACIÓN DE OBAMADE

OBaMADE se ha desarrollado de forma genérica, sin estar

directamente relacionada con un tipo de problema específico. Sus

características hacen que pueda ser aplicada en diferentes tipos de

situaciones. Los distintos elementos que forman parte de ella, le permiten

ofrecer servicios de comunicación entre distintos usuarios y la estructura

interna que contiene la información. Dicha comunicación permite que se

pueda adaptar a distintos tipos de problemas.

Así, los tres principales campos de aplicación de esta arquitectura

son: la generación de predicciones, la clasificación y agrupamiento y la

planificación. Los tres serán explicados a continuación.

Apéndice D. Resumen de la Investigación

345

La principal y primera aplicación en la que puede utilizarse

OBaMADE es la generación de predicciones. Para ello, el sistema

almacena información con parámetros temporales, que caracterizan una

situación en un momento y en el momento siguiente, representando así la

evolución temporal de un determinado entorno. De esta manera,

analizando casos almacenados en el sistema que tuvieran un estado de

partida similar a aquel del que queremos obtener la predicción, podremos

generar una predicción fiable.

La información se inserta en el sistema desde diferentes fuentes,

bien sean usuarios que quieren ampliarlo sin necesidad de pedir una

predicción, satélites con información en tiempo real, sensores o bases de

datos accesibles por el sistema. Toda esta información se estructura y

organiza dentro de la base de casos para poder ser utilizada a la hora de

generar futuras predicciones.

La clasificación consiste en estructurar la información en un cierto

número de categorías dependiendo de las características intrínsecas de

dicha información. El agrupamiento (normalmente conocido por su

correspondiente anglicismo: clustering), consiste en determinar los

posibles grupos diferentes en que se distribuyen una serie de elementos

dados. Estas dos técnicas están muy relacionadas y OBaMADE puede ser

fácilmente utilizada en su resolución y es capaz de combinarlas para

generar complejas aplicaciones de, por ejemplo, minería de datos o

extracción de conocimiento. Cuando se afrontan este tipo de tareas, la fase

de creación de la base de casos es fundamental, ya que es en ella donde se

van a determinar las categorías. Bien sea para clasificar o para agrupar, es

en esta fase donde se analiza la información disponible y se crean y

organizan las distintas categorías. Una vez hecho este trabajo, cualquier

clasificación o agrupamiento posterior estará basado en la información

almacenada en la base de casos y seguirá la misma organización.

Organization Based Multiagent Architecture For Distributed Environments

346

Un último campo en el que puede ser aplicada esta arquitectura es

el de planificación. En este caso, la metodología seguida por los servicios

internos de la arquitectura no será de razonamiento basado en casos, sino

de planificación basada en casos. Los métodos de funcionamiento son

similares, ya que los planes almacenados en la base de casos se agrupan en

función de las condiciones para las que se generaron dichos planes. Los

planificadores creados bajo esta arquitectura no pueden ser de tipo

general, sino siempre aplicados a algún campo de conocimiento

determinado, que establecerá las relaciones entre las causas o situaciones

iniciales y las consecuencias o soluciones a dichas situaciones.

D5. RESULTADOS
La arquitectura OBaMADE ha sido aplicada a dos casos de estudio

para validar su corrección. En primer lugar, se ha usado en la generación de

predicciones respecto a la evolución de los vertidos generados tras una marea

negra. En este caso, el sistema creado sobre OBaMADE predice la

probabilidad de encontrar restos del vertido en una determinada zona del

océano.

El segundo caso de estudio al que se ha aplicado OBaMADE es la

predicción de la evolución de incendios forestales. El sistema predice, en este

caso, la presencia o no de fuego en una determinada área geográfica una vez

se ha declarado un incendio en las inmediaciones.

D.5.1. MAREAS NEGRAS

Cuando se produce un vertido generalizado de algún tipo de

hidrocarburo en el mar (fenómeno normalmente conocido como mareas

negras), es importante disponer de toda la información necesaria para

evitar o minimizar, en la medida de lo posible, el eventual daño

Apéndice D. Resumen de la Investigación

347

medioambiental asociado a dicho vertido.

Para analizar dichos daños medioambientales es muy importante

saber si una zona se va a ver afectada por los vertidos. Predecir, con

suficiente antelación, este dato, puede ser de vital importancia a la hora de

preservar determinadas zonas especialmente delicadas, bien en términos

socio-económicos (aquellas con importantes núcleos de población o con

industrias relacionadas directamente con el mar) o medioambientales (las

de especial importancia por su diversidad y en buen estado de

conservación).

OBaMADE, ha sido aplicada para generar predicciones en este caso

de estudio en concreto. Para ello, se disponía de los datos históricos del

accidente del petrolero Prestige, ocurrido en noviembre de 2002 cerca de

las costas gallegas (en el noroeste de la Península Ibérica). La figura 49,

muestra una imagen de satélite de una de las zonas afectadas, al norte de la

Península Ibérica, en la que pueden apreciarse claramente las manchas de

fuel. Dicha imagen fue obtenida días después del barco.

Figura 49. Imagen de satélite de manchas originadas en el accidente del
Prestige.

Organization Based Multiagent Architecture For Distributed Environments

348

Los datos disponibles tienen distintos orígenes. Por un lado están

las imágenes de satélite en las que se pueden ver las manchas de fuel.

Dichas manchas se asocian con información meteorológica y marítima,

que es obtenida de servicios de información obtenidos de los satélites, que

proporcionan, en tiempo real, información referente a la meteorología

(presión atmosférica, temperatura…) y al océano (oleaje, salinidad…).

Toda esa información se estructuró y se almacena en la base de casos de

tal forma que se establecen relaciones temporales entre las situaciones

almacenadas en la base de casos., en la base de casos, se establece una

relación entre la situación presente (problema) y la situación en el

momento inmediatamente posterior (solución).

Cuando una solicitud de predicción entra en el sistema, lo hace a

través de la Organización de Interfaces que, como ya se ha explicado con

anterioridad, es la encargada de proporcionar a cada usuario el interfaz

que necesita para interactuar con la aplicación dependiendo del tipo de

dispositivo que esté manejando y, también, del tipo de servicio que vaya a

demandar.

Tras pasar por la Organización de Interfaces, la solicitud llega a la

Organización de Comunicación, que la analiza para, a su vez, pasársela a

la Organización de Servicios correspondiente, bien sea la relativa a

servicios CBR o la encargada de los servicios adicionales.

Si, como es el caso, se trata de una solicitud de predicción, dicha

solicitud llegará a la Organización de Servicios CBR, que será la

encargada de, mediante los correspondientes agentes encargados de las

distintas fases del ciclo CBR, generar la predicción para una situación en

concreto. Para realizar la predicción, el usuario debe introducir el área

geográfica de la que quiere conocer la predicción y los datos de los que

disponga, especialmente su localización y tamaño si visualiza, de forma

directa, alguna mancha de fuel.

Apéndice D. Resumen de la Investigación

349

Para completar los datos necesarios para generar los casos, el

sistema accederá a datos de satélites que proporcionan las variables

meteorológicas y oceánicas necesarias. Así, se completarán todos los

parámetros que se van a tener en cuenta: longitud, latitud, fecha, oleaje,

presión atmosférica, salinidad, temperatura del mar, área de las manchas, -

dirección y fuerza del viento, dirección y fuerza de la corriente marítima.

El área a analizar se divide en pequeñas regiones cuadradas, que son las

que delimitan los casos. Para cada una de esas regiones se almacenan

todas las variables anteriormente citadas. El parámetro denominado área

de las manchas se refiere a la proporción de la zona que está ocupada por

manchas. Ese parámetro es sobre el que se realiza la predicción,

obteniendo, al final de la misma, un valor futuro de ese parámetro.

Para realizar la predicción, se extraen de la base de casos un

conjunto de casos que sean similares al problema introducido en el

sistema. La base de casos está organizada de tal forma que, aquellos casos

que sean parecidos se almacenarán próximos unos a los otros. De esta

forma, resulta más sencillo y rápido recuperar de ella un grupo de casos

parecidos.

Con el grupo de casos recuperados se genera la predicción,

utilizando una red neuronal GRBF entrenada al efecto. Dicha red

proporcionará, como salida, un valor futuro para el parámetro área de las

manchas de cada una de las regiones cuadradas que se le pasen.

Para validar la aplicación, se han comparado los resultados

obtenidos con OBaMADE con otras técnicas. La figura 50 muestra una

representación gráfica de los resultados obtenidos en la citada

comparación. En dicha figura se pueden ver la evolución de los resultados

a medida que el tamaño de la base de casos ha ido creciendo. Cuando el

número de casos almacenado se incrementa, los resultados van mejorando

de forma progresiva. Esto resulta lógico ya que, al aumentar la

Organization Based Multiagent Architecture For Distributed Environments

350

variabilidad de casos almacenados y su número, la posibilidad de

encontrar casos parecidos al que se quiere resolver aumenta y los

resultados mejorarán.

En la figura 50 se compara la arquitectura OBaMADE con otras

técnicas. En primer lugar se comprobaron los resultados de realizar

predicciones con una red neuronal RBF sin ninguna otra técnica asociada.

En ese caso, las predicciones se obtenían tras haber entrenado la red

neuronal con los datos disponibles y, por lo tanto, los resultados no eran

suficientemente satisfactorios. En segundo lugar, se aplicó un sistema

CBR Básico, en el que los datos se almacenan en una base de casos, se

recuperan los más similares y no hay técnicas adiconales aplicadas. En

tercer lugar, se utilizó una combinación de RBF y CBR, en el que la red

era sólo entrenada con aquellos casos más similares y, por lo tanto, los

resultados mejoraban. Por último, se aplicó el sistema creado sobre la

arquitectura OBaMADE, generando los mejores resultados de entre los

sistemas comparados.

35%

45%

55%

65%

75%

85%

95%

100 500 1000 2000 3000 4000 5000

Números de casos en la base de casos

Porcentaje de predicciones correctas
Mareas negras

RBF

CBR Básico

GRBF + CBR

OBaMADE

Figura 50. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de las mareas negras.

Apéndice D. Resumen de la Investigación

351

D.5.2. INCENDIOS FORESTALES

En segundo lugar, la arquitectura OBaMADE ha sido aplicada a la

predicción de la evolución de incendios forestales. El funcionamiento del

sistema creado sobre la arquitectura propuesta es similar al descrito en la

aplicación de la arquitectura al problema de las mareas negras. En este

caso, las variables almacenadas en el sistema son las siguientes: longitud,

latitud, fecha, presión atmosférica, temperatura, área de los fuegos y

dirección y fuerza del viento.

En este caso los datos históricos con los que se ha creado la base de

casos provienen de unos experimentos realizados en Portugal, dentro del

proyecto SPREAD [Spread, 2004]. Los experimentos de los que se

tomaron los datos se realizaron en la zona de Gestosa, en el centro de

Portugal, en la Serra de Lousa, a una altitud entre 800 y 950 m sobre el

nivel del mar, entre los años 2002 y 2004 [Gestosa, 2005]. Dichos

experimentos comenzaron en 1998 y se completaron en diciembre de

2004. Se intentó recoger datos experimentales sobre el comportamiento de

los fuegos en distintas situaciones, para poder realizar un modelado de la

Figura 51. Imagen de los experimentos llevados a cabo en
Gestosa, Portugal.

Organization Based Multiagent Architecture For Distributed Environments

352

evolución de los mismos. Para mantener la seguridad mientras se

realizaban los experimentos, se dividió el terreno en zonas de forma y

dimensión regulares separadas por cortafuegos para limitar la expansión

de los fuegos. La figura 51 muestra una imagen de los experimentos

llevados a cabo, en la que pueden verse las zonas delimitadas y los fuegos

originados.

Una vez se dispone de los datos en la base de casos, el

funcionamiento del sistema predictivo es el mismo que el explicado en la

aplicación de la arquitectura a las mareas negras. Los resultados de aplicar

las distintas técnicas utilizadas para comparar el rendimiento de la

arquitectura OBaMADE pueden verse en la figura 52. Al igual que

sucedió con el caso de las mareas negras, los resultados mejoran a medida

que aumenta la cantidad de información almacenada en la base de casos.

35%

45%

55%

65%

75%

85%

95%

100 500 1000 2000 3000 4000 5000

Número de casos en la base de casos

Porcentaje de predicciones correctas
Incendios forestales

RBF

CBR Básico

GRBF + CBR

OBaMADE

Figura 52. Porcentaje de predicciones correctas tras aplicar OBaMADE al
problema de los incendios forestales.

Apéndice D. Resumen de la Investigación

353

Así mismo, también puede verse que, de las técnicas comparadas, es el

sistema basado en la arquitectura OBaMADE el que mejores resultados

obtiene.

Tras aplicar la arquitectura presentada en este documento a dos

casos de estudio, ha podido comprobarse los positivos resultados

obtenidos, siendo esperanzador para poder aplicar esta misma arquitectura

a otro tipo de problemas y de campos de conocimiento en los que poder

desarrollar sus capacidades de generación de soluciones a partir de datos

almacenados.

D6. CONCLUSIONES Y TRABAJO FUTURO
En este documento se ha presentado una nueva arquitectura

multiagente basada en organizaciones y diseñada para ser utilizada en

entornos distribuidos. Dicha arquitectura, llamada OBaMADE, está formada

por una serie de organizaciones de agentes que colaboran para poder obtener

soluciones a los distintos problemas a los que puede ser aplicada.

 La arquitectura OBaMADE proporciona un entorno de trabajo

suficientemente flexible como para cubrir los requerimientos de los sistemas

diseñados para solucionar problemas de entornos distribuidos. Situaciones

dinámicas en las que hay gran interacción por parte de los usuarios de forma

asíncrona son adecuadamente solucionadas por esta arquitectura. Sus

distintos elementos funcionan de forma distribuida, colaborando para obtener

un resultado común.

El uso de agentes ligeros en un entorno distribuido con capacidades

comunicativas permite a los sistemas creados sobre esta arquitectura obtener

una comunicación transparente para el usuario, sin tener que notificar cada

intercambio comunicativo. Los usuarios obtendrán los mismos resultados

independientemente de su localización de los dispositivos desde los que se

acceda a los sistemas creados.

Organization Based Multiagent Architecture For Distributed Environments

354

El núcleo del sistema está formado por un conjunto de servicios que

siguen la metodología del razonamiento basado en casos. Dichos servicios

están implementados por una serie de agentes que cubren las fases básicas

del ciclo del razonamiento basado en casos. Estos integran una serie de

técnicas de inteligencia artificial diseñadas para extraer el conocimiento

disponible en la información almacenada. Estos agentes, como parte de una

de las organizaciones de la arquitectura, pueden comunicarse entre ellos para

lograr un objetivo común y tomar las mejores decisiones en cada momento.

El empleo de agentes ligeros permite, además, expandir las

posibilidades de desarrollo de aplicaciones basadas en la arquitectura

OBaMADE a dispositivos que no tienen por qué disponer de una alta

capacidad de procesamiento (teléfonos móviles, PDAs…).

La arquitectura OBaMADE puede ser aplicada a distintos tipos de

problemas, desde problemas de predicción, hasta clasificación y

agrupamiento, pasando por problemas de planificación. En concreto ha sido

aplicada a dos casos de estudio en los que ha demostrado su capacidad para

la generación de predicciones. En ambos se ha demostrado la validez y la

calidad de los resultados obtenidos por los sistemas basados en esta

arquitectura. Será necesario aplicar OBaMADE a otro tipo de problemas que

permitan demostrar empíricamente las ventajas que, desde el punto de vista

teórico, se vislumbran en la utilización de esta arquitectura.

Las técnicas de inteligencia artificial usadas para resolver los distintos

servicios ofrecidos por la arquitectura han demostrado su validez en los dos

casos de estudio analizados en este trabajo. Sería interesante poder incorporar

más técnicas de tal forma que presente varias opciones en los distintos

servicios y permita elegir en función, por ejemplo, del tipo de problema que

se va a resolver.

Aunque, como se ha explicado con anterioridad, la arquitectura se ha

probado en situaciones reales, sería necesario realizar pruebas exhaustivas

Apéndice D. Resumen de la Investigación

355

para evaluar todos los detalles de la arquitectura propuesta en términos de

tiempo, simplicidad y calidad del análisis y del diseño. La calidad de los

resultados generados por los sistemas diseñados basándose en esta

arquitectura también debe ser evaluada.

A lo largo de este documento se ha explicado OBaMADE, una nueva

arquitectura basada en organizaciones de agentes diseñada para ser aplicada a

entornos distribuidos. Los resultados obtenidos tras la creación de sistemas

basados en dicha arquitectura y aplicados a ejemplos reales han sido muy

esperanzadores. Las posibilidades de aplicación y desarrollo de la

arquitectura son muchas y, basándose en los resultados obtenidos, se puede

asegurar que podrá ser utilizada en otro tipo de entornos de forma exitosa.

	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMEN
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. INTRODUCTION
	1.2. METHODOLOGY
	1.1. HYPOTHESIS OF WORK AND MAINOBJECTIVES
	1.3. THESIS STRUCTURE

	2. DISTRIBUTEDENVIRONMENTS
	2.1. PROBLEM DEFINITION
	2.2. CORBA
	2.3. SOA
	2.4. WEB SERVICES
	2.5. GRID COMPUTING
	2.6. AGENTS AND MULTIAGENT SYSTEMS
	2.7. SUMMARY AND CONCLUSIONS

	3. AGENTS ANDMULTIAGENTSYSTEMS
	3.1. AGENTS THEORY
	3.2. MULTIAGENT SYSTEMS
	3.3. SUMMARY AND CONCLUSIONS

	4. ORGANIZATIONSOF AGENTS
	4.1. CONCEPT OF ORGANIZATION
	4.2. ORGANIZATION FACTORS
	4.3. SUMMARY AND CONCLUSIONS

	5. THE OBAMADEARCHITECTURE
	5.1. ARCHITECTURE DESCRIPTION
	5.2. INTERFACE AGENTS ORGANIZATION
	5.3. COMMUNICATION ORGANIZATION
	5.4. CBR SERVICES ORGANIZATION
	5.5. ADDITIONAL SERVICESORGANIZATION
	5.6. APPLICATIONS
	5.7. SUMMARY AND CONCLUSIONS

	6. APPLICATION -CASE STUDIES
	6.1. OIL SPILL PREDICTION
	6.2. FIRE PROPAGATION PREDICTION
	6.3. SUMMARY AND CONCLUSIONS

	7. ARCHITECTUREEVALUATION ANDCONCLUSIONS
	7.1. THEORETICAL MODEL EVALUATION
	7.2. MODEL ANALYSIS
	7.3. CONCLUSIONS
	7.4. FUTURE WORK

	REFERENCES
	APPENDIX A. CORBA
	APPENDIX B.TAXONOMY OFORGANIZATIONS
	APPENDIX C. CASEBASEDREASONING
	APÉNDICE D.RESUMEN DE LAINVESTIGACIÓN
	D.1. OBJETIVOS FUNDAMENTALES
	D.2. ENTORNOS DISTRIBUIDOS
	D.3. AGENTES, SISTEMAS MULTIAGENTE YORGANIZACIONES
	D4. ARQUITECTURA BASADA ENORGANIZACIONES PARA ENTORNOSDISTRIBUIDOS
	D5. RESULTADOS
	D6. CONCLUSIONES Y TRABAJO FUTURO

