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A B S T R A C T

Bioinformatics is a research area that manages large collections of data.
A relevant instance of it is gene expression analysis by means of mi-
croarray technologies. The large expression matrices resulting from mi-
croarray experiments, the usually complex results of their analysis and
the several sources of related existing knowledge that can be used for
support and validation, demand to use the full cognitive capabilities of
the analyst, not only abstract but also perceptual. Non-supervised data
mining techniques contribute to discover new information, frequently
in the form of groups or classifications to be inspected. Specially, in
the case of biclustering methods, there are no satisfactory visualization
techniques to inspect these groups (biclusters). This thesis approaches
the mentioned issues by developing novel visualization techniques
and integrating several sources of data, biclustering algorithms and
visualizations into a single analysis framework. This framework will
contribute to make it easier and improve the reasoning process related
to gene expression analysis by means of a visual analytics approach.

R E S U M E N

La bioinformática es un área de investigación que maneja grandes colec-
ciones de datos. Un ejemplo importante es el análisis de la expresión
genética mediante microarrays, donde están involucradas no sólo las
grandes matrices de expresión derivadas de experimentos con microar-
rays, sino también los (a menudo) complejos resultados de su análisis y
la cantidad de fuentes externas de conocimiento que se pueden utilizar
para confirmar o validar los resultados del experimento. Esta cantidad
de información hace necesario el uso de todas las habilidades cognitivas
del analista, no sólo abstractas, sino también perceptivas. El uso de
técnicas de minería de datos no supervisadas contribuye a descubrir
nueva información a partir de los datos de expresión, normalmente en
forma de grupos o clasificaciones. Especialmente, los métodos de biclus-
tering se han utilizado con bastante éxito para este fin. Sin embargo, no
existen técnicas de visualización satisfactorias para inspeccionar los re-
sultados del biclustering ni para integrarlos con el resto de información
disponible. Esta tesis se acerca a estas cuestiones desde el punto de vista
de la analítica visual, buscando nuevas técnicas de visualización para
representar biclusters e integrarlos, junto con las matrices de expresión
y las fuentes externas de conocimiento, en un entorno de trabajo que
facilite el proceso de análisis.
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I N T R O D U C T I O N





1I N T R O D U C T I O N

It is not enough to have a good mind. The main thing is to use it well. —
René Descartes, Discourse on Method, 1637

The past decade has witnessed the advent of a lot of achievements
within the field of genomics. Initiatives such as the Human Genome
Project [138, 69, 1] and similar projects for other organisms [18, 2,
143] have established the basis for the genetic structure of several key
organisms by identifying DNA sequences as genes. Although far from
perfection by themselves, these sequence-to-gene mappings are enough the best estimates

indicate that about
92% of the human
genome has been
completed, and
characteristics such
as junk DNA are still
not understood

to dramatically increase our understanding of genomics.
The combination of gene-to-sequence mappings and gene manipula-

tion technologies developed after Polymerase Chain Reaction (PCR)1,
lead to multiple technologies to record the behavior of genes under
different conditions. The most used ones are microarray technologies,
which manage to measure the amount of transcription for several gene
sequences. Each microarray typically handles every known gene of an
organism (which means thousands of genes), and usually several mi-
croarray experiments are conducted (regarding different conditions or
just replications), so it is normal to work with millions of transcription
values.

The technology to build microarrays has evolved so much in the
past five years that today all the genome sequence of an organism
can be included in a single microarray. This evolution of technologies microarrays

comprising whole
genomes are called
tiling arrays, each
tile is a sequence of
around 25
nucleotides

leads to an increase in the amount of data to analyze. In addition, the

a single tiling array
can have millions of
probes

spread and commercialization of microarray technologies, and the use
of public repositories increase the number of conditions under which a
given microarray platform is utilized, therefore enlarging the amount
of data to analyze.

A fact that is shared by almost any research field, not only genomics,
is that there is a bottleneck affecting our capability to analyze such vast
amounts of data provided by existing technologies. Fortunately, there
is a large number of analysis techniques available to the researcher
in order to filter, group and classify information. The use of some of
these analysis techniques is complex and frequently simple techniques
prevail. Simpler techniques usually disregard several details on the
data, but there is so much information on these datasets that it can be
enough to find important discoveries. On the other case, specially in
exploratory analyses, the scientists demand more complex methods,
but usually these methods give us too much information and their
results are hard to inspect. This is the case, regarding gene expression
analysis, of biclustering algorithms; an evolution of traditional clustering
techniques that has become popular because their design fits better to
biological behavior.

In the case of the analysis of microarray data, in addition to the
inspection and interpretation of the outcomes of analysis techniques,
there is available information about genes and gene transcription that is

1 PCR is a technique that uses DNA polymerase to make multiple copies of a piece of
DNA

3



4 introduction

used to validate the analysis and interpret microarray experiments. For
example, Transcription Regulatory Networks (TRN) convey transcription
regulation among genes. Gene annotations store biological knowledge
related to genes, from its chromosome to the molecular functions into
which they are known to be involved. Biological pathways relate genes
that work together in a given biological process. Bioinformaticians and
biologists make use of several tools and web services that provide such
kind of information.

A broadly accepted approach to this problem of excess of information
is to widen the intelligence levels used, adding visual thinking to
abstract cognition [141]. This approach gave way in the past decade
to Information Visualization, that has revealed as a key research area
to guide and increase the capabilities of different analysis techniques
by means of visual representation and interaction. It has, for example,
become a standard de facto to visualize gene clusters on a heatmap [44].
In order to cover the whole analytical process, not only the visual
display of data, Visual Analytics [130] is spreading among different
application areas, and has emerged as a research area by itself.

1.1 motivation

The design and analysis of microarrays is directed to answer several
questions, that can be summarized as [20]:

• How does gene expression level differ in various cell types and
states, how is gene expression changed by various diseases and
compound treatments?

• How are genes regulated, how do genes and gene products
interact, what are these interaction networks?

• What are the functional roles of different genes and in what
cellular processes do they participate?

The analytic discourse to answer these questions depends on the
availability of previous knowledge and the extent of the questions.
Instances of these questions such as do the transcript abundances of cancer
related genes for a given patient match the normal abundances?, answered
with yes/no, are frequently useful in biomedical applications. This kind
of reasoning comprised of hypothesis testing usually requires a low
number of conditions (disease/control) and relatively simple analysis
techniques (such as differential analysis [6]).

Broader questions such as which genes are involved in the cellular re-
sponse to stress? fit better with an exploratory analysis, which requires
larger experiments (several conditions with different kinds of stress)
and more complex analyses (non-supervised classification).

In the case of hypothesis testing, the available biological knowledge
directs the discourse, while in exploratory analysis it is just a guide to
support or validate discoveries, that will generate new biological knowl-
edge. Although hypothesis testing has really important applications
such as diagnosis, the present work is more dedicated to exploratory
analysis, which requires of more complex analysis techniques.

However, as of today, some of these complex analysis techniques, spe-
cially biclustering, are not widely used in practice, the more traditional
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clustering being preferred, despite the consensus in the theoretical
advantage of the former [84, 126, 99].

It is our aim to analyze the reasons for this gap between theory and
practice and to make biclustering a more utilized option in exploratory
analysis. As an advance, some of the issues related with biclustering
analysis are:

• Biclustering algorithms are heterogeneous about the kind of
groups they search for and the search methods.

• There are no golden rules to compare biclustering goodness.

• The biological interpretation of some kinds of biclusters is un-
clear.

• There are few comprehensive compilations of biclustering algo-
rithm implementations.

• There are few specific visualization techniques and tools for
biclustering.

1.2 aim of the thesis

The first part of this work focuses on the last two issues enumerated
above: to compile biclustering algorithms and study bicluster visualiza-
tion; which eventually leads to provide arguments to face and discuss
about the first ones. The reason to proceed in this way is that the variety
of methods and definitions of what is a bicluster makes very difficult
to design a golden numerical metric to validate them all. Regarding
this issue, this work proposes a metric applicable to the computation
of the best parameter setting for a biclustering algorithm, a first step
towards biclustering benchmarking. This work also proposes a novel vi-
sualization technique to represent biclustering results making emphasis
in conveying the special properties of biclusters.

On the second part of the work, our aim is to step back and watch to
the whole reasoning process associated to gene expression analysis, in-
tegrating biclustering algorithms, visualization techniques and external
knowledge on a framework for visual analysis. The result is a tool that
helps the analysts to explore their data, reducing time and effort and
boosting their analytical capabilities thanks to ad hoc visual represen-
tations and a high interaction with the tool. This tool has been tested
with several biological examples to perform gene expression analysis
based on biclustering in order to discover biological knowledge and to
compare it with other analysis approaches.

1.3 contribution to knowledge

The main outcomes of the work described in this thesis are:

• BicOverlapper [106, 107], a framework that consistently applies a
visual analytics approach to the exploration of gene expression
data with biclustering algorithms. BicOverlapper is available at:
http://vis.usal.es/bicoverlapper

• A general study and review of visualization techniques in the
field of gene expression analysis and biclustering, with the de-
scription of our proposed improvements and a novel bicluster
visualization technique.

http://vis.usal.es/bicoverlapper
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There is a number of minor contributions derived from the iterative
research cycle. These are:

• The development of metrics for the internal validation of biclus-
tering algorithms and the tuning of its configurable parameters.

• The development of biclust, a R package with the implementa-
tion of several biclustering algorithms. This has been done in
collaboration with Sebastian Kaiser and Friedrich Leisch from
the University of Munich, and is available at:
http://cran.r-project.org/web/packages/biclust

• The description of a formal approach to the design of solutions
for the visual analysis of gene expression.

• The discussion of several case studies of gene expression analyses
by means of biclustering.

Hopefully, these contributions will lead to the improvement and
spreading of biclustering analysis and gene expression analysis in
general, and to a more frequent usage of visual analytics approaches in
biological research.

1.4 organization of the thesis

The Background Information chapter summarizes the main relevant con-
cepts regarding to the four major research fields involved in this work:
microarray bioinformatics, gene expression data analysis, information
visualization and visual analysis. The State of the Art chapter describes
the specific techniques related to this thesis: biclustering analysis, visu-
alization of microarray data and biclustering results, and visual analysis
on bioinformatics. The Problem Statement chapter illustrates the issues
regarding to biclustering analysis on gene expression data. This work
focuses on the validation and parameter configuration of biclustering
algorithms and, specially, in the visualization of biclustering results and
the application of a visual analytics approach to the study of gene ex-
pression. The Proposed Solution: Design chapter describes in detail how
we approached the above problems and developed solutions for them.
The Proposed Solution: Results chapter presents the use of the designed
solutions in practical cases in order to confirm their usefulness. Finally,
the Conclusions chapter discusses the achievements of this work, the
new problems that arise and future work lines in order to solve them.

http://cran.r-project.org/web/packages/biclust
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2M I C R O A R R AY B I O I N F O R M AT I C S

Science consistently produces a new crop of miraculous truths and dazzling
devices every year. — Kary Mullis

Bioinformatics is the application of information technology to molec-
ular biology (the study of biology at a molecular level). The term was
coined in 1978 by Paulien Hogeweg and has its relevance has increased
since then. Due to the high amounts of information related to molecular
biology technologies, bioinformatics has become essential in certain
areas, such as management of DNA and protein sequences, gene expres-
sion analysis, protein structure analysis, etc.

The actual process of analyzing and interpreting biological data is
referred to as computational biology, so bioinformatics is, from this point
of view, part of computational biology1. Anyway, bioinformatics and
computational biology coincide in several sub-disciplines, such as the
use of tools that enable efficient access and management of biological
information and the development of algorithms to analyze and search
for relationships within these data.

In this chapter, we will review some concepts regarding microarray
bioinformatics that are key to identify the design requirements of gene
expression analysis, either visual or algorithmic. Likewise, these con-
cepts will help to understand the nature of input data and to evaluate
the results of the analysis process.

2.1 gene expression

Along this and the following chapters, a number of biological terms
will appear related to gene expression. It is vital, in order to design a
good approach to gene expression analysis, to understand, at least at a
basic level, its biological grounds.

2.1.1 Nucleotides, Genes and Proteins

Any information about a living organism is coded in complex combi-
nations of four structural units called nucleotides or bases: Adenine (A),
Guanine (G), Cytosine (C) and Thymine (T). Nucleotides are molecules Thymine is

substituted for
Uracil (U) in RNA

with the characteristic that each one is chemically attracted by another
nucleotide and repelled by the other two, forming the base pairs AT and
CG. This attraction/repulsion property is applicable to large nucleotide
chains, not only single base pairs (see fig. 1).

DeoxyriboNucleic Acid (DNA) and RiboNucleic Acid (RNA) are molecules
that consist on a long nucleotide chain. RNA is usually single stranded,
while DNA is usually double stranded (see fig. 1b). DNA serves as the
storage for all information (genes or not) of an organism, while RNA,
among other functions, acts as a bridge to transform genes into proteins
or other gene products.

1 This is analogous to the relationship between information visualization and visual
analytics, that will be discussed in 5.
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10 microarray bioinformatics

(a) (b) (c)

Figure 1: a) Base pairs. b) Single and double-stranded nucleotide sequences. c)
Illustration of how two complementary sequences are attracted and
how two sequences with just an inadequate pair combination repel
each other (reproduced from Affymetrix web page).

In general terms, a gene is a nucleotide sequence that codifies a trait
of a living organism. For example, there is a gene for the eye color, so
an instance of the gene present on a specific individual (called allele)
determines the eye color for that individual. The allele set of an individ-
ual is called the genotype and the set of traits it codifies is the phenotype.
The gene set of a species is called its genome, and depending on the
kind of organism, it will be organized into chromosomes (eukaryote) orchromosome means

"colored body" in
Greek, because they
are strongly stained
by some dyes

not (prokaryote).
A protein or polypeptide is a long (50 to 1000) chain of amino acids.

Amino acids are the structural molecular units of proteins, analogously
to nucleotides in genes. There are 20 different amino acids, each one is
the result of the combination of three nucleotides2.

2.1.2 Transcription, Translation and Expression

Basically, transcription is the copy of a nucleotide chain (DNA) to another
(RNA) (see fig. 2). It is based on hybridization, a process by which two
complementary single chains become a double chain due to the base
pair affinities. Translation is the conversion of RNA chains into amino
acids. Gene expression is the process by which a gene is made into aRibosomes are

responsible of
translation

functional gene product, usually a protein. The whole process is known
as the central dogma of molecular biology:

Proteins are translated from RNA, which is transcribed from DNA

Microarray data analysis is based on the fact that, if there are lots of
copies of a gene due to transcription, there will be lots of RNA chains to
translate it into amino acids and therefore lots of proteins to express
the corresponding gene trait.

The regulation of gene expression (or just gene regulation) includes
any process that cells use to turn the information of genes into gene

2 There are 64 possible combinations of nucleotides, the existence of just 20 amino acids
means a lot of redundancy
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Figure 2: A simplified process of DNA transcription. RNA polymerase separates
a portion of DNA (left), then attaches nucleotides thanks to their
chemical attraction (center) to finally obtain the desired mRNA (right)
(reproduced from Affymetrix web page).

products. It includes translation and transcription, but it is important
to note that there are some other processes that modify gene expres-
sion, such as RNA transport, messenger RNA (mRNA) degradation or
PostTranslational Modification (PTM), although they are out of the scope
of this introductory chapter.

2.2 microarrays

Microarray is a term referring both to a technology and the result of its
application (the microarray chip or gene chip). It consists in arrayed series
of thousands of microscopic spots filled with nucleotide sequences that
measure their transcript abundance.

Microarray platform or microarray design refer to the architecture for
a specific organism or purpose. For example, the platform hgu95av2
is one of the architectures of Affymetrix company for Homo sapiens.
Microarray experiment refers to each biological experiment applied
under a given platform, usually involving several microarray chips of a
given platform. Microarray data are the results of such an experiment,
frequently resumed in a gene expression matrix. Sometimes all these
terms (technology, chip, platform, data) are described just as microarray,
leaving context to clarify any possible ambiguity.

This chapter briefly overviews the most important aspects of microar-
rays, please refer to [16, 61] for detailed coverage of the matter.

2.2.1 Microarray Technology

A microarray consists of a solid surface, known as gene chip, where gene chips are
usually made of
glass or silicon

genetic material is placed. The gene chip has a grid-like structure, each
spot containing a different single strand nucleotide sequence known
as probe. Each spot contains millions of copies of its probe. There are
several kinds of microarray. Following, we describe the microarray
building process for a complementary DNA (cDNA), one-channel chip
(see section 2.2.3 for more information about the kinds of microarrays).

1. A sample coming from an organism under the experimental
condition to test is prepared. It contains cDNA sequences for each
probe in the gene chip, but with a fluorescent label added to each
sequence3.

3 Note that in the sample the number of copies of each sequence is directly related
to the transcript abundance of that sequence, while the number of copies of each
sequence in the gene chip is the same for all the probes
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Figure 3: Microarray build and image analysis processes.

2. Afterwards, the sample solution is poured onto the gene chip
and, by means of hybridization, the matching sample sequences
will attach to their complementary chip sequences.

3. The gene chip is then washed and dried, so finally each spot
will contain a different number of "stuck" sample sequences, and
therefore a different number of fluorescent labels.

4. The chip is now read by stimulating the fluorescent labels and
measuring the light intensity of each spot, being this intensity
proportional to the transcript abundance of the sample. This
image analysis is not trivial and requires procedures such as
pixel detection, background intensity correction, intensity bias
correction, etc.
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Affymetrix provides
intensity matrices in
CEL files, and the
chip design in CDF
files that provide the
probe-to-gene-
mappings (at least
11 probes per gene)

The whole process of microarray building is illustrated in the schema
of fig. 3. After the image analysis is performed, we have an intensity
matrix I, being Iij the light intensity of the spot located at the position
(i, j) in the array, which corresponds to the light intensity of a probe
sequence. Usually, there are more than a single probe related to a gene,
so in order to obtain the gene levels from the probe levels, we need to
perform a summarization of probe levels.

2.2.2 Microarray Experimental Designs

Microarray experiments usually comprise two or more samples. A
typical paradigm is control vs. disease, where two samples are prepared,
one with a healthy or otherwise normal individual (control) and another
one with an individual under a disease or other relevant condition
(disease). The result is an experiment requiring two microarrays or, in
other words, two intensity matrices. If the same chip design is used for
both experiments, the intensity matrices can be converted into arrays
and stuck together in a gene expression matrix A, with n rows (one
per gene) and two columns (control and disease). Element aij is the
expression level of gene i under condition j. The conditions are often
replicated to check experimental variance, resulting into four or more
columns on the gene expression matrix. In addition, larger experiments
may include several different conditions, each one with replications,
increasing the number of columns of the matrix. Fig. 4 shows how
various probe intensity matrices produce the final gene expression
matrix.

Figure 4: Microarray compilation and summarization. The numbers in red
correspond to several probes for a single gene.
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Microarray experiment refers to the whole experimental design. TheAlthough unusual,
some experiments
may use more than
one array design,
called multiarray
design experiments

words condition, sample, array or assay refer to the samples (each of
the columns in the gene expression matrix). Array design or microarray
platform refer to the specific chip used in the microarray experiment.
The data matrix of a microarray experiment is usually named gene
expression matrix or just expression matrix.

2.2.3 Types of Microarrays

The philosophy of microarrays is almost the same for every microarray,
but slight modifications in the above procedure lead to different types
of microarrays. Regarding the number of samples poured over the gene
chip we have (see fig. 5):

• One-channel microarray: genetic sequences from one sample are
poured over the microarray for hybridization. An example of
one-channel microarrays are Affymetrix GeneChips.

• Two-channel microarray: genetic sequences from two different sam-
ples are poured over the microarray for competitive hybridization.
Each one is marked with a fluorescent label of a different color.
Two-channel microarrays are also called Cy3/Cy5 microarrays,
because these two kinds of cyanines are used as fluorescent dyes
for the channels.

(a) One-channel microarrays (b) Two-channel microarrays

Figure 5: One and two-channel microarrays after fluorescent stimulation.

Two-channel technology requires only one chip in order to perform
a simple control vs. disease experiment, while one-channel technology
needs two, and the comparison is made computationally instead of
experimentally. However, the power of one-channel microarrays is that,
if done under the same instruments, protocols and design (which is
common with company-specific chips), every experiment performed on
the same chip series are comparable among them, adding tremendous
power to the experimental design.

Regarding probe sequence origin, we can distinguish:

• cDNA microarray: probes are cDNA sequences.

• oligonucleotide microarray: probes are short nucleotide sequences
specifically synthesized for the experiment.

Finally, depending on probe preparation, we have:
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• delivery microarray: probes are prepared off-line using techniques
such as cloning or Polymerase Chain Reaction (PCR) and then are
delivered onto the gene chip by contact printing. They are often
called spotted microarrays.

• in situ microarray: probes are prepared directly onto the gene chip,
adding nucleotide by nucleotide until the desired sequence is
complete, by means of photolithography.

Delivery technology is cheaper and can produce microarrays of
medium density4. In situ technology is more expensive but can produce
microarrays of higher density, such as tiling arrays. The probes in a tiling
array cover the whole genome of the organism, instead of just some
sequences related to genes. These probe sequences usually overlap,
being a typical configuration probes with 25 nucleotides, where the
first 5 of them overlap with the last ones of the previous probe. Tiling
arrays increase by two orders of magnitude the number of probes
in a microarray, and they are a revolution in microarray technology,
permitting new applications besides gene expression analysis, such as
ChIP-on-chip or transcriptome mapping.

2.2.4 Microarray Applications

Gene expression profiling, used to compare the expression level of genes
among two or more conditions, is still the most widespread use of
microarrays. It is mostly used to find groups of genes with the same
behavior under certain circumstances, thus identifying the biological
processes in which they are involved. Some of the genes in each group
may be already classified as related to a certain function, which could
include the rest in the function under the assumption of "guilt by
association". This kind of analysis has several applications:

• Agriculture: for example, a comparison between raw and ripened
tomatoes will lead to the detection of genes involved in ripen-
ing and therefore to the study of methods to conserve or ripen
tomatoes as desired.

• Pharmacy: the identification of genes that are regulated by a
certain drug potentially provides insight on the action of the
drug.

• Clinical diagnosis: of relevant diseases is another profitable field
for gene profiling. For example, the ability to find cancer cells
based on gene expression, or the design of individual therapies
based on expression profiling are well underway.

• Gene mapping: on a basic scientific level, microarrays have been
used to map the cellular, regional or tissue localization of genes
and their products. For example, by analyzing samples from
different tissues by means of microarrays, one knows which
genes are differentially expressed on that tissue.

• Comparative Genomic Analysis: is a recent application that tries to
characterize the genes within an organism and their functions

4 Density refers to the number of probes in the chip per area unit. The higher the
density, the higher the number of probes



16 microarray bioinformatics

by comparison with a reference organism for which the genome
is already complete. This is a convenient shortcut to character-
ize new genomes without the large investment necessary for a
traditional genome project.

There are other applications of microarray technology, with slight
variations of the methodology and the analysis process:

• Single Nucleotide Polymorphism (SNP) microarrays: a SNP is the dif-
ference in just one nucleotide between two nucleotide sequences.
These microarrays are designed to detect the presence of SNPs
between genomic samples, which provides a genetic basis for
identifying disease genes, predicting environmental effects and
designing personalized treatments.

• Chromatin InmunoPrecipitation on gene chip (ChIP-on-chip): this tech-
nique combines chromatin immunoprecipitation with high-density
microarray technologies such as tiling arrays in order to, for exam-
ple, identify binding sites of DNA-binding proteins on a genome
wide basis5.

• Comparative Genomic Hybridization (CGH): is another important
application of microarray technology. In this case, gene copy
numbers6 are compared between two samples by using genomic
DNA rather than RNA transcripts for the microarray probes. It
is usually utilized in tumor analysis to detect gene duplication,
amplification or deletion events.

2.2.5 Microarray Sources

Regarding microarray building, there are two main sources of microar-
rays: in-house and company-specific. Small laboratories usually do not
have the technology to create their own microarrays, so they rely on
company-specific microarrays to do their researches. Nevertheless, the
offer of company-specific microarrays is so large that it is usually
enough to most of the laboratories and research centers, including the
large ones. However, sometimes there are special needs that require
the development of microarrays ad hoc. It occurred that a laboratory
developed a microarray for a given organism before there were a com-
mercial offer for it, and today both microarray platforms coexist. This is
the case of Sanger’s7 in-house microarray for Schizosaccharomyces pombe
and the Yeast2.0 Affymetrix microarray.

It is generally accepted that companies such as Affymetrix, Agilent
and Illumina are the front runners with regards to microarray technol-
ogy, however there are many more microarray companies out there8.

5 A DNA-binding protein is a protein that attaches to the DNA sequence at some point.
The technique isolates the protein when attached to the DNA, and breaks the DNA to
select only the sequences with an attached protein by means of the corresponding
antibody (immunoprecipitation). These sequences form the sample to use in the array

6 For example, humans are diploid organisms, so they have two copies of each chro-
mosome, and therefore of each gene. This technique do not detect structural changes
such as trisomy (three copies of a chromosome), but duplications or deletions of areas
within chromosomes, giving a kind of virtual karyotype

7 The Sanger Institute is a genome research institute primarily funded by the Wellcome
Trust

8 See http://www.nslij-genetics.org/microarray/company.html for a comprehen-
sive list of microarray companies

http://www.nslij-genetics.org/microarray/company.html
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Each company or laboratory select the DNAsequences that will be in the
microarray, depending on their specific purposes, but they usually cover
the known genome of the organism, with several different probes per
gene. The identification of DNA sequences is also company-dependent,
so specific sequence-to-gene mappings are necessary9.

Regarding microarray retrieval, there are several public reposito-
ries. The three most important are maintained by state-funded in-
stitutions at the United States, Europe and Japan. Gene Expression
Omnibus (GEO) [43] is maintained by the National Center for Biotechnol-
ogy Information (NCBI) in the USA. ArrayExpress [95] is the European
counterpart to GEO, and is maintained by the European Bioinformat-
ics Institute (EBI). GEO and ArrayExpress are the most comprehensive
microarray repositories, holding, as to February 2009, 280.000 and
220.000 samples, respectively. Both of them are MIAME compliant (see
section 2.3.2) and have evolved to provide additional services, further
than simple microarray experiment searches [10, 94]. Gene expression
profiles and gene atlas are probably their main secondary contributions.
Gene expression profiles are transcription profiles of genes along a
curated selection of microarray experiments, presenting a wider look at
a gene than its transcription profile on a single experiment. Gene ex-
pression atlas goes beyond, integrating several comparable experiments
on a single data matrix.

The Center for Information Biology gene EXpression database (CIBEX)
[66] is the Japanese public, MIAME-compliant, database for microarray
data, but it is considerably smaller that their western counterparts
(about 1200 samples). It is also usual to find microarray experiments as
supplementary material of related papers [5, 31], but today most of the
journals require the publication of experiments on a public repository,
so GEO and ArrayExpress remain as the main sources of microarray
data.

2.3 biological knowledge

The scientific community whose research resides in the genomics do-
main is extremely large. Thanks to journals, databases and repositories,
the outcomes of these researches are available almost in real time. As
a result, our knowledge of biology grows everyday, and does so at a
high rate. Microarray experiments are designed based on this available
knowledge, in order to increase this knowledge. Microarray data anal-
ysis makes use of the available information to validate its results, but
also to tighten and simplify the analysis. In this section we will briefly
survey some knowledge sources related with the two dimensions of
expression matrices: genes and conditions. Both dimensions of knowl-
edge, along with the information about the microarray experiment
itself, expand and complement the microarray (see fig. 6).

9 Sequence-to-gene mappings should be updated periodically, because the improvement
in the understanding of the genome structure can make some probes to fall out of the
new gene sequence limits
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Figure 6: The expression levels are expanded by gene and condition related
knowledge, and also by the experiment details.

2.3.1 Gene-related Knowledge

Gene and protein-related knowledge is one of the areas with a higher
rate of new discoveries in the past years (for example, see figs. 7 and 8).
There are several aspects of biological knowledge related to genes, we
will grossly summarize them in:

• Basic information: name, synonyms, brief description, organism,
location, sequence and other general characteristics of the gene.
Although not immune to change, it is the most stable gene-related
information. However, changes may occur. For example there are
lots of genes with unknown functions, approximate locations,
etc.

• Annotations: they relate genes with different biological concepts.
We focus on Gene Ontology (GO) annotations, which link genes to
biological terms from a controlled vocabulary (GO terms). GO [8]
is currently divided into three ontologies: Biological Process
(BP), Molecular Function (MF) and Cellular Component (CC). BP
contains terms related to a biological objective to which the gene
or gene product contributes, MF defines biochemical activities of
a gene product and CC refers to the place in the cell where a gene
product is active.

• External relationships to other biological concepts, such as gene
products (proteins), biological pathways or transcription regula-
tory networks.

All this information comes from a heterogeneous bunch of sources,
and the scientific community makes a gargantuan effort to curate and
integrate this information into public repositories and databases. Here
are some of them:

• Basic information: Entrez Gene from the NCBI is the most impor-
tant database of genes. Based on RefSeq genomes, it provides
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Figure 7: The increase of entries in UniProtKB/TrEMBL clearly follows an
exponential rate (found at http://www.ebi.ac.uk/swissprot/sptr_
stats)

Figure 8: The number of nucleotides added to the Embl sequence database
per year, as to February 2009. Note how in just two months, 2009 has
surpassed 2008 (found at http://www.ebi.ac.uk/embl/Services/

DBStats)

most of the basic information described above. It makes use of
several resources from the NCBI, and also from external sources
to complete this information. The database is searchable via http
or by its SOAP API, Entrez Programming Utilities10.

• Annotations: The Genome Annotation Project11 coordinates the
GO annotation of several organisms. This is a huge effort that com-
prises different groups, for example Gene Ontology Annotation
(GOA) for human, Saccharomyces Genome Database (SGD) for
yeast and Rat Genome Database (RGD) for rat. Most of them
provide programmatic and web query access.

• External relationships: UniProt12 is the main database for pro-
teins, and allows searches by gene, so we can link a gene to its

10 http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
11 http://wiki.geneontology.org/index.php
12 http://www.uniprot.org/

http://www.ebi.ac.uk/swissprot/sptr_stats
http://www.ebi.ac.uk/swissprot/sptr_stats
http://www.ebi.ac.uk/embl/Services/DBStats
http://www.ebi.ac.uk/embl/Services/DBStats
http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html
http://wiki.geneontology.org/index.php
http://www.uniprot.org/
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gene products. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) [73] is the best resource for gene mapping to biologi-
cal pathways, although it is also a general gene repository. Bio-
Carta13 and Reactome14 are other examples of biological pathway
databases.

The mentioned sources are just some of the enormous number of
available databases15. Unfortunately, despite the efforts, as of today the
database heterogeneity is one of the major obstacles for bioinformati-
cians. Different sources have different gene identifiers (for example, see
table 1), API retrieval formats change with time and different sources
may provide different results regarding the same gene information.

source gene id comment

Official
name

HRAS Harvey RAt Sarcoma viral oncogene

Synonyms HRAS1, K-RAS... Up to 12 synonyms found

NCBI 3265 NCBI id

Ensembl ENSG00000174775 Ensembl id

UniProt GTPase HRas Related protein name

KEGG K02833 Related protein code for KEGG

Affymetrix1590_s_at, 35701_at Probes in Affy chip hgu95av2

Table 1: Heterogeneity of gene identifiers for Homo sapiens oncogene HRAS.

2.3.2 Condition-related Knowledge

The information concerning the experimental conditions is much less
structured than gene related information. Usually, authors use natural
language to describe conditions, these descriptions are only available
through publications, and the gene expression matrix only contains
arbitrary condition identifiers.

However, fortunately the Microarray Gene Expression Data (MGED)
Society has defined a list of essential information that must be present
and structured in order to be capable of interpret and replicate a
microarray experiment: the Minimal Information About Microarray
Experiments (MIAME) [19]. Major microarray public repositories are
MIAME-compliant. Regarding the information about conditions, MIAME
says that it must be "the essential sample annotation including exper-
imental factors and their values." An Experimental Factor (EF) is a
variable of our experiment, for example the studied organism, the part
of the organism from which the samples are taken, the age, the sex or
the disease state of the organism. An Experimental Factor Value (EFV)

13 http://www.biocarta.com/
14 http://www.reactome.org/
15 See for example ELIXIR, the European infrastructure project for biological information:

http://www.elixir-europe.org. This project aims to the identification European
biology-related infrastructure projects and to the design of a shared platform to
facilitate their access.

http://www.biocarta.com/
http://www.reactome.org/
http://www.elixir-europe.org
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is the specific instance of the EF for a given experiment (for example:
Homo sapiens, liver, 21, female or control). The current format to dis-
tribute a MIAME-compliant microarray experiment is MAGE-TAB [102].
Note that the four data files of the overall structure of MAGE-TAB
coincide with the mayor entities involved in a microarray (see fig. 6):

• Investigation Description Format (IDF) describes the experiment.

• Sample and Data Relationship Format (SDRF) relates with experi-
mental conditions.

• Array Design Format (ADF) contains information about the mi-
croarray design and probes.

• The data matrix files stores the transcription levels and other
related information such as uncertainties or p-values.
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The Milky Way is nothing else but a mass of innumerable stars planted
together in clusters. — Galileo Galilei

Microarray experiments determine the transcript abundance of an
organism’s genes under different conditions. Gene expression data anal-
ysis tries to identify groups of genes that exhibit similar behavior under
certain conditions from microarray experiments. In this section we will
briefly review the microarray data analysis process, summarizing its
different options. For exhaustive

discussions on
microarray data
analysis, please refer
to [16, 61]

3.1 microarray data pre-processing

Due to the numerous procedures involved in a microarray experiment,
and because of the natural biological variability, microarray data are
inherently noisy and have high dimensionality, so it is desirable to
carry out the analysis of these data within a statistical framework ([16],
chapter 4).

It is usual that during microarray preparation, specially during the
image analysis, some of the probe intensities are lost. It is usual to
give to these lost intensities (called missing values) an estimated value
previously to the analysis of the whole data set. In the case of microarray
data pre-processing, a number of techniques may be applied, from using
zero intensity for missing values to more elaborated estimations, such
as the K-Nearest Neighbors (KNN) imputation1.

Apart from missing values, the whole process of creation of microar-
rays has several sources of systematic variability: sample preparation,
hybridization, scanning and experimenter bias can produce variation
on data. The normalization process minimizes these variations, although
it is not a perfect method. Variability will always exist, and it should be
provided with final transcription values, although it is usually ignored.
There are three methods of normalization: total intensity, ratio intensity
and regression:

• Total intensity normalization applies the same transformation to
every probe and sample. A common total intensity transforma-
tion is centralization, which transforms the data so the mean is
zero and the standard deviation is one ([70], page 24).

• Ratio intensity methods take the expression values of one of the
samples as the canonical values and normalize the intensities
of other samples accordingly (see, for example, the microarray
experiment of Chen et al. [31]).

• Regression methods build models to correct the regression curves
that fit to intensity levels, and transform them to lines with slope
one and intercept zero (see, for example, the LOWESS model [145]).

1 KNN imputation selects the k nearest gene profiles to the gene profile of the miss-
ing value, and then sets the mean of these neighbors for the missing value as the
estimation.

23
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Finally, note that a probe is not a gene. Although usually probe
sequences are selected because they are part of a gene, it is possible
to have several probes for each gene (for example, several Affymetrix
platforms have 11 probes per gene) or probes not related to a gene
(this happens specially in tiling arrays, see section 2.2.3). Note also that
the knowledge about genes evolves, so gene-to-sequence mappings
may change over time, sometimes discarding or adding probes related
to a gene. Anyway, there is a need for a summarization step that will
comprise probe transcription levels to gene transcription levels, either
before or after normalization. Summarization is usually a mean measure
or a linear statistical model such as the median polish [137].

3.2 gene expression data analysis

Once the data are pre-processed, it is time to analyze them. Although
this thesis focuses on gene expression analysis and the interpretation
and representation of its results in the case of biclustering, it is impor-
tant to know about microarrays (chapter 2) and their pre-processing
(section 3.1) in order to detect possible errors or bias in the input data
and to provide a (at least, superficial) biological interpretation and
validation of the analysis.

At this point, expression data coming from the microarray have be-
come a numerical matrix A, with rows representing genes and columns
representing conditions. The number of rows in the expression ma-
trix has as upper limit the number of genes in the genome2, which
means from around 3000 in Escherichia coli3 to approximately 30000

in Mus musculus (mouse). The number of conditions depends on theHomo sapiens
genome contains
around 25000 genes

experiment, it can be just two (normal versus disease) or tens or even
hundreds (several replications of different stress conditions, tissues or
disease states). Therefore, the typical dimension of a gene expression
matrix is in 10[3−4] × 10[1−2].

There are many different methods to analyze gene expression data,
but despite its number, we can summarize them in filtering and classi-
fication methods. Filtering methods are generally used for hypothesis
testing (does this patient have cancer?) while classification methods are
used for exploratory analysis (what is the response of bacteria to stress
conditions?). From a wide point of view, exploratory analysis discovers
new knowledge and afterwards, hypothesis testing uses that knowledge
on practical cases. For example, we need to perform wide exploratory
search studies for genes related to brain cancer before we can use these
genes as a flag to diagnose brain cancer.

The most usual filtering analysis is to search for genes with transcrip-
tion levels above or below a certain threshold for a given condition (the
gene is up or down-regulated for the condition). These genes with very
high/low transcription levels give way to too many/few proteins of the
related types, therefore changing the behavior of the organism. This
is enough for several analyses, mainly in biomedicine: if some of the
filtered genes in a patient sample coincide with the genes known to be
over-regulated for a given disease, this will help to confirm a diagnosis.
Differential analysis of expression is the most popular filtering method,
and consists in the comparison of the gene expression on a determinate

2 Probes from tiling arrays use to be treated "as is", without summarization, increasing
dramatically the number of elements, but its analysis is out of the scope of the thesis

3 E. coli is a bacterium found in the lower intestine of warm-blooded animals
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condition against a control condition, defining expression thresholds
based on ratio, mean, variance, etc.

On the other side, classification methods try to characterize the overall
structure of the expression matrix, revealing separated groups of genes
with similar behaviors. This can be done with the help of available
knowledge (supervised classification) or not (non-supervised classifica-
tion). Supervised classification mixes knowledge discovery with the use
of available knowledge, so it is less useful for raw exploratory analysis
but usually gives more accurate results. Supervised classification is also
called class based prediction, discriminatory analysis or supervised
learning. On the other hand, non-supervised classification does not
require any additional input apart from the raw data, but the results
are usually less precise. Non-supervised classification is also called
automatic prediction, clustering analysis, partitioning, grouping, data
segmentation and non-supervised learning. It is also possible to find
non-supervised techniques that incorporate available knowledge to
guide the analysis, but keeping part of the capability of discovery of
non-supervised classification [103].

We will focus on classification methods because exploratory analysis
is a more open field than hypothesis testing and it also includes it some-
how4. For an exhaustive study of classification methods, refer to [16]
(chapters 7–18). Here we provide a brief enumeration of supervised
methods:

• Discriminant analysis’s objective is to find the combination of con-
ditions which best separate two or more classes of genes (or vicev-
ersa). Depending on the characteristics of the combination, we can
have Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Diagonal Linear Discriminant Analysis (DLDA),
etc.

• Nearest neighbors are among the simplest methods of supervised
learning. The most spread method is the KNN algorithm. In this
algorithm, for each gene, its k nearest neighbors are found given
a distance measure, and the gene is assigned to the most common
class among these neighbors.

• Support Vector Machines (SVM) give a geometrical solution to the
classification problem. Given two classes, SVM searches for the
hyperplane that better separates them, maximizing the distance
between the hyperplane and the closer individuals of each class.

• Decision trees are hierarchical structures where the leaves repre-
sent classifications and branches are conjunctions of features that
lead to these classifications.

• Artificial Neural Networks (ANN) can be used for classification,
defining a network with as many input nodes as rows in the
matrix and as many output nodes as classes5. An arbitrary num-
ber of hidden nodes are also defined, and the neural network is
trained until a classification is obtained. Several variations of the
architecture and the learning model have been proposed in the
literature [15, 86].

4 Often, exploratory analysis is a succession of hypothesis testings, and some authors
model it like that (for example see Keim et al. analytical process [76] in section 5.1)

5 Note that, in several supervised methods, the number of classes in the data is known
a priori
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And of non-supervised methods:

• Clustering groups genes with similar profiles under all the condi-
tions. A further description of clustering is in section 3.3 below.

• Biclustering groups genes with similar profiles under certain con-
ditions. As the focus of this thesis is biclustering for gene expres-
sion analysis, it is reviewed in detail on chapter 6.

• Self-Organizing Maps (SOM) are a non-supervised type of ANN that
implements competitive learning: neurons must compete to fit to
a given input, redefining the weight patterns of the network, or
even its structure. An example of use in gene expression analysis
can be found in [125]. Some authors consider them just another
kind of clustering [29].

• Principal Component Analysis (PCA)/Singular Value Decompo-
sition (SVD): these methods search for the main features that
separate data into groups, by means of dimensionality reduc-
tion on principal components (PCA) or eigenvectors (SVD). This
reduction of dimensionality is a good initial approach to tackle
complex data, and it is sometimes used as a previous step for
clustering. On the other side they can oversimplify the data set,
and they are very sensitive to pre-processing.

There is no consensus about which is the best classification method
([16], cap. 1). There are methods that apply better to some problems
than others, and some authors have reported that complex methods
do not perform better than simple ones [39, 38]. In the field of mi-
croarray data analysis, non-supervised clustering was satisfactorily
used a decade ago [44] but now, with the growth of available genetic
knowledge, methods tend to incorporate this knowledge to give more
accurate outputs [103]. This way, unsupervised methods tend to become
"biologically supervised" methods.

Generically, non-supervised methods output more results than su-
pervised methods. Some methods can overwhelm the analyst with
results, making the analysis almost as complicated as to inspect raw
data directly. To avoid that, it is usual to simplify the output by using
thresholds or, for example, by using biological knowledge. Although
this is a valid approach, it will always reduce the exploratory capability
of the analysis techniques. One of the objectives of this thesis is to
discuss how to visualize a relatively large number of groups in order
to make its exploration easier and to help on their interpretation.

3.3 clustering

Clustering may be defined as a process that aims to find partitions or
groups of similar objects, called clusters. In a genomic expression appli-
cation, a cluster may consist of a number of genes whose expression
patterns are more similar to genes within the same cluster than to genes
within other clusters6. Clustering has become a fundamental approach
to analyze genomic expression data. Since the pioneer use of Eisen et
al. [44], it has provided the basis for novel clinical diagnostic studies
and other applications (just some examples of it are [5, 31, 136]).

6 Analogously, clustering may also be applied to conditions.
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Typical clustering algorithms are based on the optimization of a
partitioning quality measure. Generally these measures are related to
the heterogeneity of clusters (compactness) and their separation from the
rest of data (isolation). Thus, a basic clustering approach aims to search
for a partition that minimize intra-cluster distances and maximize inter-
cluster distances. There are several types of metrics to assess these
distances, typically based on the sum or manipulation of distances
among elements [70].

There are two major types of clustering systems: hierarchical clustering
and techniques based on iterative relocation. Some authors classify other
types or non-supervised techniques such as SOM or biclustering as other
kinds of clustering too. Hierarchical clustering is perhaps the best known
clustering method for expression data analysis. The main objective of
this technique is to produce a tree-like structure in which the nodes
represent subsets of an expression data set. Thus, individual genes (the
leaves of the tree) are joined to form groups, which are further joined
until a single group is obtained. Afterwards, a cut threshold is defined
on a certain level of the tree, taking the branches at this point as groups
(see fig. 9). How to define the threshold is non trivial, and it is usually
left to the criterium of the analyst, possibly with the help of inter and
intra cluster measures or validation indices (see section 6.5).

(a) Hierarchical clustering cut with two clusters

(b) Two clusters (red and blue) obtained by hierarchical clustering

Figure 9: Clusters at different thresholds of a hierarchical clustering. Under the
tree (its representation is called dendrogram), a heatmap represents
expression levels (see chapter 7). Clusters are separated by white
lines that correspond to the blue/red branches. Figures generated
with [114].

Iterative relocation methods involve a number of "learning" steps to
search for an optimal partition of samples. Such processes require the
specification of an initial partition or some knowledge on the underlying
class structure, such as the number of groups in the data. The most
common techniques in this category are the k-means algorithms. The k-
means method categorizes samples into a fixed number k of clusters, but
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it requires a priori knowledge on the number of clusters representing
the expression data under study.

Once a clustering algorithm has been selected and applied, analysts
face questions such as which is the best partition? or what is the right
number of clusters? To answer these questions it is required to use
estimations based on validity indices (section 6.5 describes the types of
validity indices for clustering and biclustering).
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A picture is worth a thousand words. An interface is worth a thousand
pictures. — Ben Shneiderman

Information visualization is related to the use of interactive visual
representations of abstract data to amplify cognition [141]. The more
complex the abstract data are, the more important information visual-
ization is to understand them. Today technologies generate very large
amounts of data, with complex or unknown structure, in almost every
research field. Astronomy, biology, physics, sociology, etc. share the
need for analysis of large, complex information. All these disciplines
make use of numerical analysis methods such as the ones described in
chapter 3, but the amount of information makes it difficult to under-
stand, interpret or represent their results. Numerical analysis exploits
our abstract (logical, mathematical) intelligence in order to understand
problems. However, to understand a problem, we make use of other
kinds of intelligence, specially verbal intelligence and visual intelli-
gence. Information visualization exploits visual intelligence in order to Howard Gardner

introduced the
theory of multiple
intelligences in 1983

help abstract intelligence.
In this section we will briefly summarize the origins of information vi-

sualization and review how information visualization has been applied
to bioinformatics, specially to microarray data and clustering.

4.1 origins and related fields

Over history, information has been visualized to aid thinking. Pictures,
maps, diagrams, etc. are and have been used to represent concepts,
and several disciplines have appeared to achieve it: cartography, infor-
mation design, statistical data graphics, etc. With the improvement of
technologies and the increase in the number and complexity of data,
these disciplines evolved, being information visualization the latest
instance.

Older disciplines used static diagrams, progressively utilizing color
and text to clarify them. A key step in visualization disciplines is the
use of characteristics such as color, width or location to convey abstract
aspects of data. Although already used in ancient cultures such as
the Greek and Chinese (figs. 10a and b), it was after Descartes and
the Scientific Revolution at the beginning of 17th century that this
characteristic was widespread (fig. 10c). Charles Minard’s illustration of
Napoleon’s Russian campaign is an excellent example that has become
a classic in the field (fig. 11).

All these presentation graphics illustrate a concept already known
by the designer, however information visualizations are designed to
uncover unknown phenomena. Presentation graphics tend to be static
and normally in printed format, while information visualizations are
computerized and interactive. Apart from this, both types of graphic
essentially share the same principles related to perception and visual
intelligence.

29
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(a) (b)

(c)

Figure 10: a) Detail of a diagram in one of the oldest fragments of Euclid’s
book Elements, dated circa AD 100. b) Proof of the Pythagoras’
Theorem just by means of a diagram, found in a classical Chinese
mathematics book dated circa AD 200. c) Oliver Byrne’s paragraph
explaining Pythagoras’ Theorem in his book The Elements of Euclid
(1847). The use of colors and the integration of figures and text
speed recognition and linkage between diagram and proof (figure
found in [133]).

Scientific data visualization is an area close to information visualization.
Although relevant authors [28] define scientific data visualization as a
representation of data in relation with a physical space and oriented
to area specialists, while information visualization has a more abstract
nature and general audience; the fact is that they overlap to a high
degree and they often respond to the generic label of data visualization.

Psychology branches related to perception are also associated to infor-
mation visualization for an obvious purpose: to exploit the properties
of human perception in order to improve the effectiveness of a visualiza-
tion technique. Human-Computer Interaction (HCI) is concerned with
the study and design of human-centric interactive computer systems,
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Figure 11: Minard’s illustration of Napoleon’s Russian campaign. It conveys
the size of Napoleon’s army by the width of the band, using color
to convey advance (light brown) and retreat (black). Small branches
represent tactical movements of soldiers. A lower line graph repre-
sents temperature during the retreat. Figure found in [132].

so information visualization can be regarded as a parallel field, since
visualizations are part of these systems1.

4.2 principles of information visualization

This section reviews the main aspects of information visualization in an
practical way as they relate to our visualization objectives. For more the-
oretical and exhaustive compilations please refer to the comprehensive
books on the theme [141, 28].

4.2.1 Interface design

The most widely used guideline for information design is the Visual
Information-Seeking Mantra [120]:

Overview �rst, zoom and �lter, then details on demand

The mantra can be applied to several types of data, and is divided
into the following tasks:

• Overview: gain an overall impression of the entire collection.

• Zoom: focus on items of interest.

• Filter: get rid of uninteresting items.

• Details-on-demand: select an item or group and get the related
low-level information when needed.

• Relate: view relationships among items.

• History: keep a record of actions to support undo, replay and
progressive refinement.

• Extract: allow to export sub-collections and query parameters
used.

1 Not surprisingly, relevant authors on information visualization are also related to HCI,
such as Ben Shneiderman, founding director of the Human-Computer Interaction
Lab (HCIL)
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The data on which the mantra is applied can be of several types,
enumerated below. Table 2 shows biological examples of each type.

• 1-dimensional: data organized in a sequential order.

• 2-dimensional: planar data, such as geographical maps.

• 3-dimensional: real world objects such as molecules or buildings,
or abstract data designed in a 3-dimensional structure.

• n-dimensional: data with n > 3 variables. It is the case of relational
databases but also of most of the matrices.

• Temporal: data with start and end times such as processes or
historical events.

• Trees: data where each item is linked to one parent item.

• Networks: data where each item is linked to an arbitrary number
of other items.

data type examples in biology

1-dimension Nucleotide and amino acid sequences

2-dimension 2D MRI, microarrays

3-dimension Protein structures, 3D MRI

n-dimension Gene expression matrices

Temporal Experimental conditions through time

Trees Phylogenies, clustering trees

Networks Biological pathways, PPI networks

Table 2: Data types and biological examples.
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4.2.2 Data Representation

Apart from dimensionality and relationship nature, the most important
thing to think about data is the level of measurement. According to
S.S. Stevens [123], there are four levels (nominal, ordinal, interval and
ratio), but they are usually reduced to three, greatly influenced by the
demands of computer programming:

• Category data: also called nominal data, they are basically labels.
For example, gene names are nominal.

• Integer data: they can have a discrete number of values where
order is important. A discretized gene expression matrix or a
nucleotide sequence have an integer nature.

• Real data: they can have any number of values, including zero or
negative values. Gene expression and p-values are examples of The p-value is a

measure of
probability ranging
from zero to one
often used in
statistical
significance tests
(see sec 6.5)

real data.

Figure 12: Ranking of perceptual effectiveness to measure different data types
with the corresponding visual variables. Shadowed variables are
not relevant to the corresponding data type (reproduced from [83]).

The scale of measurement is very useful in discussing visualiza-
tion techniques. For example, using shape to convey category data
can be misleading because we tend to interpret size as representing
quantity [141]. Mackinlay [83] ranks the accuracy with which human
perception interpret visual variables as measures (see fig. 12). The
higher in the rank, the better fitted to measure the corresponding kind
of data. Position is the best visual feature under any circumstance, so it
should be used to represent the most relevant aspect of the data. On the
contrary, shape is ineffective, and must be reserved for nominal data.
Dimensional characteristics (length, angle, slope and area) are good
to represent quantitative information. Color, texture and relationships
are better fitted for non-quantitative data. Mackinlay’s ranking is good
as a reference, but it is important to know that it lacks of some visual
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encodings such as motion (rotation, speed, direction, flicker), curvature
or convexity/concavity.

In addition to the ranking about the accuracy of perception, we can
take the criterion of immediacy of perception. The quickest percep-
tual reaction is preattentive processing, the mechanism by which certain
encodings are easy to be visually identified, even after a very brief
exposure (typically around 100 milliseconds). A special characteristic of
preattentive processing is that the time to identify preattentively distinct
objects is independent to the number of distracters (irrelevant objects).
Almost any visual characteristic can be preattentively distinguished
(for example, a red item among black items; or a triangle among sev-
eral circles). However, preattentive symbols become less distinct as the
variety of distracters increases [141] (for example, a red item is less
preattentive among items with several different colors).

After preattention, the visual working memory holds the visual objects
of immediate attention. Its capacity is limited to a small number of
simple visual objects or patterns (around three) and positions (about
nine, but only three linked to visual objects). It is separate from verbal
memory, and to store the visual objects in long term memory requires
a semantic encoding (for example, by means of labels attached to the
objects). The visual thinking is performed with this reduced set of visual
objects, which is constantly changed within a loop of eye-movements
to switch attention to other objects. It is also supported by:

• The temporary link of visual objects with verbal-propositional
information (the grouping is called an object file [71]).

• The recall of visual scenes or contexts from long-term memory
(gists) because they are familiar to the visual objects we are in-
specting.

• The grouping of several simple concepts into a single complex
one (this process is called chunking).

Therefore, data representation can favor the visual thinking process
by means of simple object representations (to minimize visual memory
load), semantic marks (to favor the creation of object files), familiar
environments (interfaces already known by the user) and grouping
laws (such as the Gestalt laws, see section 4.2.4).

If the data representation is good enough, postattentive processing [142]
(the mechanism by which a visual representation persists after attention
changes to something else) can take profit of visual working memory
while switching the focus of attention during the navigation through
the visualization. Otherwise, if the scene and the visual objects are
complex, the user will need much more changes of attention to go back
and revisit visual items. An example of the limits of visual working
memory is the change blindness [89], where people become blind to
substantial changes between two images if these changes do not draw
their attention.
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4.2.3 Transparency

Transparency is an interesting visual encoding when we think on the
representation of overlapped entities, such as biclusters. In these cases
it is desirable to convey overlap on a layered form but there are many
perceptual pitfalls on it [141]. One of these pitfalls is that transparency
is perceived only when good continuity is present (see fig. 13a). Another
one is the interference among different layers, so it is very important to
keep them separated on different visual channels such as color, shape,
size, texture, motion or depth (see, for example, the difference between
the top two representations in fig. 13b). If the overlapped data refer to
the same entities (for example, biclusters overlapping one another) and
there is no possibility to change the visual channel, transparency can
be quantified when up to five items overlap [45] (for example, the two
bottom representations of fig. 13b successfully convey overlaps of up to
three groups). For a larger number of overlapped items, transparency
can only give us a qualitative idea of overlap, so ancillary visualizations
are needed in order to quantify it.

(a) (b)

Figure 13: a) Overlapped continuous objects (top) are perceived as transparent.
It does not occur with discontinuous objects (bottom) (reproduced
from [141]). b) Different ways of conveying overlap: contours and
textures (top, reproduced from [141]) and single color transparency,
with and without contours (bottom).

The use of color and texture in combination with transparency to
convey complex relationships could slightly increase the number of
identifiable overlapped items (fig. 13b, top-right). However, there are
again issues with the use of a large number of different textures and
colors: texture and color cluttering will quickly arise. To summarize,
transparency is good at conveying overlapping relationships among
objects if they come from different visual channels (such as groups
and the elements within, that can be represented with very different
encoding) and if there are a low number of objects or they are backed
up by other visual encodings.
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4.2.4 Group Representation

The perception of groups is related to how visual entities interact. The
perceptual effectiveness of interactions is ruled by the Gestalt laws [30].Gestalt is the

German word for
shape, it is used in
English to refer to a
concept of
wholeness

Here is a selection of the most relevant Gestalt laws (some examples in
fig. 14):

• Proximity: Things that are close together are perceptually grouped
together. Position is the most relevant visual encoding for data
(see fig. 12), and it is also a powerful way to visualize groups.

• Similarity: Similar elements tend to be grouped together. It can
refer to color, shape, texture or any other separable visual dimen-
sion.

• Connectedness: Connected entities tend to be grouped together.
This is a powerful principle, stronger than proximity, color, size
or shape [93].

• Continuity: It is more likely to construct visual entities out of
visual elements that are smooth and continuous than out of
elements that contain abrupt changes in direction.

• Symmetry: Symmetrical objects or symmetrical arrangement of
objects are more likely to be perceived as a whole.

• Closure: A closed contour tends to be seen as an object. This
is, presumably, the reason why Venn and Euler diagrams are so
powerful for displaying interrelationships among sets of elements
(see section 8.1).

• Relative size: Smaller areas tend to be perceived as objects.

• Figure and ground: The capability to perceive figures as opposed
to ground depends on the other Gestalt laws. If figure and ground
compete on these laws, the result is ambiguity (such as in the
case of the Rubin’s Vase, see fig. 14f).

Visualizations usually employ combinations of the Gestalt laws in
order to represent groups, and the laws will be very important for the
design of clustering and biclustering visualizations.
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(a) Proximity (b) Similarity

(c) Continuity (d) Symmetry

(e) Relative size (f) Rubin’s Vase

(g) Connectedness (h) Closure

Figure 14: Gestalt laws examples. a) Two groups perceived because of prox-
imity. b) Row perception predominates due to different colors. c)
We perceive a curve and a rectangle instead of the more complex
figures on the right. d) We perceive a cross over a rectangle (left)
easier than an asymmetric shape under the rectangle (right). e) We
perceive four black areas within a white circle rather that four white
areas within a black circle. f) It is hard to decide if we see two faces
on black background or a cup in white background. g) Connection
is more powerful than proximity, shape, size or color. h) An Eu-
ler diagram is a good example of closure, with clear relationships
among sets.
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4.2.5 Data Interaction

Without data interaction, visualizations are just static graphical rep-
resentations. The exploration of data from the overview to revealing
patterns, subsets or details is mandatory in order to implement an
interface design such as the one described in section 4.2.1. Ware [141]
identifies three loops of data interaction:

• Data selection and manipulation: this loop is focused on how we
process visual signals and send decisions to the visualization. It
is directly related to the eye-hand coordination, such as reaching
an object on the screen by means of the mouse, tracing lines or
watching for relevant patterns.

• Data exploration and navigation: this loop focuses on a wider point
of view which deals with the location and orientation on large
visual spaces, the scaling and the rapid interaction with data.

• Problem solving: this is the highest level loop, involving how we
use the visualizations in order to unveil relevant information
and to support reasoning. This level is highly related with visual
analytics (see chapter 5).

The simple interactions related to data selection and manipulation
frequently takes less than one second, providing that stimulus-response
compatibility (for example, to move the mouse to the right makes the
cursor to go to the right) is respected. In addition, learning can improve
time performance: the more an interface is used, the faster the user
manipulates it. It is necessary to provide quick and clear feedback to
each user’s action in order to make the learning easier.

Because information visualization usually deals with large and com-
plex data, it is usual to display them on large visual spaces. There-
fore data exploration and navigation techniques should be carefully
designed. This is specially important on 3D and virtual reality environ-
ments, but we will focus on two aspects closer to our needs: scaling
and rapid interaction.

Scaling tries to solve the focus-context problem: to find detail in a larger
context. Data scales may be in the context of space (for example on a map
possible scales are: meters, kilometers and thousands of kilometers);
structure (provinces, countries, continents); or time (seconds, hours,
years). Despite the context, all of them are finally displayed on a screen,
so the scaling techniques are the same for all of them:

• Distortion techniques give more room to designated regions or
elements, and decrease the space given to the remaining regions.
They provide focus but at the same time keep context, although
sometimes the reduction of the context is so large that its structure
is lost [141]. The distortion can be multi-foci, expanding different
areas at once. Bifocal distortion gives a larger size to the selected
items and a smaller size to the rest (applied, for example, on [23]).
Fish-eye distortion [109] gives the largest size to the focused region
and progressively reduces the size of objects that are away (see
fig. 15).

• Rapid zooming techniques switch quickly from detail to overview.
Focus and context are not available at the same time, but the
change is quick and smooth enough to allow the user to integrate
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both scales. This is, for example, the case of Google Earth R©2 or
the zooming technique implemented by Prefuse [58].

• In Elision techniques, parts of the structure are hidden until
they are needed. Sometimes these techniques are called semantic
zoom [24], meaning that less and less detail is shown as the
distance to the focus of interest (or the scale) increases.

• Multiple windows techniques are common, specially in mapping
systems, displaying one window that shows an overview of the
whole visual space and one (or more) that shows expanded
details.

Figure 15: Concentric rings with equivalent widths (left). Bifocal distortion of
a middle ring, the remaining rings get an equivalent reduced width
(center). Fish-eye distortion centered on a middle ring, closer rings
are also magnified and, progressively, further nodes are reduced
(right).

In a data exploration interface, it is important that the mapping
between the data and its visual representation be fluid and dynamic. As
a rule of thumb visual feedback should be provided within 0.1 seconds
for people to feel that they are in direct control of the data. A technique
that requires rapid interaction with data is dynamic querying [4], which
performs data filter queries and visualizes the results in real time.
Another interactive technique is called brushing [12], which enables
the highlighting of elements in complex representations. Brushing is
specially used on a visualization technique called parallel coordinates [68]
(covered in detail in section 7.1.2).

The main objective of data interaction is to make the interface fluid
and transparent by 1) supporting eye-hand coordination, 2) using well-
chosen interaction metaphors and 3) providing rapid and consistent
feedback. Transparency improves with practice, but the interface de-
signer should get to a compromise between interface complexity and
discovery capabilities of the visualization. Very simple interfaces cannot
find the subtle information within complex data, while very complex
interfaces could make the user to give up, or to focus more in the
interface than in the problem to solve with it.

To conclude, interaction is a key characteristic of information visual-
ization that converts static representations into functional visualizations.

2 http://earth.google.es

http://earth.google.es
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It is sometimes hard to demonstrate its relevance in static media such
as paper publications, but the proper design of interaction techniques
determines to a large extent the utility of a visualization.

4.2.6 Multiple-linked Views

There is evidence that the highlighting of the same data items on dif-
ferent views will improve the proficiency of knowledge acquisition
tasks [122]. Making the connection for the user reduces the cognitive
load of switching from one view to another. In addition, our capability
to detect changes even in peripheral areas of vision (such as visual-
izations outside of our main focus) allows making observations that
would not be possible from two separate views.

Multiple-linked views have been in use since long time ago, in dif-
ferent scientific contexts. Statisticians are very used to handle multiple
scatterplots to analyze multidimensional data (see fig. 16). The use
of different visualizations (not only several copies of the same visu-
alization) has also been addressed with success in, for example, data
simulation [37] or biology [114]. See section 9.2 for some examples of
multiple-linked views in bioinformatics.

Figure 16: Scatterplot matrix representing two-by-two relationships among
the values of four different dimensions of data. Generated with
R [65]

.

In addition, the study of the interaction among several visualizations
has been addressed since more than a decade ago [25]. The selection
of elements within a visualization must generate a query for selection
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of elements on other visualizations. Depending on the nature of the
visualizations and the data they represent, the complexity of the queries
varies. It is also necessary a visual code to make clear that two or more
different represent, such as a determinate color or shape.
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Over time and cultures, the most robust and most effective form of
communication is the creation of a powerful narrative. — Howard Gardner

The emerging field of visual analytics focuses on handling massive,
heterogenous, and dynamic volumes of information by integrating
human judgement by means of visual representations and interaction
techniques in the analysis process [76]. It combines several research
areas such as information visualization, data mining and statistics.

Although visual analytics science was born to analyze security threats
or disasters [130], it can be applied to any field that involves an ana-
lytical process. In particular, bioinformatics is not beyond the scope of
visual analytics [110, 107].

5.1 the analytical reasoning process

This science of analytical reasoning provides the reasoning framework
upon which one can build visual analytics technologies. It is a scientific
standard probably since Descartes’ Discourse on the Method in the 17th
century.

The analytical reasoning process is structured and disciplined. It is
also inherently iterative: the process of reaching a judgment usually
requires of several iterations or approaches to the problem. In addition,
obtaining an answer often produces several more questions, leading to
additional analyses about a larger issue.

This analytical process is the basis for the ongoing dialogue between
analysts and their information, so the mission of visual analytics is to
enable this discourse. This dialogue is called the analytical discourse.

The analytical reasoning process can be separated into four major
steps [130] (see fig. 17):

1. Gather Information: to collect the relevant data to start the analyti-
cal process is not trivial1. Substeps such as acquisition, parsing,
filtering and mining are all included into the gather information
phase. Computer science, mathematics, statistics and data mining
are disciplines usually involved in it.

2. Re-represent: the data acquired in the previous step are now repre-
sented in new ways in order to facilitate analysis. Graphic design,
information visualization, and HCI come into scene.

3. Develop Insight: the analyst interacts or otherwise manipulates
the representation. Again, information visualization and HCI are
important, along with the relevant knowledge of the analyst in
the target field of research.

4. Produce Results: after gaining a deeper knowledge on the studied
issue through the previous phases, the analyst produces results,

1 Consider, for example, the difficulty of gathering all the information available about a
gene because of the heterogeneity of identifiers (section 2.3.1)

43
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either concrete (images, tables, selection of relevant features) or
abstract (decisions to perform addition experiments, changes
of criteria, etc.). The target research field is the main related
discipline (for example genetics, astronomy, medicine or more
specific subfields).

Figure 17: The analytical reasoning process (found in [130]).

Visual analytics covers all these steps, integrating information visu-
alization as part of the process, but also comprising the application of
automated analysis before and after the interactive visual representa-
tion [76].

Regarding the first three steps, Ben Fry proposed the Computational
Information Design [49], a cyclic process with several possible iterations.
Fig. 18 shows this process, where we can see, for example, that the
interaction with the visualizations may lead to refinements in the rep-
resentation, or to modify statistical parameters in order to inspect a
different characteristic of our data. Ideally, these iterations can be done
within the frame of a single tool, but usually the analytical process is
large, involving several sources, so some of the iterations (specially the
large loops such as "represent to acquire flux" in fig. 18) often require
to switch to another tool, or to combine different tools. These bridges
among resources (databases, web services, software, etc.) should be
avoided when possible, because they usually require an additional load
in time and effort, involving the change of formats, possible mismatches
on identifiers and data structures, etc.

Keim et al. [76] provide a formal definition of the visual analytics
process based on entities rather than on steps (see fig. 19). These entities
are data sets (S), visualizations (V), hypothesis (H) and insight (I). Data
sets are the source for visualizations (VS), but they can also generate hy-
pothesis by themselves (HS). Data gathering and parsing is an iterative
process involving data (DW). Visualization facilitates the generation of
new hypothesis (HV ), but also hypothesis can be visualized or give way
to visualizations (VH). The user communicates with the visual analytics
framework by interacting with the visualizations (UV , for example,
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Figure 18: The Computational Information Design (reproduced from [49]).

zooming or selecting) or formulating new hypotheses (UH). Finally, the
insight that leads to decision making is the conclusion of the analyst
from the inspection of visualizations (UCV ) and the confirmation or
refusal of hypothesis (UCH). The achieved insight will serve as feedback
for the next step of the visual analytics process.

Figure 19: The Visual Analytics Process by Keim et al. [76].

5.2 production, presentation and dissemination

The first three steps of the overall analytical reasoning process (fig. 17)
are usually well covered. However, technologists too often overlook the
presentation of the results and how do we get to them. This is vital
because the analytical process is inherently collaborative. The National
Visualization and Analytics Center (NVAC) gives some recommenda-
tions in order to improve the capabilities for production, presentation
and dissemination of analytical methods and tools [130]:

• Few scientific methods or tools support the creation of an final
product (user’s guides, developer’s instructions, etc.). It is impor-
tant to develop methodologies and tools that facilitate their use
by third parties.

• It is key to develop tools that not only communicate results,
but the reasoning that concluded with that results. It should
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use appropriate visual metaphors and accepted principles of
reasoning and graphical representation.

• Create visual analytics data structures, intermediate representa-
tions and outputs that support integration with other broadly
accepted tools in the research area, so the need for data acquisi-
tion and formatting is minimized.

Several interesting tools are disregarded by the scientific community
due to the complexity of use, either by lack of documentation, difficulty
of formats, fatal bugs, etc. The focus of a researcher is to develop a good
methodology or tool for his objectives, and maybe its publication. The
use by third parties is rarely considered, however it is very important
to dedicate time and effort in this last step.

5.3 evaluation methodologies for visual analytics

There are several benefits in incorporating evaluation as part of a re-
search program: verify research hypothesis, encourage research and
challenge researchers in a particular area, increase communication,
compare technical approaches, etc. The scope of the evaluation can
be a single visual analytics approach or a whole research area field.
In the second case, international contests and competitions are the
usual approach. An example is the InfoVis Contest2, born as part of
the Institute of Electrical and Electronics Engineers (IEEE) Symposium
on Information Visualization (InfoVis), which attempts to create an In-
formation Visualization Repository that contains resources to improve
the evaluation of information visualization techniques and systems.
Furthermore, a Visual Analytics Science and Technology (VAST) Con-
test branched from the InfoVis Contest in 2006, explicitly citing the
evaluation methodology proposed by the NVAC. Finally, another ex-
ample, focused on data mining, is the Knowledge Discovery and Data
mining (KDD) Cup3, an annual competition of the Association of Com-
puting Machinery (ACM).

Visual analytics systems are complex and require evaluation efforts
targeted at different levels. NVAC proposes to consider three levels:
component, system, and work environment (fig. 20). The component
level comprises analysis algorithms and visualization techniques. Al-
gorithms do not require interaction metrics, but other indices usually
easy to compute or observe, such as speed, accuracy or limitations.
Visualization techniques (either interface designs, interactions or repre-
sentations) require empirical user observation, including metrics such
as effectiveness (time to complete simple tasks), efficiency (number of
errors or incomplete tasks) and overall user satisfaction. Some metrics
for visualization can be computable, for example the number of objects
that can be visualized at once.

At the systems level, metrics need to address the learnability and us-
ability of the system, along with the user satisfaction. In consonance
with Keim et al.’s cycle (fig. 19), a new measurement approach is the
insight-based evaluation. The IEEE InfoVis contests [98] ask the con-
testants to report on insights gained from the data sets. North [88]
characterizes insight as complex and not exact, but deep and relevant.
He identifies two mayor methods to measure insight, with and without

2 http://www.cs.umd.edu/hcil/InfovisRepository
3 http://www.kdnuggets.com/datasets/kddcup.html

http://www.cs.umd.edu/hcil/InfovisRepository
http://www.kdnuggets.com/datasets/kddcup.html
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Figure 20: The three levels of evaluation and example metrics (found in [130]).

benchmark tasks. Benchmark tasks are strict, involving predefined tests
and answers, so they are not very good to characterize insight, but on
the other side they are accurate. Although qualitative, an open-ended
protocol without benchmark tasks is also interesting, because it allows
the user to verbalize their findings so that evaluators can capture the
user’s insights. [108] is a good example of a non benchmark-dependent
validation of some tools for microarray data analysis by means of
clustering.

Finally, at the work environment level, the evaluation focuses on the
technology adoption, with metrics such as adoption rate, trust and
productivity.
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6B I C L U S T E R I N G A L G O R I T H M S

One of the main methods to analyze microarray data is biclustering, a
non-supervised technique widespread in the last years (see [84, 127] for
biclustering surveys). Biclustering outperforms traditional clustering
because of its two main characteristics: simultaneous grouping of genes
and conditions, and overlapping. Simultaneous grouping means that bi-
clusters (the groups found by biclustering algorithms) contain genes
with similar behavior under a certain number of conditions (thus, the
bicluster will group genes and the conditions under which the genes are
related). Overlapping means that genes and conditions may be grouped
together in more than one bicluster, so biclusters somehow can intersect
(overlap) among them. Note that in the close technique of clustering,
clusters group genes or conditions (but not both); and clusters rarely
overlap.

On this chapter we set up the definition for biclustering and then,
we review the search methods used by biclustering algorithms to find
relevant groups, and the kind of groups they search for. Afterwards,
we enumerate several tools to perform biclustering analysis. Finally, the
major methods utilized to validate and compare biclustering results are
described.

6.1 definition

Biclustering is a non-supervised classification method that, given a data
matrix A = aij, groups rows with similar behavior under a subset of
columns. From now on, we will consider gene expression data matrices,
where rows are genes and columns are experimental conditions1.

What is considered as similar behavior depends on the kind of
biclusters that the method searches for, but typically it means that all
the genes in the bicluster have expression levels within the same range
or that the expression varies in the same fashion along the conditions.
For example, the bicluster wrapped by a blue rectangle at the right
bottom of fig. 21 has high expression levels for its genes under the first
conditions of the bicluster but then the expression goes down for the
last conditions. section 6.2 below cover the main kinds of bicluster.

Therefore, a bicluster B = (G,C) is defined by the subset of genes G
and the subset of conditions C that it groups together. They define a
submatrix of A that contains the expression levels of B = bij.

Typically, a biclustering algorithm finds several biclusters. An im-
portant characteristic related to this is that these biclusters can overlap:
they can coincide in one or more genes and/or conditions. We define
the overlap submatrix as O(B1,B2) = A(G1 ∩G2,C1 ∩ C2). Note that
O(B1,B2) can have zero rows or columns, but not both. For example,
the two biclusters at the right of fig. 21 overlap in several conditions,
but not in genes.

1 We can define the gene profile of gene gi as the expression levels of the gene along all
the conditions of the matrix. Analogously, the condition profile of condition cj are the
expression levels of every gene for that condition.
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Figure 21: An example of gene expression matrix visualized as a heatmap, a
representation where transcription levels are represented by a color
scale (red conveys high expression and green conveys low expres-
sion, see chapter 7). Surrounded in blue, some possible biclusters.
In yellow, two profiles, for gene gi and condition cj.

6.2 bicluster types

Biclustering, like clustering, relies on the concept of "similar behavior
among individuals" (in this case, genes or conditions). Depending
on how we define similar behavior, we have three main classes of
bicluster [84] (see figs. 22, 23):

• Constant value bicluster: all the expression levels in the bicluster
have exactly the same value (µ). These "ideal" bicluster condition
is usually relaxed to a merit function with an interval µ± δ.

• Coherent value bicluster: the expression levels vary along rows
and/or columns with some type of coherence, despite their over-
all level. This relationship may be additive or multiplicative, so
rows and/or columns in the biclusters differ one to another in an
additive or multiplicative factor (eqs. 6.1 and 6.2, respectively).

bij = µ+αi +βj (6.1)

bij = µ×αi ×βj (6.2)
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µ is the average background level for the whole bicluster, αi is
the factor for gene i and βj is the factor for condition j.

Some authors call these factors shifting and scaling factors, re-
spectively [3]. For example, the green bicluster in fig. 22 is an
additive coherent bicluster, where we can consider µ = 0, α2 = 0,
α3 = 1, α4 = 0, β1 = 2 and β2 = 4. In the same figure, the red
bicluster is a multiplicative coherent bicluster with µ = 2, α4 = 1,
α5 = 1.5, β1 = 1, β2 = 2 and β3 = 4.

• Coherent evolution bicluster: in this case we just search for a qual-
itative rule of change in tendency but there is no quantitative
restriction to it. For example, the orange bicluster in fig. 22 is a
coherent evolution bicluster because the transcription levels of
genes 5 and 6 increase from condition 5 to condition 6, but not in
an additive or multiplicative way.

Figure 22: A simplified expression matrix with four possible biclusters. The
blue bicluster is a constant bicluster. The green one is an additive
coherent bicluster. The red one is a multiplicative coherent bicluster.
The orange one is a coherent evolution bicluster by columns only.

Usually, the constraints defined by these types of biclusters apply to
both row and columns. However, it is possible to apply them only to
rows or to conditions. In the case of eqs. 6.1 and 6.2 we can achieve this
by making αi or βj zero. The resulting biclusters are called constant or
coherent biclusters by rows or columns. For example, the orange bicluster
in fig. 22 has no coherence between conditions 5 and 6 (the first one
increases from gene 5 to 6, while the second one decreases), so the
biclusters has coherent evolution by rows only.

The constant model is strict but simple and is implemented, for ex-
ample, by the Bimax algorithm [99]. The additive and multiplicative
models are rich enough to model regulation processes without losing
specificity. Therefore, most of the biclustering algorithms use varia-
tions of eqs. 6.1 and 6.2, such as [34, 79, 135, 26, 127, 77, 29]. Coherent
evolution search has also been applied with success in some popu-
lar biclustering algorithms such as xMotifs [87], Statistic-Algorithmic
Method for Bicluster Analysis (SAMBA) [126] and Order-Preserving
SubMatrix (OPSM) [13].
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(a) Constant value (b) Additive coherent

(c) Multiplicative coherent (d) Coherent evolution

Figure 23: Different types of bicluster as would be represented on a heatmap,
where color conveys expression levels.

6.3 bicluster search methods

After defining what biclustering type we search for, we have to define
how we do it. Again, there are several options, but it is not as critical
for the heterogeneity of biclustering results as the type of bicluster.
Following the classification of Madeira and Oliveira [84] we have:

• Iterative row/column clustering: the straightforward approach, ap-
plies clustering algorithms to the rows and columns of the expres-
sion matrix and then combine them to build biclusters. It is also
called two-way clustering [53, 128] or conjugated clustering [26].

• Divide and conquer: this method breaks the problem into sev-
eral subproblems (which often means several submatrices) to be
solved and then combine the partial results to generate the solu-
tion. Hartigan’s pioneer biclustering method [56] can be classifiedThe first biclustering

method appeared in
1972 [56], but its
first application to
microarray data was
in 2000 [34]

as a divide and conquer algorithm. See also [40, 131].

• Greedy iterative search: this method assumes that to find an opti-
mal local solution can lead to a globally good solution. Cheng
and Church biclustering algorithm (CandC) [34], FLOC [145, 146],
OPSM [13], xMotifs [87] and δ -patterns [27] are all examples of
greedy iterative searches.

• Exhaustive bicluster enumeration: searches for all the possible bi-
clusters following some criterion [127, 126, 80, 90]. This is time
consuming and usually they are combined with restrictions on
the size or number of biclusters, or by pre or post-filtering of
results [99].

• Distribution parameter identification: assumes that the data struc-
ture follows a statistical model, trying to fit its parameters to
the data by minimizing a certain criterion through an iterative
approach. Plaid models [79, 135], Spectral biclustering [77] and
Rich Probabilistic Model (RPM) [112, 111] are some examples of
this kind of biclustering.



6.4 biclustering tools 55

6.4 biclustering tools

Some of the biclustering algorithms described above are published
with available implementations, sometimes in the form tools. Also,
some authors have compiled several biclustering implementations for
comparison with their own methods or to make biclustering a more
available tool for non-experts in the field. Here we enumerate the most
interesting ones:

• Biclustering Analysis Toolbox (BicAT) [9]: possibly the most com-
prehensive tool for biclustering, BicAT supports five biclustering
algorithms (Bimax, CandC, OPSM, SAMBA and xMotifs), along with
the two main clustering methods (hierarchical and k-means). This
software permits to do some pre-processing of data (normaliza-
tion and binarization) and post-processing (search, filtering and
gene pair analysis). It also lists the bicluster results and visual-
izes them by means of a heatmap and parallel coordinates (see
chapter 7 for a wider discussion about bicluster visualization).

• EXPresion ANalyzer and DisplayER (Expander) [115] is another
interesting tool about biclustering. Although it supports just a
biclustering algorithm (SAMBA [126]), it also implement several
clustering analysis (CLICK algorithm [117], k-means and SOM),
pre-processing (filtering and normalization) and visualizations
(heatmaps, parallel coordinates -called contours-, dendrograms,
etc.). It also allows to load your own clusters or biclusters and
inspect them with their visualizations.

• Gene Expression Mining Server (GEMS) [144] is an online tool
to perform biclustering analysis by Gibbs Sampling (similarly
to [119]). Although it only provides one biclustering method, it is,
to our knowledge, the only example of online biclustering tool.

• BiVisu [33]: is a simple tool for biclustering analysis and visu-
alization. It offers a search method for additive or multiplica-
tive coherent biclusters, and visualizes the results with parallel
coordinates. It also implements some pre-processing and post-
processing utilities.

• HCE [113, 114], although for generic use and just for traditional
clustering, it is an example of exhaustiveness on statistical anal-
ysis and of visual support and human-computer interaction. It
offers pre-processing by means of filtering and transformation,
hierarchical and k-means clustering, and several post-processing
methods. About visualization, dendrogram+heatmap, histogram,
parallel coordinates and scatterplot are available with a high
degree of interaction.

Apart from these biclustering tools, there are several other clustering
and gene expression analysis tools, such as gCLUTO [101] which pro-
vides a novel visualization (mountain maps) and new ways to interact
with the dendrogram+heatmap visualization (see section 7.2), or Ex-
pressionProfiler [74], a collaborative web-based platform for microarray
gene expression, very complete, specially regarding the pre-processing
and clustering analysis.

Some of these tools also integrate biological knowledge, such as GO
terms. Table 3 summarizes the characteristics of the considered tools.
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Note how several tools focus on just a biclustering algorithm, and some
of them also offer clustering as an alternative. Following the features
of these tools, one can conclude that there is consensus in the need for
the pre-processing steps of normalization, filtering and transformation,
and for post-filtering. Also, there is a lack of integration of biological
knowledge within the tools.
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6.5 validation of biclustering algorithms

Biclustering validation is partially based on clustering validation, which
consists on the calculation of validation indices. There are three main
indices for cluster validation ([70], chapter 4):

• External indices: they measure the precision by which the clusters
match with embedded structures that we know that exist in the
data. Two and single-matrix validation measures can be defined.
In single-matrix indices, the measure is computed from a matrix
that has as rows the found clusters and as columns the groups
known to be in the matrix. The index reveal the percentage
of matches between the real groups and the found clusters, in
terms of sensitivity (the percentage of real groups covered by
the clusters) and specificity (the percentage of clusters that are
related to real groups). In the case of the two-matrix technique,specificity is also

called relevance,
and sensitivity is
also called module
recovery

two binary matrices are built, one for the clusters in the results
and another for the a priori groups. Indices are computed from
these matrices, such as the Rand index, the Jaccard coefficient,
the Hubert Γ statistic, the Minkowski measure or the Folkes and
Mallows measure [55].

• Internal indices: they compare the intrinsic structure of data with
the clusters found. No information apart from the raw data
is needed. The Pearson’s Cophenetic Correlation Coefficient
(PCCC) [55], silhouette widths and the Dunn’s validation index
( [15], chapter 13) are typical internal indices in clustering valida-
tion.

• Relative indices: they compare the clustering algorithm with itself,
by comparing results under different parameter configurations.
It is a way of finding the best configuration of the algorithm for
a given input. Relative indices are usually external or internal
indices used for this goal.

External indices, in particular single matrix indices, have been adapted
to biclustering in literature [134, 99]. The adaptation of internal indices
to biclusters is more complex, and to our knowledge it hasn’t been
addressed in literature yet. Relative indices have been used to find
stability when the algorithm has pseudo-random behavior [29], but not
to search for optimal initial parameters.

On the other side, the goodness of biclustering results are also mea-
sured in terms of how well do they match with the previous biological
knowledge about genes. We call this biological validation, and it can be
classified as an external validation, since they rely on metrics calculated
from a priori (biological) knowledge in order to measure the goodness
of results.

GO terms and biological networks have been used for the computation
of biological external indices [99, 29, 90]. In both cases, we search for
statistical enrichment of genes: the bicluster groups several genes with
the same GO terms or network features2 that wouldn’t be grouped by
chance. The statistical enrichment is usually calculated by means of a
statistical significance test that calculates the p-values for each biological

2 For example the network motifs, simple structural blocks, such as fast forward loops
or bi-fans [85]
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feature. This p-value is the probability that the biological feature has
been grouped by chance. Then, a significance level α is set, and only
the features with a p-value lower than it are selected. The features (if
any) under the significance level are said to be significantly enriched
by the group of genes.

There is controversy among statisticians about the appropriate use of
statistical significance tests [7, 63], but it is frequently used in bicluster-
ing validation and comparison (see section 6.6).

6.6 comparison of biclustering algorithms

We identified three major biclustering comparisons, those of Prelic et
al. [99] (P), Reiss et al. [103] (R) and Okada et al. [90] (O). These com-
parisons cover broadly the comparison process and take into account
a large number of biclustering algorithms. All of these comparisons
include Bimax, ISA, SAMBA, CandC and OPSM biclustering algorithms,
adding some other biclustering and clustering algorithms on each case
(see table 4).

Prelic et al. comparison is based on three validation methods:

• External validation: against synthetic matrices with embedded
constant and additive coherent biclusters, with different degrees
of overlap and noise. To measure how well the found biclusters
match the embedded biclusters a gene match score is computed,
similar to Turner et al. specificity and sensitivity measures [135]3,
but just for genes.

• GO enrichment validation: a hypergeometric test for GO enrichment
is performed. Briefly, this statistical significance test measures
if the genes in the biclusters are annotated with GO terms that
would hardly be grouped by chance (the term is enriched by the
bicluster). If at least one MF or BP GO term is enriched by the
bicluster, for a given significance level, the bicluster is considered
as significant. The percentage of significant biclusters for each
significance level is the measure of enrichment.

• Pathway and PPI enrichment validation: for each bicluster B =

(G,C), the number of disconnected genes among G in the corre-
sponding network is calculated, and also the average path length
among genes in G in the same network. Theoretically, both of
them should be smaller in a bicluster than in a random group
of genes. A statistical significance test (in this case, a Z-test) is
performed, and the percentage of enriched biclusters is given,
like in the previous case.

Note that none of these validations take into account conditions,
because hierarchical clustering is one of the algorithms to be compared
and it does not group conditions. All the validations use external
indices, either specificity/sensitivity measures or significance tests.

Okada et al. use the same validations, except for the pathway enrich-
ment validation. They maintain gene-based indices, such as the gene
score match, although they do not include clustering algorithms in the
comparison.

3 see section 11.2
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Reiss et al. introduce some innovations: motifs enrichment and the
division of bicluster results into two sets. Motifs are simple graph
structures, such as two nodes connected to the same two other ones
(a bi-fan) or a node a connected to nodes b and c, with node b also
connected to c (a fast-forward loop). These structures occur frequently on
regulatory networks, so the study of motif enrichment is an interesting
approach. The second innovation, splitting biclusters into two result
sets (one half containing the larger biclusters and the other half for
the smaller ones), tries to avoid the bias on indices due to biclustering
algorithms that find very large biclusters. Unfortunately, this problem
is not completely solved by the split (for example, the OPSM algorithm
outputs biclusters so large that to split them into two subsets do not
remove the bias). Finally, Reiss et al. do not calculate gene match scores.

Algorithm Gene match score GO score Total

P O R Avg P O R Avg

ISA [14] 2 1 - 1 3 4 3 2 1

Bimax [99] 1 4 - 3 2 3 6 3 2

SAMBA [126] 3 3 - 4 4 5 2 3 3

CandC [34] 5 5 - 6 5 6 7 6 4

OPSM [13] 6 6 - 7 1 2 1 1 -

xMotifs [87] 7 6 - 8 6 7 - 7 5

hclust 4 - - 5 6 - 7 7 4

k-means - - - - - - 4 4 -

BiModule [90] - 2 - 2 - - - - -

cMonkey [103] - - - - - - 5 5 -

Table 4: Biclustering algorithms ranking. P, O and R refer to Prelic et al., Okada
et al. and Reiss et al. comparisons, respectively. Ranks have been
interpreted from published figures and tables. AVG is the average
rank for each score, and Total is the average rank of AVG ranks. The
Total score ignores algorithms with just one score, and OPSM (see text).

A biclustering algorithms’s ranking4 is proposed in table 4. Following,
some considerations about the results are presented:

• Bimax, ISA and SAMBA are probably the best choices for bicluster-
ing, because they obtain high ranks in every comparison, from
papers or works not carried out by their authors themselves. The
good results of these algorithms with synthetic data are con-
firmed by biological validation. In particular, we selected Bimax
for several visualization examples along this thesis because of it,
and because it has an easy interpretation of biclusters (highly up
or down regulated constant biclusters).

4 These ranks are qualitatively inferred from the figures depicting the results of the
corresponding papers. In the case of several scenarios for a measure, like in the case
of gene match score for overlapping modules and noise values, we calculated the
average of the qualitative ranks. PPI and Metabolic Pathway enrichment ranks are not
included because they vary too much and, in some cases, are ambiguous [99]
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• CandC and xMotifs yield a lower performance. However, CandC is
always present in comparisons because it is the first biclustering
algorithm applied to bioinformatics.

• The results of clustering algorithms are not as bad as one could
expect. This is partially because gene-centered measures are being
used, ignoring conditions.

• BiModule and cMonkey are only compared in one paper, carried
out by their respective authors, so the results about them are not
conclusive. In particular, the design of cMonkey is very biological
data-dependent, which could explain the lack of gene match
scores with synthetic data for its validation and comparison.

• OPSM validation presents several problems. Regarding synthetic
data validation, this algorithm searches for a very broad def-
inition of coherent evolution biclusters (preservation of order
ranks), which gives way to very large biclusters. In terms of
gene match scores, although OPSM should be capable of finding
the embedded biclusters (specially coherent biclusters), it adds
several irrelevant rows and columns. Regarding biological data
validation, it is highly probable that a very large bicluster would
enrich at least one GO term. In part, this is a problem of the
significance tests with large groups of genes, identified by [103].

6.7 clustering and biclustering

Biclustering and clustering present fundamental differences in terms
of elements grouped (in biclustering, both genes and samples) and in
terms of overlapping (usually not available in traditional clustering).
Both methods share the search for groups internally coherent, but
biclustering does not normally require inter-cluster separation because
of the possibility of overlap. Cluster and bicluster validations have
also different implementations due to these two characteristics of bi-
dimensionality and overlapping.

Despite these differences, some authors classify biclustering as a
kind of clustering, and biclustering publications usually compare their
results against clustering algorithms. Also, some biclustering tools
implement clustering methods. The fact that both techniques share
several concepts is unavoidable: the search for groups of elements with
similar behavior, the non-supervised approach to classification and the
searches based on similarity metrics are some examples of it.

Therefore, are their differences greater than their similarities or vicev-
ersa? It depends on the application field and on each particular dataset.
Regarding gene expression analysis, the special characteristics of biclus-
tering imply an improvement for the modeling of expression profiles.
However, for gene expression matrices with very low number of condi-
tions or well known and controlled conditions, the advantage can be
spurious. In practice, clustering is still largely used for gene expression
analysis. Microarray data are so rich on information that simple clus-
tering usually reveals classifications which satisfy the main questions
of biologists. However, several secondary questions, such as subtler
interactions among genes, or relationships among genes under differ-
ent experimental conditions (which are still out of the scope of most
publications) could be more easily answered by means of biclustering.





7V I S U A L I Z AT I O N I N G E N E E X P R E S S I O N A N D
B I C L U S T E R I N G

Gene expression matrices, because of the high dimensionality and,
consequently, the difficulty to detect their inherent structure, prove
to be a fertile field to design visualizations. The complexity of some
analysis methods, such as clustering hierarchies or bicluster overlapping
adds more challenging tasks to their visualization.

On this chapter we review the main solutions adopted in literature
in order to visualize gene expression matrices and the results from
clustering and biclustering algorithms. Finally, we summarize the most
relevant visualization tools for microarray data analysis.

7.1 visualization techniques for gene expression matri-
ces

The entities involved in a gene expression matrix are easy to identify:
genes, conditions and expression values. The graphic elements used
to convey these entities define the resulting visualizations. Not less
important than the entities is the knowledge we want to discover in the
expression matrix. This can be summarized in two questions1:

• Is there structure within the microarray? or, more precisely, are there
groups of features related?

• What is that structure? or how do these groups relate?

In order to represent such entities and answer such questions, two
main visualization techniques have been successfully applied in bioin-
formatics: heatmaps and parallel coordinates (see table 5).

entity heatmap parallel coordinates

Gene y-axis polyline

Condition x-axis x-axis

Expression level color y-axis

Structure reordering filtering

Table 5: Summary of the encoding of gene expression data entities in heatmaps
and parallel coordinates

1 Note that the entities and questions that we consider for information visualization
are similar to the ones considered in microarray data analysis (chapter 6), which will
serve as an introduction to the concepts of visual analytics in the next chapter
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7.1.1 Heatmaps

A heatmap is the natural visualization of microarray data, due to the
aspect of a microarray after fluorescent stimulation (see figs. 5 and 21).
A heatmap is a 2D representation that uses cartesian axes to display
the dimensions of the data matrix. Usually, genes are displayed along
the y-axis and conditions along the x-axis. Each expression level aij is
drawn as a rectangular shape at the corresponding (x,y) location, and
it is colored according to a color scale that often varies from a bright
color cd for the lowest expression value to an intermediate color c0 to
another bright color cu for the highest expression value. Traditionally,
cd is green, c0 is black and cu is red, in order to match with the typical
fluorescent dyes in DNA microarrays.

Figure 24: The sporulation group of genes in Saccharomyces cerevisiae discov-
ered in the work of Eisen et al. [44]. The visualization already used
a labeling technique by biological terms for genes and color labels
for groups of conditions (reproduced from [44]).

A static heatmap is not very useful to convey structure information
unless rows and/or columns are reordered following some criterion.
Eisen et al. [44] were the first ones to display gene expression data from
microarrays as heatmaps, reordering rows to convey groups found by
means of hierarchical clustering (see fig. 24). This work also displayed
the hierarchical clustering dendrograms along with the heatmap (see
section 7.2), and set the grounds for the biological validation of groups.
This visualization scheme is still extensively used after more than ten
years [5, 136, 31, 29, 90].

Unfortunately, heatmaps show some drawbacks, specially the fact
that the heatmap by itself is not good to reveal structure, it is hard to ex-
plore and it is dimensionally unbalanced: gene expression matrices are
much taller (around 10[3−4] rows) than wide (around 10[1−2] columns).
In addition, the green-black-red color scale for expression levels is not
the best choice (human perception ability to distinguish color scales
depends on the hue, see [141] pages 129–132), and on information
visualization grounds, a blue-white-red or just a grey scale are usually
accepted as better. Some authors opted for blue-black-yellow [115] or
green-white-red scales [101]. Gehlenborg et al. [51] add up a relevance
color scale on blue hues that overlaps to the expression level scale in
order to represent their associated p-values (see fig. 25).

Possibly the best approach to color scales is the one of Hibbs et al. [60]
who use a grey color scale and perform a previous ranking of expression
levels in order to be more robust to noise. The grey hues are known
to be better perceived than other hues [141], while the ranking avoids
misinterpretations due to color scales (see fig. 26).
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Figure 25: The typical heatmap visualization (left) is enhanced by a blue
gradient conveying the relevance of expression levels following a
statistical test (right). Reproduced from [51].

Figure 26: The usual heatmap visualization of a cluster (left) shows four genes
(within the purple box) that look be very different from the rest.
Oh the right, the expression level ranking and the change of color
scale reveal that they follow the same general pattern of the rest of
genes in the cluster. Reproduced from [60].

Apart from color scales, microarray heatmap improvements focused
on the interaction, in order to reduce the complexity to explore and
minimize the dimensional unbalance. The typical solution for this is to
apply zooming techniques [101, 115, 99]. Treeview [104] implements a
focus+context approach with a visualization representing the whole mi-
croarray and another one for smaller subsets selected by drawing a rect-
angle. In Treeview, additional visualizations represent array names and
gene annotations and, if hierarchical clustering is performed, the corre-
sponding dendrogram (see section 9.2 for more details). gCLUTO [101]
implements a collapsing branch technique that depends on the use of
hierarchical clustering (see section 7.2).
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7.1.2 Parallel Coordinates

Parallel coordinates [67] have also been used to visualize microarray
data, specially subsets of genes. In this technique, each gene profile gi

is considered as a m-dimensional point pi = (ai1,ai2, ...aim) where
aik is the transcript abundance of gi under condition ck. Conditions
are represented as vertical lines along the x-axis at equidistant points
xc

1, ..., xc
m. Each gene profile gi is displayed as a polyline of m points

(xc
k,yk), with yk proportional to aik (fig. 27).

Figure 27: Parallel coordinates visualization of a 200× 20 synthetic gene ex-
pression matrix. It is clear that to display every polyline, even in
the background with a neutral color, can clutter the visualization. It
is more usual to display just a group of genes (in red).

This technique solves the dimensional unbalance of heatmaps by
assigning the y-axis to transcription levels instead of to individual
genes, but at the cost of cluttered profile polylines. Therefore, parallel
coordinates cannot be applied as is to visualize whole expression matrix,
but to visualize selected groups (clusters) of genes [34]. Besides, human
perception is good at interpreting line patterns such as parallel lines,
mirror effects and changes in slope; outperforming color scales [141].
Regarding biclusters, this is specially useful to distinguish among
bicluster types, specially in the case of constant and coherent (additive
or multiplicative) evolution (see fig. 28).

(a) Constant (b) Additive coherent

(c) Multiplicative coherent (d) Coherent evolution

Figure 28: Parallel coordinates representation of different bicluster types.
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HCE [114] has one of the best and more interactive implementations
of parallel coordinates. It simplifies the representation of large sets of
polylines by using a polygon to avoid cluttering while keeping the
context, and implements dimensional, model and text brushing in
order to select reduced groups of lines, thus offering a kind of visual
clustering. HCE is further described on section 4.2.6.

In order to display a bicluster with k genes and s conditions we can
draw the k polylines corresponding to the genes, and rearrange together
or highlight the axes corresponding to the s conditions. BicAT [9] and
BiVisu [33] use parallel coordinates to display single biclusters (see
fig. 29). However, their representations are limited. BicAT does not
rearrange bicluster conditions, it simply marks their corresponding
axes with vertical lines (making hard to visualize the whole bicluster).
On the other hand, BiVisu only visualizes the segment of the polyline
corresponding to the conditions in the bicluster, losing context infor-
mation for other conditions. None of both methods provide interactive
thresholds to manipulate the display.

(a)

(b)

Figure 29: a) BicAT parallel coordinates for a 21 × 5 bicluster (generated
with [9]). b) BiVisu parallel coordinates (reproduced from [33]).
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7.2 visualization techniques for clustering and biclus-
tering

We have seen in the previous sections that the visualization of data and
the visualization of groups within the data are highly related, usually
by means of the reorganization of the visualization according to groups.
This is a good approach for clustering, where each element in the data
is in one (and just one) cluster.

In order to visualize the whole results of clustering, the most used
technique is the dendrogram+heatmap approach (see fig. 30). In this
technique, a dendrogram represents the decision tree of hierarchical
clustering, usually coloring the groups formed at the threshold cut. The
heatmap is represented sideways, reordered to fit the clustering.

(a) (b)

Figure 30: a) The dendrogram corresponds to a hierarchical clustering and
the rows of the heatmap are reordered accordingly, revealing gene
expression patterns. Reproduced from [44]. b) Detail of a "two den-
drograms+heatmap" visualization (top). Branches can be collapsed
to facilitate the navigation (bottom). Generated with gCLUTO [101].

The obvious step to follow in clustering visualization is to add the
clustering of columns in the same way than rows, resulting in "twoNote that this

two-way hierarchical
clustering is a
concept very close to
biclustering.

dendrograms+heatmap" visualizations, implemented for example in
Treeview [104]. HCE [114] also implements this approach, and allows
to modify the clustering threshold in order to define the clusters (see
fig. 9). gCLUTO adds the filtering of groups by collapsing branches and
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drawing a rectangular area whose color is the average of the expression
levels included in the rectangle, and whose size depends on the number
of genes and condition under the collapsed branches (see 30b).

The adaptation of heatmaps to represent a single bicluster can be
easily done by reordering the rows and columns of the heatmap so
the genes and conditions in the bicluster will be together in, say, the
top-left corner of the matrix (see fig. 31a). BicAT [9] implements a good
example of it.

(a) (b)

Figure 31: a) A bicluster at the top-left corner of the expression matrix, delim-
ited by yellow lines. b) Additional biclusters can be visualized by
reordering rows and columns through the diagonal of the matrix,
providing that they only overlap with the previous and following
bicluster (figures generated with biclust [72])

Unfortunately, a heatmap presents geometrical limitations to visu-
alize several biclusters simultaneously, specially if they overlap (see
fig. 31b). We can represent n sorted biclusters in a heatmap only if each
one has just rows or columns in common with its previous and follow-
ing biclusters, and not with any other bicluster. BiVoc [54] addresses
this problem by repeating rows and columns to properly represent
overlapped biclusters (see fig. 32).

Another technique not bound to the representation of expression
levels is the mountain map [101]. In this visualization an independent
entity (a mountain) is assigned to each cluster, mapping display charac-
teristics to the cluster characteristics. As in parallel coordinates, each
gene profile is considered as a m-dimensional point, and a cluster is
defined by the m-dimensional midpoint, computed as the average of all
the genes it contains2. MultiDimensional Scaling (MDS) [78, 11], a type
of PCA, is the used to map the m-dimensional midpoints to 2D points.
These points are the locations of mountains in the visualization. Other
characteristics of the mountain (height, volume and color) are defined
by cluster parameters (internal similarity, number of genes, internal
deviation). The result is a 3D colored mountain-like terrain which re-
veals details hard to see in the dendrogram+heatmap visualization (see
fig. 33).

2 We will consider the application to gene clustering, it is analogous for condition
clustering.
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Figure 32: Detail of BiVoc [54] visualization of biclusters (within red and blue
rectangles) on two different expression matrices. In order to be able
to visualize several biclusters, rows and columns may be replicated
in the heatmap. Reproduced from [54].

(a) (b)

Figure 33: a) Mountain map of 10 clusters. Three of them have low internal
deviation (red summit). b) The mountain map of 100 clusters reveals
two groups of several clusters, we call them "superclusters", at the
sides (figures generated with [101]).

7.3 microarray visualization tools

On the previous sections of this chapter we have cited several tools
that implement visualization techniques related to microarrays. Most
of them are also clustering or biclustering analysis tools (see table 3),
so they approach to some extent to the visual analytics point of view,
integrating analysis and visualization of results. Table 6 summarizes the
main characteristics of these tools. Note that this is not a comprehensive
list of tools for microarray data analysis, and it is focused on tools that
implement biclustering or other interesting group visualizations such as
gCLUTO. There are many other commercial tools focused on microarray
data and traditional clustering similar to HCE, specially SpotFire R©3 and
GeneSpring R©4. See [88] for a comparative analysis of these other tools.

3 SpotFire R©, DecisionsiteTMfor functional Genomics, www.spotfire.com
4 GeneSpring R©, cutting edge tools for expression analysis, www.silicongenetics.com

www.spotfire.com
www.silicongenetics.com
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Several data analyses end up inferring relationships that can, in the end,
be considered as groups. Clustering searches for clusters, biclustering
for biclusters, supervised classifiers for classes, etc. In addition, several
datasets contain inherent groups. For example, a database of scientific
papers can be seen as a database of scientists, classified by groups of
co-authorship.

The visualization of groups has been addressed in several forms,
frequently by using some kind of set diagram or graph. The following
sections review some of the most relevant approaches to the visualiza-
tion of groups.

8.1 set diagrams

Euler diagrams are the main method to visualize groups, where each
set is represented by a contour (a closed curve). The area described by
any intersection, union or difference between two or more contours is a
region. Recursively, any area described by the intersection, union or dif-
ference between two or more regions is also a region. Contours can also
be considered regions themselves, sometimes called basic regions [62].
Finally, a zone is a region that does not contain any other region (also
known as minimal regions). See fig. 34a for an example of contours,
regions and zones.

Figure 34: a) Venn diagram. B is a contour, B∩C is a region, and A∩C−B is
a zone b) Venn diagram for four sets. c) Euler diagram (left) and
its corresponding dual graph (right). d) Hypergraph drawn in the
subset standard. Empty zones (in red) and any contour crossings
(red circles like p) are allowed.

73



74 visualization of data groups

A Venn diagram is an Euler diagram in which all intersections among
contours must occur (fig. 34b). Venn and Euler diagrams are abstractEuler diagrams were

named after the work
of Leonhard Euler in
the 18th century.
The same happened
with John Venn and
the Venn diagrams
around 1880

diagrams, they do not define rules about the elements within the sets
or how they are drawn.

Graph-enhanced Euler diagrams define a graph, an underlying Euler
diagram and a mapping from the graph nodes to the zones of the Euler
diagram. This is usually done with the help of a dual graph: a graph
that assigns one node to each zone and joins adjacent zones by edges
(the empty space in the bounding rectangle is sometimes identified
as another zone, U, see fig. 34c). Region topology is very restricted
in Euler diagrams, for example, empty zones1 are not permitted, and
the intersection of contours must be by means of just two intersection
points.

On the other side, hypergraphs are graphs in which edges (hyperedges)
join one or more nodes, instead of just two nodes. From our point of
view, each hyperedge can be considered as a group. Hypergraphs can
be drawn following two main standards [17]: to draw each hyperedge
by connecting the points that represent their vertices (edge standard),
or to represent each hyperedge by a closed curve that contains these
points (subset standard)2. Hypergraphs drawn in the subset standard
are similar to Euler diagrams, but do not take into account regional
constraints, focusing in nodes inside the sets more than in the containers.
For example, the hypergraph drawn in fig. 34d has empty zones (as
the one marked in C), contour crossings with more than two points
(the contours of A and B, for example, intersect in four points) or
intersection points of more than two contours such as p. All these
circumstances are not permitted in Euler diagrams.

From an information visualization point of view, the success of Euler
diagrams to convey relationships among groups relies on the Gestalt
principles of closure and continuity (see section 4.2.4). Ware [141] states
that the use of texture and color can convey a more complex set of
relations than the use of just closed contours. Anyway, the immediacy
of perception for a low number of sets is quickly lost when this number
grows (see fig. 35).

(a) Venn diagram for six groups (b) Edward’s Venn diagram for six groups

Figure 35: Venn diagrams for 6 groups. The representation becomes cluttered
because of an excess of parallel contours. Even the use of symmetry
in the Edward’s solution does not clarify the diagram.

1 Zones without nodes inside.
2 There are some other ways to draw hypergraphs, see [75]
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Euler diagram drawing for up to three sets has been addressed [46].
In addition, different aesthetic metrics are applied [47] to make the dia-
gram more readable. With a more flexible, extended definition of Euler
diagrams, up to eight sets can be represented without zone errors [139].
In this case, a contour segment can belong to more than one set and
zones may not be convex and can have holes. However, the use of non
convex contours and holes may not be as intuitive as simple closed
curves. On the other hand, hypergraphs have a less formal definition
and any number of subsets can be drawn. Bertault and Eades [17]
propose several methods to build the graph corresponding to a given
hypergraph, with good results for small hypergraphs, but it becomes
too cluttered when the number of nodes, the size of hyperedges and
the degree of overlapping grow. 20 elements, with about 10 hyperedges
of length (at most) 5

3 are enough to clutter the representation. Omote
and Sugiyama [92] propose a method with an exhaustive set of rules in
order to visualize groups avoiding cluttering.

Hypergraph drawing is the only method with the capability to show
several overlapped groups as contours, while keeping the visualization
of all elements and group relationships within a single diagram. From
an information visualization point of view, it is necessary to design
proper visual elements and implement interaction in order to minimize
the cluttering and other scaling issues that may arise.

8.2 clustered graphs

Clustered Graphs represent non-overlapped groups, either inherent to
the data or obtained by clustering techniques, usually hierarchical
clustering (see fig. 36).

Figure 36: a) Hierarchical clustered graph. b) Force directed clustered graph.
c) Compound graph.

A Hierarchical Clustered Graph (HCG) [42] starts with the drawing of
the highest level of a hierarchical clustering (only one cluster including

3 That is, in our context, 10 groups with at most 5 elements each one.
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all the nodes) and then draws, in decreasing values of the z coordi-
nate, additional graphs with lower levels of clustering, where nodes
are clusters and edges join clusters that were together in the upper
clustering.

A Compound Graph [124] is a HCG in which the inclusion relation-
ship serves to draw a hierarchical clustering within a single graph
representation. The final visualization resembles a tree map [121].

Finally, the Force-Directed Clustered Graph (FDCG) is the most spread
kind of clustered graph. A combination of repulsive and attractive forces
for a single clustering are used in order to model inter-cluster and intra-
cluster relationships. Sometimes, ancillary forces are also applied to
simplify the structure or convey additional relationships, usually by
means of dummy nodes. There are a number of social network tools that
implement special FDCGs where the clustering is applied to an existing
network, instead of defining the network (see fig. 37). For example,
SocialAction [97] uses the Prefuse visualization kit [58] and central
betweenness measures to determine and draw clusters. Vizster [57]
is also based on Prefuse and group zones by clustering, allowing the
user to define its granularity. It is usual in these implementations to
display clusters from some level of a hierarchical clustering, allowing
the change of this level (and therefore the clusters) at user’s demand.

These tools are all examples of graph visualizations for groups, but
none of them deal with overlapped groups. However, FDCG have re-
cently been used to draw intersecting groups in a general approach [91].
This approach addresses exactly the problem discussed here, by means
of the combination of a FDCG and several metrics that involve up to
five additional dummy nodes per cluster. However, the shapes used
to represent groups are very rigid (rectangles and circles) and it lacks
of a strong visual design to enhance the understanding of group rela-
tionships and to deal with larger datasets (no more than 15 groups are
represented, with low degrees of overlap).
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(a) SocialAction (b) Omote and Sugiyama. [91]

(c) Vizster

Figure 37: Social network clustered graphs visualized by SocialAction (a) and
Vizster (c). Omote and Sugiyama approach [91] to overlapping
groups (b). Images from their corresponding papers.
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Visual analytics is a very recent branch of knowledge, originally focused
on areas unrelated to bioinformatics. However, bioinformatics is plenty
of information visualization approaches to several problems, and some
of them actually point to visual analytics aspects. The following sections
review some of the most relevant approaches towards a visual analytics
application to bioinformatics problems.

9.1 computational information design

Previously to the advent of visual analytics, the work of Ben Fry [49]
already described a process schema that comprises most of the steps
involved in the analytical process (see section 5.1).

Moreover, Fry applied this model to several bioinformatics examples,
specially on the field of genomics, such as the genome browsing or
the SNP analysis1. In most of the discussed problems, Fry identified a
lack of use of interaction and data mining in the visualizations. The
improvements he proposed mainly are the use of data mining tech-
niques previously to the representation of data and the implementation
of interaction techniques in order to manipulate the representation. His
approaches take into account that, eventually, the interaction with the
tool can require to go back to previous steps such as filtering or mining.

As an example, fig. 38 illustrates the improvement of Ben Fry in the
visualization of Linkage Disequilibrium (LD) units [147]2. The static This visualization

can be found at
benfry.com/

isometricblocks

figure 38b only shows the improvements in the representation, mostly
based on information visualization principles, such as the coding of the
common/uncommon SNP sequences by color or the coding of percent-
ages by rectangle heights and line widths. However, the implementation
goes further: almost every visual entity can be interacted in order to
allow the navigation through the LD units. In addition, some of these
interactions imply a reprocessing of the information in order to filter
some data or even to perform mining tasks, for example to recalcu-
late the LD units by changing the parameter settings of the grouping
algorithm that compute them. The visualization can also switch to
other points of view, such as the quantitative traditional visualization
of nucleotide bases and percentages, or the 3D visualization of the LD
units. Fig. 38c shows the quantitative representation of LD units and the
simple interface developed in order to change the point of view (top)
and the thresholds for unit computation (bottom).

1 A SNP is the variation of a single nucleotide when comparing two DNA sequences.
2 Between two DNA sequences of the same organism, there are typically several SNPs.

Briefly, the LD describes the probability that a block of SNPs do not happen by chance.
Therefore, a LD unit is a DNA sequence of SNPs that do not happen by chance.

79
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benfry.com/isometricblocks
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(a) Zhang et al. LD map

(b) Fry LD map

(c) Fry LD quantitative map and interface

Figure 38: a) Zhang et al. representation visualizes LD units as rectangles and
SNPs as points. b) Fry representation adds additional information
in the form of color to represent the percentage of individuals with
each SNP variation and lines that represent the linkage among an
LD unit and the following one, and the percentage of individuals
sharing them. c) Quantitative representation of b), and interaction
options.
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9.2 visual analysis and bioinformatics tools

Apart for the original purposes of visual analytics (the analysis of
security threats or disaster prevention), bioinformatics is probably one
of the research areas with more tools oriented towards visual analysis.

Regarding gene expression analysis, Treeview [104] identifies visual-
izations with the main steps of the inspection process: overview, focus
and details. Three main visualizations are displayed: the global dendro-
gram+heatmap, the zoomed heatmap and the gene annotations. The
visualizations are linked so, for example, the selection of a branch of
the dendrogram displays its zoomed portion of the heatmap and the an-
notations of its genes on the gene annotation visualization (see fig. 39).
This reflects to some extent the gene expression analytical process:

1. Inspect the overview of the whole expression matrix

2. Classify the matrix into groups

3. Select a group, inspect the expression patterns

4. Review the available biological knowledge of the genes in the
group.

Figure 39: The original visualization of the heatmap is supported by additional
visualizations for gene annotations and for the focused section
of the microarray. Note that missing values are colored in grey.
Reproduced from [104].



82 visual analysis on bioinformatics

HCE [113, 114] is another example of the application of a multiple-
linked views paradigm to the exploration of clustering results on gene
expression data. It implements heatmaps, parallel coordinates, his-
tograms and scatterplots in order to visualize expression data from
different points of view (see fig. 40). Visual items (either representing
gene or conditions) can be selected, modifying every visualization on
real time. In addition, several clustering methods are available to apply
to expression matrices. In the latest version, GO annotations can also be
included in the analysis. This high degree of interactivity, visualization
options and analysis techniques, within the single frame, make HCE be
very close to the visual analytics on bioinformatics.

Figure 40: HCE visualization of a gene expression matrix and hierarchical
clustering. At the top, a dendrogram+heatmap visualization with
a threshold set to divide the matrix in 30 gene clusters. Below, a
parallel coordinates visualization with a selection of gene profiles;
the genes are also marked with triangles below the heatmap. At the
right side, a histogram shows the expression level distribution.

On a different area, Hawkeye [110] is a more proper example of
visual analytics applied to bioinformatics. On this approach, there is an
intended analysis of the required steps for the inspection of genomes,
specially the "finishing" step, which is the more time consuming and
deals with the identification and correction of sequencing and assembly
errors in a given genome3. The design of the interface is based on
the information visualization mantra, allowing to go from the whole
genome to interesting sections of the genome and to their details. The
multiple-linked paradigm is also implemented by Hawkeye in order to
visualize different statistics related to the genome (see fig. 41). However,
Hawkeye goes beyond, implementing a proper visual analytics ap-
proach by integrating several analysis tasks (such as dynamic filtering
and automated clustering) to focus attention and highlight anomalies in
the genome. The authors are also aware of related available tools, such

3 Hawkeye also implements other secondary analysis tasks, such as the consensus
validation of genes and the discovery of plasmids.
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as the assembler tools; making their approach compatible with most of
them. In order to fulfill the production and dissemination requirements
of a visual analytics approach, the tool has a full user guide and open
source code.

Figure 41: The scaffold view of Hawkeye provides a wide coverage of genome
assembly. Up to seven visualizations are linked, five of them rep-
resent different quantities related to the genome sequence. Image
found in [110].
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On this chapter, we identify the major problems involved with biclus-
tering validation and visualization, discussing the limitations of the
reviewed approaches. First, we enumerate the advantages and draw-
backs of biclustering, concluding that its advantages are worth to try
to solve its drawbacks. Second, we discuss the lack of use of internal
indices and of the optimization of parameters for biclustering valida-
tion. Third, we discuss the limitations of bicluster visualizations when
dealing with their special characteristics (grouping of genes and condi-
tions, overlapping), focusing on the relevance of a proper representation
of the overlappings. Finally, we discuss about the lack of visual ana-
lytics approaches for gene expression biclustering analyses and the
advantages of designing it.

10.1 advantages of biclustering

The special characteristics of biclustering make it a better fitted tech-
nique for gene expression analysis than clustering or other similar
non-supervised methods, because:

• A gene can be present in more than one biological function, and
collaborate with different genes on each function. This is modeled
by the ability to overlap biclusters.

• A similar behavior of two genes under a condition do not neces-
sarily implies a similar behavior under other conditions. This is
modeled by the two-dimensional (gene and conditions) grouping.

These advantages make biclustering outperform other techniques,
specially clustering, when searching for functional groups of genes [84,
99]. In the future, the capability to generate experiments with more
and more conditions, and the increase in the understanding of gene
expression will make biclustering even more useful and necessary to in-
terpret complex interactions among genes. This theoretical statement is
confirmed for some biclustering algorithms on clustering/biclustering
comparisons (see section 6.6).

10.2 drawbacks of biclustering

The strong points of biclustering are also its weak points to some extent.
The flexibility of biclustering, specially the different definitions of what
is a bicluster, makes it difficult to propose numerical benchmarks or
somehow quantify goodness among biclustering methods.

On the other side, the fact that biclusters can overlap is difficult
to covey on a visual representation. The visualization of overlapping
groups is an open issue on information visualization, with techniques
that successfully represent just a low number of groups (see chapter 8).
The published visualizations of biclusters avoid this fact by replicating
information (the BiVoc approach in section 7.2) or by oversimplifying
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the problem (multidimensional scaling solutions such as the one of the
gCluto tool in the same section).

The validation issues and the large amount of methods lead to a lack
of standards for the use of biclustering (in opposition to, for example,
hierarchical clustering for the traditional clustering). This makes the
non-expert analyst to retreat from biclustering methods.

The visualization issues leads to the lack of representations that
quickly give insight about the biclustering results. This makes the
analysis of biclustering results uneasy, slow and too abstract compared
to other methods, such as the dendrogram+heatmap approach for
clustering.

In addition, small laboratories cannot perform large experiments with
lots of experimental conditions because of its cost, so they usually deal
with "slim" expression matrices with just a few columns (sometimes
even just two). Therefore, there is little need of an analysis technique
capable of grouping conditions. This circumstance will diminish due
to reduction of microarray technology costs and the growing of public
repositories that integrate several experiments (see section 2.2.5).

All these circumstances lead to a fact: a majority of the biclustering
applications to gene expression analysis are done by their own authors.
According to literature, there is little or no transition from biclustering
design to biclustering application. Just an example: SAMBA [127] is
a biclustering algorithm with over 200 citations1, but most of them
come from papers describing other biclustering algorithms or other
non-practical papers such as surveys, tools, etc. This fact will probably
change in the future with the formulation of more complex queries
about gene relationships and the availability of larger gene expression
matrices and easy-to-use, broadly validated biclustering algorithms and
visualizations.

10.3 biclustering validation issues

The widespread approach is to use non-biological external validation
with synthetic data, and biological external validation with real data.
Internal validation with real data is also very important, but it is fre-
quently ignored (see section 6.5). Biological external validation metrics
can complement but not substitute internal metrics in real data valida-
tion, because they have several flaws:

• They are biased to favor methods that find gene and/or condition
relationships already known.

• Biological knowledge is not complete, so if the relationships
inferred by a bicluster does not appear in our annotations, does
it means that it is erroneous or it points to new, undiscovered
information?

• Biological knowledge evolves quickly. For example, Escherichia
coli’s TRN grew from 424 genes and 577 interactions in 2002 [118]
to 1278 genes and 2724 interactions in 2004 [82]. Therefore, bio-
logical validation is unstable.

• Statistical significance tests, usually utilized in order to determine
biological relevance, are controversial in statistical forums [7, 63].

1 following http://scholar.google.com

http://scholar.google.com
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Besides, on comparisons such as the ones reviewed on section 6.6,
the biclustering algorithms are usually tested with the initial param-
eter settings proposed by their authors. It is possible that this is not
always the best setting, therefore undermining the performance of the
algorithm. In clustering, relative indices are often used to find optimal
initial parameters, but its use in biclustering literature is scarce, and
only used to find stability when the algorithm has pseudo-random
behavior [29], but not to find optimal initial parameters.

Also on these comparisons, gene-centered metrics should be avoided,
at least for synthetic data, if no clustering algorithm is part of the com-
parison. If not, we are removing half of the biclustering grouping power
(the grouping of conditions) from the validation. Furthermore, nowa-
days there is no special need to compare biclustering with clustering,
because there are enough studies that confirm that a good biclustering
algorithm outperforms clustering. For example, on the selected compar-
isons on section 6.6; Bimax, ISA or SAMBA outperformed clustering even
without measuring the grouping of conditions, which favors clustering.

Finally, there are no compilations of biclustering algorithms, which
could simplify the task of comparison and validation by third parties.
The algorithms are usually available, but in different programming
languages, sometimes without an open source.

The design of improved validation strategies is a vast task requiring
of deep statistical knowledge and the testing of several use cases. Just
as a start, on chapter 11, we propose the adaptation of a clustering
internal index to biclustering and its use as relative index in order to
determine the best parameter configuration. We also contributed to the
development of a R package for biclustering algorithms.

10.4 biclustering visualization issues

Following the review in chapter 7, there are two widely accepted visu-
alizations for single clusters: heatmaps and parallel coordinates. Both
of them rely on the modification of representations of gene expression
matrices, either by reordering the rows (heatmap) or by filtering them
(parallel coordinates). The visualization of single biclusters can be success-
fully derived from single cluster visualization, just by applying another
modification to the condition dimension of expression matrices. For
example, regarding heatmap visualizations, BicAT reorders columns
in the bicluster. Regarding parallel coordinates, some visualizations
have been proposed for biclusters, but they can be improved. BicAT
marks axes corresponding to conditions in the bicluster, but it is hard
to visualize the bicluster as a whole (see fig. 29a). The visualization
of BiVisu filters the axes that represent conditions out of the bicluster,
which facilitates the visualization of the bicluster as a whole but misses
the context of the rest of conditions (see fig. 29b).

The visualization of multiple biclusters is harder. Because of the prop-
erty of overlapping, just to reorder the rows and columns of the heatmap
representation is not enough if the degree of overlap is moderately high
(see section 7.2). We reviewed an approach [54] that replicates the rows
and columns that are in several biclusters but, although the algorithm
minimizes the number of repeated rows and columns, this replication
can lead to ambiguities and misinterpretations. For example, the tall
bicluster at the top of the left matrix of fig. 32, actually overlaps in a
condition and several genes with the two biclusters at its right, but
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to perceive it you must inspect the repeated condition names/profiles
and infer the relationship. We face similar problems when we try to
represent several biclusters with parallel coordinates. In this case, the
geometrical limitations are higher, and unless the biclusters (or even the
clusters) are very separated, the representation becomes rapidly clut-
tered. Another option is to forfeit the exact representation of expression
levels and deal with biclusters as entities on their own. gCluto [101]
applies this by means of multidimensional projections of clusters. How-
ever, the application of this technique to biclusters do not satisfactorily
represents overlap: the multidimensional scaling oversimplifies the
problem. In addition, there is no linking to the elements inside the
biclusters which impedes a detailed inspection (see fig. 33).

Therefore, the visualization of biclusters is still open. Following the
reviewed options, the solution may be in the representation of biclusters
as independent visual entities, but conveying overlap more precisely.
The visualization of set diagrams (section 8.1) is a good option to
represent overlapping groups, but the geometrical limitations are too
strict to allow the representation of several biclusters (for example,
more than 10). Clustered graphs (section 8.2), specially FDCG have been
successfully applied to non overlapping groups.

On chapter 12 we present a novel visualization technique for the
representation of biclusters based on a FDCG-like model. This technique
properly conveys overlap without replicating or oversimplifying the
information. However it will forfeit expression levels in order to achieve
it, so it will require of additional linked gene expression visualizations.

10.4.1 The Relevance of Overlap

Overlap is an intrinsic characteristic of biclusters but, is it relevant
for the interpretation of biclustering results, is it worth of designing a
visualization technique that properly conveys it? The answer is yes, at
least in the two mayor ways we describe in this section.

Structural Interpretations of Overlap

Biclusters describe how data are structured. One of the main assump-
tions of biclustering is that the structure can consist of a superimposition
of local structures. Therefore, two local structures (for example, two
groups of objects representing variables with high values for different
conditions) can intersect one another, either on objects, conditions or
both; combining their structures at the intersection. This point of view
is difficult to model with traditional clustering, which was not designed
to search for local structures (regarding to conditions) or to deal with
intersections.

Madeira and Oliveira [84] identify two main ways of overlap, defined
by the general additive and multiplicative models (see fig. 42). More
complex overlaps can be defined (for example, the average) but usually
the additive and multiplicative models are applied (see section 6.2). A
small example, conveying the incomes of some companies due to patent
and product sales, is illustrated in fig. 43. Traditional clustering (in blue)
should find three clusters (c1, c2), (c3, c4), (c5, c6), which identify the
companies with the same profiles through all conditions, but there is
no inference of other relationships such as the fact that c1, c2, c3 and
c4 have the same product incomes. An additive biclustering method
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(a) General additive model

(b) General multiplicative model

Figure 42: Intersection models for (from left to right) constant, constant by
rows, constant by columns and coherent evolution biclusters. Note
that the intersections are of the same type than the overlapped
biclusters (reproduced and corrected from [84]).

could find the biclusters colored in red, (c1, c2, c3, c4,product, total)
and (c3, c4, c5, c6, total,patent). The ability of biclustering to overlap
biclusters made it possible to classify the same companies in more than
one group, thus properly discovering the groups of companies prof-
itable on products and profitable on patents. Moreover, the overlapping
area by itself identifies the group of companies that, regarding the total
incomes, are the most profitable.

Figure 43: Example of clustering and biclustering.

The meaning of an overlapping region varies depending on the appli-
cation field, but it often refers to consensus, combination of characteris-
tics, collaboration about functional processes, etc. It is a good analytical
process to start with the highly overlapped zones and continue with
more separates zones, so we can identify during the process the main
functionalities and how they relate. Sometimes these overlapping struc-
tures have relevant information, and sometimes they only convey the
structure that is obvious. Regardless of the case, it is important to detect
them in order to focus on or discard them.

Considering the objects and conditions grouped by biclustering, the
overlapping areas give rise to what we called superbiclusters. Follow-
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ing the notation in section 6.1, a superbicluster of order k (Sk) is the
overlapping matrix of k biclusters:

Sk = O(B1, . . . ,Bk) = A(G1 ∩ . . .∩Gk,C1 ∩ . . .∩Cn) (10.1)

For example, the intersection among the two biclusters of fig. 43 is a
S2 superbicluster containing (c3, c4, total). Se

k is an exact superbicluster
if the genes and conditions in Se

k are not included in any bicluster
different from B1, . . . ,Bk.

Biological Interpretations of Overlap

Talking about gene expression, an intersection of two biclusters can
refer, for example, to a group of genes that under certain conditions
are regulated by two transcription factors, or involved in two biological
processes. In these cases, it seems appropriate to use an additive model,
because the transcript abundance of both processes is expected to be
aggregated. Superbiclusters of very high order may refer to transcrip-
tion factors that are present under different conditions or biological
functions, so probably they are not as much interesting as other struc-
tures, such as superbiclusters of lower order or exact superbiclusters
of order one2. Other overlapping structures can give way to different
interpretations, for example superbiclusters of order 2, even if they con-
tain only one gene, can convey bridges among two biological processes.
section 15 shows some of these structures on real cases.

We have studied GO enrichment3 of superbiclusters and exact super-
biclusters and they do not improve the enrichment of normal biclusters
(see table 7). However, specially in biclustering algorithms that imple-
ment exhaustive searches, overlap can be considered as a measure of
the effect size. Adapted to biclusters, it means that the more times twoThe effect size is a

measure of the
strength of the
relationship between
two variables, by
counting the number
of evidences that
support this
relationship.

elements are grouped together in a bicluster, the more tight is their
relationship. Therefore, if several biclusters back up a group of genes
with GO enrichment, the resulting superbicluster is not only statistically
significant but strong in effect size.

result set number % of groups with at least

of groups one GO term under p-value

0.1 0.01 0.001 0.0001

all biclusters 363 100.0 90.9 29.2 7.7

all Sk, k > 5 132 99.2 80.3 15.9 3.8

all Sk, k > 10 83 98.8 77.1 9.6 2.4

all Sk, k > 50 2 100.0 50.0 0.0 0.0

all Se
k 170 98.8 81.2 19.4 3.5

Table 7: GO enrichment on normal biclusters, superbiclusters and exact super-
biclusters after Bimax biclustering of Eisen et al. microarray experi-
ment [44].

2 These biclusters group genes or conditions that are grouped just by one bicluster, so
they are clearly separated in the expression data matrix

3 See section 6.5
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10.5 visual analysis of gene expression data

The number of pure visual analytics approaches on bioinformatics is
still scarce. This is mainly because it is a very novel research field, but
it is included within the top ten challenge areas of visual analytics [76].
However, as reviewed on section 9.2, there are examples of approaches
that implement several visual analytics principles, specially the identi-
fication of analysis phases, the iteration among these phases and the
high interactivity. In addition, the use of multiple-linked views proved
useful in order to visualize several approaches to the same data. On
the other side, there are some drawbacks in these and other tools for
analysis and visualization on bioinformatics that must be taken into
account for developing a visual analytics approach to the problem:

• Data heterogeneity: due to the variety and complexity of biological
studies, the data sources are also diverse. For example, a gene can
be seen or represented as a sequence, as a protein producer, as
part of a biological pathway, as a set of probes in a microarray, etc.
Each of these scopes relates to a different research area involving
different laboratories, experiments, etc. However, all of them are
useful in gene expression analysis, but even with the best of the
efforts, to integrate all these data is complicated.

• Speed of change: biological data are not only heterogeneous but
also they change quickly: gene sequences are corrected, new gene
functions are discovered, etc. Therefore, it is important to request
for renewed input periodically, or to connect to data sources in
real time4.

• Monolithic visualizations: biologists and bioinformaticians are fa-
miliar with some visualizations, such as heatmaps, dendrograms,
phylogenetic trees or genome browsers. Furthermore, sometimes
they are used to particular configurations of these visualizations,
such as green-black-red scales for microarray heatmaps. These
visualizations are not always the best fitted, and usually addi-
tional, novel visualizations help in the visual analysis process
but, on the other side, too many innovations could lead to an
information overload for the analyst. Novel techniques must be
easy to use and attractive, and traditional visualizations should
be available so the user doesn’t feel lost.

• Time performance: visual analysis tools require a real time inter-
action. However, the dimension of data and the complexity of
analysis techniques usually undermine time performance, also
downgrading interaction. Performance bottlenecks should be
identified and optimized, or otherwise treated (progression bars,
warning messages, etc.) in order to keep the user in control of
the tool.

• Formats: several bioinformatics tools require complex formats.
It is optimal to use standard formats or, if not possible, simple
formats that can be easily transformed to other formats. The
amount of time spent switching formats is not trivial, and any
savings are important.

4 For example, the original probe-to-gene mappings of Affymetrix chips should be
revised if the sequences related to genes change. If not, the transcription of incorrect
probes are being used to calculate the transcription of the gene
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We have kept this potential pitfalls in mind when designing our
solution. In addition, because of the novelty of visual analytics, the
examples discussed in section 9.2 are usually not completely based
on a proper visual analytics design. Our approach takes profit of the
advantages of the reviewed examples and the now available visual
analytics paradigms (see section 5.1) to implement an approach to gene
expression visual analysis by means of biclustering.
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11E X T E R N A L A N D R E L AT I V E I N D I C E S F O R
B I C L U S T E R I N G VA L I D AT I O N

In this chapter we present a proposal to apply relative and internal
validations of biclustering results on gene expression. Usually, exter-
nal indices are used to measure the goodness of biclusters, either by
means of synthetic biclusters embedded in test matrices or by means of
available biological knowledge. Unfortunately, external indices present
a number of drawbacks, as previously discussed (see sections 6.5, 10.2).
The use of internal indices is desirable to solve some of these drawbacks,
but also they are useful on their own. The first section defines the adap-
tation of a well-known cluster validation index for bicluster validation,
the Hubert statistic. The second section describes an experiment to test
the use of this adapted statistic as a relative index in order to improve
the parametrization of biclustering algorithms, discussing the results of
its application to a simple example.

11.1 adaptation of the hubert statistic to biclustering

The Hubert statistic (Γ ) is a measure used for statistical cluster valid-
ity ([70], page 148). It measures the correlation among the entries of
two n× n matrices, X and Y, on the same n objects. xij denotes the In order to use these

matrices for internal
validation, they
must contain data
without built-in or
known relationships.

observed proximity between objects i and j, given a distance measure.
In clustering, yij is often defined as zero if objects i and j are in the
same category or cluster and one otherwise. The normalized Γ statistic
(Γ̄ ) is:

Γ̄(X, Y) =

1
k

∑n−1
i=1

∑n
j=i+1(xij − µX)(yij − µY)

σXσY
(11.1)

where k = n(n− 1)/2, µX and µY are the means of the matrices and
σX and σY are their variances.

The adaptation of the Γ statistic to biclustering needs to address its
two main characteristics: bi-dimensionality and overlap.

About bi-dimensionality, in order to capture correlation among genes
and among conditions, two pair of matrices are defined, (Xg, Yg) for
genes (rows) and (Xc, Yc) for conditions (columns), thus computing
two indices, (Γ̄g, Γ̄c). In order to obtain the adapted Hubert statistic
(Γ̄ ′), both indices are then combined by means of a weighted mean:

Γ̄ ′ =
nΓ̄g +mΓ̄c

n+m
(11.2)

where n is the number of genes and m the number of conditions.
Proximity matrices Xg,Xc are computed with the Euclidean distance
from the input expression matrix A, just as in the case of clustering:

x
g
ij =

1

n

n−1∑
i=1

n∑
j=i+1

√√√√ m∑
k=1

(aik − ajk)2 (11.3)
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xc
ij =

1

m

m−1∑
i=1

m∑
j=i+1

√√√√ m∑
k=1

(aki − akj)2 (11.4)

To address overlap, the clustering matrix Y is substituted for the
biclustering matrices Yg, Yc, with

yij = 1/(1+ kij) (11.5)

where kij is the number of biclusters in which the object i (a gene
in Yg, a condition in Yc) is grouped together with the object j. yij is in
(0, 1], being one if they are never grouped together and going down to
zero if they are grouped together in several biclusters.

The Γ̄ ′ statistic measures the degree of correspondence between the
entries of X and Y, therefore measuring to some extent the fitness of
the biclusters to the structure of the data.

We can introduce variations in the statistic by changing the way of
building X and Y matrices. X matrices can be computed by means of
any other distance measure, while Y matrices can use any other formula
to measure the degree of relationship among features.

It must be noted that the Γ̄ index and similar indices, such as PCCC,See section 6.5 for
an enumeration of
validation indices

are less precise than external indices. For example, [70] lists different
drawbacks of the PCCC, estimating that even a value of 0.9 (PCCC
values are in [0, 1]) would not be enough to assert that there is a good
correlation between X and Y. The differences between external and
internal indices are similar to the differences between supervised and
non-supervised classifications. The former is more accurate but requires
additional knowledge; the latter is less precise but does not require a
priori information.
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11.2 application of relative indices to biclustering

Relative indices are typically used to determine the best choice of
parameters of an algorithm for a particular data set. Authors usually Typical parameters

for biclustering are
the maximum
number of biclusters,
the minimum
number of genes or
conditions to
include, the
minimum similarity
among profiles, etc.

propose a "best parametrical" setting for their algorithms, and it is
usually applied in third party comparisons [99, 90] and by most of the
users. However, this can undermine the performance of the biclustering
methods that are very sensitive to the nature of data and, at any rate, it
should be interesting to compare algorithms with the best parameter
configuration for each data set.

Relative indices can be made of external or internal indices. External
indices are good to compute the best parameters of biclustering algo-
rithms for a synthetic dataset. However, internal indices must be used
to search for the best parametrization on unknown data.

Independently of the kind of index, the procedure is to run the
biclustering algorithm with different parameter settings, and then to
compute the index for each one. The parameter setting with the best
index is selected as optimal for the data set. The selection of the ranges
of parameters to include in the procedure should broadly represent
different combinations of their values.

Our idea is to apply the proposed Γ̄ ′ statistic and the F1measure [134]
to the identification of the best parameter configuration of a given
biclustering algorithm.

The F1 measure defines the matching between two biclusters. Sup-
pose that we want to compare a bicluster A, known to be in the matrix,
and a bicluster B, found by a given algorithm. Let gX be the number
of genes in X, cX the number of conditions in X and nX = gXsX the
number of expression levels in X. Sensitivity, specificity and F1 are
defined as follows:

sensitivity(A,B) =
gA∩B

gB
× cA∩B

cB
(11.6)

specificity(A,B) =
gA∩B

gA
× cA∩B

cA
(11.7)

F1(A,B) =
2(gA∩B)(cA∩B)

nA +nB
(11.8)

Sensitivity measures the proportion of genes and conditions in B that
are also in the embedded bicluster A. Inversely, specificity measures
the proportion of A that is also in B. The F1 measure is the harmonic
mean of the sensitivity and specificity.

Following the process defined by [99], we can use the F1 measure
to compare the matching between two biclustering result sets (not
only two single biclusters). Let E be a set of e biclusters embedded in
the synthetic matrix, and R a set of r biclusters obtained by a given
biclustering algorithm. We can calculate the averages of the maximum
F1 match scores:

SF(E,R) =
1

e

∑
Ei∈E

max(Rj∈R)F1(Ei,Rj) (11.9)

SF(R,E) =
1

r

∑
Rj∈R

max(Ei∈E)F1(Rj,Ei) (11.10)
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A: the gene expression matrix
E: the known bicluster set
P: set of parameter settings for the biclustering algorithm
Calculate Xg, Xc, distance matrices for genes and conditions in A
for each parameter setting pi in P do

Run the biclustering algorithm with pi parameters, obtaining the
result set Ri

Calculate SF(E,Ri) and SF(Ri,E) following eqs. 11.9, 11.10

Calculate SSi = mean(SF(E,Ri),SF(Ri,E))

Calculate matrices Yc, Yg from Ri following eq. 11.5
Calculate Γ̄ ′(Xc, Yc) and Γ̄ ′(Xg, Yg)

Calculate Γ̄ ′i following eq. 11.2
end for
Select the pi corresponding to the highest SSi as the optimal param-
eter setting. Mark its index as i1
Select the pi corresponding to the highest Γ̄ ′i as the optimal parameter
setting according to the adapted Hubert Statistic. Mark its index as
i2

Calculate S̄S, the average mean of sensitivity and specificity for all
the parameter settings.
Store pi1, SSi1, pi2, SSi2 and S̄S

Figure 44: Algorithm to find optimal biclustering parameters

SF(E,R) is the average module recovery of the biclustering algorithms
for the embedded biclusters, that is, the capacity to retrieve known
structures from the expression matrix. This is similar to the specificity
concept. SF(R,E) is the average bicluster relevance of the biclustering
algorithm, that is, the sensitivity or capacity to retrieve just the known
structures and not additional spurious biclusters (false positives). The
average of these two values (SS) represents the overall specificity and
sensitivity of the biclustering algorithm for a given parameter setting.

The best parameter setting is the one with the bicluster set that got the
highest SS, which is the best solution we can get with the biclustering
algorithm. The parameter setting corresponding to the results with the
highest Γ̄ ′ should give a suboptimal solution providing we do not use
a priori information. Then, we check the SS of this suboptimal solution,
comparing them with the embedded biclusters. Finally, we compute
and store the average SS of all tested parameter settings. The SS values
with F1 will be the best ones, but the SS values with Γ̄ ′ should be better
than the average SS. The whole process is summarized by the algorithm
in fig. 44.
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In chapter 6 we described the special group characteristics of biclusters:
bi-dimensionality and overlap. The visualization of these character-
istics is a difficult task just using techniques designed for clustering.
Either they cannot be adapted because of geometrical limitations, or
the adaptation does not properly convey overlap (see section 10.4). In
this section we discuss an approach inspired by Euler diagrams and
clustered graphs to visualize several biclusters that accurately conveys
overlapping and enhances the analysis of biclusters.

12.1 overlapper

Overlapper is the name for the proposed visualization technique for
the representation of overlapped biclusters. The main objectives of
Overlapper are:

• Display more than ten biclusters, with arbitrary number of ele-
ments and overlapping degree; within the frame of subset stan-
dard.

• Keep both levels of information (elements and biclusters) avail-
able to be visualized in the same display, to avoid losing context.

• Do not simplify or duplicate information. Both approaches could
give clearer visualizations, but at the cost of losing information
or adding ambiguities.

• Boost the identification of subgroups of elements found together
in several biclusters (superbiclusters).

• Allow the representation of bicluster results from different sources
in order to visually compare them.

• Provide ways of interaction to enable different points of view
and to facilitate the exploratory analysis.

In order to achieve these objectives we chose a representation based
on a FDCG. The proposed technique is valid for any kind of overlap-
ping groups, although the main purpose of overlapper is to represent
biclusters on genes and conditions1.

1 We discuss some of these additional applications in section 15.4
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12.2 graph model

Because spatial position is one of the most relevant characteristics
for perception, the choice of a graph model to locate nodes in the
display is a key factor2. It is our goal to have elements pertaining
to exactly the same biclusters together, elements coincident in some
biclusters relatively close and elements in completely different biclusters
separated.

Force directed graph models have been successfully used by several
authors for networks of medium size. It allows control over the place-
ment of nodes by the definition of edge connections and edge lengths,
and the setting of force strengths. As a drawback, these graph visual-
izations usually present edge cluttering when the number of nodes and
edges grow. We reduce this cluttering by hiding edges and drawing
hulls instead to represent biclusters (see fig. 45).

Figure 45: Simplification of a mouse skin tumor network (left) by means of
hulls (right). Left figure found in [100].

Following the definitions of section 6.1, let B = {B1,B2, ...,Bn} be a
set of biclusters, where bicluster Bk contains genes Gk and conditions
Ck. We refer to genes and conditions indistinctly as elements, so Bk

contains elements Uk = Gk ∪Ck. Let UT = GT ∪CT be the set of all the
elements. Let U ′ ⊆ UT , and let f(U ′) give the set of biclusters B ′ ⊆ B
that contain all the elements in U ′.

To represent the biclusters in B, we define a graph as a pair of sets
(E,V), being E the set of edges and V the set of vertices of the graph.
We chose two different methods to build the graph:

• Complete subgraphs: For each element ui ∈ UT that is at least
in one bicluster, add a vertex vi to V . For each bicluster Bk of
nk elements, with corresponding vertices Vk, add the subset of
edges Ek = {e(v1, v2) : v1, v2 ∈ Vk} to E. This is equivalent to add
to the graph the corresponding Knk

complete graph3 for each Bk

(fig. 46b).

• Complete dual graph: Let Z = {Z1, ...,Zp} be the set of zones in B,
so the elements in Zk are exactly in the same biclusters4, that is,

2 Proximity is also a powerful feature in order to detect groups
3 A complete graph of n nodes (Kn) is a graph where every node is connected to every

other node in the graph
4 Note that zones correspond to the geometrical definition of exact superbiclusters
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f(u1) = f(u2) = f(Zk). For each zone Zk add a vertex zk to V .
For each pair of zones (Zi,Zj) containing elements that share
one or more biclusters (f(Zi)∩ f(Zj) 6= �), add an edge e(zi, zj)
(fig. 46d).

(a) (b)

(c) (d)

Figure 46: a) Abstract groups and elements. b) Complete subgraphs with
contours and vertices corresponding to the abstract diagram in a.
c) Radial model for the same example (wheel graph with dashed
lines). Red dots represent dummy nodes added for each group
d) Dual graph (complete dual graph with dashed lines). Red dots
represent dummy nodes added for each zone (also called dual
nodes).

Note that a complete dual graph has the same vertices than a dual
graph, but it builds complete subgraphs for the nodes involved in each
group. The reason to build the edges in such a way is to reinforce the
group structure. Because of it, other building methods have been dis-
carded, specially tree and radial methods [17]. Although these methods
reduce the required number of edges, it is done at the cost of losing
group cohesion. For example, the radial method adds dummy nodes
for each bicluster, and then connects every node in the bicluster to the
corresponding dummy nodes, but keep them unconnected with each
other (see fig. 46c), permitting a separation of a double edge length for
them or, on the contrary, to be very close, forming narrow and elon-
gated shapes when forces are applied. This can be solved by adding
peripheral edges (dashed lines), in a ’wheel-like’ model, but this will
favor some nodes to be closer than others in the same group, and it will
double the number of edges.
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The complete dual graph (from here on, we will refer to it just as
dual graph) is a simplification of the complete subgraph model, which
improves computation-time performance and reduces edge cluttering,
at the cost of relaxing the structure. We identified four major factors
that determine the computational complexity of the graph, that will
also affect to its visual complexity:

• Number of elements (|U|)

• Number of biclusters (|B|). Usually |B|� |U|.

• Average number of elements in a bicluster (|B|) and in a zone
(|Z|).

• Number of zones (|Z|, |Z| > |B|). Usually |Z|� |U|. It depends on
the average overlapping degree among biclusters: the higher the
overlapping, the larger the number of zones.

A complete subgraphs model has |U| nodes and up to |B||B|(|B| − 1)/2

edges (a bit less if we do not repeat shared edges in the intersections,
represented as bold lines in fig. 46b). A dual graph presents only |Z|

nodes and up to |Z||Z|(|Z| − 1)/2 edges. Except in the cases where the
overlapping degree of groups is very high, |Z|� |B|, and therefore the
dual graph is much simpler. For a force directed layout, the complexity
is of O(n3), being n the number of nodes in the graph [59]. Therefore,
regarding algorithmic complexity, the dual graph is the best option.
Regarding edge cluttering, again the dual graph is simpler, being edge
crossing extremely high for a complete graph, even for simple cases
(see fig. 46b). However, because of the additional edges, the complete
subgraphs model has a more robust structure that in some cases conveys
better group relationships. Both methods were implemented, allowing
through interaction to switch between them.

After building the graph, a force directed layout is applied, as de-
scribed in [48]. This method will separate unconnected nodes by means
of an expansion force and will keep connected nodes close by means of
spring forces. Expansion forces are applied among every node, while
spring forces are applied only among connected nodes. The only pa-
rameter that varies depending on the graph model is the stiffness of
spring forces, which is weighted by a factor. In the case of the complete
graph, edges shared by n groups have a weight factor of n (in fig. 46b,
bold edges will have a factor of 2, the rest of 1). In the case of the dual
graph, an edge between two dual nodes has a weight proportional to
the number of groups shared by them.
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12.3 visual encoding

The discussed graph model is a simple yet powerful way to visualize
groups and elements in the groups, granted by the Gestalt law of
proximity. In order to improve it, we added several visual encodings
for biclusters and elements.

Regarding biclusters, they are represented in the graph by complete
subgraphs, but their edges are not drawn unless requested by user,
because although connectedness is a powerful grouping principle, edge
cluttering easily occurs with large graphs [59]. We substituted them for
contours wrapping all nodes within each bicluster, drawn as simple
closed curves (hulls). We selected this kind of curves because they
have minimal perimeter, to reduce contour cluttering and maximize
continuity seeking. With this representation we make profit of the
perceptual grouping factors of closure and continuity5 to represent
biclusters. To draw each hull, the position of the outermost nodes
of each bicluster are used anchors for a closed spline curve. The area
enclosed by each contour is filled with a transparent color, with the same
hue for all contours to avoid color cluttering. The use of transparent
colors make the intersecting areas solider, facilitating the detection of
overlaps (see fig. 47).

Figure 47: Overlapper graph structure.

Regarding the grouped genes and conditions, they are visualized as
simple unfilled circles and squares, respectively, as in fig. 47. The nodes
in a zone can be merged into a single dual node, with an area propor-
tional to the number of elements in the zone (see fig. 49f). Piecharts
superimposed to these simple shapes represent the number of biclus-
ters the node belongs to (the pie is divided into as many sectors as
biclusters). This way, it is easy to quantify the number of biclusters
the node belongs to, at least up to 6-8 groups (for a simple case, see
fig. 49b). The different shape of piecharts helps to identify and visually
group intersections and superbiclusters, enhancing the Gestalt law of
proximity with the law of similarity.

Although the graph model and the visual encoding conveys satisfac-
torily elements, biclusters and their relationships, our approach it is not

5 See section 4.2.4
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exempt of drawbacks. Like any visualization of groups with contours, it
is very difficult if not impossible to visualize a large number of groups
without relaxing restrictions (see section 8.1). These relaxations can give
way to empty zones and elements surrounded by groups they are not
in (see fig. 48).

Figure 48: The node highlighted in red is misplaced. It is in an area surrounded
by three biclusters but actually it is only in two biclusters. In this
case, its piechart helps to detect the misplacement: the node should
be on the area at its right, with the other two-sector piechart.

In order to minimize these undesirable effects, an option is to define
heuristic layout metrics such as the ones described in [47, 91]. For
example, a metric can calculate the number of nodes that fall on the
area of a bicluster they are not in, and move them out. More specific
metrics can be defined following particular relationships among groups,
maybe adding additional edges to the graph model or modifying the
edge forces on special cases. On our experiments with metrics, generical
metrics usually distort too much the graph representation, add large
computational loads and give way to unaesthetic visualizations. Specific
metrics have better computational and visual performance, but they
tend to be highly data-dependent and may lead to contradictions if
used exhaustively.

In line with the visual analytics approach, we have chosen another
option: to rely on interaction and the superimposition of layers to sort
out any possible ambiguity. The visual encodings are distributed in
layers that can be superimposed without occlusion. The layers are (see
fig. 49):

• Node layer: nodes are drawn as simple, transparent shapes.

• Piechart layer: nodes are drawn as transparent piecharts.

• Hull layer: biclusters are drawn as transparent areas with solid
contours wrapping grouped nodes.

• Label layer: names of nodes and biclusters.

• Detail layer: textual information of nodes, if available (for example,
in the case of genes: definition, organism, GO terms, etc.).

• Edge layer: the underlying edge structure is drawn.
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(a) Hull layer (b) Node+piechart layers

(c) Label and detail layers (d) Edge layer

(e) Superimposed layers (f) Dual node+hull layers

Figure 49: Different visualizations of Overlapper for three biclusters.

The main layers (node, piechart and hull) make use of transparency,
so they can be superimposed in any order. The superimposed layers
must have different perceptual characteristics in order to avoid confu-
sion among layers [141]. In our design, node/piechart and hull layers
are clearly different because of the dimension of the areas they repre-
sent (the Gestalt law of relative size). It is not very important if the node
and piechart layers are identified as the same layer because both refer to
the same element. Problems could arise with superimposed transparent
items in the hull layer. First, transparency is better perceived if there is
a good continuity, that is the reason why hulls are drawn with solid
contours. Second, transparency is not good to quantitative represent
more than five overlapped elements [45], so it becomes only a qualita-
tive guide on complex visualizations, backed up by the piechart layer
(see the examples in section 12.5 and chapter 16). The user decides, by
means of interaction, which layers to show or hide in order to clarify
the visualization.
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12.4 interaction

We have implemented several interaction options in order to boost the
exploration of group relationships and minimize ambiguities. First,
a miniature copy of the display is used to navigate through it by
dragging the mouse inside. We have chosen this method instead of the
possibly most spread one of tools like [58], that allows the navigation
by dragging the mouse in the background of the display, because hulls
cover great part of the background, and dragging the background is
used for selection of groups of nodes. In addition, this miniature display
gives an overview of the complete graph. Elements and biclusters can

(a) A node hovered over (b) A bicluster hovered over

(c) Two nodes selected (d) A bicluster selected

(e) Selection of several nodes (f) Overview for navigation

Figure 50: Examples of interaction with Overlapper.

be hovered over and selected (see fig. 50). When an element is hovered
over, itself and all their neighbor elements (elements grouped with the
hovered element in at least one bicluster) are highlighted in a bright
color, facilitating group tracing and reducing the ambiguity that may
cause node-zone misplacement. In addition, the name of the hovered
element is displayed. When a region is hovered over, all the biclusters
intersected in such region are highlighted. If an element is selected it is
marked with an identifiable color, keeping its textual label. If a bicluster
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is selected, itself and all the elements in it are selected. A right click on
an element displays the available information about it (for example, in
the case of a gene element: definition, location, GO annotations, etc.).
We have implemented several other interaction options further than
hovering, selection and navigation; for a detailed review of interaction
options see the user guide available with the tool.

12.5 representation of different result sets

Color is reserved to convey result sets, so biclusters from different
sources could be distinguished and compared in a single visualization.
The color of hulls and piechart sectors depends on the result set, as
illustrated by fig. 51 with a very simple example. Thanks to hull trans-
parency, the intersection areas of biclusters from different result sets
show mixed colors. However, it is hard to quantify how many biclusters
intersect in a zone by means of color hue. This is the main reason to use
piecharts in order to convey the number of biclusters that an element
pertains to (instead of, for example labels with numbers). Color sectors
identify the result sets, and at the same time convey the number of
biclusters of each type in which the element is in. We have limited the
number of different result sets to be displayed together to three to avoid
falling into color cluttering. Although, for example, Ware ([141], pp.
125–127) proposes 6 to 12 different colors that can be used to represent
classes, we limited it to three colors because the intersecting zones will
combine them, thus generating additional colors6.

Figure 51: Four biclusters, generated by two biclustering algorithms. Elements
in two biclusters, one of each algorithm, have a piechart with two
sectors, one of each color.

6 Also note that these colors adds up to the colors selected for hovering and selection
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12.6 overlapper and visualization principles

Overlapper is designed following the rules of information visualiza-
tion7, specially the Gestalt laws for group perception [30] and the vi-
sualization mantra for the visualization process [120]. Table 8 resumes
the main principles observed in Overlapper.

objective overlapper principle

Represent elements nodes proximity, shape

Represent biclusters hulls continuity, closure

Represent superbiclusters dual nodes, proximity, similarity

piecharts

Represent result sets color color hue

Represent intersections transparency color saturation

piecharts density

Distinguish biclusters hulls and nodes relative size

and elements

Dissolve ambiguities hovering color hue

piecharts shape, density

Overall display layers, overview overview first

Reduce cluttering and layers, interaction focus+context

navigation

Textual information text layers details on demand

Table 8: Overlapper visualization objectives and Infovis principles.

7 See section 4.2



13V I S U A L A N A LY S I S O F G E N E E X P R E S S I O N
T H R O U G H B I C L U S T E R I N G

The previous chapter presented a novel visualization technique to repre-
sent biclusters that successfully conveys overlap, represents both groups
and elements, and helps in the exploratory analysis of groups, super-
groups, etc. However, any visualization technique normally focused on
just a phase of the analytical process, in this case, the analysis of biclus-
tering results. In addition, it is common that visualization techniques,
in order to focus on some aspects of data, disregard other points of
view. For example, underground maps easily convey the destinations of
trains but disregard geographical positions. In the case of Overlapper,
it forfeits expression levels in order to simplify the visualization.

In order to support an analytical process, the visual approach must
support all or at least a large part of the analytical points of view
and phases. In this chapter we identify the required steps on the gene
expression analytical process and describe our approach to support it
by means of a visual framework based on multiple-linked views.

13.1 gene expression and the analytical process

In order to define a visual analytics approach, Keim et al. [76] identify
four major entities: data, visualization, hypothesis and insight. In this
section we identified the relevant data and hypothesis for the study
of gene expression. Following sections will cover the visualizations se-
lected as relevant for this kind of study and build up a gene expression
analysis model based on Keim et al. generic model.

From a data-centered point of view, the process for analysis of gene
expression starts with input data, that are analyzed generating new
information, that it is then compared with available data collections.
The relationships are also in the inverse direction: external data are
often used to limit or supervise the output of analysis, and analyzed
data are also compared with input data in order to validate or interpret
them. Therefore, we can divide tasks depending on the kind of data
they produce or deal with (see fig. 52):

• Input data: designing, building and normalizing transcription
data is part of the research area that produces the matrix for
gene expression analysis. Input data are inspected in order to
find errors during the building process, to check individual gene
or condition profiles or to confirm the nature of groups (up or
down regulated, constant or coherent profiles, etc.).

• Analysis data: several analysis tasks extract relevant information
from input data by organizing them into groups, filtering irrele-
vant data, etc. Data from analysis can be entities by themselves
(for example, biclusters or order ranks), but they are usually
highly connected to input data, either by reorganization, classifi-
cation or selection. The analyzed data are inspected in order to
confirm or reveal relationships in the input data, explain relation-

111



112 visual analysis of gene expression through biclustering

ships by means of external data or study relationships among
the analyzed groups or classes.

• External data: any data relevant to our experiment is worth of
inclusion in the analytical process in order to confirm hypothesis
or to help explaining our results. External data may come from
several sources, from gene ontologies to protein networks.

Figure 52: A simple gene expression analysis process from a data-centered
point of view. In this example, the genes and conditions of the raw
gene expression matrix (left) are reordered and separated following
a hierarchical clustering (center, one of the gene clusters has the
conditions reordered) and labeled with available information, either
from the experiment (for conditions) or from gene ontologies (right).
Top image reproduced from [44].

The tasks related to the three kinds of data described above are se-
quential, starting with input data that are analyzed and then compared
with external data, but as in any other analytical process, it is also
inherently iterative: external data are used to refine or even design
methods that provide new analysis data, confirmation with external
data leads to new experiments that generate additional input data, etc.

From a goal-centered point of view, we recall Brazma et al. [20] enumer-
ation of the three main questions to be answered by gene expression
analysis1:

• Search for expression change along conditions: inspection of gene
profiles and differential analysis are two examples of analysis of
expression change. This task is usually more related to hypothesis
testing and biomedical applications, with instances such as does
the patient have a high gene expression on cancer-related genes?

• Search for expression regulation and gene relationships: it usually in-
volves data mining methods that infer groups of genes and/or
conditions. These grouping tasks are also related to the other two
main questions, because they make use of expression change to in-
fer relationships and of existing biological roles to confirm them.
This task is more related to systems biology and exploratory
analysis, with instances such as which genes are related to gene
rpoH?

1 The exact formulation of these questions can be found in section 1.1
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• Search for the biological role of genes: it usually means a conclusion
drawn by means of the other two tasks plus the experience of the
analysts and the inspection of available sources of knowledge. It
is, in the end, a task derived from the study of expression change
and expression relationships. A typical instance is which genes are
involved in breast cancer?

To some extent, these three main tasks are related to the three main
kinds of data. Expression change can be inspected on input data, gene
relationships makes use of analyzed data and the conclusions about
biological roles need from available external data.

Our visual analytics approach must provide the tools to load, gener-
ate or retrieve input, analyzed and external data; and to visualize them,
within a highly interactive framework that helps with the identified
tasks. In order to do that, we think that a multiple-linked views schema
is necessary.

13.2 bicoverlapper: a visual analytics approach

BicOverlapper is the result of our effort to apply visual analytics and
information visualization to gene expression analysis and biclustering.
It was born as a tool centered in biclustering representation but then it
was naturally expanded in the two directions pointed above, dealing
with input data and external data. Today, BicOverlapper is a tool that
allows the representation of microarray, biclustering and biological data;
the biclustering analysis of microarrays and the retrieval of biological
data.

In this section we cover the visualization techniques implemented in
BicOverlapper and the different kinds of data we can manipulate. Next
chapter describes several applications of BicOverlapper in practical
cases. This section focuses on the design of the visualizations and
its interaction. Usage and technical details about BicOverlapper are
available in the user and developer guides, respectively, at http://vis.
usal.es/bicoverlapper.

13.2.1 Visualization Techniques

BicOverlapper implements several visualization techniques to represent
the three identified types of data: input data in the form of gene expres-
sion matrices, analyzed data in the form of biclusters and external data
in the form of transcription regulatory networks and gene information
(essentially, GO terms). Note that the Overlapper visualization technique
is not covered in this section, as it is fully described in section 12.1.

Heatmap

The heatmap visualization is a must-be in any visual analytics approach
to gene expression analysis. Analysts are used to it and it directly con-
veys the idea of microarray: color intensities on arrayed spots. About
this visualization, we focused on two concepts. The first one is the
application of focus+context: heatmap implementations usually rely
on reordering and simple zooming in order to inspect the visualiza-
tion [114, 115, 9]. Although some authors implement more sophisticated
zooming or distortion techniques, they partially lose context [104] or
require of a previous clustering of data [101].

http://vis.usal.es/bicoverlapper
http://vis.usal.es/bicoverlapper
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We implemented a simple bifocal distortion zoom that amplifies
the selected gene or condition profiles without losing the context of
the rest of the gene expression matrix (see fig. 53). We chose a simple
bifocal distortion rather than a more complex distortion, such as fisheye
distortion [50, 109], because nearby profiles are not necessarily more
important than far-off profiles. This bifocal distortion is also applied to
the genes and conditions in a bicluster if it is selected.

(a) (b) (c)

Figure 53: a) Heatmap visualization of a 200x20 expression matrix, with bifocal
distortion of gene fecIR and condition E7A. The color scale goes
from bright red (up-regulation) to bright blue (down-regulation).
The gene profile shows that fecIR is generally low expressed but it
is slightly overexpressed on E7A. b) Selection of 4 genes, all of them
highly overexpressed under the last two conditions. c) Heatmap for
a 24× 4, additive coherent bicluster, genes and conditions in the
bicluster are magnified.

The second concept we wanted to focus on is the color scale. As dis-
cussed in section 7.1.1, the typical green-black-red scale is not suitable
to perceive changes in hue, so we implemented a blue-white-red scale,
where it is easier to distinguish these changes; but allowing the user to
switch to a more familiar color scale.

Finally, in order to improve time performance and to save screen real
estate, gene expression matrices are not fully displayed. The overall
aspect of the data can be perceived by just a sample of the original
matrix, and the real utility of a heatmap comes with the filtering and
reordering of rows and columns based on analysis results. We set up
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200 rows as enough to display large groups of genes, which can change
with the selections performed along the analysis.

Parallel Coordinates

Parallel coordinates are the other main visualization technique used
for gene expression. The use of several polylines, one per gene profile,
leads rapidly to cluttering. Therefore, as in other tools [114], we substi-
tuted them for polygons that convey the overall pattern of gene profiles.
Specifically, we computed the mean for each condition, and draw poly-
gons to represent twofold, threefold and fourfold variations around the
mean. In addition, lines joining the minimum and maximum expression
levels for each condition are drawn.

To select genes depending on their expression levels, we implemented
vertical threshold handles for each condition, that can be modified by
the user. If 200 or more genes fulfill the threshold criteria determined
by the scrolls, a polygon is drawn to avoid polyline cluttering. If they
are less than 200, the corresponding polylines are drawn (see fig. 54a).

In the case of biclusters, the coordinates corresponding to conditions
that pertain to the bicluster are ordered together at the left, and the
segment of the polylines corresponding to those conditions is drawn in
a brighter color (see fig. 54b).

(a)

(b)

Figure 54: a) Parallel coordinates for the same matrix represented in fig. 53.
The same four genes in fig. 53b are selected. It is clear that one
of them diverges in behavior under conditions E4 and E3, and
with a mirror effect under E2 conditions. b) Representation of the
bicluster in fig. 53c. The expression profiles of genes in the bicluster,
are reordered so the portion corresponding to conditions in the
bicluster is drawn first (at the left, in bright blue). The rest of
the profile (dark blue) show patterns under conditions not in the
bicluster, easier to detect than in the heatmap.

In this implementation we put, as in the case of heatmaps, special
care to keep the focus+context philosophy: highlighting selected items
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without losing the overall context. Polygons always represent the overall
context of genes, and polylines are completely drawn even for condi-
tions outside of the bicluster, in a darker hue. This way, the user can
easily determine if the genes in the bicluster are high or low expressed
and if there are additional patterns on conditions not in the bicluster.

Bubblemap

Bubblemap is an ancillary visualization technique for bicluster rep-
resentation. It is implemented for completion and comparison with
Overlapper. It is also a convenient summary of biclusters that occupies
small screen space and convey overall trends on biclusters.

Bubblemap treats each bicluster as two multidimensional points pg

and pc, of dimensions n and m (total number of genes and conditions
in the expression matrix), respectively. The coordinate i of point pg is
one if gene i is in the bicluster, and zero otherwise (it is analogous for
point pc and conditions). Finally, pg is projected to one dimension (x)
and pc to another one (y) and a bubble is drawn at that point. The hue,
transparency and size of the bubble represent the biclustering method,
the internal variation and the size of the bicluster, respectively (see
fig. 55). This visualization technique is inspired in mountain maps (see
section 7.2), but simplified to 2D in order to reduce 3D-occlusion and
computation time.

Figure 55: Bubblemap for the results of three biclustering algorithms (on green,
blue and red). The red biclustering finds several, small biclusters
with low internal variation (solid colors). The green biclustering
returns few biclusters, but very large and with high internal vari-
ation. Blue biclustering finds very small biclusters. Note that the
overlap among bubbles does not necessarily corresponds to the
actual overlap among biclusters.

The main drawback of multidimensional projection is the disregard-
ing of details, which in the case of biclusters lead to convey incorrectly
overlaps, usually displaying biclusters as much more separated than
they actually are (see section 16.1 for an example of it).

Word Cloud

Word clouds are the model example of a vernacular visualization, a
technique born outside of the academic world [140]. Its purpose is to
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represent the number of occurrences of words in a given text. Our
implementation adapts this concept to the field of gene annotations
and statistical significance.

Each gene gi has a corresponding description di and a list of anno-
tated GO terms goi. For a group of genes G, with descriptions D and
ontology terms GO, we can extract the single words in every di ∈ D,
count the number of times they appear in D, and represent them in a
word cloud (see fig. 56a). We also extended the concept to di-words
(combinations of two words). In a similar way, for ontology terms,
again we can determine the number of times that each term appears
in GO and represent them in a word cloud (see figs. 56c and d). In
addition, we can split the terms in order to show the frequency of single
words or di-words. Furthermore, we also offer the option of performing
statistical significance tests (in the case of our implementation, hyper-
geometric tests2) in order to know the actual relevance of each GO term
in the group respect to the whole set of genes present in the microarray
platform, and assign sizes to the terms according to their p-values (see
fig. 56d).

(a) (b)

(c) (d)

Figure 56: Word clouds for the 20 most highly expressed genes on the human
brain according to the microarray data available from [81]. a) Words
in gene definitions, number of occurrences in parenthesis. b) MF GO
terms. c) BP GO terms. d) BP GO terms, after a hypergeometric test,
the bigger terms are the ones with lower p-values (in parenthesis).

TRN Graph

A Transcription Regulatory Network (TRN) represents transcription
relationships among genes. Its usual visualization as graphs represent
genes as nodes, and an edge from node a to b means that gene a tran-
scriptionally regulates (activates or inhibits) gene b. There are several
tools that visualize TRNs, such as Cytoscape [116] or Osprey [21] (see
[96] for a survey.), with different display models. We have selected a
typical force directed layout model [48] to display the network (see
fig. 57), with labels for nodes and curved lines3 for edges, directed from

2 We use the implementation in BioConductor package GOstats
3 Curved lines are better than straight lines because they partially reduce edge cluttering.

The improvement is specially important in nodes that have several nodes coming
out/in, because curved lines tend to bundle together when they are close to them.
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the regulator gene to the regulated one (dark grey for activation and
light grey for inhibition). Nodes can be colored with expression levels
using the same scale as the heatmap if a single condition is selected.

(a)

(b)

Figure 57: a) Detail of a synthetic TRN generated by SynTReN [36] for the
same example used in figs. 53, 54. The degree of complexity that
TRNs may reach is evident, but at this scale (a few hundred genes)
it is possible to detect regulators at the center of the bundles of
edges, such as rpoH or rpoE_rseABC (top and left). b) The same
figure colored by the expression levels under the condition E3A.
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We designed this visualization as simple as possible to avoid clut-
tering. However, TRNs grow everyday4, and the display of thousand
of nodes with an even larger number of edges becomes a problem for
visualization that, as of today, does not have an easy solution.

13.2.2 Data Communication and Retrieval

Following the multiple-linked views philosophy, the visualization tech-
niques implemented by BicOverlapper are interconnected so the interac-
tion with one of them affects the rest. A communication layer translates
the items selected on a visualization to the related items on other
visualizations (see fig. 58). Despite their nature, all the data sources
share two entities, genes and conditions, that are used to perform the
translations. For example, the selection of a gene on the heatmap leads
to the selection of its GO terms on the word cloud or the biclusters it
pertains to in the Overlapper. Details about how selection affects to
linked visualizations can be found in the user guide 5.

Figure 58: Layer and data schema of BicOverlapper.

Another interesting aspect to discuss is how data of different nature
are retrieved by BicOverlapper. BicOverlapper treats data retrieval in
three major ways:

• User load: the straightforward method to obtain data is to let the
user to provide them. We tried to minimize this use because it
usually require changes in data formats that may be tedious and
produce errors. However, it is important to give the user con-
trol about the nature of data, specially in the case of expression
data (the starting point of an analysis), but also in the case of
analyzed data (the number of possibilities of analysis is so large
that it is impossible to cover them all in a single tool). Therefore,
users must manually load any expression matrix they want to

4 For example, the TRN for Escherichia coli increased from 577 relationships in 2002 [118]
to 2724 in 2004 [82]

5 Available at http://vis.usal.es/bicoverlapper

http://vis.usal.es/bicoverlapper
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analyze. The format is kept simple so the user’s data can be
easily translated from other formats. However, it could be inter-
esting to allow automatic retrieval of microarrays from the public
repositories6. On the other side, although BicOverlapper can run
some biclustering algorithms, we also allow the load of biclusters
from other sources. In this case, we have kept BicAT format for
biclusters, because it is simple enough for our needs and because
BicAT comprises several additional biclustering algorithms7. Fi-
nally, TRNs can also be manually loaded with a GraphML format8.
Detailed information about data formats is available in the user
guide.

• Biclustering analysis: bicluster results can be generated by BicOv-
erlapper, by means of interfaces to the biclustering algorithms
implemented in the package biclust. Sometimes, bicluster results
generate a huge number of biclusters, or very large biclusters,
so we included the option of bicluster post-filtering, using the
method described in [99].

• Automatic retrieval: external data are usually available on the
Internet. By now, BicOverlapper retrieves genetic information
from NCBI Entrez Gene9, QuickGO10 and BioConductor annota-
tion packages. It is important that the microarray data contains
proper gene identifiers in order to avoid mismatches with gene
retrieval interfaces.

13.2.3 Data Interaction

All the visualizations implements several method to interact with them.
The choosing of proper interaction options is key in order to facilitate
the analytical discourse. It is important to implement familiar interac-
tion techniques so the user feel familiar with them, keeping the dialogue
with the tool intuitive. At the same time, the interface must provide
elements to develop a discourse. For example, if we defined that the
study of the expression of single genes is relevant, a text search for gene
names should be available. Details about how these interactions are
carried out are fully described in the user guide, but following there is
a summary of the main interaction techniques implemented:

• Selection and hovering: the visual items representing genes, condi-
tions and biclusters can be selected or hovered over. Hovering has
the effect of highlighting the element and displaying additional
information, such as labels. Selection usually has a similar effect,
but it is permanent until the element is unselected or another
element is selected. In addition, the selection is sent to other
views in order to highlight the corresponding visual items in
all of them. Multiple elements can be also selected, and we use
different color hues to distinguish hovered items from selected
items.

6 ArrayExpress, for example, has recently released a BioConductor package to retrieve
microarray experiments that could be integrated in BicOverlapper

7 Note that our format for biclusters is flexible enough to load any kind of groups, not
only biclusters, providing that they comprise genes, conditions or both

8 http://graphml.graphdrawing.org
9 http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

10 http://www.ebi.ac.uk/QuickGO

http://graphml.graphdrawing.org
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://www.ebi.ac.uk/QuickGO


13.2 bicoverlapper: a visual analytics approach 121

• Zooming and panning: in order to navigate through them, an intu-
itive zooming and panning technique is provided for heatmaps,
TRN graphs and bubble maps.

• Text searches: the search for genes is usually demanded by users.
Gene names can be searched in TRN graphs and in the biclus-
tering visualizations. In biclustering visualizations both gene
and condition names may be searched, highlighting them (in the
Overlapper) or the biclusters they pertain to (in the bubblemap).

• Other interactions: each visualization has special characteristics
that give way to particular interactions. These kind of interactions
are described on their corresponding sections. They include, for
example, the distortion of profiles in heatmaps, the selection
of profiles by expression thresholds in parallel coordinates, or
the selection of the splitting performed on descriptions in word
clouds.

13.2.4 BicOverlapper and the Analytical Process

Along this chapter we have identified the major data, goals and visual
techniques involved in a visual analysis of gene expression and how
BicOverlapper integrates them. This can be translated to the visual
analytics process defined by Keim et al. [76] and discussed in section 5.1
(see fig. 59).

Figure 59: Keim et al. [76] adapted schema to gene expression analysis with
BicOverlapper.

There are four types of gene-related data:

• The gene expression matrix (M), provided by the user.

• The groups (G), either introduced by the user or generated by
the tool (biclusters) by the DW process.
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• TRNs, also provided by the user.

• GO terms, retrieved from different resources.

These data are represented via VS with 6 visualizations:

• Heatmaps (HM) and parallel coordinates (PC) visualize M and,
by means of reordering and filtering, they also partially visualize
G.

• Bubblemaps (BM) and Overlapper (Ov) visualize the whole set
of groups G.

• TRN graphs visualize TRNs

• Word clouds (WC) visualize GO terms.

Several interactions (UV ) are implemented to modify the visualiza-
tions, as described in section 13.2.3.

Besides, we have three main types of hypothesis, which are instances
of the three main questions discussed in section 13.1:

• Expression variations (H1). Its instances are more related to M,
HM (bifocal distortion of profiles) and PC.

• Gene relationships (H2). H2 instances are more related to G, BM
and specially Ov, and supported by the links to HM and PC.

• Biological roles (H3). H3 instances are related to external re-
sources (TRN, GO) and their visualizations (TRN, WC).

The relationship between hypotheses and visualizations is in both
directions. HV represents the process by which a given visualization
raises or confirms a hypothesis. VH represents the process by which a
hypothesis leads to build or search for new visualizations. The following
section describes an example of how BicOverlapper answer to some
questions of the three types.

Finally, insight (I) is produced from the confirmation or refusing of
hypothesis (UCH) but also directly from the inspection of the visualiza-
tions (UCV ). Insight represents the knowledge distilled from the testing
of hypothesis and the inspection of visualizations
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14A P P L I C AT I O N O F E X T E R N A L A N D R E L AT I V E
I N D I C E S

In chapter 11 we adapted the Γ̄ ′ statistic to biclustering. Now, we are
going to test its capacity for determining the matching of biclustering
results to the data matrix. In order to do this, we design an experiment
that will compare the performance of our Γ̄ ′ internal measure with an
external measure (the F1 measure) in the task of determining the best
parameter settings for two biclustering algorithms. The implementation
of the biclustering algorithms in order to perform these and other exper-
iments gave way to the implementation of a R package for biclustering
that is also briefly described in this chapter.

14.1 parametrization of biclustering algorithms

We want to find the best parameter configuration for two biclustering
algorithms under two different datasets. The search for the best param-
eter setting is made by means of two measures, the F1 measure and the
Γ̄ ′ measure.

Regarding data, we build two sets of synthetic 100× 50 matrices with
embedded biclusters in a similar way to the previously discussed vali-
dations (see section 6.6). The first set of matrices contains two constant
10× 10 biclusters with overlapping degrees from 0% to 100%, with 10%
increments1 (see fig. 60a). The second set has two non-overlapping bi-
clusters, one constant and the other one additive coherent, with normal
distribution random noise. The distribution deviation increases from
0 (no noise) to 1, with 0.1 increments (see fig. 60b). In both sets, the
expression levels out of the embedded biclusters are just random noise.

(a) Overlap in biclusters

(b) Noise in biclusters

Figure 60: Details of some of the synthetic matrices for the procedure.

The algorithms selected for the test are Bimax [99] and the improved
Plaid Model of Turner et al. [135] (from now on, just the Turner al-
gorithm). Bimax is one of the most compared biclustering methods,
by means of non-biological and biological validation, usually yielding

1 The overlap degree is the same in both rows and columns
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a high rank [99, 103, 90]. The Turner algorithm was tested by their
authors with several data sets.

Both methods were implemented in R according to the specifications
in the corresponding bibliography (see section 14.2 below). Each algo-
rithm has been tested with several parameter configurations (all the
combinations of parameters in table 9) for each overlap/noise level. The
parameter ranges try to cover parameter intervals around the values
proposed by the authors, excluding ranges very permissive or restrictive
that would lead to several biclusters or no biclusters at all, respectively.
For example, for the Turner algorithm the range proposed by its authors
for both t1 and t2 is [0.5− 0.7], but the parameters may be in [0− 1].
However, values very close to 0 or 1 return no biclusters, so we have
slightly enlarged the range to [0.4− 0.8].

Bimax Turner

parameter range (step) parameter range (step)

Min. rows 3–9 (1) t1 0.4–0.8 (0.1)

Min. columns 3–9 (1) t2 0.4–0.8 (0.1)

Binary threshold 1–10% (1)

Table 9: Selected ranges for biclustering parameters.

The procedure for the experiment is to run the algorithm presented
in section 11.2 (fig. 44) for each noise or overlap degree, depending on
the data set. The experiment is done for both algorithms, Bimax and
Turner Plaid Model. Fig. 61 shows the results of such procedure.

Figure 61: Best SS measure achieved by using the F1 and the adapted Hubert
(Γ̄ ′) statistics, along with the mean of SS for all the tested configu-
rations, for different levels of overlap (left) and noise (right). The
study is carried out for two biclustering algorithms, Bimax (red)
and the Turner Plaid Model (blue).

Regarding the biclustering algorithms, we compare the solid lines that
refer to their best parameter setting. When the noise or overlap level is
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low, Bimax (in red) finds the exact embedded biclusters without adding
spurious biclusters (SS = 1). The performance downgrades slightly in
biclusters overlapped around a 50%, but it increases again with high
overlaps (the biclusters are almost the same). However, performance
downgrades more in the case of noise, because some of the biclusters’
expression levels are too low due to noise, and therefore are disregarded
during the binarization step of Bimax. The Turner algorithm (blue) is
unaffected by these levels of noise, but it is very sensitive to overlap.
This is because the pruning phase (included in this algorithm to improve
the original plaid model algorithm) fails when trying to prune the
overlapped parts of the biclusters.

Regarding the validation indices, F1 (continuous lines) gives always
the best possible result, because it makes use of a priori information
about the actual embedded biclusters. Choosing the best configuration
according to Γ̄ ′ (dashed lines) gives suboptimal results that sometimes
coincide with the best result, and almost always improve the average
solution (point lines).

We think that this study reveals the importance of choosing the
correct configurations of a biclustering algorithm in order to perform a
comparison. Following these results, choosing a wrong configuration
can downgrade the performance of an algorithm up to 50% in terms
of SS. The use of F1 for external validations is clear, but to use the
proposed adapted Hubert statistic in real case applications, where a
priori knowledge is not available, could also improve the performance.
The drawback of computing relative indices is the time performance,
because the algorithm must be run once per configuration2. For small
synthetic matrices, it is not so critical because, as stated in [99] the
running-times are never above 120 seconds on a present-day personal
computer3, but it could be a problem on real datasets, specially for
biclustering algorithms with several parameters.

14.2 implementation of biclustering algorithms in r

In order to apply the proposed method for biclustering parametrization,
and several other tests and analyses, the R package biclust [72] has been
developed in collaboration with Sebastian Kaiser and Friedrich Leisch
from the University of Munich. The R programming language [65,
35] is oriented to its use in statistics, but in the last years its use in
bioinformatics has dramatically increased thanks to BioConductor [52],
an open software for computational biology and bioinformatics.

Biclust implements five biclustering algorithms covering different
search techniques and bicluster types (see chapter 6). The implemented biclust is available

as part of the CRAN
project
(http://cran.
r-project.org)

algorithms are Bimax [99], xMotifs [87], Cheng and Church biclustering
algorithm [34], Turner et al. Plaid Model [134, 135] and Spectral biclus-
tering [77]. In addition, the package includes basic representations of
biclusters in heatmaps, parallel coordinates and bubble maps. It also
includes some statistical metrics such as the Jaccard index and measures
of variance; and some pre-processing methods, such as discretization
and binarization.

2 In the case of the Bimax configurations considered in table 9, the algorithm must be
run 490 times

3 For example, the computer used for these tests has a 2.8 GHz CPU with 2GB of RAM

http://cran.r-project.org
http://cran.r-project.org
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With the application of Overlapper to the analysis of biclustering results
on gene expression, the user can have an overview of the biclustering
results, and then follow an exploratory approach to search for rela-
tionships, superbiclusters, etc. In this chapter we briefly discuss three
applications of Overlapper to real cases, although the biological analysis
will be enhanced with the visual analytics approach to be discussed
in the next chapter. The last section presents other applications of
Overlapper to the visualization of groups in areas unrelated with gene
expression and biclustering.

15.1 application to a controlled real case

The first example is a controlled real case. By controlled be mean
that we have restricted the biclustering algorithm to fit the known
characteristics of the data. We analyzed Chen et al. [31] gene expression
study for Schizosaccharomyces pombe under five environmental stress
conditions, tested at two times (15 and 60 minutes after exposition
to stress) and compared against non-stress conditions (zero minutes
after exposition to stress). We applied the Bimax algorithm in order to
search for groups of genes with specific up-regulation under the stress
conditions. The expression matrix is binarized with a threshold of 4, so
only transcription levels at least 4 times higher than the corresponding
transcription level for the control condition (no stress) are considered.
Bimax returns several biclusters, but we filtered the ones with two
conditions, corresponding to the two time frames of a stress condition,
thus obtaining five groups related with specific stresses1. These five
groups are then visualized with Overlapper (see fig. 62).

Just with an overview, several conclusions can be drawn from the
visualization:

1. The five biclusters present a high degree of overlap. A central
group of genes are overexpressed under any stress condition, and
some more are expressed in four or three conditions (conveying
S3,4,5 superbiclusters).

2. Oxidative stress, heat shock and heavy metal stress are the con-
ditions that provoke overexpression in more genes. They have a
large number of genes shared two by two for these conditions
(S2 superbiclusters).

3. There are no genes highly overexpressed uniquely under DNA
damage (labeled MMS), and just two under osmotic stress (labeled
Sb). Most of their genes respond to several stress conditions.

4. Most of the conditions for oxidative stress (labeled H2O2), heavy
metal stress (labeled Cd) and osmotic stress have been also bi-
clustered for the DNA damage bicluster (condition nodes with
two sector piecharts).

1 Chen et al. called these groups SESR
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Figure 62: Stress biclusters visualized with Overlapper.

Even considering that our method to search for stress groups is
different from the one in [31]2, some of their statements are quickly
confirmed with our visualization. For example, oxidative stress presents
a large overlap with heavy metal and heat stresses, and the genes related
to DNA damage are almost completely included in the group of genes
related to oxidative stress3.

The static visualization in fig. 62 reveals a drawback intrinsic to
set diagrams that was discussed in previous sections: it is impossible
to show every group with perfectly defined zones if the number of
elements, groups and the degree of overlap is moderately high. In this
case, it occurs with the superbicluster of order 2 surrounded by the
dashed line (S2). This group of genes is in the heavy metal and oxidative
stress groups, but not in the DNA damage or osmotic stress groups.
The two-sector piecharts and, especially, the interaction with the tool,
such as hovering over the nodes in the superbicluster, dismisses the
ambiguity.

2 The method of Chen et al. is based on a differential analysis of gene expression
under each kind of condition, and it determines a gene as condition-related if it is
over-expressed in just one of the two times measured for each condition (it also must
not be highly over-expressed under other conditions)

3 In our example, all of them are included, while they identify two exclusive DNA

damage-related genes
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15.2 application to a non-controlled real case

The second example is a non-controlled real case, meaning by non-
controlled that we have not restricted the biclustering algorithm param-
eters to fit any characteristic of the data. The Bimax algorithm is applied
to Eisen et al. [44] yeast expression data, resulting in a very large set of
biclusters. Overlapper reveals a high overlap among biclusters, forming
a large group at the top of the visualization, and a smaller one at the
bottom (see fig. 63). Genes in the top group are mainly biclustered by
sporulation conditions (spo.5, spo.7, spo.mid, etc.) and the ones in the
bottom group are biclustered by heat shock conditions (heat.20, heat.40).

Figure 63: 50 biggest Bimax biclusters found on Eisen et al. yeast expression
data [44]. Overlapper reveals two main bicluster groups, a large one
formed by genes grouped by sporulation conditions such as spo.5
and spo.7 (1); a smaller one is formed by genes mainly grouped by
heat shock conditions heat.20 and heat.40 (2). Some genes, specially
YGR088W and YPR149W are in biclusters of both groups (we call
them "bridge genes").

Sporulation is a reproductive method that is adapted for dispersal
and surviving for extended periods of time in unfavorable conditions.
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Heat shock stress occurs when the organism is exposed to high temper-
atures. A possible biological interpretation of the results could conclude
that sporulation and heat shock are the conditions under which genes
are very highly over-expressed. Heat shock is an unfavorable condition,
so it seems reasonable that it is related to sporulation. The gene NCE102
(YPR149W), highly expressed under both conditions, is related with
membrane, secretion and protein transport and secretion, probably
related with the thicken of the cellular wall in spores, also a defen-
sive mechanism against extreme heat. We call these genes related with
two different functional groups bridge genes. Other bridge gene, CTT1
(YGR088W), is related to stress conditions, specially heat and oxidative
damage, but relationship to sporulation cannot be found in their gene
annotations, which could be subject of further experiments. Using a
visual analytics approach for this exploratory process would improve
the utility of Overlapper. How that has been carried out in the present
work is covered in the next chapter.

15.3 visual comparison of biclustering algorithms

One last example is illustrated in fig. 64. Here, two biclustering algo-
rithms have been applied to a synthetic dataset for E. coli4. Turner et
al. [135] plaid model (in red), implements an additive coherent model,
while Spectral Biclustering [77], in purple, implements a multiplicative
coherent model.

Figure 64: Spectral (purple) and Turner (red) biclusters for E. coli synthetic
data.

4 This dataset will be further discussed in section 16.2
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Overlapper shows that Spectral biclusters are highly redundant, while
Turner biclusters are more spread. The inspection of piecharts reveals
that the elements grouped by Spectral biclustering are included at least
in a Turner bicluster (i. e. there are no completely purple piecharts), but
the opposite is not true. A possible conclusion is that the data do not
follow a multiplicative model but an additive model, because the only
biclusters that Spectral biclustering finds are mainly included in Turner
biclusters, that is: they are groups with very low multiplicative factors
that can be captured with an additive model. This is confirmed by
the additive model used to build the synthetic gene expression matrix
(see [36], addendum).

15.4 other applications of overlapper

The representation of groups and group relationships is useful for
almost any field, because groups are intrinsic to a large number of
data sets. Information about movies, scientific papers or terrorism, for
example, share two levels of data, the individuals related to the field
(actors, researchers or terrorists) and their relationships (movies, papers,
organizations). Usually, these collaborations overlap, having individuals
in more than one group.

In addition, groups can be inferred in almost any data set. That is
the case of data clustering, which usually searches for non-overlapping
groups. This is also the case of complex queries in databases. For
example, searches can be done for data that fulfill queries A, B and C,
and then a comparison of the relationships among the three result sets
may be interesting. Furthermore, some grouping algorithms consider
overlapping as essential for searching groups, such as biclustering
algorithms.

We have applied the Overlapper visualization technique to several
areas (see figs. 65, 66):

• Film relationships: in order to participate in the Infovis’07 contest,
Overlapper was adapted to visualize relationships among actors,
directors, writers, etc. (elements) stored in the movies they made
(groups). Our contribution was selected among the finalists for
the contest [129]. Additionally, it won the Graph Drawing’07

contest [41].

• Co-authorship networks: the same idea can be applied to co-author
networks, using authors as elements and papers as groups [105].
The results facilitate to infer research groups from publications,
and to determine their collaborations and key authors.

• Music tags: tag clouds can have structure, with tags included
in larger tags, such as in the case of music genres5. In [32], we
designed an evaluation study based on task completion which
shows an improvement of the representation of hierarchical struc-
ture in tag clouds with Overlapper, compared to traditional tag
clouds representation.

• Idea organization: finally, we have also applied our visualization
technique to some typical cases found in literature, such as KJ
diagrams for idea organizing [92].

5 For example, rock has several subgenres such as hard rock or pop rock. Pop rock
subgenre is also in the pop genre
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(a) Film relationships

(b) Co-authorship networks

Figure 65: a) Top ten most awarded (yellow) and most profitable (green)
movies between 2000 and 2006. Details of key individuals high-
lighted. b) Two supergroups of researchers according to papers in
the journal Bioinformatics. Overview of the full representation at the
center-bottom.

All of these applications have natural groups intrinsic to data, so its
validation is easier than the studied case of biclusters. Also, most of
them have a low number of elements per group, which makes the final
display with overlapper very clear. The feedback from these applications
was vital to refine our visualization design and to plan future lines of
research.
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(a) Music tags

(b) Idea organization

Figure 66: a) Adaptation of Overlapper to represent tag clouds as groups
(image found in [32]). b) Example of a complicated structure re-
produced from [92] (left) and its representation with Overlapper
(right).
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We discuss in this chapter several applications of BicOverlapper for
different gene expression datasets, showing how the proposed visual
analytics approach helps to discover useful information about gene
expression. Biological explanations are given and confirmed when
possible (for example, if synthetic datasets are used or we can find
similar results in already published papers). Other possible biological
explanations are given as examples of how we can retrieve relevant
information by means of a proper visual analysis, but they will require
a deeper experimental study in order to confirm them, which is out of
the scope of this document.

16.1 s. pombe microarray experiment

This example analyzes Chen et al. [31] microarray experiment for the
study of environmental stress in Schizosaccharomyces pombe1. This ex-
periment comprises transcriptional profiling for 5 different stress condi-
tions, each one checked two times, 15 and 60 minutes after the appli-
cation of stress, and compared against the non-stress condition (right
before the application of stress). The main focus of the experiment is
to determine which genes are involved in every stress condition (CESR
group) and which ones are involved in just a specific stress condition
(SESR groups). Basically, this is a mixture of H1 (change in gene expres-
sion, for example from high expression in a specific stress condition
to normal expression in the rest) and H3 (biological functions related
to the genes involved in stress). We describe here some visual analysis
procedures to answer these kind of questions with BicOverlapper.

A first approach to answer these questions is the use of PC to perform
a visual clustering of genes. For example, if we fit the threshold handles
to select up-regulation under conditions related to H2O2 and down-
regulation for the rest, we capture 14 genes2 which are in the SESR
group for oxidative stress (see fig. 67). We can complement it with WC
to give an idea of the biological processes and molecular functions
involved with this group. The GO terms highlighted by WC confirm
the conclusions of Chen et al. [31], such as the relationship to oxidation
reduction, to ion-related processes or to pyridoxine (pyridoxal phosphate
binding). This whole process is an example of how the VH flux works:
driven by H1 question (which genes are specifically overexpressed forH2O2)
we inspect the visualizations of PC and HM with the corresponding
filters, generating the visualization of WC with the corresponding genes.

1 This experiment is available from ArrayExpress with accession name E-MEXP-29. The
processed data were slightly adapted to fit BicOverlapper’s format, basically adding
information about the species (Schizosaccharomyces pombe) and the source for gene
annotation (there is no available BioConductor annotation package for this organism,
so gene annotations were retrieved from web services)

2 This group is smaller than the one obtained by Chen et al. for H2O2. This is because
their method considered a gene as stress-specific if just one of the two time conditions
is highly up-regulated, which involves more genes.
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Figure 67: H2O2 SESR group obtained by means of PC interaction in BicOver-
lapper.

The process described above is somehow supervised, because we
know what we are searching for (genes specifically up-regulated for
H2O2 stress). This supervised search can be performed by other meth-
ods, such as reproducing Chen et al. method to find SESRs or trying to
replicate it with biclustering or other classification method. The result of
both approaches is to visually confirm what it is known and published,
as discussed in section 15, making conclusions to become evident so
they can be drawn quicker, reducing the time required for analysis.

On the other side, we can try to perform a non-supervised analysis.To
do this, we can run a biclustering algorithm without a special config-
uration of parameters or post-processing. For example, if we choose
the Bimax algorithm3 we can find a group of 5 biclusters partially out
of the main trend of the rest of biclusters4 (see fig. 68). All of these
5 biclusters include the MMS_15 condition, which is not grouped by
any other bicluster (it has a five-sector piechart). These five biclusters
have 16 genes not grouped by any other biclusters, as it is shown in the
visualization. If we select them and visualize the annotated GO terms, 4

out of the 16 genes are annotated with meiosis, a term that just appears
in one out of the 44 genes in the central group .

The MMS_15 condition relates with the response to the stress pro-
voked by Methylmethane sulfonate (MMS), an agent that generates
DNAdamage in the cell [31]. Meiosis is a cell process in which DNA
damage occurs in the form of DNA double strand breaks (DSBs) [64],
which possibly points to the function of these genes under this stress
condition.

3 We selected a minimum of 10 genes per bicluster, a binary threshold of 4% and filter
highly overlapped groups in order to keep the result set on a moderate size (50

biclusters)
4 The main group of biclusters corresponds to genes in CESR
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Figure 68: Visualization of Bimax results. Five biclusters are clearly separated
from the trend, comprising 16 genes apart from the central group,
and condition MMS_15. Four of these genes are annotated with
meiosis.
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16.2 e. coli synthetic microarray experiment

In order to provide an example of TRN visualization, we chose a small
synthetic 200×20 matrix generated by SynTReN [36]. This software
generates expression levels that depend on the connections among
genes in a given TRN. We limited it to 200 genes related by the E.
coli network described by Shen-Orr et al. [118], because larger graphs
become too complex to visualize.

Figure 69: E. coli microarray represented in a heatmap, a bubblemap with two
biclustering results in different colors, and a TRN graph with the
corresponding regulation network. A bicluster is selected in the
bubblemap (surrounded in blue at the left bottom), that contains
over-expressed genes (highlighted in the heatmap) related to soxS
regulation, but also a gene not regulated by it, speC.

The placement of nodes depending on regulation relationships is
useful as a kind of "visual biological clustering" and also it is useful to
validate biclusters. If all the genes in a given bicluster are connected
in the network, the bicluster is biologically good but do not reveal
additional information. If they are disperse on the TRN, the bicluster is
probably spurious. It they are into two separate areas, maybe it leads
to previously unknown relationships in the network. For example, the
bicluster selected in fig. 69 groups six genes, five of them regulated
by soxS, but one located in a completely different area of the network,
speC. On a real case, this could imply a direct or indirect regulation of
speC by soxS, under certain conditions (such as the ones grouped by
the bicluster).



16.3 human brain microarray experiment 141

16.3 human brain microarray experiment

Finally, this is an example of how visual analysis could arise unexpected
questions with the Lu et al. [81] microarray experiment for the study
of ageing in the human brain5. This example comprises transcriptional
profiling for 30 individuals from 26 to 106 years of age6. The main
task for its authors was to determine which biological processes decay
or increase with age. Basically, this is a mixture of H1 (analysis of
change in gene expression) and H3 (relationship to biological functions).
However, a new question arises with a simple glance to PC: without
further interaction, this visualizations shows that, for condition 27F, the
minimum expression level is far away of the fourfold deviation of the
mean, which does not happen for other conditions (see fig. 70).

(a)

(b)

Figure 70: a) A deviation in the minimum expression level of 27F (the third
condition starting by the left) can be easily detected. b) Further
inspection reveals that the probe 36084_at (corresponding to gene
CUL7) is differentially under-expressed respect to the rest of condi-
tions. WC relates it to ubiquitin, ligase and vasculogenesis.

The inspection of the lowest expression levels for condition 27F
reveals that only the expression profile of CUL7 (probe 36084_at on the
Affymetrix chip) has an under-expression greater than 4-fold for the
patient. If we display WC in order to visualize the biological roles of
this gene, we see that it is related to ubiquitin and ligase, but specially to
vasculogenesis, after a statistical significance test. Further inspection of
the condition reveals that the behavior of other genes is also different
from samples of similar age, either by using PC or by the inspection of
Lu et al. figures. This discovery could lead to further study outside our

5 This experiment is available from ArrayExpress with accession name E-GEOD-1572,
or from GEO with accession name GSE1572. We must download it manually and
slightly adapt it to fit BicOverlapper format, which basically is to add information
about the species (Homo sapiens) and the microarray platform (hgu95av2 of Affymetrix)

6 We refer to each condition as NS, being N the age and S the sex, for example 42M
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tool to identify if this individual had some relevant disorder (the tissue
samples of the study were neuropathologically normal for age, but it
could be any other disorder relevant for expression in brain tissue) and
if this could bias the analysis. This is an example of how the flux HV ,
hypothesis generation from visualizations, works (see section 13.2.4).
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Reasoning draws a conclusion, but does not make the conclusion certain,
unless the mind discovers it by the path of experience. — Roger Bacon

The main outcomes of the research undertaken for this thesis were
the development of a new technique for the visualization of biclusters,
and its integration into a framework for the visual analysis of gene
expression data. This novel visualization technique allows to visualize
several biclusters together within a single representation, which conveys
precisely the main characteristics of biclustering. The visualization
prioritizes gene and conditions over expression levels, allowing to
easily explore the relationships among genes and conditions inferred
by biclustering algorithms. This visualization technique is part of a
framework that provides visualizations for other related data, either
expression matrices or external biological knowledge. This whole set
of highly interactive visualizations plus the integration of biclustering
analysis, provides a complete framework for the visual analysis of gene
expression data by means of biclustering.

The benefits of a visual approach to gene expression analysis is well
known thanks to several techniques and tools [44, 114, 104, 101]. Some
of these approaches already pointed out to principles that are now
covered by visual analytics. A first conclusion of this work is that it
is possible to formally adapt the analysis of gene expression to vi-
sual analysis by identifying the involved data sources, visualization
techniques and analysis tasks. To make these identifications gives the
possibility of designing a framework that fulfills the needs of the an-
alyst. When tested with controlled cases, our approach is validated
because it finds the already known characteristics of data. Furthermore,
when tested against non-controlled cases, even with just superficial
knowledge about biology, thanks to this approach we were able to
uncover gene relationships and other circumstances.

Biclustering is a relatively new area for the analysis of gene expres-
sion, and the lack of standards and visualization techniques discour-
ages potential users. On the other side, for example, clustering is very
used and has very well defined algorithms (hierarchical clustering and
k-means clustering) and visualizations (heatmap and dendrogram, par-
allel coordinates). After dealing with biclustering algorithms during
the development of our research, we think that, in order to achieve
the same degree of success with biclustering, it is necessary a process
of validation of biclustering methods and the techniques used to vi-
sualize them. Biclustering and other advanced analysis methods will
be more demanded by the scientific community with the progressive
understanding of gene expression and other biological processes, so
it is important to define techniques and standards for validation and
visualization that support them.

A relevant finding of our research is that the biclustering compar-
isons usually do not take into account the parameter configuration of
biclustering algorithms. We showed that the design of an appropriate
internal index and its use in a simple parametrization procedure can
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significantly improve the performance of biclustering algorithms, thus
allowing to compare the best configurations of biclustering algorithms.

Another relevant conclusion is that biology is such a fertile field
that it is very heterogeneous. We found heterogeneity on biclustering
methods, on microarray technologies and on biological knowledge.
Although the heterogeneity is good in order to provide different points
of views and solutions for each problem, this variation should be
minimized in the underlying data structures that allow to share the
information. Identifiers, file formats and naming conventions should
keep an order that back up the "chaos" in the techniques. It is not
always easy to separate both aspects, and heterogeneity spreads in, for
example, expression file formats and gene identifiers. In addition, this
heterogeneity of knowledge also affects researchers. In order to improve
the analysis of biological data, there is a need of collaboration between
specialists in the design and interpretation of experiments (biologists,
doctors, etc.) and the data management and analysis of their outcomes
(statisticians, computer scientists, etc.)

With regard to the findings presented in this thesis, we can extract
some conclusions about the development of visual analysis approaches
for bioinformatics problems. First, it is key to identify and verbalize
the questions that we want to answer, and the tasks that will help to
answer them. It is also fundamental to identify the data we require in
order to answer these questions and to characterize the main entities
of these data. Second, the decisions about the design of visualization
techniques must take into account the data we have, the questions we
want to ask, the available kinds of analyses, and the characteristics of
human perception. It is also very important to consider the state of
the art representations for the data we want to represent, so we do not
reinvent the wheel, and to respect the most accepted approaches so we
do not to confuse the user. Regarding interaction, it must be intuitive
so the user doesn’t feel confused, but at the same time must help in the
analytical discourse. The interaction response should be quick enough
in order to keep the user in control of the tool. Time-consuming tasks
should be optimized, or the user must be properly advised. Finally,
data formats should only be redesigned if the available formats do
not fulfill our needs to a large extent. The time spent reformatting or
correcting formats sometimes exceed the time spent analyzing data.
About data generated by external entities and suspected to change with
time, such as gene annotations, they must be retrieved from external
entities when possible; otherwise we need to be aware of every possible
change on these data.

A general conclusion to be drawn from this thesis is that the use of
multiple-linked, highly interactive views, designed in order to answer
well defined tasks, has an enormous potential to reduce analysis times
and uncover relevant information. While the research on the visual-
ization of overlapped groups is still an open area of study, it is key to
interpret complex group relationships such as the ones derived from
biclustering analysis. Genes may be involved into several functions,
collaborating with different genes on each one, so the visualization
of overlapping groups is very valuable for the study of functional ge-
nomics. We hope that this thesis will guide other developers towards
considering the use of visualization techniques of overlapped groups
and visual analytics approaches to achieve similar results.
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17.1 further work

There are several opportunities for further research based on the study
presented in this thesis. First, the biclust package can include several
other biclustering algorithms that performed well in the surveyed
comparisons. In addition, the package can also include the proposed
Γ̄ ′ index and the method to find the best parameters for biclustering
algorithms.

Second, now that we defined and tested an internal validation index
for biclusters, we can use it extensively to test its usefulness in real
cases with no a priori information, and in biclustering comparisons.
Before this, we also want to perform additional tests with several
biclustering algorithms that implement different search methods and
kinds of biclusters.

Third, BicOverlapper can grow in several directions. One is the devel-
opment of a more efficient way to visualize TRN networks. A possible
approach is to visualize just the selected elements and their nearest
neighbors. Other improvement in the networks visualization is the
detection of network motifs, that have been used for biclustering com-
parison by some authors. We are also considering the use of other
relevant biological networks, such as metabolic pathways. A second
direction is the deeper consideration of the visualization of the infor-
mation about conditions. The MIAME definition for experiment-related
data or the very recent Experimental Factor Ontology (EFO)1 could be
good starting points to visualize experimental factors in word clouds.
Another direction under study is the use of misplacement metrics and
semantic zoom in order to improve the Overlapper visualization tech-
nique. This visualization can become very cluttered with very large
biclustering sets, although we think that it is not very useful to visualize
very large biclustering result set (more than, say, 100 biclusters) because
our experience reveals that these results are very redundant and often
inconclusive. Finally, but probably the most important direction, it will
be very interesting to perform user tests to measure the usability of
the tool. The feedback from such tests will give us new improvement
directions.

1 http://www.ebi.ac.uk/efo/index.html

http://www.ebi.ac.uk/efo/index.html
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