Mostrar el registro sencillo del ítem

dc.contributor.authorZanchet, Alexandre
dc.contributor.authorSanz-Sanz, Cristina
dc.contributor.authorOrtega Álvarez, Pablo 
dc.contributor.authorGarcía Jambrina, Pablo 
dc.contributor.authorGómez Carrasco, Susana Raquel 
dc.contributor.authorGonzález Sánchez, Lola 
dc.date.accessioned2021-06-11T08:57:37Z
dc.date.available2021-06-11T08:57:37Z
dc.date.issued2021
dc.identifier.citationP. Ortega, A. Zanchet, C. Sanz-Sanz, S. Gómez-Carrasco, L. González-Sánchez, P. G. Jambrina, Chem. Eur. J. 2021, 27, 1700.es_ES
dc.identifier.urihttp://hdl.handle.net/10366/146768
dc.description.abstract[EN]Despite being a very strong oxidizing agent, most organic molecules are not oxidized in the presence of O2 at room temperature because O2 is a diradical whereas most organic molecules are closed-shell. Oxidation then requires a change in the spin state of the system, which is forbidden according to non-relativistic quantum theory. To overcome this limitation, oxygenases usually rely on metal or redox cofactors to catalyze the incorporation of, at least, one oxygen atom into an organic substrate. However, some oxygenases do not require any cofactor, and the detailed mechanism followed by these enzymes remains elusive. To fill this gap, here the mechanism for the enzymatic cofactor-independent oxidation of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) is studied by combining multireference calculations on a model system with QM/MM calculations. Our results reveal that intersystem crossing takes place without requiring the previous protonation of molecular oxygen. The characterization of the electronic states reveals that electron transfer is concomitant with the triplet–singlet transition. The enzyme plays a passive role in promoting the intersystem crossing, although spontaneous reorganization of the water wire connecting the active site with the bulk presets the substrate for subsequent chemical transformations. The results show that the stabilization of the singlet radical-pair between dioxygen and enolate is enough to promote spin-forbidden reaction without the need for neither metal cofactors nor basic residues in the active site.es_ES
dc.format.mimetypeapplication/pdf
dc.language.isoenges_ES
dc.subjectCharge transfer mechanismes_ES
dc.subjectCofactor-independent enzymeses_ES
dc.subjectOxidationes_ES
dc.subjectOxygenaseses_ES
dc.subjectSpin-forbidden transitionses_ES
dc.titleDpgC-Catalyzed Peroxidation of 3,5-Dihydroxyphenylacetyl-CoA (DPA-CoA): Insights into the Spin-Forbidden Transition and Charge Transfer Mechanismses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publishversionhttps://doi.org/10.1002/chem.202002993es_ES
dc.subject.unesco2210 Química Físicaes_ES
dc.relation.projectIDFundacion Salamanca Salamanca City of Culture and Knowledgees_ES
dc.relation.projectIDSpanish Ministry of Science and Innovation PGC2018-096444-B-I00es_ES
dc.relation.projectIDSpanish Ministry of Science and Innovation: FIS2017-83473-C2-2-Pes_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.journal.titleChemistry-A European Journales_ES
dc.volume.number27es_ES
dc.page.initial1700es_ES
dc.page.final1712es_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem